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1 Introduction

Force-free electrodynamics (FFE) [1–3] consists of the following equations,

Fµν F̃
µν = 0, FµνF

µν > 0, ∇[µFνρ] = 0, Fµν∇ρF
ρµ = 0, (1.1)

with F̃µν = (1/2)ǫµνρσF
ρσ. From left to right, these are: degeneracy (E ·B = 0), magnetic

domination (B2 > E
2), no magnetic monopoles, and the force-free condition FµνJ

ν = 0. In
general the current Jµ = ∇νF

µν is non-zero; this theory describes plasma. Interestingly, it
describes plasma in many different regimes, from the lab [4] to the sun [5] to neutron stars
[6] to black holes [7]. Recently it has been emphasized [8] that the differential equations in
the theory (right two equations in (1.1)) are equivalent to the conservation of two currents,

∇µF̃
µν = 0, ∇µT

µν = 0, (1.2)

where Tµν is the Maxwell stress-energy tensor. This formulation helps explain why force-free
fields are ubiquitous in nature: they follow from symmetries, independent of microscopics.

Nevertheless, it is illuminating and useful to have microscopic derivations valid for
specific systems of interest. One simple system is a collection of classical, non-interacting
point charged particles (with both signs of charge present) immersed in a strong, magnetically
dominated field of external origin. As the particles respond to the field they will naturally
cancel out its electric component, ultimately driving E · B entirely to zero if sufficiently
plentiful. However, the strength of the field means that individual charges are necessarily
confined to field lines, executing small gyrations about a “guiding center” that slides freely
along the line (e.g. [9]). Mathematically, the Lorentz force law degenerates to the constraint
E+v×B = 0, which is written covariantly as Fµνu

µ = 0 for the four-velocity uµ. (Formally,
this is a zero-mass limit.) If all charges move in this way, the total current Jµ similarly
satisfies FµνJ

µ = 0, reproducing FFE.
This derivation is not particularly appropriate for the ultra-strong fields that occur

near neutron stars, in the range of 108 to 1015 Gauss. In these fields the synchrotron cooling
time is so short that any actual classical particle executing gyrations will quickly relax into
the lowest Landau level of a flux quantum. Some years ago, Thompson and Blaes [10]
provided a derivation more appropriate for these conditions. They reasoned that the actual
current is carried by the free momentum quantum number along a field line and hence
is effectively two-dimensional. Noting that the current in two-dimensions may be written
ja = eǫab∂bΦ/(2π), they multiplied by the density of Landau levels eB/(2π) to produce a
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four-dimensional current. Finally they promoted this to a covariant expression assuming the
fields vary slowly,

Jµ = − e2

8π2
ǫµνρσ∂νΦFρσ . (1.3)

The force-free condition FµνJ
µ = 0 then follows directly, assuming the fields are degenerate

(Fµν F̃
µν = 0).1 Even more interestingly, coupling the current (1.3) to the Maxwell field

provides an action principle for FFE,2

S =

∫ √−gd4x
(

−1

4
FµνF

µν − e2

16π2
ΦFµν F̃

µν

)

, (1.4)

with Fµν = 2∇[µAν] as usual. With this action principle the degeneracy constraint need not
be put in, since Φ has become a Lagrange multiplier that enforces it automatically. Varying
with respect to Φ and Aµ produces

∇νF
µν = − e2

4π2
F̃µν∇νΦ, Fµν F̃

µν = 0. (1.5)

Using the Maxwell equation ∇νF
µν = Jµ (here really the definition of Jµ), the left equation is

just (1.3), which was already remarked to be equivalent to the force-free condition FµνJ
µ = 0

provided Fµν F̃
µν = 0. The no-monopoles equation comes for free since F = dA, so one need

only adjoin the inequality FµνF
µν > 0 (required for well-posed evolution [2, 11–13]) to obtain

the full force-free electrodynamics. The formulation (1.5) is also useful in practice since Φ
can provide a conserved quantity along field lines [14]. Other actions for FFE are considered
in [1, 8, 15].

Thompson and Blaes did not pursue the microscopics of their model too much further,
but they did note that the field Φ ought to have a more fundamental description in terms of
the method of bosonization [16, 17], wherein two-dimensional theories of fermions are trans-
muted into theories of bosons. In this paper we will pursue the idea more fully and perform a
top-down bosonization of a lowest-Landau-level QED plasma. Aspects of our treatment will
follow closely a similar calculation done in the context of holography [18]. We will be led to a
very peculiar regime of plasma physics—we term it coherent pair plasma—that has not been
considered previously. The Φ field becomes fully dynamical, with a two-dimensional flux-
weighted kinetic term accompanied by the famous sine-Gordon self-interaction. We boldly
treat this action classically. Force-free electrodynamics emerges in a strong-field limit that
we interpret as allowing free production of pairs by the Schwinger mechanism.3

This can be regarded as a microscopic derivation of FFE, but ultimately we are most
tempted by the phenomenology of this theory away from the force-free limit. Black hole and
pulsar magnetospheres are believed to be connected with a variety of observational mysteries
that FFE alone is unable to explain [19–22]. The theory we study here can support the
unscreened electric fields (E·B 6= 0) needed to account for high-energy particles and radiation,
and will likely have intricate features due to the sine-Gordon interaction. We admit to have
imagined the possibility that macroscopic sine-Gordon solitons moving along field lines could
provide the long-sought coherent radiation mechanism of pulsars [22] and fast radio bursts
[21].

1To see the equivalence, note that FµνF̃
µν = 0 implies that Fµν = α[µβν] for some αµ and βµ.

2To reproduce the current in (1.3) requires the coupling (1/2)JµAµ, since Jµ depends on the field Aµ.
3I am grateful to N. Iqbal for this observation.
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2 Action for Coherent Pair Plasma

Fundamentally, a pair plasma is governed by Quantum Electrodynamics (QED),

S =

∫

d4x
(

ψ̄
(

i /D −m
)

ψ − 1
4FµνF

µν
)

. (2.1)

We set ~ = c = 1 and use the conventions of [23]. We presume that a large scale R≫ 1/m is
set by boundary conditions (in the pulsar magnetosphere this would be the neutron star size),
so that we can split the electromagnetic (EM) field into a coarse-grained piece and small-scale
fluctuations. We will neglect the fluctuations and treat the large-scale field classically. This
eliminates many processes (such as Compton scattering and associated pair-production) that
may be important in real pulsars, but we will see that an interesting theory survives.

We will work in a box of length Lz and transverse area A = LxLy over times Lt such
that 1/m ≪ Lµ ≪ R. The EM field varies slowly over these scales and will be approximated
as constant in space and time. Assuming the field is not null (at least one of FµνF

µν and
Fµν F̃

µν not zero), by a suitable boost and rotation we may take B in the positive z direction
with E parallel, i.e. E = E0ẑ,B = B0ẑ with B0 > 0. We represent the background field in
the Landau gauge,

Aµ = (−zE0, 0, xB0, 0). (2.2)

The field equation is now just the Dirac equation in this EM field,

(iγµ∂µ − eγµAµ −m)ψ = 0, (2.3)

on which we will impose periodic boundary conditions at the box edges.
Without loss of generality we can solve the transverse dependence using separation of

variables by

ψ =
N
∑

n=0

∞
∑

j=0

e−ikny

√

Ly

(Xn,j−1(x)P+ +Xn,j(x)P−)ψn,j(t, z), (2.4)

where P± = 1
2(1 ± iγ1γ2) projects onto spin-up (+) and spin-down (−) degrees of freedom.

The (orthonormal) transverse eigenfunctions Xn,j(x) are given by

Xn,j =

(

1

2jj!
√
πℓB

)
1
2

exp

[

−1

2

(

x− xn
ℓB

)2
]

Hj

(

x− xn
ℓB

)

, j ≥ 0, (2.5)

where Hj are the Hermite polynomials, X−1 ≡ 0, and we introduce

ℓB =
1√
eB0

, kn =
2π

Ly
n, xn =

kn
eB0

. (2.6)

This sum over j is the decomposition into Landau levels, while the sum over n reflects
the degeneracy associated with the transverse size of the box. In particular, the transverse
momentum kn is discrete on account of the periodic boundary conditions, with range of
summation arising from the requirement that the center xn of the wavefunction is within the
box, i.e. 0 < xn < Lx. This gives 0 ≤ n ≤ eB0A/(2π), so that

N =
eB0A

2π
. (2.7)
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Plugging Eq. (2.4) back into the Dirac equation (2.3) yields equations for the longitudi-
nal functions ψn,j(t, z). One can regard P±ψn,j as two-dimensional spinors labeled by three
indicies n, j,± and thereby determine a theory of coupled 2D spinors [18], each representing
a single spin degree of freedom in a single Landau level. We will consider only the lowest
Landau level (j = 0), which only has the spin-down degree of freedom. In this case the ansatz
(2.4) becomes

ψLLL = (πℓ2B)
− 1

4

N
∑

n=0

e−ikny

√

Ly

e
− 1

2

(

x−xn
ℓB

)2

ξn(t, z), ξn = P−ψn,0. (2.8)

This restriction is mathematically consistent on account of our treatment of the EM field as
classical—there is no coupling between the levels. Physically, we require that any effects not
included in our model (such as collisions with photons) transfer transverse (xy) momentum
that is small compared to the typical energy spacing eB0/m of the Landau levels.4 We
must also require the transverse particle density to be less than transverse density of states
eB0/(2π), so that all particles can fit.

Plugging Eq. (2.8) into the Dirac equation (2.3) yields the 1+1-dimensional Dirac equa-
tion for each “species” ξn,

(

iΓM∂M − eΓMAM −m
)

ξn = 0. (2.9)

The capital latin index runs over only the t, z components and Γ0 = γ0P− and Γ3 = γ3P−

are 2D gamma-matrices. For completeness use we also define the 2D chiral matrix Γ5 =
γ5P− = −Γ0Γ3. In the Weyl representation, these are related to the Paul matrices by
Γ0 = σ1,Γ3 = −iσ2,Γ5 = −σ3. The action for this theory is just

Sξ =

∫

dtdz

N
∑

n=0

ξ̄n
(

iΓM (∂M + ieAM )−m
)

ξn, (2.10)

which can also be derived by plugging (2.8) into the Dirac action and performing the integral
over the transverse directions. We have chosen the normalizations so (2.10) arises directly
with no extra prefactor.

We now employ the method of bosonization [16, 17]. The relations between the boson
fields φn and the fermions ξn is non-local and can depend on the theory being bosonized, but
the fermion bilinears have the simple substitution rules (e.g. [24]) (no sum on n)

iξ̄nΓ
A∂Aξn ↔ 1

8π
∂Aφn∂Aφn (2.11a)

ξ̄nΓ
Aξn ↔ 1

2π
ǫAB∂Bφn (2.11b)

ξ̄nΓ
5ΓAξn ↔ 1

2π
∂Aφn (2.11c)

ξ̄nξn ↔ − Λ

4π
cosφn. (2.11d)

Here Λ is a convention-dependent mass scale used to define composite operators; it must be
matched to the analogous scale used on the fermion side in comparing any given calculation.

4For very large fields eB0 ≫ m2, the energy spacing is of order
√
eB0 ≪ eB0/m.
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Making these substitutions, the action (2.10) becomes

Sφ =

∫

dtdz
N
∑

n=0

(

1

8π
∂Aφn∂Aφn − mΛ

4π
(1− cosφn)−

eE0

2π
φn

)

, (2.12)

where we have added a constant to make the potential equal zero at its minima. We have
also integrated by parts on the last term.

One utility in writing a theory in a new way is that it may suggest interesting new
limits. Our strategy will be to take the classical limit of the bosonic action, i.e., to consider
its equations of motion for commuting classical fields φn. However, the arbitrary scale Λ
appears in the action, so we must assign it a value for this limit. The simplest argument is
to set Λ ∼ m to make the mass of the sine-Gordon soliton of order the fermion mass. By
Eq. (2.11b) the fermion electric charge becomes a topological charge of the boson theory, and
the soliton contains precisely one unit (e.g. [26]); it is therefore naturally identified with the
fermion. Additional evidence for the physical relevance of the bosonic classical limit arises
from the mapping of states in the duality, where one-fermion states correspond to coherent
states of the boson [27], which are in some sense “most classical”. Further discussion may
be found in Ref. [18], where it is concluded that in general Λ is to be identified with a
physical scale in the relevant semi-classical limit. The only scale here is the renormalized
mass mR(B0). However, since the mass runs only weakly with magnetic field [28, 29], we will
just consider it constant. We thus write

Λm = m̄2, (2.13)

where m̄ is of order the electron mass. Most conservatively, we could simply regard m̄ as a
free parameter in the theory.

Treating each φn as a classical field, our next step is to relate the φn to eachother. Each
φn can be regarded as living on a magnetic field line that represents one quantum of magnetic
flux. We will assume that the field configuration does not vary too much from field line to
field line, so that the plasma is coherent over scales of order ℓB . Formally we introduce a
transverse coherence length ζ⊥ representing the scale over which the φn agree with eachother.
We say the plasma is coherent if

coherent plasma: ζ⊥ ≫ ℓB. (2.14)

Taking the transverse box size of order the coherence length (Lx ∼ Ly ∼ ζ⊥), we may
approximate the φn as sharing a single field configuration Φ,

φ1 = φ2 = · · · = φN ≡ Φ. (2.15)

One can expect such coherence to emerge when the mechanism creating the plasma operates
on scales much larger than ℓB . In pulsars, the ultimate driver of plasma production is the
rotating neutron star (see discussion in Sec. 4 below), so the natural scale is kilometers. The
magnetic length ℓB is vastly smaller (ℓB ≈ 10−12/

√
B12 meters, where B12 is the magnetic

field in units of 1012 Gauss), and we expect no difficulty with coherence.
Plugging Eqs. (2.13) and (2.15) into the action (2.12) and using N = eB0A/(2π)

[Eq. (2.7)], we find

SΦ
1+1 =

∫

dtdz
eB0A

2π

(

1

8π
∂AΦ∂AΦ− m̄2

4π
(1− cos Φ)− e

2π
E0Φ

)

(2.16)

=

∫

d4x
eB0

2π

(

1

8π
∂AΦ∂AΦ− m̄2

4π
(1− cos Φ)− e

2π
E0Φ

)

. (2.17)
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In the second step we have noted that the transverse area A of the box is just
∫

dxdy.
Eq. (2.17) gives the dynamics of the plasma in a local Lorentz frame where the electric

and magnetic fields are constant and parallel, with Φ independent of x and y. Requiring that
this action emerge in every such local frame gives rise, via considerations of covariance, to a
global action for a field Φ now allowed to depend on all four spacetime coordinates. To find
this action we introduce a covariant expression for a projector to the 1+1D subspace5

hµν =
FµαF

α
ν +B2

0gµν
E2

0 +B2
0

. (2.18)

We then relate E0 and B0 to the tensorially natural invariants a and b (organized as in [30]),

B2
0 − E2

0 = B
2 −E

2 = 1
2FµνF

µν ≡ a (2.19)

2E0B0 = 2E ·B = 1
2F

µνF̃µν ≡ b. (2.20)

Noting
√
a2 + b2 = E2

0 +B2
0 , in particular we have

√
2E0 = sign[b]

√

√

a2 + b2 − a (2.21)

√
2B0 =

√

√

a2 + b2 + a. (2.22)

Finally, we will promote to curved spacetime by ∂ → ∇ as usual. Using these ingredients to
express (2.17) covariantly, allowing all fields to depend on all coordinates, and re-introducing
the F 2 term from (2.1) gives the complete action for a coherent plasma as6

S =

∫ √−gd4x
(

−1

4
FµνF

µν − e2

16π2
ΦF̃µνFµν +

eB0

8π2
(

1
2h

µν∇µΦ∇νΦ− m̄2(1− cos Φ)
)

)

.

(2.23)

The degrees of freedom are Aµ and Φ, with B0 and hµν are constructed from Fµν = 2∇[µAν]

using Eqs. (2.18)-(2.22). Notice that, despite the axionic coupling ΦF̃µνFµν , the field Φ is not
an axion: its kinetic term is two-dimensional (projected to the field direction) and weighted
by the local field B0.

Before proceeding, we wish to emphasize that the theory (2.23) contains no additional
tensor structure beyond the Maxwell field. In particular, there is no preferred “plasma frame”
(four-velocity uµ), and frame-dependent concepts like temperature and number density do
not appear in the theory or in its conditions for validity (listed during the derivation). Only
the preferred family of frames defined by the Maxwell field (see footnote 5) can be involved in
any physics related to this theory. This manifests as Lorentz-invariance in the dimensionally
reduced theory (2.16), and is the essential reason why the conditions for validity involve only
transverse directions.

5Any non-null electromagnetic field (at least one of FµνF
µν and Fµν F̃

µν not zero) defines a preferred
family of frames where B and E are parallel (including the case where one vanishes). The frames are related
by Lorentz boosts along the field direction (call it ẑ), which preserve the fields E = E0ẑ and B = B0ẑ. The
projector hµν has components (1, 0, 0,−1) in any such frame and acts as the two-dimensional metric for the
theory (2.12).

6Recall that in writing Eq. (2.12) we made a particular choice of the overall constant in the dimensionally-
reduced action. Had we made a different choice, a term proportional to B0 would appear in the final action
(2.23) even as Φ → 0, and the theory would not properly reduce to free Maxwell theory.
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However, it is instructive to relate to other descriptions of plasma that do involve a
preferred frame. For example, a temperature T in some frame uµ corresponds to transverse
momenta at most of order γ⊥T in the preferred family of frames, where γ⊥ =

√

hµνuµuν

is the minimal Lorentz factor relative to the preferred family (we set Boltzmann’s constant
to unity). Thus we require T ≪ eB0/(γ⊥m) for particles to remain in the lowest Landau
level. Similarly, we require the number densities n± of positrons and electrons to satisfy

n
2/3
± ≪ eB0/(2πγ⊥) so all particles fit. However, we avoid saying that (2.23) represents a

low-temperature, low-density plasma; instead, it corresponds to a strong-field regime where
temperature and density are simply not relevant concepts.

Finally, we discuss the interpretation of Φ, which is the only degree of freedom describing
the plasma. This field emerged from treating the bosonized degrees of freedom classically
and insisting on slow variation from field line to field line. Its derivatives encode the electric
(2.11b) and axial (2.11c) current flowing along the local field direction. Because of the use of
the duality, its interpretation in terms of electrons and positrons is unclear. However, this is
precisely the point: by using a new description of the plasma, we hope to reveal properties
that are obscure in the traditional language.

3 Force-free Limit

Force-free electrodynamics arises if we can drop the last two terms in (2.23) in order to
reproduce the Thompson-Blaes action (1.4). We now discuss two circumstances in which
this is possible, and mention a third regime where it may also make sense.

The first is if Φ is globally near a vacuum Φ0 = 2πn, where n is an integer. Using
δΦ = Φ − Φ0 ≪ 1, the leading appearance of δΦ in (2.23) is the second term; the last two
terms are O(δΦ2) and may be neglected. This reproduces the action (1.4) with Φ replaced
by δΦ. Varying with respect to δΦ still produces the non-linear equations of FFE in terms
of δΦ, but only solutions with δΦ ≪ 1 should be considered. In light of the formula (1.3) for
the force-free current, this translates physically to the assumption

|J | ≪ B0/R, (3.1)

where R is a typical scale of variation. Thus the δΦ ≪ 1 sector should properly only include
solutions with nearly-zero charge-current; that is, only linearized solutions about current-free
backgrounds. This corresponds to a nearly neutral plasma.

Full non-linear FFE emerges in a separate limit where the fields are taken to be very
strong. To illustrate, we repeat (2.23) and annotate the size of each term,

S =

∫ √−gd4x
[

−1

4
FµνF

µν − e2

16π2
ΦF̃µνFµν +

eB0

8π2
(

1
2h

µν∇µΦ∇νΦ− m̄2(1− cos Φ)
)

]

∼ B2

[

1 + α + α
Bc

B

(

1

(mζ||)2
+ 1

)]

(3.2)

Here B is a typical field scale (we do not distinguish between electric and magnetic), α = e2

is the fine structure constant, and Bc is the QED-critical field strength,

Bc = m2/e ≈ 4× 1014 Gauss. (3.3)
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The scalar Φ is assumed order-one and varying on scales ζ‖ and ζ⊥ parallel and perpendicular
to the local field direction.7 Since all derivatives are projected onto the field direction, only
ζ‖ appears in (3.2). We see that the last two terms disappear at strong field,

Force-free limit: B ≫ Bc. (3.4)

This means that force-free behavior emerges as the field exceeds the quantum critical
scale. We interpret this on the fermion side of the duality as due to the free availability
of pairs via the Schwinger mechanism; these pairs can screen E0 to zero, as required in
FFE. (Below the critical scale, no other pair production mechanisms are available as our EM
field is classical.) It is not clear exactly how to interpret Schwinger pair-production on the
boson side, but it clearly must occur as it is a one-loop process involving only a background
electromagnetic field. The hidden role of loops can be seen from the appearance of α in the
bosonized terms of the action (3.2). This is characteristic of bosonization: it “classicalizes”
one-loop fermion effects [18, 25, 31].

We must also check that the force-free limit preserves the assumptions of the model.
The transverse coherence assumption (2.14) may be written

coherence: mζ⊥ ≫
√

Bc

B
. (3.5)

Thus as B → ∞ it becomes easier to maintain coherence: the force-free limit is consistent.
By contrast, coherence is impossible to maintain as B → 0. However, for macroscopic

coherence lengths (ζ⊥m ≫ 1) there is a wide range of field strengths where coherence is
possible at weaker fields,

Bc

(mζ⊥)2
≪ B ≪ Bc. (3.6)

In this regime the last two terms in the action (3.2) are dominant, suggesting that the sine-
Gordon dynamics on each field line decouples from the rest of the plasma. We may then
imagine current moving only on field lines, either in smooth or solitonic field configurations.
By some kind of coarse-graining over the microscopics, it may be possible to replace Φ with
a simpler model of current flowing along the field lines. One could then invoke a sufficiency
of charge to screen the electric field (E · B → 0). The dynamics of this particular class of
weak-field solution are then force-free, since the condition FµνJ

µ = 0 is equivalent to the
statement that the charge-current points along the field lines of a degenerate electromagnetic
field [3]. It would be very interesting to make this coarse-graining procedure precise.

4 Discussion

The main result of this paper is the action (2.23) for a “coherent pair plasma”. Beyond
its theoretical interest, we propose neutron star magnetospheres as a candidate physical
application. It is generally believed that pulsars shine because of the presence of plasma
outside the neutron star (e.g. [22]). Even if no plasma is present at birth, the enormous
voltage (some ten orders of magnitude greater than m) generated by the rotation of the

7The perpendicular scale ζ⊥ is defined using the family of frames as in Sec. 2. For the parallel scale ζ‖
there is no invariant definition and we imagine comparing the size of terms in the action relative to a preferred
frame given externally by boundary conditions (e.g. the frame of a neutron star).
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conducting neutron star crust through the stellar magnetic field will “spark” the vacuum in
one way or another to allow a current to flow through space. The most likely process [32] is
the acceleration of stray charges along curved magnetic field lines, which radiate gamma-ray
photons that pair-produce in the strong magnetic field, leading to a pair-creation cascade.
Other processes may occur; the main point is that energetics seem to make pair production
unavoidable over a wide swath of parameter space that corresponds to observed pulsars.

That plasma production occurs is thus reasonably certain, but the plasma density at
which it shuts off is less so. The non-zero E · B drives the pair production, but the pairs
begin to screen this field as they become more plentiful. Pair-production will stop once
E · B becomes sufficiently small, but exactly how small depends on the microscopic model.
The action (2.23) seems most useful in a charge-starved regime where there is not enough
plasma to completely screen the field. Usually this regime is explored with phenomenological
resistivity [33–35] or particle-in-cell simulations (see [36, 37] and subsequent references). Here
we suggest an alternative approach that is in a sense hybrid, since plasma is described by
a smooth field Φ that can nonetheless develop particle-like features on account of the sine-
Gordon term with mass scale m̄.

However, this separation of scales will also make the field equations rather difficult to
solve numerically. Furthermore, it is connected with a lingering theoretical worry about the
consistency of the theory: We assumed that the EM field varies on scales much larger than
1/m, but obtained a theory where it is coupled to the scale m̄ ∼ m. Does this mean the EM
field will always develop structure on small scales, invalidating the original assumption? We
think not, on account of the scale appearing as a self-interaction only. Barring adverse initial
conditions, we expect fine structure to develop mainly in longitudinal directions of the Φ field,
with significant influence on the electromagnetic field only on much larger scales. Of course,
generic solutions will presumably show some small-scale variation of Fµν , and in applications
it may be necessary to coarse-grain this deviation away. One could imagine beating the
separation of scales using an effective field theory framework, such as that recently proposed
near the force-free limit [8]. These difficulties would also disappear in an ultrarelativistic
limit where the mass term could be dropped.

We now discuss some future directions. First, it would be interesting to study the
bosonization at the level of mapping individual fields, instead of relying in substitution rules
(2.11). This would improve the rigor of the analysis and clarify the meaning of the scale
m̄. Second, it would be interesting to include some aspects of the quantized electromagnetic
field and/or go beyond the lowest Landau level approximation. It would be illuminating to
see whether force-free dynamics emerge naturally at sub-critical field strengths if a second
pair-production mechanism is enabled. Third, it would be interesting to relax the assumption
(2.15) of complete coherence between the degenerate Landau levels. In principle there should
be a perturbative expansion away from true coherence, or an alternative framework where
the field Φ becomes a statistical average. This is likely related to the coarse graining issues
discussed above.

Fourth, it would be very interesting to explore connections with the “chiral magnetic
wave” expected in quark-gluon plasma, which has also been studied with bosonization on the
lowest Landau level [31]. In fact, the chiral magnetic effect [38] itself is a kind of force-free
dynamics (since the current flows along the magnetic field), and effective actions with the
axionic coupling ΦFµν F̃

µν indeed appear in its study [39, 40]. The pulsar magnetosphere can
be understood as a reverse chiral magnetic effect: Instead of a microscopic chiral imbalance
becoming a battery to drive current along the field, a macroscopic battery (the rotating
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neutron star) drives current in the lowest Landau level that results that results (at least in
the massless limit) in a net flow of chirality. It is not clear whether there are any observational
consequences of this chirality of the pulsar magnetosphere.

Finally, it would be very interesting to attempt direct numerical simulation of the field
equations associated with (2.23). For inspiration, we conclude by writing them out:

∇νF
µν = − e2

4π2
F̃µν∇νΦ+

e

8π2
∇νJ µν (4.1)

∇µ(B0h
µν∇νΦ) + m̄2B0 sinΦ = −1

2eF̃
µνFµν , (4.2)

where the antisymmetric tensor J µν is given by

J µν =
Fµν +Hµν

2B0

[

1
2h

ρσ∇ρΦ∇σΦ− m̄2(1− cos Φ)
]

+
B0

E2
0 +B2

0

[

2gρ
[µF ν]

σ + 1
2F

µνgρσ +Hµν(12gρσ − hρσ)
]

∇ρΦ∇σΦ, (4.3)

with

Hµν =
aFµν + bF̃µν

E2
0 +B2

0

. (4.4)

In these expressions, E0, B0, a, b and hµν are constructed from Fµν using Eqs. (2.18)-(2.22).
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