
AUGUST 2018 | VOL. 61 | NO. 8 | COMMUNICATIONS OF THE ACM 1

In my view, this paper offers three
key insights:

1. The authors describe two dif-
ferent GPU parallelizations of be-
tweenness centrality. Their “work-ef-
ficient” approach assigns only active
vertices to processing units; their
“edge-parallel” approach instead as-
signs edges to processing units.

2. They analyze both methods
through the lens of different types of
graphs. Large-diameter graphs with
a uniform out-degree are well suit-
ed for the work-efficient approach,
while the edge-parallel approach is a
better fit for scale-free (small-world)
graphs. The authors show how to
choose the right approach at run-
time by first sampling the graph to
estimate graph diameter and then
choosing the better approach to
compute BC on the entire graph.

3. They also identify coarser par-
allelism in the overall computation
that allows them to distribute work
across multiple GPUs and demon-
strate near-linear speedup on a 192-
GPU cluster.

These contributions are crucial
building blocks for future work on
GPU graph computation. For BC, im-
portant next steps include incremen-
tal computations on mutable graphs
and multi-GPU scaling to graphs that
do not fit into GPU memory. More
broadly, while work in GPU graph
analytics today generally focuses on
relatively simple graph problems,
real-world workloads are more com-
plex. Our community must move to-
ward frameworks that address these
more complex problems that deliver
both high performance and high-lev-
el programmability.

John D. Owens is the Child Family Professor of
Engineering and Entrepreneurship in the Department of
Electrical and Computer Engineering at the University of
California, Davis, CA, USA.

Copyright held by author.

G R A P H S A R E T H E natural data struc-
tures to represent relationships, and
in our age of big data, graphs are very
big indeed. For instance, Facebook’s
social graph has well over two bil-
lion users (vertices in the graph), and
their friendships (edges in the graph)
may number in the hundreds of bil-
lions. How do we make sense of data
this large?

If possible, we can gain significant
insight into complex problems of in-
terest both to commerce and to sci-
ence. Through graph data, we may be
able to detect anomalies (say, intru-
sions into a computer network), make
recommendations (say, which movie
to watch), search a graph for patterns
(say, credit card fraud), or detect com-
munities (say, identifying proteins
within a cell with similar functional-
ity). Enabling faster graph computa-
tion allows us to find answers to these
questions more quickly and cheaply.

As the graphics processor (GPU) has
become ubiquitous in personal com-
puters, supercomputers, and more
recently datacenters, its advantages
in raw performance and price-perfor-
mance have motivated its use in graph
computation. A significant body of re-
cent research has demonstrated the
performance advantages of GPUs over
CPUs on a variety of graph computa-
tions. However, the GPU presents sev-
eral challenges to authors of efficient
graph implementations:

 ! To be effective on any problem,
GPUs require large, parallel work-
loads. Thus GPU application authors
must identify and expose significant
parallelism in their applications. For-
tunately, most graph computations
allow parallelization over the graph’s
vertices, and large graphs exhibit more
than enough parallelism to make GPUs
a viable choice.

 ! However, graphs are particularly
challenging because of the load im-
balance across vertices. Some verti-
ces have few neighbors, while others

have many. A straightforward paral-
lelization that assigns vertices to dif-
ferent processing units means units
assigned vertices with few neighbors
are idle while waiting for heavily load-
ed units to finish. The resulting load
balance problem is perhaps the most
significant challenge in writing an ef-
ficient graph computation.

 ! GPUs have modest-sized memo-
ries, and the largest graphs of interest
cannot fit in a single GPU’s memory.
Distributing work across multiple
GPUs faces two problems: efficiently
partitioning both the data and compu-
tation across the GPUs in a load-bal-
anced way, and structuring the multi-
GPU computation so that the resulting
communication between GPUs does
not become a bottleneck.

The following work by McLaugh-
lin and Bader ably addresses these
challenges in the important context
of a graph computation called be-
tweenness centrality (BC). Central-
ity metrics on a graph ascertain the
most important nodes in that graph.
Betweenness centrality—perhaps
the most popular centrality metric—
does so by counting how many short-
est paths in the graph flow through a
particular node. For instance, we may
wish to know the most important air-
ports in the world. Betweenness cen-
trality would consider every possible
pair of airports and compute the fast-
est route between each pair; airports
involved in the fastest routes would
then be the most important.

While the straightforward method
for computing betweenness central-
ity (individually compute the shortest
paths between all pairs) would be quite
expensive for large graphs, the much
cheaper formulation of Ulrik Brandes
(2001) is the basis for any modern
computation of betweenness central-
ity, including the following paper. Its
efficient parallelization on GPUs is a
significant challenge and the focus of
this work.

Technical Perspective
Graphs, Betweenness
Centrality, and the GPU
By John D. Owens

DOI:10.1145/3230483

To view the accompanying paper,
visit doi.acm.org/10.1145/3230485 rh

