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In my view, this paper offers three 
key insights:

1. The authors describe two dif-
ferent GPU parallelizations of be-
tweenness centrality. Their “work-ef-
ficient” approach assigns only active 
vertices to processing units; their 
“edge-parallel” approach instead as-
signs edges to processing units.

2. They analyze both methods 
through the lens of different types of 
graphs. Large-diameter graphs with 
a uniform out-degree are well suit-
ed for the work-efficient approach, 
while the edge-parallel approach is a 
better fit for scale-free (small-world) 
graphs. The authors show how to 
choose the right approach at run-
time by first sampling the graph to 
estimate graph diameter and then 
choosing the better approach to 
compute BC on the entire graph.

3. They also identify coarser par-
allelism in the overall computation 
that allows them to distribute work 
across multiple GPUs and demon-
strate near-linear speedup on a 192-
GPU cluster.

These contributions are crucial 
building blocks for future work on 
GPU graph computation. For BC, im-
portant next steps include incremen-
tal computations on mutable graphs 
and multi-GPU scaling to graphs that 
do not fit into GPU memory. More 
broadly, while work in GPU graph 
analytics today generally focuses on 
relatively simple graph problems, 
real-world workloads are more com-
plex. Our community must move to-
ward frameworks that address these 
more complex problems that deliver 
both high performance and high-lev-
el programmability. 
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G R A P H S  A R E  T H E  natural data struc-
tures to represent relationships, and 
in our age of big data, graphs are very 
big indeed. For instance, Facebook’s 
social graph has well over two bil-
lion users (vertices in the graph), and 
their friendships (edges in the graph) 
may number in the hundreds of bil-
lions. How do we make sense of data 
this large?

If possible, we can gain significant 
insight into complex problems of in-
terest both to commerce and to sci-
ence. Through graph data, we may be 
able to detect anomalies (say, intru-
sions into a computer network), make 
recommendations (say, which movie 
to watch), search a graph for patterns 
(say, credit card fraud), or detect com-
munities (say, identifying proteins 
within a cell with similar functional-
ity). Enabling faster graph computa-
tion allows us to find answers to these 
questions more quickly and cheaply.

As the graphics processor (GPU) has 
become ubiquitous in personal com-
puters, supercomputers, and more 
recently datacenters, its advantages 
in raw performance and price-perfor-
mance have motivated its use in graph 
computation. A significant body of re-
cent research has demonstrated the 
performance advantages of GPUs over 
CPUs on a variety of graph computa-
tions. However, the GPU presents sev-
eral challenges to authors of efficient 
graph implementations:

 ! To be effective on any problem, 
GPUs require large, parallel work-
loads. Thus GPU application authors 
must identify and expose significant 
parallelism in their applications. For-
tunately, most graph computations 
allow parallelization over the graph’s 
vertices, and large graphs exhibit more 
than enough parallelism to make GPUs 
a viable choice.

 ! However, graphs are particularly 
challenging because of the load im-
balance across vertices. Some verti-
ces have few neighbors, while others 

have many. A straightforward paral-
lelization that assigns vertices to dif-
ferent processing units means units 
assigned vertices with few neighbors 
are idle while waiting for heavily load-
ed units to finish. The resulting load 
balance problem is perhaps the most 
significant challenge in writing an ef-
ficient graph computation.

 ! GPUs have modest-sized memo-
ries, and the largest graphs of interest 
cannot fit in a single GPU’s memory. 
Distributing work across multiple 
GPUs faces two problems: efficiently 
partitioning both the data and compu-
tation across the GPUs in a load-bal-
anced way, and structuring the multi-
GPU computation so that the resulting 
communication between GPUs does 
not become a bottleneck.

The following work by McLaugh-
lin and Bader ably addresses these 
challenges in the important context 
of a graph computation called be-
tweenness centrality (BC). Central-
ity metrics on a graph ascertain the 
most important nodes in that graph. 
Betweenness centrality—perhaps 
the most popular centrality metric—
does so by counting how many short-
est paths in the graph flow through a 
particular node. For instance, we may 
wish to know the most important air-
ports in the world. Betweenness cen-
trality would consider every possible 
pair of airports and compute the fast-
est route between each pair; airports 
involved in the fastest routes would 
then be the most important.

While the straightforward method 
for computing betweenness central-
ity (individually compute the shortest 
paths between all pairs) would be quite 
expensive for large graphs, the much 
cheaper formulation of Ulrik Brandes 
(2001) is the basis for any modern 
computation of betweenness central-
ity, including the following paper. Its 
efficient parallelization on GPUs is a 
significant challenge and the focus of 
this work.
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