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Abstract—This paper describes a geometric approach to pa-
rameter identifiability analysis in models of power systems dy-
namics. When a model of a power system is to be compared with
measurements taken at discrete times, it can be interpreted as a
mapping from parameter space into a data or prediction space.
Generically, model mappings can be interpreted as manifolds
with dimensionality equal to the number of structurally identifi-
able parameters. Empirically it is observed that model mappings
often correspond to bounded manifolds. We propose a new defini-
tion of practical identifiability based the topological definition of
a manifold with boundary. In many ways, our proposed definition
extends the properties of structural identifiability. We construct
numerical approximations to geodesics on the model manifold
and use the results, combined with insights derived from the
mathematical form of the equations, to identify combinations
of practically identifiable and unidentifiable parameters. We
give several examples of application to dynamic power systems
models.

Index Terms—power system modeling, system identification,
parameter identifiability, computational differential geometry,
model reduction, manifold boundary approximation method

I. INTRODUCTION

Dynamical models used in power system analysis and
control are facing a number of challenges. These stem from
the need to model novel components (e.g., power electronic
inverter-connected sources and loads), from the operation
governed by potentially volatile markets, and from the need to
predict system behavior in atypical scenarios (e.g., in resilience
studies). While the size of the models involved (thousands of
sources and tens of thousands of nodes) has been addressed
mostly via the advances in the computer technology, the
issue of model fidelity has lagged behind. Historically, the
lack of sensors and of mechanisms to share actual event
recordings has hampered efforts to validate models. There
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exists a strong preference for physics-based models in the
power system community, supported both by the tradition
and by the important insights gained from such models in
the past (e.g., in the case of power system stabilizers). Such
models tend to be nonlinear both in terms of parameters and
in terms of states, and their validation poses methodological
and practical challenges.

On several occasions the power system community has been
on the forefront of new developments in engineered dynamical
systems, as in the case of applications of trajectory sensitivity
[1]-[3] or in the case of subset selection [4]. The industry feels
the need for a systematic effort in this direction, as described
in [5].

In this paper, we consider the question of whether param-
eters can be identified from available measurements. When
parameters can be inferred from measurements, at least in
principle, they are classified as structurally identifiable [6], [7].
Even when all the parameters can be identified in principle,
obtaining precise estimates may not be practical. In contrast
to structural identifiability, there is no universally accepted
definition of practical identifiability [8], [9].

A recently introduced term that describes a class of complex
models exhibiting large parameter uncertainty when fit to data
is sloppiness [10]-[12]. Sloppy models are closely related
to the existence of practically unidentifiable parameters. The
premise of this approach is that a model with many parameters
is a mapping from a parameter space into a data (prediction)
space. A key difficulty in dealing with models of complex
systems is the highly anisotropic nature of the mapping be-
tween these two spaces. This anisotropy is manifested locally
in the wide spread of eigenvalues of the measurement Hessian,
and globally as the hierarchy of widths of the corresponding
bounded manifold in data space. Thus, the issue is not just
a simple over-parametrization in terms of the number of
parameters, but is due to the very nature of the models being
verified.



In this paper, we review the concept of local, structural
identifiability and note that it is equivalent to the topological
characterization (i.e., dimensionality) of neighborhoods on
the model manifold. A particularly useful locally-calculated
object in our study is the Fisher Information Matrix (FIM),
or the Hessian of the sensitivities of measurements to model
parameters. The rank of the FIM corresponds to the number
of locally, structurally identifiable parameters in the model.
We give an example of a model with structurally unidenti-
fiable parameters, and observe that the structurally identifi-
able parameter combinations provide a bridge between the
mechanistically-interpretable, bare parameters, and collections
of phenomenologically-interpretable parameter combinations.

We next consider the question of practical identifiability.
Since sloppy models have manifolds with a hierarchy of
widths, their topology is that of a manifold with boundary.
We propose a definition of practical identifiability in terms of
manifold boundaries and give several examples from dynamic
power systems models. We then discuss how geodesics can
be used as a tool to identify non-trivial reparameterizations of
the model that partition the parameter space into practically
identifiable and unidentifiable parameter combinations. Similar
to the structurally identifiable combinations, this partition
groups mechanistic parameters into their phenomenologically
relevant combinations.

II. STRUCTURAL IDENTIFIABILITY

Dynamic models of power systems are typically written in
DAE form:

x = f(x,2,p,1) (D
0 =g(x,z,p,1) 2
y =h(x,z,p,1) 3)

where x is the vector of differential state variables, z are
the algebraic variables, p are the parameters, y is the system
measurement vector, and ¢ is the scalar time variable.

The parameters p are to be estimated from measurements
y that we assume are made at a discrete set of time points,
which we denote as a vector t = {t1,%2,...}. In this case,
the total number of measurements is M = dim(y) x dim(t),
and by evaluating the model defined in by Eqgs. (1)-(3) at these
discrete times, the model makes M independent predictions.
The values of these predictions depend on the values of
the parameter vector, which suggests interpreting the model,
evaluated at the discrete times as a mapping: M : RV — RM |
where N = dim(p). We assume throughout that N < M. We
refer to M as the model mapping.

An important first question is whether it is possible in prin-
ciple to infer all the parameter values from measurements. This
question, known as the structural identifiability, is equivalent
to asking whether the model mapping is injective. A partial
answer can be found, by constructing the Jacobian matrix
J = 0M/0p. In general J will be an M x N dimensional
matrix and the parameters are structurally identifiable (at least
in the local sense, as we assume for now) if the rank of J = V.

If rank J < N, the model has N’ = rank J structurally
identifiable parameter combinations. In this case, the goal is
often to reparameterize the model so that it explicitly depends
on only the N’ identifiable parameters. In some cases, the
reparameterization can be inferred by direct inspection of the
mathematical form in Egs. (1)-(3).

To illustrate, consider a single cage induction machine. Of
particular interest are parameters rg (stator resistance), xg
(stator reactance), rp1 (rotor resistance), x 1 (rotor reactance)
and z,,, (magnetizing reactance). The model equations take the
form

) 1 )
éh = Qbae; — To/ lel; — (zo — 2')ig] 4)
) 1 .
€y = Woey — 77 e}, — (w0 — ')iq] (5)
vg = el + 1siqg — iy (6)
vy = e; +rgiq+ @'iq @)
where
To=Ts + Tm )]
2 = o5+ —m ©)
TR1 T T
TR1 + Tm
T =22 10
0 Qyrpr1 (10)

Although the model involves five, mechanistically inter-
pretable parameters, they naturally group into four structurally
identifiable parameters: xg, xo, =’ and T}. While the struc-
turally identifiable parameter combinations do not have a direct
mechanistic interpretations, they do have phenomenological
meaning: x( is the open circuit resistance, ' is the transient
reactance, and 7} is the open circuit time constant.

We observe here that by an appropriate reparameterization
in terms of identifiable parameter combinations, the mecha-
nistic structure of the model is explicitly connected to the
model’s phenomenology. We will demonstrate in later sections
how reparameterizations in terms of practically identifiable
combinations enables a similar bridging between mechanism
and phenomenology.

Before considering the practical identifiability problem, we
make a brief observation about the mathematical nature of
the structural identifiability problem. Assuming that M is a
smooth function of the parameters, the model mapping defines
a Riemannian manifold, often called the model manifold [13].
The dimensionality of the model manifold is equal to the num-
ber of structurally identifiable parameters. Again restricting
ourselves to local properties, the manifold dimension is the
only topological property of the manifold, i.e., all manifolds
of the same dimension are locally isomorphic. Thus, the (local)
structurally identifiability problem is equivalent to identifying
the local topology of the model manifold. Motivated by
this observation, we now give a topological interpretation of
practical identifiable parameter combinations.



III. MODEL MANIFOLDS AND HYPER-RIBBONS

A systematic study of the geometric properties of model
manifolds from a large number of diverse fields, including
power systems [12], [14], [15], has revealed a remarkable
empirical result: model manifolds are often bounded with a
hierarchy of widths. Often, it is possible to vary a combination
of parameters over their entire physically allowed range (e.g.,
zero to infinity) and the behaviors of the model will only
change by a finite amount. Models with this geometric prop-
erty are called sloppy and are often associated with practically
unidentifiable parameters. Thus, when considering non-local
topological properties of a model manifolds, the relevant
structure is often that of a manifold with boundary.

We remind readers that a manifold with boundary is differ-
ent from a manifold. The latter is a space locally isomorphic
to RY, where N is the manifold dimension. In the context
of modeling, the inverse model mapping provides such an
isomorphism, so that the dimension is given by the number
of structurally identifiable parameters. In contrast, a manifold
with boundary is a space locally isomorphic to RN =1 x R,
where R, is the set of non-negative real numbers. The
boundary of the manifold corresponds to the set in which the
last coordinate is zero. In other words, for a model manifold
with boundary, there exists a reparameterization in which one
parameter is non-negative and zero on the boundary.

We propose a topological definition of practically unidenti-
fiable parameters in terms of manifold boundaries: At a given
level of statistical confidence, if the confidence region on the
model manifold extends to the boundary, then we say that the
parameter combination associated with that boundary is prac-
tically unidentifiable at that confidence level. The remaining
parameters are the practically identifiable combinations. This
definition is a natural extension of structural identifiability in
several ways. First, it extends the topological interpretation
of parameter identifiability. Second, structural unidentifiability
occurs in the limit that the width of the model manifold
becomes zero. Third, it is reparameterization invariant, but
naturally partitions a model’s parameters into identifiable and
unidentifiable combinations. The identifiable combinations are
those that have phenomenological interpretations.

Using this definition, it is straightforward to see that many
parameters in dynamic power systems models are practically
unidentifiable at some confidence level. We illustrate with the
single-cage induction machine in Egs. (4)-(7). Each of the four
structurally identifiable parameters are non-negative, thus, for
example, the limit zg — 0 corresponds to a portion of the
boundary of the model manifold. The parameter xg is only
unidentifiable on a portion of the manifold boundary. Setting
other parameters to zero corresponds to other regions of the
boundary.

Simply considering the case that all the model parameters
become zero does not lead to a complete description of the
manifold’s boundary. Indeed, other regions can be more subtle
to find. For example, one can also consider the limit 7, —
oo. This observation suggests a reparameterization in terms

of A = 1/T}. This limit is a singular limit of the model in
which the dynamic variables e;, and e}, become algebraic and
corresponds to yet another portion of boundary. Furthermore,
inspecting Eqs. (8) and (9), we see that physical parameters
lead to the restriction ' < zy. Consequently, another portion
of the boundary corresponds to the case &’ = xg, suggesting
the reparameterization dx = xg — .

While these examples are motivated by simple considera-
tions, they suggest the possibility of non-trivial combinations
of practically identifiable parameters and highlight the need of
an algorithm for discovering such combinations. In the next
section, we use computational differential geometry on the
model manifold to deduce such reparameterizations.

IV. GEODESIC IDENTIFY PRACTICALLY UNIDENTIFIABLE
COMBINATIONS

We have seen that, with our proposed definition of prac-
tical identifiability, it is possible to find potentially iden-
tifiable/unidentifiable parameter combinations by inspection.
In all of these examples, the identifiable combinations were
deduced by considerations of the physically allowed range of
the parameters. This raises the question of whether or not these
combinations collectively represent the entire boundary of the
manifold. For a particular model, do there exist less obvious
combinations?

In order to find other regions of the manifold boundary, we
use methods of computational differential geometry. Our goal
is to computationally explore the geometric structure of the
model manifold to find the least identifiable combinations in
the model. To accomplish this we numerically construct curves
on the model manifold known as geodesics. Geodesics are
the analogs of straight lines generalized to curved surfaces. A
geodesic curve can be written as p(7), where 7 parameterizes
the geodesic. Here we give a brief tutorial of how this is done.
The process is described in more detail and several examples
are given in [16]-[18].

Geodesics are found as the numeric solution to a second
order ordinary differential equation in parameter space:
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In Eq. (11) we have dropped the bold-face vector notation
for explicit index notation, simplifying the translation to a
computer program. Note that the superscript on the parameter
vector, e.g., pl, is an index, not a power (this is a standard
notation in differential geometry). The matrix I = J7.J is the
Fisher Information Matrix, a symmetric, non-negative matrix
summarizing the local structure of the model mapping. In
Eq. (11), the parameter 7 corresponds to the geodesic arc-
length on the model manifold.

Eq. (11) makes use of derivatives of the model mapping with
respect to the parameters. Care must be taken when evaluating
these derivatives. In particular, the matrix [ is ill-conditioned
for sloppy models, so it is important that derivatives be
evaluated with sufficient accuracy to avoid numerical artifacts.
We find two approaches that work well. First, derivatives can



be estimated using finite differences, although higher-order
estimates are often necessary to achieve sufficient accuracy.
Alternatively, one can solve the sensitivity equations, found
by implicitly differentiating Eqs. (1)-(3) with respect to the
parameters:
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These equations are linear in terms of sensitivities, but the
matrices involved do vary along a system trajectory. The
geodesic equation involves second order sensitivities, which
can be derived in a similar way. We omit an explicit formula
as the derivation is straightforward and the result is lengthy and
not illuminating. Since the explicit expressions for sensitivity
equations can be rather complicated, we recommend they be
evaluated using automatic differentiation methods [19], [20]
rather than deriving explicit analytic expressions for Eqgs. (12)-
(14).

The second order sensitivities enter Eq. (11) in an interesting
way that allows efficient calculations. In particular, it only
depends on the combination

82 m d d k
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This is a directional second derivative (our notation highlights
the explicit dependence on the direction dp/dr) and can be
calculated much more efficiently than Eq. (15) might suggest.
In particular, in terms of finite differences

Ym (p + hV) - Qym(p) + Ym (p - hV)

A (V) = 12 .

That is, it can be evaluated with a computational cost that is

independent of the size of the parameter space. In contrast, the

Jacobian matrix costs approximately /N function evaluations

and the full second derivative matrix costs approximately N2
function evaluations.

With these considerations, one can find the right hand side
of Eq. (11) given Egs. (1)-(3). The initial value problem
corresponding to the geodesic can then be numerically ap-
proximated using standard integration algorithms.

Our algorithm for finding the least identifiable parameter
combination is as follows. First, we parameterize the model
in a way that all the parameters can vary over the entire
real line, what we call unbound coordinates. If the natural
parameterization includes constraints such as positivity (as in
T in Egs. (4) and (5) for example), then we reparameterize
the model so that parameters have no such constraints. In
this case, we recommend a log-transform: p = log T}}. Other
parameterizations can be similarly constructed. For example,
the constraint that 2’ < zp can be enforced by introducing a
parameter f that satisfies 2’ = xo/(1 + e/).

(16)

Next, given a model parameterization in unbound coordi-
nates, we take as initial conditions to the geodesic equation
the best estimate of the parameter values, po (e.g., the best fit
when fit to data) and the least sensitive parameter combination
as estimated by the Jacobian matrix. That is, dpo/d7 is the
eigenvector of the Fisher Information Matrix [ with small-
est eigenvalue. With these initial conditions, we then solve
Eq. (11) numerically.

Because we have parameterized our model to have un-
bound parameters, when the geodesic encounters a manifold
boundary, some combination of parameters becomes infinite.
Mathematically, the solution to Eq. (11) exhibits a singularity
at some finite value of 7 that we denote by 7*. We illustrate
this in Figure 1, which is the solution of the geodesic equation
for a model of a synchronous generator (see [21]). In this
case, the geodesic encounters a singularity just before 7 = 2,
corresponding to the limit that log T}, — —oc. Because we do
not know a priori the value of 7%, we use a simple heuristic to
decide when to terminate the geodesic integration. We monitor

the value of />, (dp! /dr)?, i.., the norm of the velocity

vector in parameter space, and when it has grown by a factor
of ten, say, then we terminate the geodesic integration.

From the solution of the geodesic equation, it is possible
to identify non-trivial reparameterizations that correspond to
practically unidentifiable parameter combinations. The repa-
rameterizations are manifest when multiple parameters take on
infinite values in the same geodesic curve. Because the bound-
ary of the manifold is another manifold of one less dimension,
there will always be combinations of these infinite parameters
that remain finite. This is best demonstrated through examples;
we give several in the next section.

V. NONTRIVIAL REPARAMETERIZATIONS

When several parameters simultaneously approach posi-
tive or negative infinity when solving the geodesic equa-
tion (Eq. (11)), it indicates that the practically unidentifiable
parameter combination is a nontrivial combination of bare
parameters. We do not give an algorithm for extracting the
identifiable and unidentifiable combinations from the geodesic.
Doing this successfully is an art that combines insight from the
numerical geodesic calculation with the mathematical structure
of the model; to illustrate, we here give several examples.

In reference [22], we consider a Doubly-Fed Induction Gen-
erator (DFIG) model, appropriate for a wind generator. When
solving the geodesic equation in two cases, a singularity in
the geodesic was encountered involving three bare parameters.
Here we discuss one of these two singularities; the second
is nearly identical. In this case, three bare parameters (k;i,
kp1, and T3) simultaneously approached infinity. Inspecting the
relevant model equations, we notice that these three parameters
all occur in an equation for current:

diy. 1 . P .

dtq = i |:k‘p1 (Tm - wi) + kiixy — Z’r’q:| .
We refer the reader to reference [22] for more information
about the physical interpretation of the symbols in this equa-
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Fig. 1. Solution to the geodesic equation for a model of a synchronous
generator [21].

tion. Only the mathematical structure of the equations is
relevant for the present discussion. Notice that with a few
algebraic manipulations, this equation takes the form:

d.  (ka\ (. P, kit irq
dtzrq_(Te)<Tm wm)+<Te>$1 T,

The mathematical structure of the model naturally groups

(18)

the parameters into the combinations k,3 = kj1/T3 and
ki1 = ki1 /Te. This suggests that k,; and k;; are identifiable
parameter combinations while A = 1/7, is the unidenti-

fiable parameter that becomes zero at the boundary. This
guess is confirmed by inspecting the numerical solution to
the geodesic equation. From the approximate geodesic, we
calculate k;1(7) = k;1(7)/Te(7) and observe that while &;; (7)

and T,(7) each diverge at the boundary, the ratio remains
finite. This test is a nontrivial confirmation that our guess is
correct. Although all three parameters are singular as the curve
approaches 7%, it is not necessary that all three singularities
are O(1/X). With this confirmation, we reparameterize the
model in terms of practically identifiable and unidentifiable
parameter combinations.

As a second example, we consider parameters from a
single cage induction machine in the context of the WECC
load model [23]. A discussion of the complete identifiability
analysis of this model is presented in a recent thesis [24].
Solving the geodesic indicates that the parameters g, 2’ and
T} all approach infinity simultaneously. Rearranging Eq. (4)
gives

<l r 6_:1_ @ _ LE_/ X
fa=hoey [Ta <<T6> (T)H 19

suggesting the combinations &y = xo /7 and &' = 2’ /T, and
the unidentifiable combination A = 1/7}. Indeed, considering
the solution to the geodesic equation we find that Zy and z’
remain finite at the boundary and correspond to the identifiable
combinations while 7} is practically unidentifiable.

VI. CONCLUSIONS

In this paper we have considered the problem of parameter
identifiability from time series measurements in power sys-
tems using tools of information geometry. We have reviewed
the concept of structural identifiability and noted that it is
mathematically equivalent to a topological characterization of
the neighborhood of a point on the interior of the model
manifold. The dimension of a manifold is the only topological
property of neighborhoods of points on a manifold. Using this
insight, we have proposed a definition of practical identifia-
bility that is based on nonlocal topological properties of the
model manifold. In our definition, a parameter combination
is practically unidentifiable if a confidence region intersects
the boundary of the model manifold. The two examples of
nontrivial reparameterizations considered in section V are very
similar in terms of the required mathematical manipulations
and resulting combinations. The identifiable combinations
correspond to natural groupings of parameters as they appear
in the mathematical structure of the model. This is remarkably
similar to structurally identifiable combinations introduced in
section II. Indeed, this is an indication that our proposed
definition of practical identifiability is a natural extension of
the structural identifiability.

Identifying the combinations of parameters that are po-
tentially unidentifiable has important consequences for con-
structing predictive models and interpreting their behavior.
By reparameterizing the model in terms of the identifiable
and unidentifiable combinations, reduced order models can be
constructed by explicitly taking the limit that the unidentifiable
combinations become zero. This approach, known as the
manifold boundary approximation was first introduced in ref-
erence [17] and applied to power systems models in reference
[21]. As we have seen here, these limits may correspond to



singular limits of the model; other types of approximations
for synchronous generators are discussed in reference [21].
The methods scale to larger systems as well, such as the
WECC load model in [24]. Analysis of the IEEE 14 bus
model is forthcoming. A priori knowledge of the potentially
unidentifiable parameter combinations could also be useful
for optimal experimental design. As in the case of structural
identifiability, the practically identifiable and unidentifiable
combinations correspond to groups of parameters that are
directly linked to the behaviors of the model. Practically
unidentifiable combinations correspond to groups of parame-
ters that can be taken to their extreme values without changing
the behavior of the model beyond a given statistical tolerance.
In contrast, the practically identifiable combinations are those
that must be tuned in order for the model to match a desired
behavior. Thus, by construction, the practically identifiable
parameters are the combinations of mechanistic parameters
that combine to determine a systems-level behavior.

One of the challenges of the current approach is the need
to numerically solve the geodesic equation, (11) due to the
computational cost of the calculating parameter sensitivities
to the necessary accuracy. However, since the identifiable
combinations exhibit regular patterns linked to the structure of
the model, it may be possible to list the potentially identifiable
combinations by inspecting the mathematical structure of the
model, perhaps with the aid of a few geodesic calculations.
This observation motivates a potential way forward for gener-
alizing to larger models. By combining insights from solving
the geodesic equation on small or moderately sized models
with mathematical acumen, a catalog of potentially unidenti-
fiable combinations could be constructed for a given model
class. This catalog could then be directly applied to larger
models within the same model class. An open question that
remains is whether such a catalog includes all the potentially
unidentifiable parameter combinations. Although beyond the
scope of this paper, one approach to this question involves
further topological calculations. Each MBAM-reduced model
corresponds to a portion of the boundary of the model man-
ifold. The question of completeness is therefore equivalent
to asking whether the union of this list of reduced models
has any “holes” which is revealed by calculating the Euler
characteristic.

Accurate parameter estimates are important for training
predictive models. In this paper, we have proposed a new
approach to parameter identifiability based on geometric and
topological considerations. Our approach groups parameters
into practically identifiable and unidentifiable combinations
and links to new methods of model reduction while making
connection to existing techniques such as singular perturba-
tion.

REFERENCES

[11 J. Sanchez-Gasca, C. Bridenbaugh, C. Bowler, and J. Edmonds, “Tra-
jectory sensitivity based identification of synchronous generator and
excitation system parameters,” [EEE Transactions on Power Systems,
vol. 3, no. 4, pp. 1814-1822, 1988.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. M. Benchluch and J. H. Chow, “A trajectory sensitivity method for the
identification of nonlinear excitation system models,” IEEE Transactions
on Energy Conversion, vol. 8, no. 2, pp. 159-164, 1993.

I. A. Hiskens, “Nonlinear dynamic model evaluation from disturbance
measurements,” IEEE Transactions on Power Systems, vol. 16, no. 4,
pp. 702-710, 2001.

M. Burth, G. C. Verghese, and M. Vélez-Reyes, “Subset selection for
improved parameter estimation in on-line identification of a synchronous
generator,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp.
218-225, 1999.

P. Overholt, D. Kosterev, J. Eto, S. Yang, and B. Lesieutre, “Improving
reliability through better models: Using synchrophasor data to validate
power plant models,” IEEE Power and Energy Magazine, vol. 12, no. 3,
pp. 44-51, 2014.

R. Bellman and K. J. Astrém, “On structural identifiability,” Mathemat-
ical biosciences, vol. 7, no. 3-4, pp. 329-339, 1970.

P. Ju and E. Handschin, “Identifiability of load models [power systems],”
IEE Proceedings-Generation, Transmission and Distribution, vol. 144,
no. 1, pp. 4549, 1997.

R. Brun, P. Reichert, and H. R. Kiinsch, “Practical identifiability analysis
of large environmental simulation models,” Water Resources Research,
vol. 37, no. 4, pp. 1015-1030, 2001.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmiiller, and J. Timmer, “Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the profile
likelihood,” Bioinformatics, vol. 25, no. 15, pp. 1923-1929, 2009.

K. S. Brown and J. P. Sethna, “Statistical mechanical approaches to
models with many poorly known parameters,” Physical Review E,
vol. 68, no. 2, p. 021904, 2003.

M. K. Transtrum, B. B. Machta, K. S. Brown, B. C. Daniels, C. R.
Myers, and J. P. Sethna, “Perspective: Sloppiness and emergent theories
in physics, biology, and beyond,” The Journal of chemical physics, vol.
143, no. 1, p. 07B201_1, 2015.

M. K. Transtrum, A. T. Sari¢, and A. M. Stankovi¢, “Information
geometry approach to verification of dynamic models in power systems,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 440-450, 2018.
M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Why are nonlinear
fits to data so challenging?” Physical review letters, vol. 104, no. 6, p.
060201, 2010.

B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna, “Parameter
space compression underlies emergent theories and predictive models,”
Science, vol. 342, no. 6158, pp. 604-607, 2013.

M. K. Transtrum, “Manifold boundaries give” gray-box” approximations
of complex models,” arXiv preprint arXiv:1605.08705, 2016.

M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear
least squares with applications to sloppy models and optimization,”
Physical Review E, vol. 83, no. 3, p. 036701, 2011.

M. K. Transtrum and P. Qiu, “Model reduction by manifold boundaries,”
Physical review letters, vol. 113, no. 9, p. 098701, 2014.

——, “Bridging mechanistic and phenomenological models of complex
biological systems,” PLoS computational biology, vol. 12, no. 5, p.
€1004915, 2016.

L. B. Rall, “Automatic differentiation: Techniques and applications,”
1981.

H. M. Biicker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
Automatic differentiation: applications, theory, and implementations.
Springer Science & Business Media, 2006, vol. 50.

M. K. Transtrum, A. T. Sarié, and A. M. Stankovié, “Measurement-
directed reduction of dynamic models in power systems,” IEEE Trans-
actions on Power Systems, vol. 32, no. 3, pp. 2243-2253, 2017.

A. Saric, M. Transtrum, and A. Stankovic, “Information geometry for
model identification and parameter estimation in renewable energy-dfig
plant case,” IET Generation, Transmission & Distribution, 2017.

D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin,
R. Bravo, and S. Yang, “Load modeling in power system studies:
Wecc progress update,” in Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, 2008
IEEE. 1EEE, 2008, pp. 1-8.

C. C. Youn, “Information geometry for model reduction in power
systems,” Ph.D. dissertation, Tufts University, Medford MA, 5 2018.



