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ABSTRACT

In the past few decades, there has been rapid growth in quantity

and variety of healthcare data. These large sets of data are usually

high dimensional (e.g. patients, their diagnoses, and medications

to treat their diagnoses) and cannot be adequately represented as

matrices. Thus, many existing algorithms can not analyze them.

To accommodate these high dimensional data, tensor factorization,

which can be viewed as a higher-order extension of methods like

PCA, has attracted much attention and emerged as a promising

solution. However, tensor factorization is a computationally expen-

sive task, and existing methods developed to factor large tensors

are not flexible enough for real-world situations.

To address this scaling problem more efficiently, we introduce

SGranite, a distributed, scalable, and sparse tensor factorization

method fit through stochastic gradient descent. SGranite offers

three contributions: (1) Scalability: it employs a block partition-

ing and parallel processing design and thus scales to large tensors,

(2) Accuracy: we show that our method can achieve results faster

without sacrificing the quality of the tensor decomposition, and

(3) FlexibleConstraints: we show our approach can encompass var-

ious kinds of constraints including l2 norm, l1 norm, and logistic

regularization. We demonstrate SGranite’s capabilities in two real-

world use cases. In the first, we use Google searches for flu-like

symptoms to characterize and predict influenza patterns. In the

second, we use SGranite to extract clinically interesting sets (i.e.,

phenotypes) of patients from electronic health records. Through

these case studies, we show SGranite has the potential to be used

to rapidly characterize, predict, and manage a large multimodal

datasets, thereby promising a novel, data-driven solution that can

benefit very large segments of the population.
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1 INTRODUCTION

Increasingly large amounts of health-related data are released on the

Internet and have great potential for enabling better disease surveil-

lance and disease management. As a motivating example, search

activities on diseases such as influenza can be used and correlated

with actual influenza surveillance data. Estimation of influenza-like

illness (ILI) rates is a well-studied task [25, 32], Google Flu Trends,

while flawed, demonstrated a link between influenza related search

queries and the Centers for Disease Control and Prevention’s (CDC)

ILI rates[19]. Similarly, programs such as the National Institute of

Health’s All for Us NIH [2], are looking to gather data and make

it publicly available to researchers to enable precision medicine.

Extracting influenza patterns or clinical characteristics from such

high-dimensional data can pose challenges, even before considering

whether the data has been appropriately labeled.

A vast majority of the algorithms for disease surveillance or

disease prediction adopt a supervised learning approach, but the

need for labels can limit the possible scope of the task. However,

unsupervised learning methods such as tensor factorization have

been successfully applied in many application domains including

social network analysis [29, 30, 39] and health analytics [15, 16, 18,

22, 36]. Tensors can succinctly represent high-dimensional data,

including various representations of time or different sources of

data. For example, an existing work showed that factorizing a tensor

that grouped ILI historical statistics by year, week, and region could

tease out patterns that are commonly based on the weeks that

influenza is highest, deliver insight into the degree to which regions

are similar or different from one another in terms of influenza, and

capture the changes in ILI intensity from one year to the next [13].

Moreover, a variety of constraints can be placed on the learned

latent factors to extract meaningful patterns and reduce overfitting.

Yet, efficient tensor decomposition of large datasets in the presence

of such constraints can be challenging.

In this paper, we propose SGranite, a distributed tensor decom-

position framework that can incorporate a variety of regularization

terms to constrain the latent factors. In particular, we show that

integrating three forms of regularization terms can achieve easier-

to-interpret factors, provide robustness in the presence of noise, and

map to existing domain knowledge. Moreover, SGranite is very

fast and scalable. Using a Spark-based implementation, we demon-

strate the ability to decrease computation time by distributing both
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Table 1: A comparison of the supported features between SGranite versus state of arts methods

Feature SGranite CP-APR [8] Granite [16] FlexiFact[6] DisTenC [11]

(fit using SGD)

Scalable Yes No Yes Yes Yes

Memory Efficient Yes No Yes No Yes

Time efficient Yes No No Yes Yes

Appropriate for count data Yes Yes Yes No No

Works with constraints Yes No Yes Yes No

Table 2: Table of symbols and their associated definitions

Symbol Definition

X, X, x, x Tensor, Matrix, Column Vector, Scalar

X(n) n-mode matricization of a tensor X

X(r, :) r th row of X

X(:, r) r th column of X

A(n) nth factor matrix

∥a∥2, ∥A∥F l2 norm, Frobenius norm

∗ Hadamard (elementwise) product

◦ outer product

⊗ Kronecker product

⊙ Khatri-Rao product (column-wise ⊗)

A distributed framework for incorporating a variety of constraints

in CP decomposition is appealing for several reasons including

the ability to extract patterns from large datasets that cannot be

readily stored on a centralized server, to encode prior knowledge,

to improve interpretability, and to democratize high-dimensional

learning by running on standard commodity servers.

In this section, we will first provide a general overview and then

formulate the optimization problem.

3.1 General Optimization Problem

SGranite, builds on several existing nonnegative CP decomposition

algorithms to model sparse count data using the Poisson distribu-

tion [8, 16]. LetX denote an observed tensor constructed from count

data with size I1 × I2 × · · · × IN andM represent a same-sized ten-

sor of Poisson parameters for X. In addition to KL divergence, we

introduce generalized constraints on the factor matrices, R (A(n) )

to the objective function. Thus, the optimization problem is defined

as:

min f (M) =
∑

i⃗

(m
i⃗
− xi logmi⃗

) +
∑

k

βkRk
(

A(n)
)

︸          ︷︷          ︸
regularization terms

s.t.M = ⟦λ;A(1) , · · · ,A(N )
⟧

λr ≥ 0, | |a
(n)
r | |1 = 1, ∀r

A(n) ∈ [0, 1]In×R , ∀n

(1)

The Poisson parameters,m, can be determined byminimizing the

negative log-likelihood of the observed data x. We also maintain the

stochasticity (i.e., elements sum to 1) and non-negativity constraints

(i.e., factor elements and weights, or λ, must be non-negative) that

were introduced in the original CP-APR model [8].

3.2 Example of Useful Regularization Terms

Equation 1 supports a variety of regularization items, R (A(n) ).

While we describe three forms of special regularizations that are

useful for analyzing health data, SGranitewas developed to handle

any regularization that is either smooth and differentiable or has

an easy-to-compute proximal operator [31].

3.2.1 Diversity onA (n) . For analyzing flu patterns or clinical char-

acteristics of patient subgroups, it is preferable for the rank-one fac-

tor components to be distinct from each other. This allows domain

experts to more easily interpret the patterns. While several mecha-

nisms for encouraging diversity have been proposed [16, 21, 36],

we adopt the angular penalty term in [16] that encourages diver-

sity between rank-one tensors by penalizing overlapping elements.

There are two benefits to this regularization. It does not require

prior knowledge to construct a similarity matrix that is used in

[21]. Similarly, it does not require the discovered patterns to be

orthogonal to one another [36], which may be too restrictive. Under

angular regularization, any element that has large values in multi-

ple columns in the factor matrix are penalized. Thus, the angular

penalty for the nth factor matrix, A(n) , is formulated as follows:

Rk

(

A(n)
)

=

R∑

r=1

r∑

p=1

max *,0,
(anp )

T anr

∥anp ∥2∥a
n
r ∥2
− θn+-

2

3.2.2 Sparsity and Smoothness on A (n) . Sparsity and smoothness

constraints have been introduced in a wide range of applications

to improve interpretability and increase robustness to noise. Our

framework supports a general class of ℓp penalties including sim-

plex constraint term (| |ar | |1 = 1,air ∈ [0, 1]); ℓ2 regularization on

the weight and the first factor matrix, λA (1) to mitigate overfitting

to large count data; and the ℓ0-norm regularization which caps the

number of non-zeros elements in the factor.

We first consider the simplex constraint term, which can yield

sparse factors while providing a probabilistic interpretation. For

the nth factor matrix, A(n) , we restrict the elements to lie on the

ℓ1-ball of diameter s , where s is a user-specified parameter, such

that:

Rk

(

A(n)
)

=

R∑

r=1

(s − ||a
(n)
r | |1)

661



When s = 1, this results in the projection of the factor onto the

probabilistic (or canonical) simplex [9]. By decreasing s to be less

than 1, the resulting factors will be sparser.

The ℓ2-norm regularization was introduced in [16] to encourage

terms in the factor matrix vectors to be similar-sized. Together with

the simplex projection, the interaction of these two regularizations

achieved further sparsity by driving specific elements to 0 more

quickly in a similar manner to the elastic net regularization [41].

Rk

(

A(n)
)

=

R∑

r=1

∥a
(n)
r ∥2

The ℓ0-norm regularization, introduced in [4], is an alternative to

the simplex projection that limits the number of non-zero elements.

While its usage in Equation 1 results in a non-convex optimization

problem, the hard thresholding properties can yield easy to interpret

factors (top-k elements). To perform hard-thresholding on the nth

factor matrix, A(n) , the regularization term is:

Rk

(

A(n)
)

=

R∑

r=1

∥a
(n)
r ∥0

3.2.3 Discriminative Factors. In some scenarios, the discovered pat-

terns should be discriminative of a certain outcome of interest. For

example, we may want to use the clinical characteristics to predict

things like mortality or whether or not the patient is likely to be

readmitted in 30 days. [21] introduced a logistic regression regu-

larization that encouraged the derivation of latent factors that can

distinguish in-hospital mortality outcomes. SGranite also adopts

the regularization term to derive discriminative latent factors when

such information exists. Without loss of generality, we assume

that the first mode has labeled records. Then the discriminative

regularization is of the form:

Rk

(

A(1)
)

= log P (A (1) ,y |θ )

The probability of a sample a(i, :) (ith row in A(1) ) having the out-

come of interest, P (A (1) ,y |θ ), is obtained by training a logistic

regression model on the factor matrix A(1) .

3.2.4 Sparse, Diverse, and Discriminative Patterns. To demonstrate

the flexibility of SGranite, we introduce all three forms of regular-

ization into our final optimization problem. Thus, the final objective

function is:

f (M) =
∑

i⃗

(m
i⃗
− xi logmi⃗

)+

β1

N∑

n=1

R∑

r=1

r∑

p=1

max *,0,
(anp )

T anr

∥anp ∥2∥a
n
r ∥2
− θn+-

2

+

β2

N∑

n=1

R∑

r=1

(s − ||a
(n)
r | |2) + β3 log P (A

(1) ,y |θ )

(2)

3.3 SGD Updates

This section provides details of how to solve our optimization prob-

lem efficiently (Equation 2). SGranite uses an alternating mini-

mization approach, cycling through each mode while fixing all the

other modes. For each mode, the resulting subproblem is solved

using stochastic gradient descent (SGD). To derive the SGD updates,

we first re-write the objective function as a scalar-valued function

of the parameter vector y using the same approach as [3]. The pa-

rameter vector y represents the vectorization of the factor matrices,

with the weights λ absorbed into the first factor matrix.

y =



vec (λA(1) )

vec (A(2) )
.
.
.

vec (A(n) )


As a result, the gradients of the objective function can be formed by

vectorizing the partial derivatives with respect to each component

of this parameter vector:

∇f (y) =

[
vec (

∂ f

∂A(1)
) · · ·vec (

∂ f

∂A(n)
)

]

For notational convenience, we also represent the matricized

form of the tensor decomposition as:

⟦λ;A(1) , · · · ,A(N )
⟧(n) = λA(n) (A(−n) )T

where

A(−n)
= A(N ) ⊙ · · · ⊙ A(n+1) ⊙ A(n−1) ⊙ · · · ⊙ A(1) .

Thus, the partial derivatives of Equation 2 with respect to the factor

matrix, A(n) are the following:

∂ f

∂A
(n)
r

=

[
1 − X (n) ⊘ Z (n)

]
a
(−n)
r +

β1

∑

p,r

max (0,д(a
(n)
r ,a

(n)
p ))

∂д(a
(n)
r ,a

(n))
p

∂a
(n)
r

+

β2a
(n)
r + β3y

1

1 + exp(yA
(1)
r )

θ

(3)

We refer the reader to [16, 21] for the detailed derivation of the

gradients.

For large datasets, the calculation of the derivatives simultane-

ously for all modes is computationally expensive. Thus, SGranite uses

an SGD approach to avoid storing the entire tensor in memory. For

faster convergence, we adopt a variant of SGD named Adaptive

Moment Estimation (Adam) to adaptively update the learning rate

[23]. Our preliminary experiments on a single machine showed

that SGD with Adam converged faster and more accurately than

using a fixed learning rate.

Algorithm 1 SGD updating process

1: for l = 1 : L do

2: Randomly select n samples

3: Calculate the gradients for samples using Equation 3

4: Compute the decaying averages of past and past squared

gradients

5: Take a step using averaged gradients

6: end for
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Avg Overlap =

∑R
r1

∑R
r2>r1

cos(a
(2)
r1 ,a

(2)
r2 ) + cos(a

(3)
r1 ,a

(3)
r2 )

R (R − 1)

Table 3 summarizes the AUC, total computation time (or running

time), and the average overlap. We observe that SGranite can not

only accelerate the tensor decomposition but also provides better

prediction than other baseline methods. Moreover, the average over-

lap is smaller than Granite even without the angular constraints.

This suggests that the partition function may also have some bene-

ficial impact in terms of reducing overlapping factors. Moreover,

incorporating the angular constraints further helps the discrim-

inative ability of the model. This suggests that adding diversity

constraints to yield less correlated latent features may also help the

resulting predictive model. Therefore, SGranite supports a variety

of flexible constraints and yields improved predictive performance.

Model AUC Time Avg Overlap

CP-APR [8] 0.63 > 1 hour 0.3

FlexiFact [6] 0.65 35 mins 0.37

Granite [16] 0.67 > 1 hour 0.3

SGranite (β1 = 0) 0.68 20 mins 0.1

SGranite (β1 > 0) 0.71 25 mins 0.07

Table 3: Table of AUC, running time, and average overlap-

ping using differentmethods. The highest AUCvaluemeans

extracted phenotypes have stronger discrimination. The

lowest running time indicates our distributed method can

significantly accelerate the computation time. Compared to

CP-APRand FlexiFact, adding angular penalty improved the

distinction significantly.

4.4.3 Case Study 1: Flu Patterns. We provide a further qualitative

assessment of our learned latent patterns from the influenza dataset.

First, we comment on the ability to capture the overall flu season

trends. Although flu season can vary across region to region, the

flu season is typically between October through May (week 43 to

week 22) [1]. We observe this phenomenon even with and without

angular penalty constraints as illustrated in Figure 6. The variance

in region and slight shifts in the week are further evident when

angular penalty and simplex projection constraints are present (Fig-

ure 6b). We can see that some of the regions are present only in 1 of

the factors. Moreover, slight shifts along the week are observed (top

chart), depending on which latent factor with the higher elements

occurring between weeks 48 and 13. This provides further confir-

mation that each region will have slightly different times when

influenza will be more prominent.

We also assessed the learned flu patterns with FlexiFact, the

other distributed CP algorithm that supports non-negativity and

sparsity. Figure 7 presents the learned latent factors using FlexiFact.

We observe that the peak level regions that are discovered using

SGranite are more consistent with the CDC influenza positive

test results, shown in Figure 8. The peaks that are discovered by

FlexiFact are inconsistent with the observed CDC reports. FlexiFact

factors suggest two different peaks, one between weeks 8-10 and

one 18-20, whereas the CDC reports note a peak around 7-9 and

by week 20, it has mostly died down. Moreover, we observe that

the FlexiFact latent factors are more difficult to interpret as the

region and year factors are fairly correlated. We also compared

with the learned factors from a previous study [13] and found our

learned patterns were more consistent with the observed results.

This suggests that the incorporation of constraints not only im-

proves interpretability but also provides robustness to noise.

4.4.4 Case Study 2: Phenotypes. We conducted a second case study

to examine SGranite’s ability to extract discriminative and distinct

clinical characteristics from the MIMIC III dataset. The identifica-

tion of clinical phenotypes from EHR data can help advance our

understanding of disease risk and drug response as well as support

the practice of precision medicine on a national scale [33, 38].

For clinicians, diversity is important to discover rare phenotypes

in a patient population. Moreover, diverse phenotypes are likely

easier to implement, as a clinician may find it difficult to rank-order

or apply phenotypes that have substantial overlap. In addition,

discriminative phenotypes are better predictors of mortality (shown

in Table 3) and thus can be used to assist the decision-making

process.

Table 4 presents the learned phenotypes that are important

where importance is determined based on the magnitude of the

phenotypes (or λr ). Thus, these are the three sets of patient char-

acteristics at which diagnosis and medication are dominant. First,

we observe that the learned phenotypes have limited number of

overlapping elements. In table 4, the most significant phenotype

(λ1) captures acute complications with heart diseases which can

be riskier. In particular, acute respiratory distress syndrome has a

mortality rate of 30-50% and is associated with long hospital stays

[27]. The third phenotype (λ3) captures more chronic diseases such

as heart valve disorder, leukemias, and osteoarthritis. In addition,

we observe that most medication codes in Table 4 are associated

with diagnosis codes above. For example, potassiuman chloride and

practolol are commonly used to lower blood pressure in hyperten-

sives [10, 37]. An ACE inhibitor is used primarily for the treatment

of hypertension and congestive heart failure [26]. And magnesium

carbonate has shown to be effective for chronic kidney diseases

and intracranial injury [5, 35].

5 CONCLUSION

In this paper, we presented a distributed, diverse, non-negative ten-

sor decomposition framework that supports a variety of constraints

including an angular penalty to encourage diversity and a simplex

projection to encourage sparsity while scaling to large tensors. By

imposing such regularization terms, SGranite successfully extracts

meaningful latent factors in two real-world use cases. Moreover,

by using Spark, SGranite successfully reduces processing time by

dramatically reducing the workload and high communication cost.

In addition, SGranite improves binary prediction tasks by incor-

porating logistic supervision into the fitting process. In the future,

we plan to develop a distributed algorithm that can handle linear

regression problem and also an extension that can use outside data

sources as the guidance information.
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