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1. Introduction

For panel data analysis, one common practice is to assume heterogeneous unit-specific intercepts but homogeneous
slopes across units. While this allows researchers to pool information across units to improve the estimation efficiency of
slopes, empirical evidences have suggested that the homogeneous slope assumption may be too restrictive in applications;
see Burnside (1996), Lee et al. (1997), Hsiao and Tahmiscioglu (1997), and Browning and Carro (2007). On the other
hand, assuming heterogeneity for both intercept and slope parameters would reduce the problem to separate analysis for
each unit, which does not utilize the panel data feature and often leads to estimation with large variation. One natural
alternative approach is to consider grouped panel data models where the slope parameters are group-specific. Such models
allow information sharing across units while accommodating heterogeneity in the regression function, and thus balance
better between model flexibility and parsimony.

In practice, the group membership of units is often unknown and has to be estimated from the observed data.
Identifying groups with homogeneous slope parameters can be viewed as a model-based clustering problem. In this paper,
we propose a new quantile-regression-based clustering method for panel data to identify subgroups of units with the same
covariate effect. Our proposed method provides a natural way to capture the heteroscedasticity both across and within
units, and allows us to explore subgroup structure at different quantile levels.

We first develop an iterative two-step algorithm using a similar idea of k-means clustering to identify subgroups
at a single quantile level. Analysis at a given quantile level separately can help us identify quantile-specific subgroups.
To obtain a complete picture of the heterogeneity in the conditional distribution, we extend the clustering method to
multiple quantiles to identify subgroups whose slopes are heterogeneous across groups for at least one quantile level. For
both single and multiple quantile clustering methods, we establish the consistency of the proposed group-specific slope
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estimator with respect to Hausdorff distance, as well as the consistency of the group membership estimator. In addition,
we provide the asymptotic distribution of the group-specific slope estimator by establishing its asymptotic equivalency
with the infeasible estimator with known group membership when both dimensions of the panel diverge. Finally, for
cases where the group membership is believed to be common across quantiles, we consider a stability measurement to
choose an empirically “optimal” quantile that gives the most stable clustering results. The proposed measurement leads
to a data-adaptive criterion that can improve the accuracy of subgroup identification.

In the literature there exist several classes of work for identifying group membership in regression setup. One class
of work is based on mixture modeling and EM algorithms; see for instance Rubin and Wu (1997), Sun et al. (2007),
and Tang and Qu (2016). Another class of work is based on some penalization of slope differences between pairs of units
to identify the sparsity, that is, the homogeneity of coefficients; see for instance Ma and Huang (2017) and Su et al. (2016).
The penalization methods share some similar spirit as those used in regression homogeneity pursuit to group predictors
with the same coefficients (Bondell and Reich, 2008; Shen and Huang, 2010; Zhu et al., 2013; Ke et al., 2015). One common
limitation of the mixture modeling and penalization methods is the computational challenge when the number of units
is large, for which a huge number of possible combinations need to be involved in the estimation algorithms. Another
class of work is similar to ours, which aims to solve the minimization of an objective function over possible groupings
by using some iterative algorithms that are in the similar spirit of k-means clustering for univariate data. Research in
this direction include Lin and Ng (2012), Bonhomme and Manresa (2015), Ando and Bai (2017, 2016). Recently, Ke et al.
(2016) considered a panel data model that allows homogeneity among all regression coefficients, and they proposed
an estimation procedure by converting the subgroup identification problem to the detection of multiple change points
based on the sorted initial estimation of unit-specific coefficients. All the existing works focus on mean regression, and
most assume homoscedastic regression errors. However, heteroscedasticity is often seen in applications, which may
cause the covariates to have different impact at different location of the response distribution. Our proposed method
can automatically capture such heteroscedasticity and provide a comprehensive picture of the relationship between the
response and explanatory variables.

The rest of the article is organized as follows. In Section 2, we first describe the proposed iterative algorithm at a single
quantile level, and then extend the algorithm to multiple quantiles. In Section 3, we establish the theoretical properties of
the proposed subgroup estimator and the resulting group-specific quantile coefficient estimator. In Section 4, we discuss
some computational issues, including the choice of the number of groups, and the selection of an empirically optimal
quantile under a stronger assumption of common group membership across quantiles. The numerical performance of
the proposed methods is evaluated through simulation and the analysis of an economic growth data in Sections 5 and
6, respectively. Section 7 concludes the paper with some discussion. The technical proofs are provided in the online
supplementary material.

2. Proposed method

2.1. Single quantile clustering

Let y; be the response of unit i at time ¢, and x;; be the p-dimensional vector of covariates, where t = 1, ..., T; and
i=1,...,N.For simplicity we assume balanced designs with T; =T fori = 1, ..., N. At a given quantile level € (0, 1),
we consider the following quantile regression grouped panel data model:

Qyit(f|xit) = ai(f) + xi{[ﬂgi(‘r)(tL (1)
where Qy, (T |x;:) denotes the rth conditional quantile of y;; given x;;, o;(t) are the unit-specific fixed effect parameters,
and gj(t) are the group memberships that take values in set {1, ..., G} with G being the number of subgroups. In Model

(1), both the parameters (a;(7), B4(7)) and the group membership g(z) can depend on the quantile level T. We assume
that the number of subgroups G is known, and defer the discussion of how to determine G in practice to Section 4.
Quantile regression panel models have been also considered in Koenker (2004), Harding and Lamarche (2009),
Lamarche (2010), Galvao and Montes-Rojas (2010), Canay (2011), Galvao (2011), Rosen (2012), Kato et al. (2012), Galvao
and Wang (2015) and Galvao and Montes-Rojas (2015). A more comprehensive review of recent developments can be
found in Galvao and Kato (2017). All these works assume that the covariate effects B(tr) are homogeneous across units.
In contrast, Model (1) assumes that the unobserved heterogeneity lies not only in the intercept but also in the slope
coefficients in the sense that §(t) is constant within a subgroup but varies across subgroups. To test the slope homogeneity
across units, Galvao et al. (2017) proposed a testing procedure, which can be used as a first step to determine whether a
grouped panel data model is suitable prior to applying our proposed method. Chetverikov et al. (2016) considered another
setup which models the unit-specific slopes of covariates as a linear combination of another set of unit-level covariates.
If the unit-level covariates indicate the group memberships of units, the model in Chetverikov et al. (2016) will reduce
to the grouped panel Model (1). However, Chetverikov et al. (2016) requires the unit-level covariates to be observable,
while we assume that the group membership is unknown and we aim to identify the membership through clustering.
We first propose a quantile-regression-based clustering method for Model (1) at a given quantile level . Our goal is
twofold: one is to identify the subgroup membership g;(t) and the other is to obtain accurate estimation of the group-
specific parameters Bg(t) forg = 1,...,G. Let B(t) = {B,(7) : g = 1, ..., G} be the set comprising of all group-specific
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slopes and y(t) = {gi(t),i = 1, ..., N} be the set of group memberships for N units. Thus, y(t) € F ¢ denotes a particular
partition of the N units, where F ¢ is the set of all partitions of {1, ..., N} into G groups.

To remove the unit-specific fixed effects, one common practice used in the mean-regression-based methods is to use
demeaned data obtained by subtracting the unit-specific means from y; and x;; see for instance Lin and Ng (2012).
Unfortunately, the simple demeaning approach cannot be applied in quantile regression as quantiles are not linearly
additive. Instead, we consider a two-stage estimation procedure. Let A(t) be a compact subset of R and ®(7) be a compact
subset of RP. In the first stage, we fit the quantile regression for each unit and estimate the fixed effect o;(7) by a;(t),
where

(&(r), B(z)) = argmin pr Vi — a— X;b), (2)

acA(t),beO(7)

where p.(u) = {r — I(u < 0)}u is the quantile loss function. In the second stage, we estimate the group memberships
and the group-specific parameters by

(B(x), ()= argmin ZZpI{y,t X By(T) — @i(7)). (3)

B(1)SO(7), p(t)eF ¢ NT — =

where the minimum is taken over all possible partitions of the N units into G groups and the group-specific parameters
from a compact subset of RP. Intuitively, the two-stage estimation works for large T since &;(t) is a +/T-consistent
estimator of ¢;(t) so that y;; — @;(t) can be viewed as an approximation of y;; — «;(t), whose tth conditional quantile
is x;tﬂgi(r)(r). However, the error involved in @;(t) will lead to dependence among y;; — &;(t) and thus complicate the
theoretical development.

For the optimization in the second stage, exhaustive search is virtually impossible since the number of combinations
for partitioning N units into G groups increases steeply with N. To bypass the computational challenge, we propose an
iterative procedure by a similar idea as k-means clustering. The idea of the iteration is as follows. Note that for any given

group-specific coefficients B(r) {ﬂg( 7),g = 1,..., G}, the optimal subgroup assignment for unit i is
8ilB(r). 7} = argmin - pr Wie — X By(1) — &i(T)), (4)
gefl,...,

where in the presence of non-unique solutions an arbitrary solution can be assigned to g;. On the other hand, given the
group membership P(r) = {g(t),i =1, ..., N}, the estimator of B,(7) can be updated by

Bz, o= )}—argmm— > pr Vie — Xigb — &i(1)). (5)

beO(7) 1g,(r)—gt 1
Below we describe the details of the proposed two-stage estimation procedure.

Stage 1. Obtain the unit-specific fixed-effect estimator &;(t) by solving (2) for each uniti=1,...,N.

Stage 2. Initialize the unknown group-specific parameters B¢(7). Then iteratively update 8i{B(t), t} for each unit by
(4) with the given values of ,(7), and update B,{z, p(t)} by (5) with the given values of p() until convergence
is met, that is, when no unit changes the group membership.

For the initialization of B,(7) in the second stage, we can randomly assign N units into G groups and then estimate the
quantile coefficient B,() based on units assigned to the gth group. Since the solution depends on the starting values, we
repeat this procedure a number of times and select the solution that yields the lowest overall quantile objective function
value across all units. Throughout the iteration, the algorithm may lead to empty groups with no members. When this
happens, we make a simple modification by randomly reassigning members in the biggest group to the empty groups,
and continue the iteration until the algorithm converges and no empty groups are present.

Remark 1. The proposed procedure shares the similar spirit with the classic k-means clustering for univariate data
in the sense that in each iteration step a unit is assigned to the cluster with the closest conditional quantile, where
the distance is measured by the quantile objective function. Bottou and Bengio (1995) showed that the classic k-mean
clustering algorithm converges to a local minimum of the quantization error; see more recent discussions on convergence
issues of k-means algorithms in Li et al. (2015), Tang and Monteleoni (2016). To facilitate convergence and to mitigate
the dependence of the algorithm on the initial partition, we draw multiple starting values randomly and choose the
one yielding the smallest objective function value. Our numerical results show that this practice works well for data
with modest N and G. For problems at larger scales, we may consider applying the k-mean clustering on the unit-specific
estimators {f,(t),i =1, ..., N} to obtain starting values for the grouping, and adopt the local searching and neighborhood
jumping idea in Algorithm 2 of Bonhomme and Manresa (2015) to achieve better convergence.
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2.2. Clustering across multiple quantiles

The single-quantile clustering algorithm can help identify subgroups at a specific quantile level 7. In applications, it
may happen that 8,(7) = B,/(7) at the quantile level z, but B,(z’) # B,/(z’) at another quantile level " or vice versa. To
capture a more complete picture of the heterogeneity, we extend the algorithm in Section 2.1 to clustering across multiple
quantiles. This shares some similar idea as in Qu (2008), and Oka and Qu (2011), which studied structural changes in
multiple quantiles.

Suppose that ﬂg(r) has heterogeneity for t € 7 = [w1, wp] With 0 < w7 < w; < 1. One natural approach is to
identify subgroups by clustering B,(7) across a grid of quantile levels within the interval, referred to as w; = 71 <

- < 1k = wy. Let B(t) = {Bg(7),g = 1,..., G} be the collection of group-specific slopes at these K quantiles, where
Bo(7) = (Bg(t1), ..., Bo(tx)) and 7 = (74, ..., 7x). Two units are considered to be in different groups g and g’ if their
slopes differ at some quantile, that is, B,(7) # By (7). In addition, denote y = {gi(z) : i = 1,...,N} as the group
memberships of each unit, which is determined by the heterogeneity of slopes at K quantiles.

Similar as in Section 2.1, we define the estimator of (B(t), y) as

(B(z), 7) = argmin ZZprk{yn X By(Ti) — i(ni)}, (6)

B(t)eO(t yefc —1 i=1 t=1

where the optimization is over all possible groupings y and the parameter space for slopes at K quantiles, @(t) =
O(11) X O(13) X -+ x O(tk). To solve this minimization problem, we can modify the iteration algorithm in Section 2.1
by updating y with

&(8(x)) = argmin —ZZM Vie = X By(ne) — &i(m)} fori=1,..., N,

=1 t=1

and updating the quantile slope coefficients by

By (1. 7) = argmin 7 Z Z prVie — Xieb — @i(n)}
beO(ry)
—gt 1
forg=1,...,Gand k=1, ..., K. The choice of 7 and the quantile grid is an empirical issue. The interval [w1, w;] can

often be determined by the research interest. As for the quantile grid, evidence from empirical studies (Oka and Qu, 2011;
Chamberlain, 1994; Angrist et al., 2006) suggested that a coarse grid of quantiles with space between 5% and 15% often
suffices to obtain an overall picture of the conditional distribution. Throughout our numerical studies, we consider a grid
of five quantiles, 0.3,0.4, ...,0.7.

3. Asymptotic properties

In Section 3.1, we establish the consistency and asymptotic normality of the proposed single-quantile-based estimator
for identifying quantile-specific group membership. In Section 3.2, we present the asymptotic properties of the multiple-
quantile clustering method. The statistical properties are established in an asymptotic sense as both N and T tend to
infinity.

3.1. Single quantile

In this subsection, group memberships g;(t) are allowed to be quantile-specific. We first establish the consistency of
the group-specific coefficient estimator and the group membership estimator. To establish the asymptotic distribution
of the group-specific coefficient estimator, we introduce an oracle-type estimator of B(t) obtained by assuming known
group membership. Let y%(t) = {g?(t), ... ,g,?,(r)} denote the true group membership. The oracle estimator is defined as

B*(7) = {By(r):g = 1,..., G}, where

Bz )—abrgg(n)n— > sz{yn &(T)). (7)
= i:gd(r)=g =1

The oracle estimator B*(t) can be regarded as the infeasible counterpart of B(t), Note that B*(7) is a two-step estimator
with known group membership based on the first-step unit-specific estimator &;(t), and thus differs from the one-step
estimator in Kato et al. (2012). For large N and T, we establish conditions under which g,(7) and /3;(1) are asymptotically
equivalent so that the asymptotic distribution can be obtained through the Bahadur representation of the latter.

We fix some notation and introduce the assumptions required to establish the consistency. Let BO(t) = {ﬁg(t) :
g = 1,...,G} and {a?(r),i = 1,...,N} denote the true parameters. Fori = 1,...,Nandt = 1,...,T, define
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vie(T) = Vit — tﬂo () — ( ), and let F;;(-|x;) and f;;(-|x;) be the conditional and density functions of vy(7) given
Xit, respectlvely In addltlon define Ag(t) := {B(r) € O(t) : B(t) contains G or fewer points}. For any B(t) = {B,() :
g=1,...,G}, let wy{B(7)} denote the minimum eigenvalue of the matrix

NN (il Blr) - B
i:gd(r)=¢

(o)X | (®)

Assumption 1.

(a) Forallg € {1,...,G}, limy_ oo N"' 3N [{g%(r) = g} = my(7) > O.

(b) Foreachi=1,...,N, a(t) € A(t), and B°(t) € O(r). Furthermore, B)(r) are distinct across g = 1,...,G.
(c) There exists an M such that sup;.; [|X;1]| < M as.

(d) {(yic, i), t = 1} is stationary and B-mixing for each i, and independent across i. Let B;(j) denote the B-mixing
coefficients of {(y;, Xi),t > 1}. Then there exist constants a € (0, 1) and C; > 0 such that sup;.; 8i(j) < G
for all j > 1.

(e) For each k > 0, €, = infj<i<p infyqp)j= E [fo F.i(s|xi¢) — r}ds] > 0.

(f) For all g, there exist an ¢ > 0 such that infg;)cp+(e) @ {B(t)} — @z > 0, where N*(¢) is the set of parameters
B(t) € Ac that satisty [|B,(7) — ﬂg(t)” <egforallg e{l,...,G}L

Assumptions 1(a)-(b) ensure that the G subgroups are well separated so that the parameters B°(r) and p°(z) are
identifiable (subject to permutations of group labels). Assumptions 1(c)-(e) are standard conditions in the literature of
quantile regression for panel data; see for instance Kato et al. (2012), Galvao and Wang (2015). Specifically, 1(c) assumes
the uniform boundedness of the covariates; 1(d) is considered to accommodate B-mixing data; 1(e) is an identification
condition for (oz?(r), ,B?(r)) = argmin yycgp+1 E [p,(yl-t —a-— x§[b)] and is needed to establish the consistency of both
a;(t) and E(r). Assumption 1(f) is a condition that ensures that the matrix in (8) behaves well in the neighborhood of the
true parameters, which is needed to establish the asymptotic equivalency of B(z) with its infeasible counterpart B*(z).

Since the objective function in (3) is invariant to permutations of group labels, we establish the consistency of B(t)
with respect to the Hausdorff distance dy in AG(T), defined by

dy{C(t),D(7)} = max{ge{l}]axc }ge(mm 10z(7) — &(T)II,
2r8€ily..

max ||0 (7) (ol
gel,.., G1}ge{1 ..... 3(7) — & (DI}

WhereC(r)={6’g(t)e]Rp:g=],...,(h}andDr):{Sg T)eRP:g=1,...,G}withG; <Gand G, <G.

Theorem 1. Suppose that Model (1) and Assumption 1 hold at v € (0, 1), as N, T — oo, we have

(i) if (logN)/T — 0, then dy{B(t), B(z)} = 0;
(ii) if (log N)*/T — O, then Pr {supic; _ny 18i(7) — g2(z)] > 0} = o(1);
(iii) 1f(10gN)2/T — 0, and T = o(NV) with some v > 0for0 <8 <2and 0 < v < 2/(§ —2) for § > 2, then
By(v) = By(t) + 0p(T™%/) forall g € {1, ..., G}.

As Pollard (1981) has pointed out, the consistency with respect to Hausdorff distance in Theorem 1(i) indicates that
there exists a permutation o : {1,...,G} — {1,..., G} such that ||[A3(,(g)( ) — ﬂg( )| Lo By a simple relabeling, we
may take o(g) = g, so that we have ||Bg(t) - ﬁg(t)ll 2,0 for all g. We adopt this convention in Theorem 1. The
condition (log N)/T — 0 in Theorem 1(i) is to ensure the uniform consistency of the first-step estimator &;(7) across i.
Theorem 1(ii) implies that the estimated group membership converges to the truth when T >> (logN)?. Theorem 1(iii)
states conditions under which the proposed group-specific slope estimator B,(7) is asymptotically equivalent to the
infeasible oracle estimator with known group membership, as both N and T tend to infinity.

We next establish the Bahadur representation for the two-step oracle estimator ﬂ;(t) with known group membership.
We introduce some notation and a new set of assumptions. For i = 1,...,N, let f;;(-, %1, X; 14;) be the conditional
density of (vi1(7), vi,144(7)) given (X;1, X 14j) for j = 1,..., T — 1 and f(-) be the marginal density of v;(7). In addition,
define I'ng(t) = N7! Zi:gio(r):g E[fi(01xi1)%i1X}; 1, Jio(T) = fzi(0)—E[fri(0|%i1)Xi1 ' {E[fri(O|%;1 )Xi1x}; 1}~ "E[fi(0|Xi1 )Xi1], J i1 (T) =
E[f2i(01%i1)%i1], Jio(T) = E[f7i(0]xi1 )% X 1,

‘(1) = {Ip Ja(@Va(D) () }xit _ ]n(ﬂv
Jio(T) Jio(T)
and Hi(t) = T-'2 YT_ 4 (vi(7)}x(7), where I, denotes a p x p diagonal matrix and ¥, (u) = v — I(u < 0).

(9)

X
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Assumption 2.

(a) Foreachi, f;i(s|x)is continuously differentiable with respect to s for each x; f;;(s|x) and its first derivative are uniformly
bounded over (s, %) and i; f;;(0) is bounded from below by a positive constant uniformly over i.

(b) Forallg € {1,..., G}, I'ng(7) is nonsingular for each N and it has a nonsingular limit I'g(7).
(c) Foralli,j> 1, f;ij(v1, vi4jl®1, ¥14;) is uniformly bounded over (v1, vi4j, X1, X14).

(d) Forallg € {1,...,G}, Vg(7) = limy 100 N! Zf;g{’(r):g cov[H;(t)] exists and is nonsingular.

Theorem 2. Under Model (1) and Assumptions 1 and 2, when (logN)?/T — 0 and T grows at most polynomially in N, we
have the expansion

Bi(t) — Ba(t) + 0p([1B5(T) — BYTI) o)
1
= Fﬁgl(f)[rﬁ > Hi(T)] + 0,{(T/log N)~>/4};
i:gd(r)=¢

if moreover N%(logN)3/T — 0, we have
VNT{B:(x) — B(x)) > N(0, I (2 )Vo()I; ' (x))
forallg € {1,...,G}.

The oracle estimator ﬂ;(r) is a two-step estimator of the quantile slope coefficients based on the first-step fixed
effect estimator with known membership. It differs from the one-step fixed-effect estimator in Kato et al. (2012) (with

{ai(z),i = 1,...,N} and {B,(7),g = 1,..., G} estimated jointly). Denote the one-step estimator of the quantile slope
coefficient by ﬂ;(r). Following Kato et al. (2012), ﬂ;(t) has the following Bahadur representation:
Bi(7) — BAT) + 0p(11B5(x) — BT (11)

T
1O X S vt - )]+ 0yl ogN) >,
i0(r)=g (=1 i

where F;Vg(r) = Ing(7) — N1 Zi:g_o(r):g E[fr,-(0|x,-1)xi]_lil(r)//fri(O)]. The projection term xj;(7) in the Bahadur repre-
sentation of ﬁ;(r) is due to the estimation of ai(t) by @;(t) in the first step, while the influence of fixed effects on
the representation of the one-step estimator ﬁ;(r) is mainly captured by subtracting the interaction term between the
intercept and slopes in the matrix I'y,(7).

_ Combining the results in Theorem 1(iii) and Theorem 2, we obtain the asymptotic representation and distribution of
B,(7) as follows.

Corollary 1. Assuming the conditions of Theorem 2, then

Bg(r)—ﬂg(t)+op(|lﬁg(r)—ﬂg(t)”) 02
= T,le(r)[NLﬁ Z Hi(T)] + 0,{(T /log N)~3/%} 4 0,(T~%/?),
i:gd(r)=g

if logN?/T — 0, and T = o(NV) with some v > 0for0 <8 < 2and 0 < v < 2/(§ — 2) for § > 2; if moreover
N2(logN)*/T — 0 and NT'~® — 0, we have «/NT{Bg(r) — By(7)} 4 N(0, I';'(z)Vg(x)I'; (7)) forallg € {1,...,G}.

Remark 2. Corollary 1 suggests that the proposed group-specific quantile slope estimator is asymptotically equivalent to
its infeasible counterpart with known group membership, when both N and T go to infinity with appropriate rates. For
the asymptotic normality result to hold, one sufficient (but not necessary) condition is that T > N%(logN)? but T grows
at most polynomially in N. The asymptotic equivalency implies that the group membership estimation will not affect the
inference on the slope coefficients, so standard inference methods for quantile regression with an interaction term of the
subgroup and covariates can be used. The asymptotics and inference for fixed T are more complex and deserve further
investigation.

3.2. Multiple quantiles

For clustering across multiple quantiles, we assume the following model holds:

Qyit(f’<|xit) = ai(fk) +x1{[ﬂgi(tk)5 k = 17 ] I<' (13)
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Any two units i and j are said to belong to the same group if g, () = ﬂgj(rk) forallk =1, ..., K, and to different groups
if the equality is violated for at least one quantile level.
Let y° = {g?, cees g,?,} denote the true group membership across the K quantiles. We discuss the asymptotic properties

~

of the multiple-quantile estimator (B(z), ), the minimizer of the combined quantile loss function across K quantiles
defined in (6). Define B*(7) = {B,(7) : g = 1, ..., G}, where B;(7) = (B;(71), ..., Bz(wk)') with B;() being the two-step
slope estimator at the quantile level t; obtained with known group membership. That is, B*(7) is the infeasible counterpart
of B(t), and can be regarded as the oracle estimator of B(z). Let B%(t) = {ﬂg(t) :g =1,...,G} denote the truth of B(t),
and Hi(t) = (Hi(t1), ..., Hi(tx)) with H;(ty) defined in Section 2.1. We make the following additional assumptions.

Assumption 3.
(@) Forallg € {1,..., G}, limy_oo 7 S 1{g? = g} = 7, > 0.

(b) Foreachi=1,...,N, a?(t) = (ei(t1), ..., ai(wk)) € A7), B°(7) C ©(7) where A(z) is a compact subset of R¥ and
O(7) is a compact subset of R¥?; ﬂg(r) = (ﬁg(n Y, ..., ﬂg(n()/)’ are distinct acrossg =1, ...,G.

(c) The limit Vg(7) = limy 100 N™" 3", 0_, cov[H;(7)] exists and is nonsingular.

Theorem 3. Suppose that Model (13), Assumptions 1(c)-(d) and 3 hold, and Assumptions 1(e)-(f) and 2 hold for all
w, k=1,..., K, we have

(i) if (logN)/T — 0, dy{B(7), B(z)} > 0;

(iii) if (logN)*/T — 0, and T ;,o(N“) with some v > 0for0 < 8§ <2and 0 < v < 2/(§ — 2) for § > 2, then
[}g(r) = B;(7) + 0,(T~*/); and if moreover N*(logN)*/T — 0 and NT'~® — 0, we have «/NT{Bg(r) - BY(7)} 4
N (0, I (t)Vg(t)I, (1)), where I'; () = Diag (I'y '(n). k= 1,....K) forallg = 1,...,G.

4. Some computational issues
4.1. Common group membership

In Models (1) and (13), we allow both quantile coefficients and the group memberships to depend on the quantile
level(s). In this section, we discuss a special case where the group membership is common across quantiles. Under this
assumption, technically one can use the single-quantile method at any quantile level or the multiple-quantile method
to identify subgroups, and it is unclear which one is preferable. Note that in this case the multiple-quantile method can
be regarded as a composite-quantile approach, as it is based on minimizing the combined quantile loss function, thus
information across quantiles is pooled to identify the common group membership. In threshold quantile regression, the
composite approach was shown to often give more efficient estimation of the quantile-invariant threshold parameter
(Yu, 2013; Zhang et al., 2017). However, we argue that the multiple-quantile approach is not always the best option,
especially when the signals differentiating subgroups vary with quantiles; see the example in Model 2 of Section 5, where
the difference in the quantile slope S(t) between two subgroups is stronger at the left tail and weaker around t = 0.8.
Our numerical investigation suggests that a single quantile associated with stronger signal is often preferred when the
interaction effect varies across quantiles, otherwise one would be better off with the multiple-quantile clustering

For practical usage, we propose a data-adaptive approach to select the “empirically optimal" quantile level for
clustering. Intuitively we would expect a quantile level with stronger discriminative power to produce more stable
clustering results with respect to sampling variability. This motivates us to adapt the clustering consensus method
in Monti et al. (2003) to assess the stability of putative clusterings based on different quantiles and choose the most
stable one. Specifically, we first obtain H perturbed subsets of data by randomly sampling b among T time points without
replacement for each unit. By implementing the clustering method for each perturbed dataset, we obtain H clustering
results.! Throughout our numerical studies, we follow Monti et al. (2003) and let b = |0.8T]. The number of possible
subsets is (Z) and this adds a constraint on the choice of H for small T. In practice, we can let H = (Z) for T < 11, and
for larger T we found that a finite H such as H = 200 often suffices.

Secondly, we construct a consensus matrix M = (M(i,j)), an N x N matrix that stores, for each pair of units, the
proportion of times among H clustering results in which the two units are clustered together. To assess the clustering
stability, we consider a quantitative consensus measurement using the group assignments obtained from the original data
as a benchmark. The clustering consensus (CC) statistic is defined as the average of consensus among G groups:

1 2 .
C= C Z W Z M(i, j), (14)
g=1

i,jeGg.i<i

T we suggest sampling from (y; — a;(7), %;;) and only perform the second stage of the algorithm in Section 2.1 with the perturbed subsets, since
ai(t) is better estimated using the full dataset.
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where G, denotes the set of units assigned to group g based on the observed data, and N; is the cardinality of G;. We
can then calculate the CC statistic for clustering based on each quantile level 7, k = 1, ..., K, and the multiple-quantile
method, and choose the method with the largest CC. Our study shows that this method can help identify the quantile
level with more discriminant power and thus improve the accuracy of subgroup identification; see numerical evidences
in Section 5.1.

4.2. Choice of G

Our proposed algorithm and the theoretical properties are based on the assumption that the number of groups, G, is
prespecified. In practice, however, G is unknown and has to be determined. Like in conventional clustering, determining
the number of clusters is challenging. In this article, we propose to choose G by adopting the cross validation with
averaging method (CVa) in Wang (2010), which was shown to have asymptotic selection consistency when the data
are properly split into subgroups. The main idea of CVa is to estimate the clustering instability using a modified cross
validation scheme, and then select G as the number of clusters yielding the smallest estimated instability.

The specific procedure of CVa is as follows. First, we randomly divide N units into three parts with sizes M, M
and N — 2M, respectively: z{ = (w{,..., wy), z5 = (wfv,+], ..., wsy,) and z§ = (w%MH, ..., wg), where w{ denotes
the unit assigned to the corresponding subset. Let ¥, h = 1,2 denote the clustering results obtained by applying
the proposed algorithm to z;, h = 1,2 for a specific number of groups G. The clustering instability is estimated by
5¢G) = 22M+15ig51\,1[1{1/ff(wf) = I/ff(wj‘)} + H{ysS(wf) = wzc(w]?)} = 1], where ¥{(w{) denotes the assignment of
w¢ based on the clustering result of <. Second, repeat the first step for ¢ = 1, ..., C and define §(G) = C~! Zle 5¢(G)
as the estimated instability measure. Then we choose the number of groups as the one that gives the smallest instability
measure.

For panel data analysis, the underestimation of G would have more negative impact than overestimation. The reason
is as follows. When G is underestimated, some groups with heterogeneous slopes will be merged incorrectly, giving rise
to underfitted models and resulting in biased slope estimation B,(7). On the other hand, if G is overestimated, units from
the same group with homogeneous slopes may be split into multiple groups, leading to an overfitted model. From the
clustering perspective, with larger G, the false positive rate (chance of assigning units from different groups to the same
cluster) will decrease, but the false negative rate (chance of assigning units from the same group to different clusters)
will increase. From the parameter estimation aspect, even though the estimation efficiency may be compromised, the
resulting estimator B,(t) is still consistent. Such phenomena are validated by our numerical studies; see Table S1 in the
supplement. Therefore, in practice, we recommend to choose a larger G to ensure the validity of parameter estimation
and the interpretability of clustering results.

5. Simulation study

We consider three models for generating the simulation data,

Model 1: y;; = o; + x;:(1 + 0.8d;) + (1 + 0.5%;; )eye;
Model 2: yi = a; + x;¢(1 + d;i) + [1.5 + x;. {1 — d;/P~1(0.8)}]ey;
Model 3: y; = o; + xlftﬂgl_o + 0.5%5€j,

wherei=1,...,N=100,t =1,...,T =50 and o; X Uniform(0,1). In Models 1-2, x;; = 0.3«; + zi¢, zi¢ X Uniform(-1,1)
and d; Y Bernoulli(0.5) is”the group indicatqr taking value zero for g = 1 and one for g = 2. In Model 3, x;; = (x1;¢, X2it)
with xq; = 0.3«; + zi¢, zi¢ X N(0, 1) and xy;; X Uniform(0,1), gi0 are uniform from {1, 2, 3}, §; = (0.1, 0.1), B, =(0.2,0.2)
and B; = (0.3, 0.3). For all models, we consider two distributions for e;: N(0, 1) and £(3).

Models 1-2 contain two groups. Let F. denote the CDF of e;. The rth quantile slope coefficients are Bi(t) =
1+ 0.5F,!(z) for group g = 1 and By(r) = 1.8 + 0.5F, !(7) for g = 2 in Model 1, while g;(z) = 1+ F,'(z) and
Ba(t) = 2+ {1 — 1/®~1(0.8)}F, '(z) in Model 2. Model 3 contains three subgroups with 8;(r) = (0.1,0.1 + F," (7)),
B,(t) = (0.2,0.2 + Fe‘l(r))’, and B5(t) = (0.3,0.3 + Fe_l(t))/. All three models contain heteroscedastic errors so that
the covariate effects are quantile-dependent. However, the interaction effect of the covariate and group g; is constant in
Models 1 and 3 but it varies across t in Model 2. More specifically, in Model 2, the signal differentiating the two groups
decays when the quantile level approaches 0.8 from both directions.

5.1. Group identification of different clustering methods

We apply the proposed single-quantile-based clustering method at five quantile levels ¢ = 0.3,0.4, ..., 0.7 and the
multiple-quantile-based (MQ) method across the five quantiles to identify the group membership. In addition, we apply
the clustering consensus measurement CC to choose among the five single-quantile-based and the MQ methods, and
refer the chosen clustering as the empirically optimal quantile (EOQ) clustering. The CC statistics are calculated based
on H = 200 resamplings. For comparison, we also include the mean-regression-based method in Lin and Ng (2012),
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Table 1
The average misclassification rates (MR) in percentages of different methods in Models 1-3 with N = 100 and T = 50. Values in the parentheses
are standard errors.

Model Error Single-quantile-based MQ EOQ Mean
=03 =04 7=05 =06 =07
1 Normal 11.1 10.3 10.1 10.3 11.1 8.4 9.3 8.2
(3.4) (3.2) 3.1) (3.1) (3.1) (2.9) (3.3) (2.7)
t(3) 15.4 13.1 12.5 13.2 154 115 12.6 18.9
(3.6) (3.6) (3.4) (3.6) (3.7) (3.3) (3.7) (3.9)
2 Normal 4.6 8.1 13.9 22.3 342 9.6 4.7 118
(2.3) (2.9) (3.6) (4.4) (4.7) (3.2) (2.5) (3.4)
t(3) 8.6 115 16.6 24.6 35.6 134 9.1 223
(2.9) (3.2) 3.7) (4.2) (4.7) (3.5) (34) (4.2)
3 Normal 129 11.7 114 12.0 13.2 8.7 9.8 16.5
(4.8) (4.0) (4.2) (4.7) (5.0) (34) (4.2) (5.1)
t(3) 21.0 16.8 16.0 16.8 209 13.0 14.7 35.8
(6.8) (6.0) (6.2) (6.1) (7.2) (4.8) (5.7) (6.5)

MQ: The multiple-quantile-based clustering; EOQ: The empirically optimal clustering; Mean: The mean regression method in Lin and Ng (2012).

Table 2
The average clustering consensus (CC) statistics of different methods in Models 1-3 with N = 100 and T = 50. Values in the parentheses are
standard errors.

Model Error Single-quantile-based MQ Mean
=03 t=04 =05 7=0.6 t=0.7
1 Normal 0.87 0.88 0.88 0.88 0.87 0.89 0.88
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
t(3) 0.85 0.86 0.87 0.86 0.85 0.87 0.83
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2 Normal 0.93 0.90 0.87 0.83 0.80 0.89 0.86
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
t(3) 0.89 0.87 0.85 0.82 0.80 0.86 0.81
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
3 Normal 0.88 0.89 0.89 0.89 0.88 0.91 0.82
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
t(3) 0.84 0.86 0.86 0.86 0.84 0.88 0.76
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MQ: The multiple-quantile-based clustering; EOQ: The empirically optimal clustering; Mean: The mean regression method in Lin and Ng (2012).

i.e., the conditional k-means clustering method, to identify groups. For all methods, we use 20 different starting values
and choose the one giving the smallest objective function to mitigate the dependency of the algorithm on initial values.
The estimations for the original data are then used as starting values for the resampled datasets to calculate the CC
measurement. The simulation is repeated 500 times for each scenario.

For each method, the misclassification rate can be calculated as N~! vazl g # gio}. Note that there are G! different
ways to label the identified groups. To avoid ambiguity, we use the permutation that gives the lowest misclassification
rate to label g;. Table 1 summarizes the average misclassification rates of different methods in various scenarios. When the
signal differentiating groups is constant across quantiles, median performs slightly better than the other four quantiles,
but through combining information across quantiles the MQ method gives the best performance. In addition, the MQ is
as efficient as the mean-based method for Model 1 with i.i.d. normal errors, but the former clearly outperforms for all
the other scenarios considered. For Models 1 and 3 with uniform signals across quantiles, the CC statistics from MQ are
slightly larger than those from the single quantiles (see Table 2); the CC criterion chooses the MQ method about half
of the times. The clustering based on the chosen EOQ is in general more accurate than those based on single quantiles,
though slightly worse than the MQ method in Models 1 and 3.

Model 2 is more complicated as the signal differentiating groups decreases in 7 € (0, 0.8). The single quantile t = 0.3
leads to the most accurate clustering, and it even outperforms the MQ method, whose performance is somewhere between
the best and the worst quantile levels but is overall better than the mean-based method. The CC criterion provides an
effective way to identify the empirically optimal quantile level; it chooses T = 0.3 most of the times (see Table 3), making
the EOQ method the second best performer (see Table 1).

5.2. Estimation of group-specific quantile coefficients

Besides group identification, another objective of the paper is to improve the estimation efficiency of group-specific
quantile coefficient estimation by pooling information across units in the same groups. Based on the estimated group
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Table 3
The percentages of times that single quantiles and MQ were chosen by the clustering consensus criterion across
500 simulations in Models 1-3 with N = 100 and T = 50.

Model Error Single-quantile-based MQ
7=03 T=04 =05 =06 =07

1 Normal 13.8 104 11 8.8 122 438
t(3) 5.8 13 134 9.4 6 52.4

2 Normal 96.4 2.8 0.8 0 0 0
t(3) 814 13.6 2 0 0 3

3 Normal 7.2 10.4 7.2 9.8 9.4 56
t(3) 5.8 13 134 94 6 52.4

Table 4

The integrated mean squared error (IMSE) for the unit-specific and group-specific estimators of ;(0.5)
based on the median, MQ, EOQ and mean clustering. Values in the parentheses are standard errors. All
quantities in the table are multiplied by 100.

Model Error Unit-specific Median MQ EOQ Mean
1 Normal 10.82 6.81 5.70 6.21 5.47
(1.59) (1.92) (1.81) (2.02) (1.65)
t(3) 13.68 8.75 8.08 8.65 11.60
(2.08) (2.14) (2.12) (2.21) (1.98)
2 Normal 23.05 15.33 10.76 5.31 12.52
(3.31) (3.50) (3.39) (2.74) (3.27)
t(3) 28.91 19.03 15.60 10.24 21.78
(4.17) (3.96) (3.94) (3.83) (3.59)
3 Normal 1.04 0.21 0.15 0.17 0.21
(0.15) (0.10) (0.08) (0.09) (0.08)
t(3) 1.30 0.33 0.26 0.28 0.53
(0.20) (0.18) (0.14) (0.15) (0.14)

Table 5
The average misclassification rates (MR) in percentages for Models 3-6 and different combinations of (N,T). Values in the parentheses are standard
eITors.

Model p N =50 N = 100 N = 200
T =50 T=75 T =100 T =50 T=75 T =100 T =50 T=75 T =100
3 2 14.3 5.7 2.9 13.1 5.7 2.7 12.1 5.4 2.7
(7.9) (3.7) (2.6) (5.2) (2.5) (1.8) (2.8) (1.7) (1.2)
4 3 16.5 7.0 3.2 15.1 6.2 3.1 138 6.1 2.9
(8.3) (4.9) (2.7) (5.5) (2.5) (1.8) (3.1) (1.8) (1.3)
5 5 209 9.0 40 19.1 7.7 3.6 17.0 7.5 3.6
(9.2) (5.4) (3.4) (6.8) (3.2) (2.1) (3.9) (2.1) (1.4)
6 8 25.3 11.7 52 24.0 10.0 48 222 9.6 46
(8.9) (6.8) (3.5) (7.6) (38) (23) (5.5) (255) (1.7)
membership g;, we define the integrated mean squared error (IMSE) as (Np)~ Z: 1 /SgI i(t)— ﬂgg.j(f)}z, where S;

denotes the jth element of B;. Table 4 summarizes the IMSE for B, (0.5) based on the clustermg from the single-quantile
method at T = 0.5 (Median), MQ, EOQ and the mean-based method. For comparison, we also include the IMSE of the
unit-specific estimator B;(t) with each unit forming a separate group. Results at other quantile levels are similar and thus
are omitted. The slope estimators based on the groups identified by the proposed quantile clustering methods (Median,
MQ and EOQ) are clearly more efficient than the unit-specific estimators, and they have comparable or higher efficiency
than the mean-based estimator in all scenarios considered.

5.3. Performance for cases with different (p, N, T)

Following one reviewer's suggestion, we assess the performance of the proposed method for cases with different
combinations of p, N and T. Based on Model 3, we construct Models 4-6 by including one, three and six additional
superfluous N(0, 1) predictors with zero coefficients, giving rise to p = 3,5 and 8, respectively. Table 5 summarizes
the misclassification rates of the quantile-based method at t = 0.3 across 500 simulations for N = 50, 100, 200 and
T = 50, 75, 100 in Models 3-6. Results show that the misclassification rate decreases for larger N and T, while an increase
in T has more impact. Not surprisingly, the inclusion of predictors with zero or homogeneous effects will reduce the
accuracy of clustering.
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Table 6
The percentages of times that G is chosen by the CVa procedure among 100 simulations for Model 3 at t = 0.3. The true number of groups is G = 3.
G N = 100 N =200 N =300
T = 100 T =150 T =200 T =100 T = 150 T =200 T =100 T =150 T =200
2 5 4 2 3 0 0 0 0 1
3 76 92 98 89 98 99 90 98 99
4 16 4 0 7 2 1 9 2 0
5 3 0 0 1 0 0 1 0 0
Table 7

The average instability measure 100 x $(G) of MQ and the mean-based method based on CVa with 500
cross validations for the economic growth data. Values in the parentheses are standard errors.

Method G=2 G=3 G=4 G=5
MQ 15.54 20.48 17.18 16.36
(0.72) (0.60) (0.47) (0.39)
Mean 18.28 27.07 21.27 17.04
(0.78) (0.79) (0.62) (0.54)

5.4. Performance of CVa for choosing G

We consider Model 3 to assess the performance of CVa for choosing G at t = 0.3 with N = 100, 200, 300 and
T = 100, 150, 200. For each scenario, we implement the CVa procedure for 100 times with the splitting ratio as
M = [0.45N], and choose G among {2, 3, 4, 5} that gives the smallest average clustering instability. Table 6 summarizes
the percentages of the selected G. Results suggest that CVa performs well for selecting the number of groups, and the
performance gets better with larger N and T. The number of within-unit replicates T appears to have more impact on the
selection accuracy than the number of units N.

6. Application to growth regression

Growth regression is a major tool for studying the economic growth across countries (Barro, 1991). Most studies in
the economic growth literature assumed homogeneous models, which, although convenient, were found to be unrealistic
in empirical studies; see for instance Barro and Sala-I-Martin (1992), Canova and Marcet (1995), Maddala and Wu (2000),
and Durlauf et al. (2001). Some studies found that there may exist “convergence clubs", that is, groups of countries with
similar steady states that can be characterized by the same model, and identifying such groups can assist researchers in
making generalized hypothesis; see Durlauf and Johnson (1995) and Canova (2004).

In this paper, we apply the proposed method to analyze the GPD data from the Penn World Tables (PWT) v6.2 (Heston
et al., 2006) to group countries and identify the group-specific parameters. Our analysis focuses on 99 countries that have
complete GDP observations from 1965 to 2003. We consider the following quantile regression model:

Qc(yicl®ie) = ati(T) + X By (T),i=1,...,99,t =1,..., 38,

where y; ; is the log per-capita GDP of the ith country at time t with ¢ = 0 corresponding to the year of 1965, «;(7) is the
country-specific fixed effect, ; = (yir—1,t), By (7) = (Bg.1(7), Bg;,2(7)) denote the group-specific slope coefficients, and
gi € {1,..., G} is the unknown group membership. A similar growth regression model was also considered in Lin and Ng
(2012) for mean analysis, and we focus on the analysis of conditional quantiles.

We apply the proposed MQ method across five quantiles {0.3, 0.4,0.5, 0.6, 0.7}, and the mean-based clustering
method in Lin and Ng (2012). We apply the CVa procedure to choose the number of groups among G € {2, 3, 4, 5}. Table 7
summarizes the average instability measure $(G) and the corresponding standard error based on 500 cross validations with
the splitting ratio M = |0.45N |. For the mean method, $(G) at G = 5 is significantly smaller than those at G = {2, 3, 4},
and for the MQ method, $(G) at G = 5 and 2 are similar and both are significantly smaller than those at G = {3, 4}.
Therefore, following the guideline as suggested in Section 4.2, we choose G = 5 in the subsequent analysis.

We list the countries clustered to the five groups by the MQ and mean-based clustering methods in Tables S3-S4 of
the supplement. Based on the MQ method, groups 1-5 include 11, 20, 28, 28 and 12 countries, respectively. The groups
identified by the mean-based method are more unbalanced with group sizes of 2, 29, 48, 14 and 6.

The residual plot suggests that the data exhibits some heteroscedasticity across the lag variable; see Fig. 1 for the plot of
residuals from the median regression with subgroups identified by the MQ method. For such data with heteroscedasticity,
using the MQ method can help us obtain a complete picture about the evolution of the conditional distribution and
separate groups with heterogeneous slopes at one or more quantile levels.

_ To further understand the clustering results from the MQ method, we plot in Fig. 2 the estimated group-specific slopes
Be,1(T) and B, »(7) for the identified five groups across nine deciles. The shaded bands represent the 95% pointwise
confidence bands, constructed by using the asymptotic normality and the estimation of the asymptotic variance in
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Fig. 1. Residuals from the median regression based on five subgroups identified by the MQ method against y; ;1 (lag).
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Fig. 2. The estimated group-specific quantile slopes across t for the five groups identified by the MQ method, where /§g_1(r) and f}gvz(r) are the
estimated coefficients for the lag and time variables at quantile level 7, respectively.

Corollary 1. The variance estimation is based on the asymptotic equivalency of Bg(t) with the oracle estimator, and is
likely to underestimate the variability in this empirical study of finite samples. Fig. 2 shows that the five groups differ
mainly in terms of the lag coefficient. After accounting for the lag effect, the time slope appears to be homogeneous and
not significant across . The estimated autoregressive (AR) coefficients 3&1(1) show clear difference across five groups.
Group five has the largest AR coefficients, and this group includes the fast growing countries/districts such as Hong Kong,
Singapore, Taiwan and Thailand. Groups four and three have modest AR coefficients, and they consist of mostly high-
income economies including 14 of the 20 original OECD countries. Group one has the lowest AR coefficient, and it contains
mostly poor countries including Burkina Faso, Ghana, Guinea-Bissau, Mali, Nepal, and Senegal. It is interesting to note that
United States and Turkey are also clustered to group one. To confirm the results, we also examined the country-specific
estimates, and found that the AR coefficient estimates for these two countries are around 0.6 across quantiles, which
are lower than the other groups. In addition, for all five groups, the estimated quantile AR coefficients are increasing
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across t, suggesting that the autocorrelation of GDP is stronger at the right tail of the per-capita output distribution. In
contrast, for the five groups identified by the mean-based method, the estimated mean AR coefficients (see Table S5 in
the supplement) show little difference among groups 2-5, making it difficult to explain the clustering results.

7. Discussion

To account for the unknown fixed effects «;(7), we consider a two-step estimator of the slopes based on a preliminary
estimator &;(7) obtained by separate regression on each unit. Alternatively, we can also iteratively update the group
membership and all parameters {«i(t), B,(z),i = 1,...,N,g = 1,...,G} jointly by using the fixed-effect quantile
regression estimation method as in Kato et al. (2012). However, this one-step approach is computationally more intensive
as each iteration would require estimating a large number of fixed effects, which is challenging when the group
membership is unknown. In contrast, the two-step procedure treats the estimation of fixed effects and group-specific
slopes separately, and thus leads to a simpler and numerically more stable algorithm. In addition, in the second step, we
can update the group-specific slope B,(t) by adopting the elegant minimum distance (MD) quantile regression estimator
in Galvao and Wang (2015), which is essentially a weighted average of unit-specific quantile slope estimators B,-(r) for
units in the same group. However, this method requires estimating the covariance matrix of 8;(t) for each i, which involves
the unknown conditional density function that is difficult to estimate well especially for small T. Our investigation shows
that the algorithms based on the MD and the proposed two-step estimators are both computationally more efficient
than the one-step approach, but the MD method tends to give higher misclassification rate than the proposed two-
step algorithm in finite samples. Numerical results for the alternative procedures can be found in Section S2.2 of the
supplement.

On the other hand, one limitation of the two-step approach is that the estimation of these (nuisance) fixed effects would
increase the variability of the slope estimator. For panel models with homogeneous effects, Koenker (2004) and Lamarche
(2010) considered penalized quantile regression estimators by shrinking the fixed effects towards constant. We can adopt
this shrinkage idea and iteratively update the estimation of the penalized fixed effects, and that of the group membership
and slope parameters. This approach may reduce the additional variability in the group-specific slope estimator, and we
defer it to future study.
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