Simultaneous Global Identification of Dynamic and
Network Parameters in Transient Stability Studies

Mark K. Transtrum, Benjamin L. Francis

Dept. of Physics and Astronomy
Brigham Young University, UT, USA
mktranstrum@byu.edu

Abstract—The paper describes a global identification procedure
for dynamic power system models in the form of differential and
algebraic equations. Power system models have a number of
features that makes their improvement challenging — they are
multi-level, multi-user and multi-physics. Not surprisingly, they
are nonlinear and time varying, both in terms of states (memory
variables) and parameters, and discrete structures, such as
graphs, are strongly blended with continuous dynamics, resulting
in network dynamics. The transient stability models are used as a
prototypical example. Our method is based on information
geometry, and uses advances in computational differential
geometry to characterize high-dimensional manifolds in the space
of measurements. In the case of network parameters, a
comparison is presented with circuit-theoretic techniques. The
results are illustrated on the case of IEEE 14-bus test system with
58 parameters in our realization.

Index Terms— System Identification, Global Optimization,
Parameter Estimation.

1. INTRODUCTION

Models used in studies of dynamic phenomena in power
systems such as transient stability have significantly advanced
in terms of size and level of detail. At the same time, they do
encounter difficulties when trying to replicate well-documented
events from actual power systems [1]. Given the changes in
power systems involving markets, distributed sources and
agglomerated loads (such as microgrids), it is likely that the
challenges will persist well into the future.

One natural approach is then to try to improve models using
operational data. Indeed, the system identification concept has
been used in power systems for decades, mostly in the form of
model tuning for key components, such as synchronous
generators [2]. However, system identification is not without its
own challenges, mostly related to possibly local nature and
suboptimality of a solution, to over-parametrization of models
for typical measurement structures, and to multi-scale nature of
power systems, as evidenced by differential-algebraic
equations (DAE) used to describe their dynamics. The concept
is, however, helped by the emergence of new measurement
devices, such as Phasor Measurement Units, and of new
parameter estimation procedures.

In this paper we explore the capabilities of information
geometry to perform identification of a networked system. The
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procedure combines information theory and differential
geometry. Its foundation is the interpretation of a model as a
manifold embedded in the space of data, known as the model
manifold. Information geometry captures the global properties
of the model, since the manifold retains information about all
model predictions [3]. In contrast, the cost surface in parameter
space condenses the high-dimensional quantities, such as the
prediction and measurement vectors into a single number — the
cost. We have quantified the information-geometric properties
of some power system components in [4-6]; here we look at
properties of a networked system with 58 unknown parameters
and consider network reduction and partial response matching.

In the sequel we briefly review only the references with
direct connections to our considerations. The term network
dynamics is used in [7] to describe systems in which discrete
structures, such as graphs are blended with dynamical
relationships describing components connected in nodes. The
identifiability of linear dynamic networks with known topology
is discussed in [8]. The case of static radial networks with
unknown topology and parameters is addressed in [9]. In this
work authors assume known network topology, and study
global identifiability properties of nonlinear DAE models.

The outline of the paper is as follows: in Section II is
provided the problem formulation; Section III describes the
Manifold Boundary Approximation Method (MBAM); Section
1V shows the optimization formulation of the network reduction
sub-problem; proposed method is applied to the benchmark 14-
bus system in Section V, and Section VI presents conclusions.

II. PROBLEM FORMULATION

The standard DAE form of power system models used in
transient stability is [10]:
x=f(x,zpt), (1
0=gxzpt), ()
where x is the vector of (differential) state variables, z are the
algebraic variables, p are parameters (typically assumed to be
unknown in estimation studies) and ¢ is the (scalar) time
variable. System measurement vector is assumed to be of the
form:
y =h(x,z,p,t). 3)
The parameters (p) are to be estimated from measurements
(y); there typically exists prior information about individual
parameters, often in the form of plausible ranges for each. The



key quantities are parametric sensitivities whose dynamics is
described by the following equations:
0x _ Of(xzpt) Ox + of(xzpt) 0z
op - ox ap 0z ap ap
ag(x,zp,t) 0x ag(x,zpt) 0z ag(x,z,p,t
0 = 29&xzpt) 9x | 9g9(xzpt) 0z , O9( p); 5)
ox ap 0z ap ap
dh _ Oh(xzpt) 0x , dh(xzpt) 0z | dh(xzp.t) ( 6)
ap ox op 0z ap op :
These equations are linear in terms of sensitivities, but the
matrices involved vary along each system trajectory.

+ of(x,zpt) . (4)

>

III. MANIFOLD BOUNDARY APPROXIMATION METHOD
(MBAM)

Inferring all the parameters of a large, complicated model is
often difficult [3]. The reason for this difficulty is the
insensitivity of the model’s predictions to coordinated changes
in the values of its parameters. This insensitivity suggests a
simpler model can describe the same set of observations. We
use the Manifold Boundary Approximation Method (MBAM)
to remove the unidentifiable combinations of parameters from
the model. MBAM was first applied to power systems in [5].
Briefly, MBAM leverages a geometric interpretation of
statistics. In this approach, the model is a manifold with
parameters as coordinates. The key insight leveraged by
MBAM is that typical model manifolds are bounded. The
boundary has a hierarchical structure similar to a polygon. That
is, the manifold is bounded by several faces that meet at edges,
corners, etc. Each of these boundary cells corresponds to a
simplifying approximation to the model. Using computational
differential geometry, we identify the appropriate boundary cell
that captures most of the model’s predictive power.

Following the methods described in [5], we find boundary
cells by solving the geodesic equation on the model manifold.
Along geodesics, some parameters are pushed to extreme
values (zero or infinity). By evaluating the limit that some
parameters become infinity or zero, we construct simplified
models with fewer parameters. For example, the geodesic may
push the time constant for subtransients to zero, leading to a
singular perturbation approximation of the model. After a new
model has been constructed, we identify its parameter values by
fitting them to the predictions of the original model. The entire
process is iterated, removing one parameter at a time, until all
parameters are constrained by the available measurements, i.e.,
further reductions can no longer match the predictions of the
original model.

IV. FORMULATION OF CLASSICAL NETWORK REDUCTION

In the MBAM model reduction procedure, the susceptance
of a transmission line connecting two nodes eventually
becomes the parameter whose value takes one of the two
extreme values (disconnecting the line or shortening the two
nodes involved). This network changes can also be analyzed
from a network-theory perspective, and in this section we
compare the results of the two procedures. To set the network-
theoretic counterpart of the MBAM line removal (as we haven’t
encountered in our examples the insertion of a short between
two nodes), we start with basic bus power balance equations:

1=Y,,V . otV =Zyl: )
S = diagWI" = diag(WY V", ®)
where:

1 — N,,s-dimensional vector of bus complex current
injections;

|4 — N, s-dimensional vector of bus complex voltages;

S — Npys-dimensional vector of bus complex power
injections;

Yyus = ETYPE — (NpyusxNpys )-dimensional bus admittance
matrix;

Z s = Ypus — bus impedance matrix;

E — (NyxNp,s )-dimensional branch-bus incidence matrix,
with elements 1 for ending buses of the branch;

Y? — N, -dimensional diagonal branch admittance matrix,
with elements Y;? = 1/ZP, where Z? is impedance of
[—th branch;

Npys, N — number of system buses and branches, respectively.

After [-th branch opening (between buses m and 7), a new
bus admittance matrix is

Yy = Yoo+ Yese] ©)
where e; is Ny, -dimensional branch-bus incidence vector,
with elements +1 on m—th and —1 on n—th position.

The MBAM procedure optimizes over Y;” (remaining after
branch removal) and other model parameters to match the
measurements via non-linear least squares. Here we consider a
simpler, but related problem — we assume (nearly) constant
current injections in nodes before/after branch removal and we
optimize over bus admittance matrices with known structure. It
turns out that this results in linear least squares (LLS) problem.
It may be tempting to simply try to match the original admit-
tance matrix over matrices with restricted structure (without a
given line), but this formulation misses the directional proper-
ties of nodal matrices that are key in matching the line flows.

When I assumed nearly the same (I = IV =) vy
should also change little (V ~ V(® ~ V(1))

1=y vy 701 (10)
= —bus—"—bus=bus—

Please note that this assumption may turn out to be only
partially true in practice. The network reduction procedure
may, however, still produce a useful list of candidate branches
for model reduction, as we show below. An alternative
optimization-based procedure is offered by the MBAM proce-
dure, and we compare the two methods in the next Section.

Thus the specified optimization problem becomes

min |57 z0) - 1)), (11)
or
T
Ybr(I})i_lgpt (E(l)) Zb(l)yoptE(l)Zng _ 1” , (12)

where 1 is appropriately sized identity matrix.
Optimization problem (12) can be solved by using its
structure
13)

(BT™®A)vec(X) = vec(C) (14)
where X=Y?(W:oPt with additional constraints to decision
variables for i # j

AXB =,
yield

Xij=0, (15)
and where ® denotes Kronecker product, vec(-) is vectorized

T
matrix, A= (E®) and B=E®ZO [11].



Since the decision vector X is diagonal, the optimization

problem (12) can be rearranged to m =1, 2, ..., Nyyue-Npys
linear complex equations as

N
Zk21 Aikékj&k = by;

Li=1,2 ..., Njuss k=1,2, ...,N, (16
117
wherebm={0l. ]
,l:pt]

Optimization problem (12) can be written in linear complex
form as

min||Ax — b|| , (17)
x
where the LLS optimal solution is
x=AT(AAT)"b. (18)

V. APPLICATION

A. Test system

IEEE 14-bus model used here includes five synchronous
generators in Buses 1, 2, 3, 6, and 8, Figure 1. The generator in
Bus 1 is implemented as a fourth-order model, including rotor
angle, speed, and transient electromotive forces in the d- and g-
axes. The generators in Buses 2 and 3 are implemented as a
classical, second-order model for the generator speed and rotor
angle. The generators in Buses 6 and 8 are both modeled as a
detailed, sixth-order model, including both transient and
subtransient dynamics in the d- and g-axes. We assume many
parameters, such the moments of inertia for rotors, are not to be
estimated from transient dynamics and fixed to predetermined
values. This setup, aimed at exploring networked system
aspects, leads to a model with 38 tunable component parameters
describing both generator and some controller elements.
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Figure 1. 14-bus test system with reduced branches

B. System-Wide Identification

For each network edge we take the susceptance as a tunable
parameter. We model the conductance as being proportional to
the susceptance on each edge, giving a total of 20 network
parameters. The entire model has 58 parameters.

We assume the system is initially in steady state, that it is
perturbed at ¢ = 0, and that the subsequent transient is observed.
We introduce this transient by increasing the mechanical power
seen by each generator. We consider here the case of
measurements (or local estimates [4]) of the generators’ rotor
angle, speed, and real and reactive powers. We also assume

voltage magnitude and angle are available in each bus. Typical
transients at generator are shown in Figures 2 and 3 for
generators in Buses 2 and 6, respectively. We discuss
dependence of our results on these details in the next section.

Notice the mismatch in the reactive power (middle right
panel) in Figure 3 which indicates that the reduced model is
identifiable, but the match is not perfect.

We conducted a sensitivity analysis by numerically solving
the sensitivity (4)-(6) and calculating the Fisher Information
Matrix (FIM). We show the eigenvalues of the FIM for this
model in Figure 4, column a. Notice that the eigenvalues of this
matrix are uniformly spaced in log over almost 8 orders of
magnitude, indicating much more sensitivity of the model’s
predictions to variations in some combinations of parameters
than in others.
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Figure 2. Transients to be matched in Bus 2 before (red) and after (blue)
model reduction, including rotor angle, frequency, real and reactive power
of the generator and angle and voltage in the bus. The reduced model still
has good agreement with the full model.
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Figure 3. Transients to be matched in Bus 6. Mismatch in the reactive power
(middle right panel) indicates that all parameters are identifiable from
these observations.
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Figure 4. Eigenvalue spectra of the FIM, showing (a) the full model with all
observations, (b) the reduced model with all observations, (c) the full
model, observing only area A, (d) the full model, observing only power
and voltage in generators and generator buses, and (e) the full model,
observing only Buses 1 and 14 (buyer/seller relationship). The dashed line
marks the smallest eigenvalue of the reduced model. Additional reduction
could be achieved by observing only part of the system.

Using MBAM, we are able to reduce the 58-parameter
model down to one with 45 parameters. The parameter values
along a typical geodesic curve are shown in Figure 5. Further
reductions are possible in principle, but we find these models
do not faithfully reproduce the all of transients of the 58-
parameter model, as we discuss below. The sequence of
limiting approximations that reduces the number of parameters
to 45 is shown in Table I.

We find that the 45-parameter model is able to accurately
match the transient behavior for all the model predictions,
except for the reactive power in Bus 6. We show the transients
of the 45-parameter model for the generators in two buses in
Figures 1 and 2. In Bus 2, the match is still quite good, but in
Bus 6 there are visible deviations, most notably for reactive
power, but also for the voltage. From this we conclude that
further reductions of the model would significantly reduce its
accuracy for this set of predictions. We discuss the potential for
further simplifications relative to other predictions in Section
V.C.

We conduct a FIM-based sensitivity analysis of the 45-
parameter model. Eigenvalues of this reduced model are shown
in Figure 4, column b. Notice that MBAM has succeeded in
removing the least identifiable parameters in the model. Indeed,
by comparing with column a we see that the effect of MBAM
has been to "erase" the 12 smallest eigenvalues, leaving
untouched the parameters most important for determining the
model’s behavior.

It is interesting to consider the specific sequence of approxi-
mations identified by MBAM. Most of the approximations are

TABLEI. REDUCTION STEPS.
Step| Number of Reduced |Reduced element Type
parameters parameter

1 57 X" X'y Bus 6

2 56 T"30—0 Bus 6 Singular Limit

3 55 B,5—0 Line 2-5 Network Reduction
4 54 x'g—ox'y Bus 8

5 53 T"30—0 Bus 8 Singular Limit

6 52 x"g—x'y Bus 6

7 51 T"30—0 Bus 6 Singular Limit

8 50 X' g—xg Bus 1

9 49 Bg13 — 0 Line 6-13 Network Reduction
10 48 x"g X'y Bus 8

11 47 T" 100 Bus 8 Singular Limit
12 46 x' g—>xg Bus 6

13 45 T'10—0 Bus 6 Singular Limit

log Parameter Value
o

T T \

0 2 4 6

7 (Geodesic Distance)

Figure 5. Parameter values along a geodesic in step 2. Here, T" ;0—0 in Bus
6 (i.e., its log value goes to negative infinity in red) corresponding to a
singular perturbation that removes the d-axis subtransient. In order to
compensate for this approximation, several other parameter values change
(blue lines), while most other parameter values are constant (black
curves).

singular perturbations. Each of these is paired with a limit in
which a subtransient reactance is removed. Nominally, MBAM
removes one parameter from the model at a time. Since singular
perturbation in the subtransients also removes the reactances,
this processes is a two-step procedure in the MBAM.

It is perhaps unsurprising that MBAM identifies a series of
singular limits for the simplification of model components.
What is less intuitive, however, is the network reduction in
steps 3 and 8. Here, MBAM has identified 2 branches that can
be effectively removed from the model without altering model
predictions. We analyze these predictions in Section V.C.

C. Partial Response Matching

The MBAM procedure is a data-driven model reduction
procedure in the sense that it identifies and removes parameters
from a model that would be unidentifiable for a given set of
observations. Consequently, the results of Section V.B are
conditional on the choice of observation function. Both
theoretical and numerical studies have demonstrated that the
results of MBAM are robust to certain changes in observations.
For example, using tools of differential topology it can be
shown that MBAM selected models are robust to things, such
as the number of time points [12]. In contrast, changing which
variables are observed can lead to different reduced models. In
this section we consider how the results of Section V.B depend
on the choice of observation function.

We conduct a sensitivity analysis of the 14-bus model in
which only a subset of the observations is considered. The
eigenvalues of the FIM are show in Figure 4 for several
alternative choices of observations. First, we restrict the
observations to those in Area A in Figure 1, i.e., Buses 6—14.
Because these measurements carry less information than those
in Section V.B, the FIM eigenvalues decrease (column ¢ in
Figure 4), indicating that fewer parameters can be identified and
more parameters could be removed by MBAM. Next, we
consider the case in which we observe only the power and
voltages in buses with generators (column d in Figure 4).
Finally, we consider a very sparse choice of observations in
which we only variables in Buses 1 and 14 (column e),
suggestive of a designated buyer/seller relationship.

Using the results of Section V.B, we can estimate how many
parameters a minimal model we require for each of the
observation functions in Figure 4. Recall that each iteration of
MBAM effectively removes the smallest FIM eigenvalue from
the model. Thus, the value of the smallest eigenvalue of the 45-



parameter model (column b) sets the scale at which parameters
can be effectively identified from data (dashed line in Figure 4).
The number of eigenvalues larger than this is the approximate
number of parameters that would be retained by MBAM. We
estimate that the Area A measurements (column c) could be fit
by 38 parameters. Observing only power and voltages (column
d) could be fit by about 35 parameters, while the buyer/seller
model (column e) could be fit by about 20 parameters.

D. Comparison of MBAM and Classical Network Reduction

When the MBAM procedure is applied to the IEEE 14-bus
system, it disconnects branch 2-5 at step 3, and branch 6-13 at

step 8 (see Figure 1). We compare these results with the
network reduction in Tables IT and III. Table II suggests that the
network optimized as in (12) leads to reasonable results that
match the network flows and losses very well. Table III displays
that the parameter tuning has a physically reasonable both in
MBAM and in (12). For example, line 2-5 removal increases
susceptance in nearby branch 1-5. The same can be noticed for
retuned line 6-12 following the removal of 6-13. Note that these
two methods rank candidate branches for removal; at the next
step, the optimization of (remaining) parameters determines the
quality of the proposed system simplification, and possibly
rejects it.

TABLE II. POWER FLOW RESULTS.

VI. CONCLUSION

In this paper we describe a global system identification
procedure (MBAM) that simultaneously reduces the dynamic

model, and estimates network and component parameters. We
also present a circuit-theoretic interpretation of the network
reduction sub-problem. It turns out that MBAM and the circuit-
based procedure are largely aligned, providing an engineering
insight into a high-dimensional optimization problem. Our

Basic case Branch 2-5 removed Branches 2-5 and 6-13 removed
Bus| V; 2] Load Generation V; 0. Load Generation V; 0. Load Generation
[p.u]]| [rad] [[MW]|[[MVAr]|[MW]|[MVAr]] [p.u.] | [rad] | [MW] |[[MVAr]| [MW] |[MVATr]] [p.u.] | [rad] [ [MW][[MVAr]| [MW] |[MVATr]
1 |1.060| 0.000[0.000 | 0.000 |2.387 [-0.181 1.060 | 0.000 | 0.000 | 0.000 | 2.383 [-0.155 | 1.060 | 0.000| 0.000 | 0.000 | 2.410 |-0.154
2 |1.045]|-0.092(0.304 | 0.178 | 0.400 | 0.537 1.045 | —0.092 | 0.304 | 0.178 | 0.400 | 0.492 | 1.045 |—0.097| 0.304 | 0.178 | 0.400 | 0.548
3 |1.010]-0.258|1.319 | 0.266 | 0.000 | 0.487 1.010 | —-0.253 | 1.319 | 0.266 | 0.000 | 0.490 | 1.010 [-0.263| 1.319 | 0.266 | 0.000 | 0.518
4 11.023]-0.173]0.669 | 0.056 | 0.000 | 0.000 1.024 | —0.159 | 0.669 | 0.056 | 0.000 | 0.000 | 1.020 |—0.171] 0.669 | 0.056 | 0.000 | 0.000
5 |[1.031]-0.1480.106 | 0.022 | 0.000 | 0.000 1.031 | -0.134 | 0.106 | 0.022 | 0.000 | 0.000 | 1.027 |-0.146| 0.106 | 0.022 | 0.000 | 0.000
6 |1.070]/-0.216/0.157 | 0.105 | 0.300 | 0.619 1.070 | —-0.203 | 0.157 | 0.105 | 0.300 | 0.611 | 1.070 |—0.221| 0.157 | 0.105 | 0.300 | 0.549
7 [1.035]-0.148/0.000 | 0.000 | 0.000 | 0.000 1.036 | —0.136 | 0.000 | 0.000 | 0.000 | 0.000 | 1.029 |-0.155| 0.000 | 0.000 | 0.000 | 0.000
8 [1.090[-0.039[0.000 | 0.000 |0.700| 0.379 1.090 | —0.028 | 0.000 | 0.000 | 0.700 | 0.379 | 1.090 |-0.046| 0.000 | 0.000 | 0.700 | 0.428
9 |1.013]-0.2090.413 | 0.232 | 0.000 | 0.000 1.013 | -0.196 | 0.413 | 0.232 | 0.000 | 0.000 | 1.000 |-0.221| 0.413 | 0.232 | 0.000 | 0.000
10 [1.013|-0.217(0.126 | 0.081 | 0.000 | 0.000 1.013 | -0.204 | 0.126 | 0.081 | 0.000 | 0.000 | 1.001 |—0.228| 0.126 | 0.081 | 0.000 | 0.000
11 [1.036|-0.219(0.049 | 0.025 | 0.000 | 0.000 1.036 | —0.207 | 0.049 | 0.025 | 0.000 | 0.000 | 1.028 |—0.227| 0.049 | 0.025 | 0.000 | 0.000
12 |1.046|-0.236(0.085 | 0.022 | 0.000 | 0.000 1.046 | —0.224 | 0.085 | 0.022 | 0.000 | 0.000 | 1.014 |-0.261| 0.085 | 0.022 | 0.000 | 0.000
13 [1.037|-0.236(0.189 | 0.081 |0.000 | 0.000 1.037 | -0.223 | 0.189 | 0.081 | 0.000 | 0.000 | 0.952 |-0.281| 0.189 | 0.081 | 0.000 | 0.000
14 10.997|-0.247(0.209 | 0.070 | 0.000 | 0.000 0.998 | -0.234 | 0.209 | 0.070 | 0.000 | 0.000 | 0.952 |-0.274| 0.209 | 0.070 | 0.000 | 0.000
Total 3.626 | 1.140 [3.787| 1.841 3.626 | 1.140 | 3.783 | 1.819 3.626 | 1.140 | 3.810 | 1.888
Losses 0.161 | 0.701 0.157 | 0.679 0.183 | 0.748
TABLE II1. BRANCH IMPEDANCES. ongoing efforts focus on scaling-up the procedure via
Branch|  Basic case Branch 2-5 Branches 2-5 and computational improvements and network decomposition, and
removed 613 removed on applications to larger benchmark power systems.
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