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Abstract—The paper describes a global identification procedure 
for dynamic power system models in the form of differential and 
algebraic equations. Power system models have a number of 
features that makes their improvement challenging – they are 
multi-level, multi-user and multi-physics. Not surprisingly, they 
are nonlinear and time varying, both in terms of states (memory 
variables) and parameters, and discrete structures, such as 
graphs, are strongly blended with continuous dynamics, resulting 
in network dynamics. The transient stability models are used as a 
prototypical example. Our method is based on information 
geometry, and uses advances in computational differential 
geometry to characterize high-dimensional manifolds in the space 
of measurements. In the case of network parameters, a 
comparison is presented with circuit-theoretic techniques. The 
results are illustrated on the case of IEEE 14-bus test system with 
58 parameters in our realization. 

Index Terms— System Identification, Global Optimization, 
Parameter Estimation. 

I. INTRODUCTION  

Models used in studies of dynamic phenomena in power 
systems such as transient stability have significantly advanced 
in terms of size and level of detail. At the same time, they do 
encounter difficulties when trying to replicate well-documented 
events from actual power systems [1]. Given the changes in 
power systems involving markets, distributed sources and 
agglomerated loads (such as microgrids), it is likely that the 
challenges will persist well into the future.  

One natural approach is then to try to improve models using 
operational data. Indeed, the system identification concept has 
been used in power systems for decades, mostly in the form of 
model tuning for key components, such as synchronous 
generators [2]. However, system identification is not without its 
own challenges, mostly related to possibly local nature and 
suboptimality of a solution, to over-parametrization of models 
for typical measurement structures, and to multi-scale nature of 
power systems, as evidenced by differential-algebraic 
equations (DAE) used to describe their dynamics. The concept 
is, however, helped by the emergence of new measurement 
devices, such as Phasor Measurement Units, and of new 
parameter estimation procedures. 

In this paper we explore the capabilities of information 
geometry to perform identification of a networked system. The 

procedure combines information theory and differential 
geometry. Its foundation is the interpretation of a model as a 
manifold embedded in the space of data, known as the model 
manifold. Information geometry captures the global properties 
of the model, since the manifold retains information about all 
model predictions [3]. In contrast, the cost surface in parameter 
space condenses the high-dimensional quantities, such as the 
prediction and measurement vectors into a single number  the 
cost. We have quantified the information-geometric properties 
of some power system components in [4-6]; here we look at 
properties of a networked system with 58 unknown parameters 
and consider network reduction and partial response matching. 

In the sequel we briefly review only the references with 
direct connections to our considerations. The term network 
dynamics is used in [7] to describe systems in which discrete 
structures, such as graphs are blended with dynamical 
relationships describing components connected in nodes. The 
identifiability of linear dynamic networks with known topology 
is discussed in [8]. The case of static radial networks with 
unknown topology and parameters is addressed in [9]. In this 
work authors assume known network topology, and study 
global identifiability properties of nonlinear DAE models. 

The outline of the paper is as follows: in Section II is 
provided the problem formulation; Section III describes the 
Manifold Boundary Approximation Method (MBAM); Section 
IV shows the optimization formulation of the network reduction 
sub-problem; proposed method is applied to the benchmark 14-
bus system in Section V, and Section VI presents conclusions. 

II. PROBLEM FORMULATION 

The standard DAE form of power system models used in 
transient stability is [10]: 
 ሶ࢞ ൌ ,ሺ࢞ࢌ ,ࢠ ,࢖ ሻ,ݐ 
 ૙ ൌ ,ሺ࢞ࢍ ,ࢠ ,࢖ ሻ,ݐ 

where x is the vector of (differential) state variables, z are the 
algebraic variables, p are parameters (typically assumed to be 
unknown in estimation studies) and t is the (scalar) time 
variable. System measurement vector is assumed to be of the 
form: 
 ࢟ ൌ ,ሺ࢞ࢎ ,ࢠ ,࢖ ሻ.ݐ 

The parameters (p) are to be estimated from measurements 
(y); there typically exists prior information about individual 
parameters, often in the form of plausible ranges for each. The 
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key quantities are parametric sensitivities whose dynamics is 
described by the following equations: 
 డ ሶ࢞

డ࢖
ൌ

డࢌሺ࢞,࢖,ࢠ,௧ሻ

డ࢞
 డ࢞
డ࢖
൅

డࢌሺ࢞,࢖,ࢠ,௧ሻ

డࢠ
 డࢠ
డ࢖
൅

డࢌሺ࢞,࢖,ࢠ,௧ሻ

డ࢖
; 

 ૙ ൌ
డࢍሺ࢞,࢖,ࢠ,௧ሻ

డ࢞
 డ࢞
డ࢖
൅

డࢍሺ࢞,࢖,ࢠ,௧ሻ

డࢠ
 డࢠ
డ࢖
൅

డࢍሺ࢞,࢖,ࢠ,௧ሻ

డ࢖
; 

 డࢎ

డ࢖
ൌ

డࢎሺ࢞,࢖,ࢠ,௧ሻ

డ࢞
 డ࢞
డ࢖
൅

డࢎሺ࢞,࢖,ࢠ,௧ሻ

డࢠ
 డࢠ
డ࢖
൅

డࢎሺ࢞,࢖,ࢠ,௧ሻ

డ࢖
. 

These equations are linear in terms of sensitivities, but the 
matrices involved vary along each system trajectory. 

III. MANIFOLD BOUNDARY APPROXIMATION METHOD 

(MBAM) 

Inferring all the parameters of a large, complicated model is 
often difficult [3]. The reason for this difficulty is the 
insensitivity of the model’s predictions to coordinated changes 
in the values of its parameters. This insensitivity suggests a 
simpler model can describe the same set of observations. We 
use the Manifold Boundary Approximation Method (MBAM) 
to remove the unidentifiable combinations of parameters from 
the model. MBAM was first applied to power systems in [5].  
Briefly, MBAM leverages a geometric interpretation of 
statistics. In this approach, the model is a manifold with 
parameters as coordinates. The key insight leveraged by 
MBAM is that typical model manifolds are bounded. The 
boundary has a hierarchical structure similar to a polygon. That 
is, the manifold is bounded by several faces that meet at edges, 
corners, etc. Each of these boundary cells corresponds to a 
simplifying approximation to the model. Using computational 
differential geometry, we identify the appropriate boundary cell 
that captures most of the model’s predictive power.   

Following the methods described in [5], we find boundary 
cells by solving the geodesic equation on the model manifold. 
Along geodesics, some parameters are pushed to extreme 
values (zero or infinity). By evaluating the limit that some 
parameters become infinity or zero, we construct simplified 
models with fewer parameters. For example, the geodesic may 
push the time constant for subtransients to zero, leading to a 
singular perturbation approximation of the model. After a new 
model has been constructed, we identify its parameter values by 
fitting them to the predictions of the original model. The entire 
process is iterated, removing one parameter at a time, until all 
parameters are constrained by the available measurements, i.e., 
further reductions can no longer match the predictions of the 
original model. 

IV. FORMULATION OF CLASSICAL NETWORK REDUCTION 

In the MBAM model reduction procedure, the susceptance 
of a transmission line connecting two nodes eventually 
becomes the parameter whose value takes one of the two 
extreme values (disconnecting the line or shortening the two 
nodes involved). This network changes can also be analyzed 
from a network-theory perspective, and in this section we 
compare the results of the two procedures. To set the network-
theoretic counterpart of the MBAM line removal (as we haven’t 
encountered in our examples the insertion of a short between 
two nodes), we start with basic bus power balance equations:  
 ࡵ ൌ ࢂ , orࢂ௕௨௦ࢅ ൌ ;ࡵ௕௨௦ࢆ 
 ࡿ ൌ ݀݅ܽ݃ሺࢂሻࡵ∗ ൌ ݀݅ܽ݃ሺࢂሻࢅ௕௨௦

∗ , ∗ࢂ 
where:  

  ௕ܰ௨௦-dimensional vector of bus complex current  ࡵ
injections;  

  ; ௕ܰ௨௦-dimensional vector of bus complex voltages  ࢂ
  ௕ܰ௨௦-dimensional vector of bus complex power  ࡿ

injections;  
௕௨௦ࢅ ൌ  ሺ ࡱ௕ࢅ୘ࡱ ௕ܰ௨௦ ௕ܰ௨௦	ሻ-dimensional bus admittance 

matrix; 
௕௨௦ࢆ ൌ ௕௨௦ࢅ

ିଵ   bus impedance matrix;  
 ሺ ࡱ ௕ܰ ௕ܰ௨௦	ሻ-dimensional branch-bus incidence matrix, 

with elements 1 for ending buses of the branch;  
 ,-dimensional diagonal branch admittance matrix	௕   ௕ܰࢅ

with elements ௟ܻ
௕ ൌ 1 ܼ௟

௕⁄ , where ܼ௟
௕ is impedance of 

݈–th branch;  

௕ܰ௨௦, ௕ܰ  number of system buses and branches, respectively.  
After ݈–th branch opening (between buses m and n), a new 

bus admittance matrix is  
 ௕௨௦ࢅ

ሺଵሻ ൌ ௕௨௦ࢅ
ሺ଴ሻ ൅ ௟ܻ

௕ࢋ௟ࢋ௟
୘, 

where ࢋ௟ is ௕ܰ௨௦-dimensional branch-bus incidence vector, 
with elements +1 on ݉–th and 1 on ݊–th position.  

The MBAM procedure optimizes over ௟ܻ
௕ (remaining after 

branch removal) and other model parameters to match the 
measurements via non-linear least squares. Here we consider a 
simpler, but related problem – we assume (nearly) constant 
current injections in nodes before/after branch removal and we 
optimize over bus admittance matrices with known structure. It 
turns out that this results in linear least squares (LLS) problem. 
It may be tempting to simply try to match the original admit-
tance matrix over matrices with restricted structure (without a 
given line), but this formulation misses the directional proper-
ties of nodal matrices that are key in matching the line flows. 

When ࡵ assumed nearly the same (ࡵ ൌ ሺଵሻࡵ ൌ  ࢂ ,(ሺ଴ሻࡵ
should also change little (ࢂ		ࢂሺ଴ሻ		ࢂሺଵሻ) 
 ࡵ ൌ ௕௨௦ࢅ

ሺଵሻ ௕௨௦ࢅࢂ
ሺଵሻ ௕௨௦ࢆ

ሺ଴ሻ . ࡵ 
Please note that this assumption may turn out to be only 

partially true in practice. The network reduction procedure 
may, however, still produce a useful list of candidate branches 
for model reduction, as we show below. An alternative 
optimization-based procedure is offered by the MBAM proce-
dure, and we compare the two methods in the next Section. 

Thus the specified optimization problem becomes 

 ݉݅݊ቛࢅ௕௨௦
ሺଵሻ,௢௣௧ࢆ௕௨௦

ሺ଴ሻ െ ૚ቛ,  
or 

 min
ሺభሻ,೚೛೟್ࢅ

ቛ൫ࡱሺଵሻ൯
୘
௕௨௦ࢆሺଵሻࡱ௕ሺଵሻ,௢௣௧ࢅ

ሺ଴ሻ െ ૚ቛ,  

where ૚ is appropriately sized identity matrix.  
Optimization problem (12) can be solved by using its 

structure  
 ࡮ࢄ࡭ ൌ , ࡯ 

yield 
 ሺ࡮୘࡭ሻܿ݁ݒሺࢄሻ ൌ ሻ, ࡯ሺܿ݁ݒ 

where ࢄࢅ௕ሺଵሻ,௢௣௧ with additional constraints to decision 
variables for ݅ ് ݆ 
 ௜ܺ௝ ൌ 0,  

and where  denotes Kronecker product, ܿ݁ݒሺሻ is vectorized 

matrix, ࡭		൫ࡱሺଵሻ൯
୘
 and ࡮	ࡱሺଵሻࢆ௕௨௦

ሺ଴ሻ  [11]. 



Since the decision vector ࢄ is diagonal, the optimization 
problem (12) can be rearranged to ݉ ൌ 1, 	2, 		, 	 ௕ܰ௨௦ ௕ܰ௨௦ 
linear complex equations as 

∑ ௞௝ܺ௞ܤ௜௞ܣ
ே್
௞ୀଵ ൌ ܾ௠;

															݅, ݆ ൌ 1, 	2, 		, 	 ௕ܰ௨௦; 	݇ ൌ 1, 	2, 		, ௕ܰ௥
ሺଵሻ, 

where ܾ௠ ൌ ቊ
1, 	݅ ൌ ݆

0, 	݅ ് ݆
. 

Optimization problem (12) can be written in linear complex 
form as 
 min

௫
ฮ࢞࡭ െ ฮ, ࢈ 

where the LLS optimal solution is 
 ࢞ ൌ .  ࢈ሻିଵ	୘	࡭	࡭୘ሺ	࡭ 

V. APPLICATION 

A. Test system 
IEEE 14-bus model used here includes five synchronous 

generators in Buses 1, 2, 3, 6, and 8, Figure 1. The generator in 
Bus 1 is implemented as a fourth-order model, including rotor 
angle, speed, and transient electromotive forces in the d- and q-
axes. The generators in Buses 2 and 3 are implemented as a 
classical, second-order model for the generator speed and rotor 
angle. The generators in Buses 6 and 8 are both modeled as a 
detailed, sixth-order model, including both transient and 
subtransient dynamics in the d- and q-axes. We assume many 
parameters, such the moments of inertia for rotors, are not to be 
estimated from transient dynamics and fixed to predetermined 
values. This setup, aimed at exploring networked system 
aspects, leads to a model with 38 tunable component parameters 
describing both generator and some controller elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  14-bus test system with reduced branches 

B. System-Wide Identification 
For each network edge we take the susceptance as a tunable 

parameter. We model the conductance as being proportional to 
the susceptance on each edge, giving a total of 20 network 
parameters. The entire model has 58 parameters. 

We assume the system is initially in steady state, that it is 
perturbed at t = 0, and that the subsequent transient is observed. 
We introduce this transient by increasing the mechanical power 
seen by each generator. We consider here the case of 
measurements (or local estimates [4]) of the generators’ rotor 
angle, speed, and real and reactive powers. We also assume 

voltage magnitude and angle are available in each bus. Typical 
transients at generator are shown in Figures 2 and 3 for 
generators in Buses 2 and 6, respectively. We discuss 
dependence of our results on these details in the next section.  

Notice the mismatch in the reactive power (middle right 
panel) in Figure 3 which indicates that the reduced model is 
identifiable, but the match is not perfect.  

We conducted a sensitivity analysis by numerically solving 
the sensitivity (4)-(6) and calculating the Fisher Information 
Matrix (FIM). We show the eigenvalues of the FIM for this 
model in Figure 4, column a. Notice that the eigenvalues of this 
matrix are uniformly spaced in log over almost 8 orders of 
magnitude, indicating much more sensitivity of the model’s 
predictions to variations in some combinations of parameters 
than in others. 

 
Figure 2.  Transients to be matched in Bus 2 before (red) and after (blue) 

model reduction, including rotor angle, frequency, real and reactive power 
of the generator and angle and voltage in the bus. The reduced model still 
has good agreement with the full model.  

 
Figure 3.  Transients to be matched in Bus 6. Mismatch in the reactive power 

(middle right panel) indicates that all parameters are identifiable from 
these observations.  



 
Figure 4.  Eigenvalue spectra of the FIM, showing (a) the full model with all 

observations, (b) the reduced model with all observations, (c) the full 
model, observing only area A, (d) the full model, observing only power 
and voltage in generators and generator buses, and (e) the full model, 
observing only Buses 1 and 14 (buyer/seller relationship). The dashed line 
marks the smallest eigenvalue of the reduced model. Additional reduction 
could be achieved by observing only part of the system.  

 

Using MBAM, we are able to reduce the 58-parameter 
model down to one with 45 parameters. The parameter values 
along a typical geodesic curve are shown in Figure 5. Further 
reductions are possible in principle, but we find these models 
do not faithfully reproduce the all of transients of the 58-
parameter model, as we discuss below. The sequence of 
limiting approximations that reduces the number of parameters 
to 45 is shown in Table I.  

We find that the 45-parameter model is able to accurately 
match the transient behavior for all the model predictions, 
except for the reactive power in Bus 6. We show the transients 
of the 45-parameter model for the generators in two buses in 
Figures 1 and 2. In Bus 2, the match is still quite good, but in 
Bus 6 there are visible deviations, most notably for reactive 
power, but also for the voltage. From this we conclude that 
further reductions of the model would significantly reduce its 
accuracy for this set of predictions. We discuss the potential for 
further simplifications relative to other predictions in Section 
V.C.   

We conduct a FIM-based sensitivity analysis of the 45-
parameter model. Eigenvalues of this reduced model are shown 
in Figure 4, column b. Notice that MBAM has succeeded in 
removing the least identifiable parameters in the model. Indeed, 
by comparing with column a we see that the effect of MBAM 
has been to "erase" the 12 smallest eigenvalues, leaving 
untouched the parameters most important for determining the 
model’s behavior. 

It is interesting to consider the specific sequence of approxi-
mations identified by MBAM. Most of the approximations are 

TABLE I.  REDUCTION STEPS.  

Step Number of 
parameters 

Reduced 
parameter 

Reduced element Type

 ௗ Bus 6′ݔௗ"ݔ 57 1
2 56 ܶ"ௗ଴0 Bus 6 Singular Limit
ଶ,ହ → 0 Line 2-5 Network Reductionܤ 55 3
 ௤ Bus 8′ݔ௤"ݔ 54 4
5 53 ܶ"௤଴0 Bus 8 Singular Limit
 ௤ Bus 6′ݔ௤"ݔ 52 6
7 51 ܶ"௤଴0 Bus 6 Singular Limit
 ௗ Bus 1ݔௗ′ݔ 50 8
଺,ଵଷ → 0 Line 6-13 Network Reductionܤ 49 9
 ௗ Bus 8′ݔௗ"ݔ 48 10
11 47 ܶ"ௗ଴0 Bus 8 Singular Limit
 ௗ Bus 6ݔௗ′ݔ 46 12
13 45 ܶ′ௗ଴0 Bus 6 Singular Limit

 
Figure 5.  Parameter values along a geodesic in step 2. Here, ܶ"ௗ଴0 in Bus 

6 (i.e., its log value goes to negative infinity in red) corresponding to a 
singular perturbation that removes the d-axis subtransient. In order to 
compensate for this approximation, several other parameter values change 
(blue lines), while most other parameter values are constant (black 
curves). 

singular perturbations. Each of these is paired with a limit in 
which a subtransient reactance is removed. Nominally, MBAM 
removes one parameter from the model at a time. Since singular 
perturbation in the subtransients also removes the reactances, 
this processes is a two-step procedure in the MBAM.   

It is perhaps unsurprising that MBAM identifies a series of 
singular limits for the simplification of model components. 
What is less intuitive, however, is the network reduction in 
steps 3 and 8. Here, MBAM has identified 2 branches that can 
be effectively removed from the model without altering model 
predictions. We analyze these predictions in Section V.C. 

C. Partial Response Matching 
The MBAM procedure is a data-driven model reduction 

procedure in the sense that it identifies and removes parameters 
from a model that would be unidentifiable for a given set of 
observations. Consequently, the results of Section V.B are 
conditional on the choice of observation function. Both 
theoretical and numerical studies have demonstrated that the 
results of MBAM are robust to certain changes in observations. 
For example, using tools of differential topology it can be 
shown that MBAM selected models are robust to things, such 
as the number of time points [12]. In contrast, changing which 
variables are observed can lead to different reduced models. In 
this section we consider how the results of Section V.B depend 
on the choice of observation function. 

We conduct a sensitivity analysis of the 14-bus model in 
which only a subset of the observations is considered. The 
eigenvalues of the FIM are show in Figure 4 for several 
alternative choices of observations. First, we restrict the 
observations to those in Area A in Figure 1, i.e., Buses 614. 
Because these measurements carry less information than those 
in Section V.B, the FIM eigenvalues decrease (column c in 
Figure 4), indicating that fewer parameters can be identified and 
more parameters could be removed by MBAM. Next, we 
consider the case in which we observe only the power and 
voltages in buses with generators (column d in Figure 4). 
Finally, we consider a very sparse choice of observations in 
which we only variables in Buses 1 and 14 (column e), 
suggestive of a designated buyer/seller relationship.   

Using the results of Section V.B, we can estimate how many 
parameters a minimal model we require for each of the 
observation functions in Figure 4. Recall that each iteration of 
MBAM effectively removes the smallest FIM eigenvalue from 
the model. Thus, the value of the smallest eigenvalue of the 45-



parameter model (column b) sets the scale at which parameters 
can be effectively identified from data (dashed line in Figure 4). 
The number of eigenvalues larger than this is the approximate 
number of parameters that would be retained by MBAM. We 
estimate that the Area A measurements (column c) could be fit 
by 38 parameters. Observing only power and voltages (column 
d) could be fit by about 35 parameters, while the buyer/seller 
model (column e) could be fit by about 20 parameters. 

D. Comparison of MBAM and Classical Network Reduction 
When the MBAM procedure is applied to the IEEE 14-bus 

system, it disconnects branch 2-5 at step 3, and branch 6-13 at 

step 8 (see Figure 1). We compare these results with the 
network reduction in Tables II and III. Table II suggests that the 
network optimized as in (12) leads to reasonable results that 
match the network flows and losses very well. Table III displays 
that the parameter tuning has a physically reasonable both in 
MBAM and in (12). For example, line 2-5 removal increases 
susceptance in nearby branch 1-5. The same can be noticed for 
retuned line 6-12 following the removal of 6-13. Note that these 
two methods rank candidate branches for removal; at the next 
step, the optimization of (remaining) parameters determines the 
quality of the proposed system simplification, and possibly 
rejects it. 

TABLE II.  POWER FLOW RESULTS.  
 Basic case Branch 2-5 removed Branches 2-5 and 6-13 removed
Bus ௜ܸ ௜ Load Generation ௜ܸ ௜ Load Generation ௜ܸ ௜ Load Generation
 [p.u.] [rad] [MW] [MVAr] [MW] [MVAr] [p.u.] [rad] [MW] [MVAr] [MW] [MVAr] [p.u.] [rad] [MW] [MVAr] [MW] [MVAr]

1 1.060   0.000 0.000 0.000 2.387 0.181 1.060  0.000 0.000 0.000 2.383 0.155 1.060   0.000 0.000 0.000 2.410 0.154
2 1.045 0.092 0.304 0.178 0.400   0.537 1.045 0.092 0.304 0.178 0.400  0.492 1.045 0.097 0.304 0.178 0.400  0.548
3 1.010 0.258 1.319 0.266 0.000   0.487 1.010 0.253 1.319 0.266 0.000  0.490 1.010 0.263 1.319 0.266 0.000  0.518
4 1.023 0.173 0.669 0.056 0.000   0.000 1.024 0.159 0.669 0.056 0.000  0.000 1.020 0.171 0.669 0.056 0.000  0.000
5 1.031 0.148 0.106 0.022 0.000   0.000 1.031 0.134 0.106 0.022 0.000  0.000 1.027 0.146 0.106 0.022 0.000  0.000
6 1.070 0.216 0.157 0.105 0.300   0.619 1.070 0.203 0.157 0.105 0.300  0.611 1.070 0.221 0.157 0.105 0.300  0.549
7 1.035 0.148 0.000 0.000 0.000   0.000 1.036 0.136 0.000 0.000 0.000  0.000 1.029 0.155 0.000 0.000 0.000  0.000
8 1.090 0.039 0.000 0.000 0.700   0.379 1.090 0.028 0.000 0.000 0.700  0.379 1.090 0.046 0.000 0.000 0.700  0.428
9 1.013 0.209 0.413 0.232 0.000   0.000 1.013 0.196 0.413 0.232 0.000  0.000 1.000 0.221 0.413 0.232 0.000  0.000
10 1.013 0.217 0.126 0.081 0.000   0.000 1.013 0.204 0.126 0.081 0.000  0.000 1.001 0.228 0.126 0.081 0.000  0.000
11 1.036 0.219 0.049 0.025 0.000   0.000 1.036 0.207 0.049 0.025 0.000  0.000 1.028 0.227 0.049 0.025 0.000  0.000
12 1.046 0.236 0.085 0.022 0.000   0.000 1.046 0.224 0.085 0.022 0.000  0.000 1.014 0.261 0.085 0.022 0.000  0.000
13 1.037 0.236 0.189 0.081 0.000   0.000 1.037 0.223 0.189 0.081 0.000  0.000 0.952 0.281 0.189 0.081 0.000  0.000
14 0.997 0.247 0.209 0.070 0.000   0.000 0.998 0.234 0.209 0.070 0.000  0.000 0.952 0.274 0.209 0.070 0.000  0.000

Total 3.626 1.140 3.787   1.841  3.626 1.140 3.783 1.819  3.626 1.140 3.810 1.888
Losses 0.161 0.701   0.157 0.679    0.183 0.748

 

TABLE III.  BRANCH IMPEDANCES.  

Branch Basic case Branch 2-5 
removed 

Branches 2-5 and 
6-13 removed

25 0.05695+j0.17390  
612 0.12290+j0.25580 0.12290+j0.35095 0.12290+j0.25185
1213 0.22090+j0.19990 0.22090+j0.19503 0.22090+j0.21533
613 0.06615+j0.13030 0.06615+j0.15819 
611 0.09498+j0.19890 0.09498+j0.22225 0.09498+j0.23330
1011 0.08205+j0.19210 0.08205+j0.19456 0.08205+j0.19461
910 0.03181+j0.08450 0.03181+j0.09000 0.03181+j0.08999
914 0.12710+j0.27040 0.12710+j0.29045 0.12710+j0.32536
1314 0.17090+j0.34800 0.17090+j0.33426 0.17090+j0.33768
79 0.00000+j0.11000 0.00000+j0.10906 0.00000+j0.10911
12 0.01938+j0.05917 0.01938+j0.06493 0.01938+j0.06285
23 0.04699+j0.19800 0.01938+j0.18747 0.01938+j0.18620
34 0.06701+j0.17100 0.06701+j0.20776 0.06701+j0.20845
15 0.05403+j0.22300 0.05403+j0.20509 0.05403+j0.23399
45 0.01335+j0.04211 0.01335+j0.04635 0.01335+j0.04657
24 0.05811+j0.17630 0.05811+j0.20663 0.05811+j0.20510
56 0.00000+j0.25200 0.00000+j0.43418 0.00000+j0.55129
49 0.00000+j0.55620 0.00000+j1.02606 0.00000+j1.02496
47 0.00000+j0.20910 0.00000+j0.25007 0.00000+j0.25005
78 0.00000+j0.17620 0.00000+j0.18695 0.00000+j0.18696

VI. CONCLUSION 

In this paper we describe a global system identification 
procedure (MBAM) that simultaneously reduces the dynamic 
model, and estimates network and component parameters. We 
also present a circuit-theoretic interpretation of the network 
reduction sub-problem. It turns out that MBAM and the circuit-
based procedure are largely aligned, providing an engineering 
insight into a high-dimensional optimization problem. Our 

ongoing efforts focus on scaling-up the procedure via 
computational improvements and network decomposition, and 
on applications to larger benchmark power systems.  
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