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ABSTRACT

RNA-seq analysis has enabled the evaluation of transcriptional changes in many species including nonmodel organisms.
However, in most species only a single reference genome is available and RNA-seq reads from highly divergent varieties
are typically aligned to this reference. Here, we quantify the impacts of the choice of mapping genome in rice where three

high-quality reference genomes are available. We aligned RNA-seq data from a popular productive rice variety to three
different reference genomes and found that the identification of differentially expressed genes differed depending on
which reference genome was used for mapping. Furthermore, the ability to detect differentially used transcript isoforms
was profoundly affected by the choice of reference genome: Only 30% of the differentially used splicing features were
detected when reads were mapped to the more commonly used, but more distantly related reference genome. This dem-
onstrated that gene expression and splicing analysis varies considerably depending on the mapping reference genome,
and that analysis of individuals that are distantly related to an available reference genome may be improved by acquisition
of new genomic reference material. We observed that these differences in transcriptome analysis are, in part, due to the
presence of single nucleotide polymorphisms between the sequenced individual and each respective reference genome,
as well as annotation differences between the reference genomes that exist even between syntenic orthologs. We con-
clude that even between two closely related genomes of similar quality, using the reference genome that is most closely
related to the species being sampled significantly improves transcriptome analysis.
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INTRODUCTION

RNA-sequencing technologies have made it possible to
evaluate genome-wide changes in the transcriptional state
in any species from which quality RNA can be obtained.
RNA-seq data from more than a thousand different species
have been deposited into the NCBI Gene Expression
Omnibus repository (Edgar et al. 2002; Barrett et al.
2013). Most commonly, RNA-seq data are used to identify
transcripts whose abundance changes in response to envi-
ronmental or developmental conditions through analysis
of differentially expressed genes (DEGs). Additionally,
RNA-seq analysis has facilitated the comparison of the rel-

5These authors contributed equally to this work.

Corresponding author: cjdohert@ncsu.edu

Article is online at http://www.rnajournal.org/cgi/doi/10.1261/rna.
070227.118.

RNA 25:669-684; Published by Cold Spring Harbor Laboratory Press for the RNA Society

ative abundance of isoforms for individual transcripts gen-
erated by alternative splicing (AS) of pre-mRNA molecules.
As sequencing costs decrease, these techniques are being
ever more widely applied to model and nonmodel spe-
cies. For species for which a reference genome is available,
the standard pipeline is to map the RNA-seq reads to that
reference genome regardless of the accession being stud-
ied. However, the effect of genome relatedness between
the species from which the RNA is derived and the species
to which the RNA is aligned on downstream DEG and AS
analyses has not been fully evaluated.
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For many agricultural species, there is a large amount of
genetic variability between accessions in the same spe-
cies. In practice, a diverse range of locally adapted high-
performing varieties are grown and used for transcriptome
and proteome experiments. Yet a single representative va-
riety is often selected for genome mapping and serves as
the reference genome for experiments performed in all va-
rieties in that species. The effects of the evolutionary dis-
tance between the variety or individual being sequenced
and the reference genome are rarely considered in down-
stream RNA-seq analysis. Here, we quantify the effects of
choice of mapping genome in Asian rice (Oryza sativa)
where three quality reference genomes are available.

There are two main groups of Asian cultivated rice, Oryza
sativa ssp. japonica and Oryza sativa ssp. indica. Both
groups are distinctive in the geographical locations in
which they are grown, their genetic structure, and charac-
teristics in grain quality and yield (Xu et al. 2015; Zhang
et al. 2016). Rice derived from the indica subspecies
accounts for more than 70% of  worldwide production
(Zhang et al. 2016); however, until recently, the only high-
quality, publicly available reference genome for rice was
for a temperate japonica variety called Nipponbare. As a
result, most transcriptome data in rice has been aligned
to the Nipponbare reference genome (Os-Nipponbare-
Reference-IRGSP-1.0yegardless of the rice variety used
in the study. However, thousands of rice germplasms are
available to researchers, many of which are indica varieties
(RiceVarMap; Zhao et al. 2015). Recently, two high-quality
Oryza sativa ssp. indica genomes were published (Zhang
et al. 2016), making it possible to analyze RNA-seq data
from indica subspecies by alignment to a high-quality ind-
ica genome. We hypothesized that we would improve the
accuracy of transcriptome studies by aligning RNA-seq
reads to a more closely related reference genome. To this
end, we aligned RNA-seq reads from the popular  IR64
variety (Oryza sativa ssp. indica) to three high-quality
genomes: Oryza sativa ssp. japonica cv Nipponbare (using
the MSU annotation; Kawahara et al. 2013), and two Oryza
sativa spp. indica lines, cv Minghui 63 and Zhenshan 97
(hereafter referred to as “MH63” and “ZS97,” respectively;
Zhang et al. 2016). IR64 is most closely related to MH63 as
both are considered group Il indica varieties (RiceVarMap;
Zhao et al. 2015).

We determined that the reference genome used in
transcriptome analysis had significant effects on read
alignment, differential expression calling, and the identifi-
cation of alternatively spliced transcripts. These effects
were due to a combination of the presence of single nucle-
otide polymorphisms (SNPs) between IR64 and each refer-
ence genome and to annotation differences between
reference genomes, which directly impacted the number
of reads mapped to individual gene loci. We determine
that the overall percentage of reads mapped is not a reli-
able indicator for optimizing the choice of reference ge-
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nome. Care must be taken when interpreting DEGs and
AS analysis when evaluating genotypes that diverge from
the reference genome used for mapping. These results
suggest that continued efforts to improve annotation and
to provide additional individual genome sequences will
have effects on discovery and evaluation of transcriptomes
in both nonmodel and model organism.

RESULTS

Alignment of IR64 RNA-seq reads to three
Oryza sativa genomes

To determine the effects of the choice of mapping genome
on downstream transcriptome analysis, RNA-seq reads
were aligned to three different Oryza genomes, and differ-
ences in differential gene expression and splicing analysis
was compared for each data set (Table 1; Fig. 1). RNA
was isolated from panicle tissue of field-grown IR64 rice,
when 50% of the spikelets in the panicle had flowered.
Four replicate biological samples were collected at two
time points (dawn and dusk). Significant differences in ex-
pression levels and alternative splicing between dawn

and dusk have previously been reported in rice and other
plant species (Michael et al. 2008; Filichkin et al. 2010;
Jonézyk et al. 2011; Filichkin and Mockler 2012; Fu et al.
2012; James et al. 2012; Wang et al. 2012a; Reddy et al.
2013). Therefore, we chose to compare the effects of the
choice of reference genome selection on the ability to
identify DEGs and AS between dawn and dusk time points.
The IR64 RNA-seq reads were mapped to either the MHG3,
ZS97, or Nipponbare reference genome using three differ-
ent alignment programs: STAR (Dobin et al. 2013), HISAT2
(Kim et al. 2015), and Segemehl (Hoffmann et al. 2009,
2014). To analyze similarities and differences in counts for
individual genes across genomes, we compared reciprocal
best BLAST genes that also had syntenic orthologs in all
three genomes. This additional synteny requirement was
added to increase the stringency of orthologs identified

by reciprocal best BLAST since using reciprocal best
BLAST methods alone tend to generate many false

TABLE 1. Summary of transcriptome analysis of IR64 RNA-seq
reads mapped to three different Oryza sativa genomes

MH63  ZS97 Nipponbare
Total expressed genes 29,804 28,946 30,964
Syntenic DEGs 1845 1860 1825
Syntenic genes with DU 338 ND 119

splicing features

The total number of expressed syntenic orthologs that were present in all

three data sets was 17,039 loci. This pool of syntenic orthologs was used
to compare DEGs and genes with DU splicing features identified by
mapping to all three reference genomes.
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FIGURE 1. Schematic of genome alignment and transcriptome analysis. RNA-seq reads obtained from IR64 (Oryza sativa ssp. indica) panicle tis-
sue or Nipponbare (Oryza sativa ssp. Japonica) seedlings were aligned to three high-quality Oryza sativa genomes. Each transcriptome alignment
was performed using the aligning tools STAR, HISAT2,and Segemehl. The STAR alignment was analyzed by EdgeR,LIMMA, DESeq2, and
NOISeq to identify DEGs. The IR64 alignments to MH63 and Nipponbare were analyzed by JunctionSeq to identify DU splicing features. The
output from each transcriptome analysis was compared between syntenic orthologs. Differences between the number of reads mapped were
observed for some loci, which can be attributed, in part, to differences in gene annotation and the presence of exonic SNPs. For the example
depicted here (compare Geng across all three genomes), syntenic genes that are annotated as being longer in one genome result in more reads

mapped to that gene compared to the other genomes. Likewise, differences in the number of exonic SNPs may affect the number of reads

mapped to a syntenic gene in one genome compared to another.

positives and are less accurate than phylogenetic
approaches (Fulton et al. 2006; Dalquen and Dessimoz
2013; Lechner et al. 2014). Therefore, we combined
reciprocal best BLAST with a syntenic approach to identify
conservative orthologous relationships to ensure that com-
parisons across genomes were being made between the
same gene. A total of 21,145 syntenic, orthologous genes
were identified among all three genomes using MCScanX
(Wang et al. 2012b; Supplemental Table S1, see
Materials and Methods). This set of syntenic orthologs rep-
resents a highly conserved subset (~38%) of the rice ge-
nome. Scatterplots of the counts per ortholog show a
substantial variation in the mapping depending on the ref-
erence genome (Fig. 2A-C). We observe a similar variation
in counts per ortholog when mapping Nipponbare RNA to
these three reference genomes (Supplemental Fig. S1). In
contrast, when using a single reference genome, MH63,
and comparing the alignment algorithms we observe a
strong correlation between the results of the three aligners
(Fig. 2D). While there is some variation between the align-
ers, particularly of reads with lower counts, there is more
consistency between the alignment results when using
three different aligners than when using the same aligner
on the three different reference genomes.

IR64, a high-yielding, premium indica rice variety, is
most closely related to MH63, while Nipponbare, a japon-

ica subspecies, is the most distantly related (Zhao et al.
2015; Zhang et al. 2016). The percent of uniquely aligned
IR64 RNA-seq reads to each genome varied between 83%
and 88% (Fig. 3). The highest percent alignment was ob-
served for the MSU annotation of the Nipponbare genome
while the lowest was observed for the ZS97 genome.
Differences were also observed for the mismatch rate per
base for each genome, with the lowest mismatch rate oc-
curring when mapped to the MH63 genome (Fig. 3). The
total number of genes with mapped reads was similar be-
tween genomes with ~52% of annotated genes being de-
tected (Supplemental Table S2). These results suggest that
the choice of reference genome has a greater impact on
the alignment of RNA-seq reads than the choice of align-
ment program. Furthermore, differences in the percent
alignment of a transcriptome to a reference genome and
the total number of genes with mapped reads do not nec-
essarily reflect evolutionary relatedness indicating that the
metric of percent alignment alone may not be a good indi-
cator of mapping success.

Differential gene expression analysis is influenced
by the reference genome

The majority of DEG analysis in rice has been performed us-
ing the Nipponbare genome. However, two new indica

www.rnajournal.org 671



Downloaded from rnajournal.cshlip.org on July 5, 2019 - Published by Cold Spring Harbor Laboratory Press

Slabaugh et al.

A STAR B HISAT
r Sl Ll s LR FEEEIEERINNFELTRISESESN
E 5 MH63 : ® : MH63 :
R .zl ‘
£ - - £ - -
= o S o
a8 o 2 e
g e = <
S - 3 “
8 7597 o 8 %
5 " 5 .
[~ Q
A = | @
. . 4 © Densi
Nipponbare |- Nipponbare |- sty
" N 0.100
Log,(counts/ortholog) * = * ° ° © * Log,(counts/ortholog) © * * ¢ & ® 0.075
(o] Segemehl D MH63 0.050
FEEEILIEFRETEIRTERETRLS . P e
£ o -_10 g B
g - - g 2
N = £
=1 =1
£ & 2
g - .: § o
g - g
0 i &
Q - Q
= o =
Nipponbare |- Segemehl
Log,(counts/ortholog) ° * * *° *® ™ = ) Log,(counts/ortholog)

FIGURE 2. Genome alignment of RNA-seq reads derived from IR64 panicle. RNA-seq reads from field-grown IR64 rice were aligned using dif-
ferent alignment software to each of the three different annotated rice reference genomes: Nipponbare (Oryza sativa ssp. japonica using the MSU
annotation, “MSU”), Minghui 63 (Oryza sativa ssp. indica, “MH63”), and Zhenshan 97 (Oryza sativa ssp. indica, “ZS97”). The effects of the ref-
erence genome are compared using three different  aligners: (A) STAR,R? values: MH63-ZS97 (0.130), MH63-Nipponbare (0.104), ZS97-
Nipponbare (0.152); (B) HISAT2, Rvalues: MH63-ZS97 (0.131), MH63-Nipponbare (0.106), ZS97-Nipponbare (0.153); or (C) Segemhel?Ral-

ues: — MH63-ZS97 (0.130), MH63-Nipponbare (0.105), ZS97-Nipponbare (0.151). (D) The effect of the alignment software is compared using the
single MH63 reference genome. R values: HISAT2-STAR (0.997), HISAT2-Segemehl (0.983), STAR-Segemehl (0.986). Scatterplots indicate the
log, of the counts of the reads aligned to syntenic orthologs in these comparisons.

genomes were recently published using a bacterial artificial However, the four analysis methods identified different
chromosome (BAC)-by-BAC approach supplemented total DEGs, with LIMMA identifying the fewest DEGs across
with lllumina and PacBio reads (Zhang et al. 2016). To mappings to all three reference genomes, EdgeR and
determine if there would be substantial differences in iden- DESeq2 identifying slightly more than LIMMA, and
tifying DEGs based on the choice of mapping genome, we  NOISeq identifying the most DEGs. Previous reports
identified DEGs between dawn and

dusk samples for the IR64 panicle

transcri ptome mapped to all three Mismatch Rate per Base Uniquely Mapped Reads %

reference genomes with the STAR
aligner using four approaches to iden-

— S

tifying DEGs: DESeq2 (Love et al.

2014), EdgeR (Robinson et al. 2010), I s
m— [ PO

MH63

LIMMA (Ritchie et al. 2015), and
NOISeq (Tarazona et al. 2011, 2015).
DEGs were identified using cutoff
values of FDR-adjusted P < 0.05 for 06 05 04 03 02 01 0 0 20 40 60 80 100 120
DESeq2, EdgeR, and LIMMA. For Bnste etk N

NOISeq, genes were considered FIGURE 3. Alignment comparisons of RNA-seq reads derived from IR64 panicle mapped to
DEGs when the probability of differen- different reference genomes. RNA-seq reads from field-grown IR64 rice were aligned to three
tial expression (q) >0.95. The total different annotated rice genomes: Nipponbare (Oryza sativa ssp. japonica using the MSU an-
number of syntenic orthologs identi- notation, “MSU”), Minghui 63 (Oryza sativa ssp. indica, “MH63”), and Zhenshan 97 (Oryza sat-
fied as DEGs was similar for all three iva ssp. indica, “ZS97”) genomes. The Nipponbare genome shows the highest  percent

. alignment, while the MH63 genome showed the lowest percent of multiple mapped reads.
genomes for each analysis method Percentages are representative of the average for all eight RNA-seq samples mapped to
(Table 1; Supplemental Table S3). each genome and error bars represent standard deviation.

Nipponbare
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have shown similar performance of these algorithms
(Seyednasrollah et al. 2013; Khang and Lau 2015). Using
EdgeR, 2084 of the 21,145 syntenic genes were identified
as DEGs when mapped to any of the three reference ge-
nomes. Only 1595 of those syntenic orthologs (~76%)
were commonly identified as DEGs when mapped to all
three genomes (Fig. 4). An additional 353 syntenic DEGs
(17% of all identified DEGs) were identified when mapped
to the indica genomes (MH63 and ZS97) that were not iden-
tified when the RNA-seq data were mapped to the
Nipponbare genome. Of these 353 syntenic DEGs detect-
ed only when mapping to the indica genomes, 161 of these
(~46%) were commonly identified when mapped to both
MH63 and ZS97 (Fig. 4). Furthermore, 235 syntenic ortho-
logs (~12% of DEGs identified using any reference) were
only identified as differentially expressed when mapped

to one of the reference genomes. Differences between syn-
tenic DEGs were observed even between the two indica
genomes (Fig. 4), suggesting that differences between
even closely related reference genomes that were assem-
bled using an identical pipeline influence DEG analysis.
The DE identification methods varied in the total DEGs
called, but did not vary in their sensitivity to the reference
genome (Supplemental Fig. S2). Of the 2084 DEGs identi-
fied across all genomes identified using EdgeR, 490 DEGs
were uniquely identified when mapping to only one or

two genomes (23.5%). This pattern was similar for all DE
methods; LIMMA (24.3%), NOISeq (23%), and DESeq2
(31.8%) (Supplemental Fig. S2B), indicating that this obser-

Comparison of syntenic ortholog DEGs: STAR-EdgeR

Nipponbare

FIGURE 4. Comparison of DEGs that have syntenic orthologs.
MCScanX was used to identify 21,145 syntenic orthologs, of which
17,039 were expressed in all three data sets. STAR was used to align
the RNA-seq reads to each reference genome, and EdgeR was used to
identify DEGs. Of the DEGs that had syntenic orthologs in all three ge-
nomes (2085 total syntenic orthologs), approximately 76% were com-
monly identified using all three reference genomes. Approximately
8% (161 genes) were identified as differentially expressed using
both indica genomes.

vation is not method dependent, but rather an effect from
mapping differences using the three different reference
genomes.

A previous study demonstrated that identifying genes
that have greater than a fourfold change in expression
can help control for variability in the DEGs identified for
RNA-seq data sets with less than six biological replicates
(Schurch et al. 2016). Therefore, we compared DEGs that
showed greater than a fourfold change. With a greater
than fourfold cutoff using EdgeR, 481 syntenic orthologs
were identified as DEGs. The proportion of genes com-
monly identified by all three genomes increased slightly
(~78%; Supplemental Fig. S2) compared with DEGs that
were selected based on statistical significance alone
(76%; Fig. 4). However, the percent of genes identified
as DEG in only one reference genome was similar using ei-
ther significance alone or significance and the fourfold cut-
off (Fig. 4; Supplemental Fig. S2). Therefore, although
increasing the stringency of LFC cutoff values substantially
reduces the number of identified DEGs, it does not ac-
count for the inter-genome variability observed when ana-
lyzing DEGs.

Differences in genome annotation and SNP density
influences the number of reads mapped and the
DEGs identified between syntenic genes

We further investigated the differences between loci iden-
tified as differentially expressed to determine if the effects
of the reference genome on identified DEGs were due to
mapping differences in individual transcripts, through sin-
gle-nucleotide polymorphisms (SNPs) or the differences

in gene annotation in the reference genome. The EdgeR
significance score (adjusted P-values) for the differential ex-
pression of the IR64 transcripts between dusk and dawn
when mapped to different reference genomes was com-
pared (Fig. 5; Supplemental Figs. S3, S4). We observe
that for transcripts uniquely identified in one reference
genome, many are well below the significance score in
the other genome (Fig. 5; Supplemental Fig. S3). We
compared the adjusted P-values of  syntenic orthologs
identified as DEG only when mapped to the MH63 genome
(49 loci) compared to their  syntenic orthologs when
mapped to the ZS97 or the most commonly used
Nipponbare genome. By definition, the DEGs identified
when mapped to the MH63 genome have adjusted P-val-
ues that are less than 0.05, while the adjusted P-values of
the same loci when mapped to the ZS97 or Nipponbare ge-
nomes have a population of adjusted P-values that ap-
proach the 0.05 cutoff, and a populationthat have
adjusted P-values of 1.0 (Supplemental Fig. S3A). This indi-
cates that only some of the genes identified as DEGs when
mapped to the MH63 genome show similar trends using
the other reference genomes, but are just below the signifi-
cance threshold. Likewise, syntenic orthologs that were
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FIGURE 5. Comparison of features that contribute to differences in identifying IR64 DEGs between syntenic orthologs when mapped to different

genomes. The significance of differential expression between dawn and dusk for each of the 21,145 syntenic genes as identified by EdgeR {-log
of the adjusted P-value) is plotted for IR64 transcripts mapped using STAR to either Nipponbare (Oryza sativa ssp. japonica using the MSU an-
notation, “MSU”) or Minghui 63 (Oryza sativa ssp. indica, “MH63”). The solid lines indicate the significance cutoff of adjusted P-value <0.05. The
transcripts points are colored to highlight different features that could contribute to the observed differences in DEG identification. (A) Point col-

ors are based on the ratio of total counts for each transcript. Red indicates higher counts in the MSU alignment and blue indicates higher counts in
the MH63 aligned transcripts. (B) Point colors are based on the number of SNPs in each gene between the reference genome and the IR64 tran-
script from the RNA-seq read sequence. Red indicates more SNPs between the MSU genome and IR64, blue indicates more SNPs between MH63
and IR64. (C ) The points are colored based on the number of exons in each genome annotation. Red indicates more exons per transcript in MSU
genome and blue indicates a higher exon number in the MH63 genome. (D) The transcript points are colored based on the annotated gene length

in each reference genome. Red indicates that the annotation for a transcript is longer in the MSU reference genome and blue indicates that the
annotated length is longer in the MH63 genome. (E) Normalized counts of MH09t0438800 when mapped to MH63 and its syntenic ortholog

LOC_0s09g36030 mapped to Nipponbare.  (F )Normalized counts of

MHO03t006400 when mapped to MH63 and its syntenic ortholog

LOC_0s10g30100 when mapped Nipponbare. (G) Relative expression of MH09t0438800 measured by gRT-PCR. (H)Relative expression of

MH03t006400 measured by qRT-PCR.

only called differentially expressed when mapped to the
ZS97 genome (50 loci), when mapped to the MHG3 or
Nipponbare genome had adjusted P-values that either ap-
proached the cutoff value or had an adjusted P-value of 1.0
(Supplemental Fig. S3B; Supplemental Table S5). These
data indicate that the differences observed between DEG
calls are not solely a product of statistical cutoff selection.
The syntenic orthologs that were uniquely identified
when mapping to the Nipponbare genome were loci that
mostly approached the cutoff  adjusted P-values when
mapped to either  of the indica reference genomes,
MH63 or ZS97, suggesting that these may be a conse-
quence of the statistical analysis and cutoff (Supplemental
Fig. S3C; Supplemental Table S6).

We hypothesized that the differences in differential gene
expression may be due to differences in transcriptome
alignment and annotation differences between the three

674 RNA, Vol. 25, No. 6

reference genomes (MH63, ZS97, and Nipponbare). We
also hypothesized that genome relatedness, measured
by the presence of SNPs, may partly influence the number
of reads mapped per gene (Degner et al. 2009; Stevenson
et al. 2013; Raghupathy et al. 2018). Because RNA-seq data
provides the actual DNA sequence for each read, we can
determine the number of exonic SNPs between IR64 and
the three reference genomes. We developed an algorithm
to identify the number of exonic SNPs between the
mapped IR64 RNA-seq reads and each reference genome
(see Materials and Methods). Consistent with the known
evolutionary relationship between IR64 and the three refer-
ence genomes, MH63 had the fewest number of exonic
SNPs in total compared to the IR64 reads (41,213), while
the Nipponbare genome had the most (72,329;
Supplemental Table S7). These results support that IR64
is most closely related to MH63, as previously determined
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(Zhao et al. 2015; Zhang et al. 2016). Differences in annota-
tion of the reference genomes could also influence map-
ping. Of the 21,145 syntenic orthologous  genes only
11,654 (55%) had the same number of exons and only
598 (3%) were the same length. We sought to evaluate
how these factors associate with loci differentially identified
as DEG when using different reference genomes. We gen-
erated scatterplots of all syntenic orthologous genes com-
paring the EdgeR determined P-value for differential
expression of IR64 reads mapped to one reference ge-
nome versus another. We colored each gene by ratios of
counts, number of SNPs, number of exons, or gene length
(Fig. 5; Supplemental Fig. S4). In the comparison between
MHG63 and Nipponbare, both annotation and sequence
differences contribute to differences in DEG identification
(Fig. 5). Many of the genes identified as uniquely DE in
MH63 had higher counts in MH63 compared to
Nipponbare (Fig. 5A, blue colored genes); a higher exon
number in the MH63 genome (Fig. 5C, blue colored
genes); and were longer genes in MH63 (Fig. 5D, blue col-
ored genes). The DEGs uniquely identified in Nipponbare
compared to MH63 also had more SNPs between the IR64
read sequences and the Nipponbare genome than the
MH63 genome (Fig. 5B, red colored genes).

When we compare the uniquely identified DEGs be-
tween mapping to either  of the two indica genomes,
MHG63 or ZS97, we observed that count differences and
SNPs contributed to the uniquely identified DEGs
(Supplemental Fig. S4A,B). However, most uniquely iden-
tified DEGs did not show annotation differences in the
number of gene exons or the gene length (Supplemental
Fig. S4C,D). This may be due to the similarity between
the method of determining the annotation for these two
genomes or similarity between these two indica genomes.

Because none of the reference genomes are a perfect
representation of the IR64 samples we are analyzing, we
evaluated syntenic orthologous genes that were uniquely
identified as DEG depending on the reference genomes
by gRT-PCR with specific primers designed for IR64 se-
quences. For example, MH09t0438800, had higher counts
when mapped to MH63 than the syntenic ortholog when
mapped to Nipponbare, and was identified as a DEG us-
ing the MH63 genome, but not the Nipponbare genome
(Fig. 5A,E). Analysis of the IR64 transcript by gRT-PCR indi-
cates that it is correctly identified as a DEG (Fig. 5G). A sec-
ond gene, MHO03t0064200 identified as a DEG when
mapped to the MH63 genome,  showed similar counts
when mapped to MH63 as the syntenic ortholog mapped
to the Nipponbare genome (Fig. 5A,F). Although the
counts were in a similar range for MH03t0064200, we ob-
served that there were more SNPs between the IR64 RNA-
seq reads that mapped to this region and the Nipponbare
genome than the MH63 genome (Fig. 5B), and there were
more exons in the syntenic ortholog of this gene in the
Nipponbare genome than in the MH63 genome (Fig.

5C). These genes are identified as DEG only in the
MH63 genome, no matter which mapping software we
used, STAR, HISAT, or SegemehlSupplemental Fig. S5).
gRT-PCR analysis of the IR64 RNA indicates that this locus
is differentially expressed between dawn and dusk, thus
mapping to the commonly used Nipponbare reference
would have failed to identify these two DEGs.

To further understand if our observation of the effects of
the reference genome on DEG identification holds true
with a rice species other than IR64, we also evaluated
the ability to identify DEGs between dawn and dusk
from RNA-seq data obtained from Nipponbare seedings
(Supplemental Fig. S6).In this case, since the transcripts
are from the Nipponbare genome, DEGs identified when
mapped to Nipponbare should be more reliable.  As ex-
pected, when mapping to the Nipponbare reference ge-
nome, the Nipponbare seedlings reads had the largest
number of unique DEGs and the fewest number of SNPs,
compared to mapping to either MH63 or ZS97 genomes
(Supplemental Figs. S6, S7). Furthermore, as we observed
for IR64, both SNPs and annotation differences contribut-
ed to the identification of DEGs (Supplemental Fig. S7).

Genome relatedness contributes significantly
to the confidence of DEG identification

To further investigate the effects of exonic SNPs and anno-
tation features on transcriptome analysis, we sought
to identify the significant features that contribute to the dif-
ference in identifying DEGs (based on P-values) when
mapping to the three reference genomes using linear re-
gression. For each syntenic ortholog, we determined the
significance of DEGs (adjusted P-value) for each gene
when the IR64 RNA-seq data were mapped to the MH63,
ZS97, or Nipponbare genomes. We then sought to explain
the differences in the P-values of the DEGs identified when
mapped to each reference genome (response variable) us-
ing the following features (explanatory variables): counts,
gene length, SNPs between IR64 transcripts and the refer-
ence genome, number of exons, sequence identity, align-
ment length, genomic SNPs, and sequence gaps. These
explanatory variables were calculated for each reference
genome. We then performed pairwise comparisons be-
tween individual reference genomes of the response and
explanatory variables, which was then used as input for
the linear model. Depending on the reference genomes
compared, different explanatory variables contributed to
the observed differences seen in DEGs identified between
genomes (Fig. 6; Supplemental Table S10). Combined,
these features explained 55%—-67% of the variation in
DEGs between reference genomes. Counts (the legliffer-
ence in total counts per syntenic ortholog) contributed the
most in explaining the variance in DEG identification in all
genome comparisons. Two related features, sequence
identity (the percent sequence similarity between syntenic
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FIGURE 6. Explanatory features that contribute to differences in DEG identification from the
linear model output. Linear regression was used to identify significant relationships between
Counts between IR64 reads
genome were obtained
from the HTSeq-count output. Gene length and exon length were obtained from reference
GTF files. Exon length and the total number of exons were calculated using the longest tran-
script model. Mismatches (RNA) are the number of SNPs identified by GATK when mapping
Sequence identity, Alignment length, Mismatches (DNA), and
Sequence gaps were obtained from BLAST results between transcript sequences for each ge-
nome. —Log(P-value) indicates the significance of the explanatory variable to DEG.

DEG significance value and selected explanatory variables.
mapped to the MH63, ZS97, and Nipponbare (MSU annotation)

reads to each genome.

orthologs in the different reference genomes) and genomic
SNPs (the number of nucleotide mismatches between syn-
tenic orthologs), contributed significantly to the differences
in DEG significance in all three comparisons. While se-
quence identity contributed similarly to all three pairwise
reference genome comparisons, Genomic SNPs contribut-
ed more to the difference in DEGs identification when com-
paring the similarly generated references MH63 and ZS97,
the two indica genomes. Another feature of sequence var-
iation, the IR64 exonic SNP feature (the SNPs identified be-
tween the IR64 transcripts and the reference genomes) was
only identified as a significant feature in the comparison be-
tween MH63 and ZS97. In contrast, two features related to
annotation, number of exons (the difference in annotated
exons between syntenic orthologs) and gene length (the
difference in annotated transcript length) were significant
features only in the comparisons between the indica and ja-
ponica genomes. This analysis suggests that count differ-
ences between syntenic orthologs is not the only factor

that accounts for differences in DEG identification, as we
observed in MH03t0064200 (Fig. 5F). These results show
that both genome relatedness measured through nucleo-
tide level differences and genome annotations influence
DEG analysis and both factors account for the differences
observed when analyzing differential  gene expression
across different reference genomes.

Splicing analysis is influenced by reference genome

To elucidate the effects  that the choice of reference
genome may have on AS analysis, we performed
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We chose to use the JunctionSeq
package for splicing analysis as it can
determine differential exon as well
as splice junction usage and is built
on the DEXSeq package (Hartley and
Mullikin 2016). We identified features
(exons or splice junctions) that were
differentially used (DU) between
dawn and dusk when RNA-seq reads
were mapped to either the MH63 or
Nipponbare genomes. By aligning
reads to the MH63 genome, 931 DU
features were identified, whereas
only 276 DU features were identified by aligning the reads
to the Nipponbare genome (Table 1; Supplemental Table
S8). Of the total number of DU features identified when
mapped to the MH63 genome, 66% corresponded to
splice junctions, while only 40% of DU features accounted
for splice junctions when mapped to the Nipponbare ge-
nome (Supplemental Table S8). This indicates that not
only is the overall ability to detect DU features affected,
but there is also a change in the distribution of the number
of exons or splice junctions identified as DU.

To directly compare the effects of mapping to two dif-
ferent reference genomes on the ability to detect alterna-
tive isoforms using JunctionSeq, we compared syntenic
orthologs of loci that contained at least one DU feature
(a total of 368 genes) when mapped to either genome.
Between the MH63 and Nipponbare reference genomes,
89 syntenic orthologs (~24%) were commonly identified
as containing a DU feature (Fig. 7A). An additional 249
syntenic orthologs (~68%) were identified by mapping
to the MH63 genome that were not identified when map-
ping to the Nipponbare genome, while 30 syntenic ortho-
logs (~8%) were identified using the Nipponbare genome
that were not identified when mapped to the MH6B3 ge-
nome. Furthermore, mapping to MH63 increased the total
number of splicing features identified as DU by 3.4-fold,
compared to the Nipponbare genome (Supplemental
Table S8).

We compared the distribution of adjusted P-values of all
features identified as DU when mapping the IR64 RNA-seq
data to either genome to further investigate the differenc-
es on the JunctionSeq output based on the choice of the
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genes averaged 0.12 SNPs/boundary,
a significant increase in the SNPs/
boundary for uniquely identified DU
genes (Student's t-test P-value
0.027). There is a higher distribution
of exon junctions with >1 SNP in the
set of genes with DU splicing features
only identified when mapping to
MH63 compared to the Nipponbare

reference (Fig. 7B).

A C
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5 0 —— MH63
g’ 30! ~—— Nipponbare
£ 2
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0.00 051 062 0.03 064 0.05 0.06
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SNPs/Boundary 0 1 2 3 4 5 Total Features SNPs/Feature
Unique MH63 B62 NS 10 1l 3 1 429 0.214

Common MHG63 and Nipponbare
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For validation of the differential
splicing analysis, we arbitrarily chose

0.121 a gene (MH12t0411000) that was

FIGURE 7. Comparison of syntenic loci that contain at least one DU splicing feature. (A)
Syntenic orthologs that contain at least one DU exon or splice junction were compared be-
genomes. Of the total 368 syntenic orthologs
that contain a DU feature, only ~24% (89 genes) were commonly identified when mapped

to both reference genomes. The majority of syntenic orthologs (~92%; 338 genes) that con-
tained at least one DU splicing feature between dawn and dusk were identified when mapped
to the MH63 genome. (B) Table of the number of SNPs between Nipponbare and MH63 ge-
nomes identified at DU exon/intron boundary for each class of gene. (C ) Adjusted P-values of
significantly DU features were plotted from the JunctionSeq output when mapped to the
MH®63 and Nipponbare (“MSU”) genomes. A higher frequency of lower adjusted P-values
was observed when IR64 RNA-seq reads were mapped to the MH63 genome compared to
the Nipponbare genome, while a higher frequency of adjusted P-values that approached
the significance threshold (0.05) was observed when mapped to the Nipponbare genome.

tween the MH63 and Nipponbare (“MSU”)

reference genome. Adjusted P-values tended to be lower
when mapped to the MH63 genome, with a higher
frequency of features having adjusted P-values of less
than 0.01, compared to the Nipponbare genome (Fig.
7B). In contrast, mapping to the Nipponbare genome re-
sulted in a higher frequency of adjusted P-values between
0.04 and 0.05 (Fig. 7B). These data indicate that mapping
IR64 RNA-seq data to the MH63 genome increased the
confidence of exons and splice junctions identified as DU.
Differences in identifying DU features based on the refer-
ence genome could be due to differences in gene annota-
tion or sequence variation. Gene annotation differences
contribute to variation in identified DU features because
missing an exon or splice junction would prevent identifica-
tion. Genome relatedness may have an enhanced impact
on identifying DU features because higher sequence varia-
tion at exon boundaries could impact the mapping of
spliced reads used to determine DU features. To evaluate
if identification of DU features is influenced by the number
of SNPs between IR64 and the reference genomes, we cal-
culated the SNP density at exon boundaries. We compared
the frequency of SNPs between DU features uniquely iden-
tified when mapped to MH63 and those identified when
mapped to both reference genomes. From the 249 unique
MH63 genes, 429 DU features were identified and from
the 89 genes identified using either reference genome,
174 DU features were identified. MH63 unique genes aver-
aged 0.214 SNPs/boundary and commonly identified DU

identified as having a DU splice site
(JO11) only when mapped to the
MH63 genome compared to its syn-
tenic ortholog (LOC_0Os12g39630;
Fig. 8C,D) and was identifiedas a
DEG in both genomes (Fig. 9A,B), in-
dicating that enough counts were
detectible to determine differences

at the whole gene level. Validation
for both the differential gene expres-
sion and splicing analysis was carried
out using semiquantitative RT-PCR.
We designed primers to detect differ-
ential expression at the gene level
(Fig. 9A, upper panel), or differential usage of the splice
site (Fig. 9A, middle panel) between dawn and dusk com-
pared to UBC-E2 as a control (Fig. 9A, lower panel; Auler
et al. 2017). Relative quantification of band intensity
showed that the gene, as well as the splice junction, were
both more highly expressed at dusk than at dawn (Fig.
9A). Furthermore, the ratio of relative expression at dusk
compared with dawn (dusk: dawn) was higher for the splice
junction (Fig. 9B), indicating that this locus in IR64 is both
differentially expressed at the gene level and differentially
spliced between dawn and dusk, consistent with DESeq2
and JunctionSeq analysis when mapped to the MH63 ge-
nome. The J011 splice junction in MH12t0411000 is an ex-
ample of a DU splicing feature that would have been missed
by mapping to the more commonly used, but more distant-
ly related Nipponbare reference genome alone.

To further investigate why the JO11 splice junction
was identified as DU when mapped to the MH63 genome,
but not the MSU genome, we analyzed differences in read
counts of splicing features between the MH12t0411000
and LOC_0s12g39630 loci. We observed that total read
counts varied only slightly between these syntenic ortho-
logs, and read counts for the DU splice junction was iden-
tical between both genomes (Supplemental  Table S9).
Therefore, this change in detection may be due to differ-
ences in total read counts across the entire gene and infor-
mation sharing across gene loci that influences dispersion
estimates of individual features when analyzing differential
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FIGURE 8. Differential gene expression and splice site usage of

JO011 is called DU when mapped to the MH63 genome (C),
Nipponbare genome (D).

usage of exons and splice junctions (Hartley and Mullikin
2016).

DISCUSSION

Choice of reference genome has a significant impact
on downstream transcriptional analysis

Identification of DEGs and DU splicing features are both
affected by choice of mapping genome. Although differ-
ences were observed between genes that were called dif-
ferentially expressed between dawn and dusk, the majority
of DEGs from syntenic orthologs (~75%) were commonly
identified when mapped to all three genomes. To consis-
tently compare the same orthologs between the sequenc-
es mapped to the three genomes, we focused our
comparisons on syntenic orthologs. This subset of genes
is most likely to be conserved and well annotated between
the three genomes. In each genome, the syntenic ortho-
logs are only ~70% of the expressed genes. We ignored
between 7800-9800 expressed genes that were detected
when mapped to each reference genome, because they
lacked syntenic orthologs and direct comparisons would
be challenging. Therefore, our estimates are likely an un-
derrepresentation of all the differences that result from
the choice of mapping genome when all genes are
considered.
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FIGURE 9. Validation of differential gene expression and splice site
usage of the MH12t0411000 locus. Semiquantitative RT-PCR was
used to confirm DESeq2 and JunctionSeq results of the
MH12t0411000 locus. (A) Primers used to either amplify gene expres-
sion (upper panel) or expression of the splice junction JO11 (middle
panel) both showed increased band intensity at dusk, compared to
UBC-E2 as the reference (lower panel; Auler et al. 2017). (B) Band in-
tensity of UBC-E2 at dawn was used as a reference for relative quan-
tification. The dusk to dawn ratio of pixel intensity of the
MH12t0411000 locus was 2.6 at the gene level and 5.2 for splice junc-
tion JO11, on average. Data are representative of three biological rep-
licates. Error bars represent standard deviation.
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orthologs. However, for splicing analysis, the variation in
the number of features between each genome will impact
the overall statistical analysis. Differences in the number of
splice junctions identified as DU may also partially account
for this increase, as 66% of DU features identified were
splice junctions when mapped to the MH63 genome com-
pared to 40% when mapped to the Nipponbare genome
(Supplemental Table S8). JunctionSeq identifies splice
junctions as places where contiguous reads span a non-
contiguous region in the genome (e.g., when one read
aligns to two exons that are separated by an intron; Hartley
and Mullikin 2016). Because SNPs can be found at splice
site donors and acceptors (Zhang et al. 2016), and the
length of defined splicing junctions are relatively short,

an increase in the frequency of SNPs between the sampled
species and the reference genome may have a greater im-
pact on the identification of splicing junctions. In support

of this we observe that the DU features identified only in
MH63 showed higher average SNPs per boundary than
those commonly identified when either MH63 or Nippon-
bare reference genomes were used. Therefore, related-
ness between the species being analyzed and the
reference genome used may have a greater influence on
splicing analysis compared with differential gene expres-
sion analysis. Again, this is likely an underestimation of
the overall effect on splicing analysis since we draw conclu-
sions from comparing syntenic loci, which are more likely
to be conserved.

Differences of genome annotation between syntenic
loci affects transcriptome mapping

We observed that differences in counts had the greatest
influence on the DEG identification between thelR64 tran-
scripts when mapped to the MH63, ZS97, and Nipponbare
genomes. Count differences could arise from differences in
annotation and polymorphisms due to genetic divergence
between the transcript genome and the reference. These
differences in genome annotation may arise from differenc-
es in genome assembly, gene prediction, and gene anno-
tation methods used in the construction of these reference
genomes. These differences in gene and exon annotation
ultimately influence the number of reads mapped to each
gene and the total number of genes identified. If a gene

is improperly annotated as being shorter than it actually

is, read counts that correspond to the missing annotated re-
gion will be lost for that gene (Fig. 1; Supplemental Table
S11). In other words, if two syntenic loci vary in their anno-
tated length, but biologically are similar in length, more
reads will be mapped to the longer annotated gene com-
pared to the shorter annotated gene, which will ultimately
affect downstream analysis. Not only can gene annotation
differences lead to variations in mapped reads per gene,
but the effects of transcript misannotation can also lead
to misinterpretation of AS products (Brown et al. 2015).

Therefore, methods used for genome construction and an-
notation can influence transcriptome analysis independent
of evolutionary relatedness. However, the observation that
variation in gene annotation and SNP features we consid-
ered only account for 55%-67% of the observed differenc-
es in DEG identification indicates that there are factors we
have not identified that also affect downstream analysis.
Other potential contributors could be the distribution of
SNPs within an exon, types of SNPs, sequencing errors,
the distribution of reads within a gene, or the similarity of
a gene to other genes in the genome that may influence
mapping using default parameters, as well as other yet un-
known factors.

Differences in counts for a single gene do not explain
all the effects of the reference genome

We observed that not all effects of the reference genome
on the identified DEGs or DU splicing features was due
to differences in counts at that locus (e.g. Figs. 5F,H, 9;
Supplemental Tables S4-S6). Count differences for these
genes did not fully explain the differences in significance
of DEGs (Figs. 5, 6). This suggests that the overall varia-
tion of the genome could influence the identification of
downstream analysis even when the specific gene of in-
terest is similar between the reference genomes. The al-
gorithms for identifying DEGs or DU splicing features use
information sharing across genes for variance estimation;
therefore, the impacts of multiple mapping differences
across many genes could contribute to the overall statis-
tical evaluation and impact even syntenic orthologs that
are similar in annotation. This difference may explain
some of the enhanced effects of the reference genome
we observe in splicing analysis since the total  number
of features will vary between genomes (Supplemental
Table S7). For example, the splice junction J011 is called
DU in MH12t0411000 when mapped to MHG3, but is not
identified as DU when mapped to Nipponbare (Fig. 8),
the annotation and counts of this gene are similar and
the gene is identified as DEG when using either refer-
ence genome. However, the impact of the total number
of features is likely to have a greater  impact on DEG
identification than we observe in our  analysis. Here we
limited our analysis to a core set of syntenic orthologs,
so the same total number of genes were analyzed for
DEGs. Thus there were no differences in the number of
annotated genes in each genome or the percent of those
genes that map (Supplemental Table S2). However, in a
more standard analysis, the gene set would not be re-
stricted and the effects of the variation across the entire
genome would likely be exacerbated for even genes
with similar annotations due to the importance of the to-
tal expression in the normalization and variance calcula-
tions in the DEG identification algorithms (Dillies et al.
2013).
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Using a closely related reference genome
may still introduce bias into downstream
data analyses

Although MHG63 is the most closely related high-quality
reference genome to IR64, the existence of >40k exonic
SNPs between MH63 and IR64 may fail to identify signifi-
cant differences in DEGs or exon and splice site usage.
These differences may result in genes or exons and splice
sites not being identified as significantly differentially ex-
pressed when in fact they would be identified as differen-
tially expressed if using an IR64 reference genome. This
may lead to an incomplete snapshot of RNA-seq data anal-
yses, especially when analyzing AS. However, using an
available mapping genome that is the closest relative to
the sampled species greatly improves these downstream
analyses.For example, mapping IR64 RNA-seq reads to
the Nipponbare genome obscured the identification of

249 syntenic genes that contained at least one DU splicing
feature (Fig. 7; Supplemental Table S8). Therefore, map-
ping RNA-seq reads of one rice species to the rice genome
of the closest evolutionary relative can greatly improve AS
analysis. Ideally, the reference genome and the sampled
genome would be from the same subspecies, however,
when a high-quality annotated genome is not  available
for the subspecies being studied, as may often be the
case with the wide genetic architecture within nonmodel
species that are amenable to experimental research, using
the most closely related reference genome will increase
the accuracy of downstream data analysis. These results
underscore the need for generating more high-quality an-
notated genomes in subspecies where there is significant
intra-species variation.

Parameters used for genome alignment may
influence downstream RNA-seq data analysis

We used STAR to align IR64 RNA-seq reads to individual
genomes. The default setting of STAR controls mismatch
rate based on mismatches to either mapped read length

or total read length. If the ratio of mismatches to the
mapped read length are less than 0.3 and if the ratio of mis-
matches to the total read length is less than 1, this passes
the criteria. We decided to use this default setting for a cou-
ple of reasons. First, many studies that analyze RNA-seq
data also use this default setting, therefore, we wanted to
accurately simulate data handling by other studies to dem-
onstrate how using different reference genomes may real-
istically impact data analysis. Second, allowing for up to two
mismatches increases the total number of reads mapped to
the genome, as it helps to account for differences in SNPs
as well as sequencing errors. We evaluated changing the
tolerance for mismatches and the number of uniquely
mapped reads plateaus in MH63 at one mismatch allowed
and in Nipponbare between three to four mismatches

680 RNA, Vol. 25, No. 6

(Supplemental Fig. S8). Therefore, altering the parameter
of allowed mismatches for the genome alignment tool
used may also influence downstream RNA-seq data analy-
sis and should be taken into consideration during experi-
mental design.

Overall percent alignment may not be reflective
of the most closely related genome

The overall percent alignment of IR64 RNA-seq reads dif-
fered when mapped to the MH63, ZS97, or Nipponbare
reference genomes (Fig. 2). We observed that the highest
percent alignment occurred with the Nipponbare ge-
nome while the lowest was with the ZS97 genome. In
contrast, the lowest percentage of multiple mapped
reads was observed when mapping to the MHG3 ge-
nome. The parameter of fewest multiple mapped reads
may be indicative of  relative species relatedness that
should be investigated further. Considering that MH63
is the most closely related reference genome to IR64,
we conclude that the overall percent alignment of an
RNA-seq data set to a reference genome is not an ideal
benchmark to use when choosing between reference
genomes.

In summary, the accuracy of identifying differentially ex-
pressed and alternatively spliced genes is significantly im-
pacted by the choice of reference genome. The
contribution of the reference genome is influenced by
several factors. First, the genetic distance between the
reference and the sample, which translates into SNPs
that have a direct effect on mapping and therefore
counts. Second, the quality and completeness of the ge-
nome, which also results in altered counts as missing or in-
correct features will not be accurately mapped. Finally, as
a consequence of these first two effects on counts, the
modeling of the gene expression through the DEG-analy-
sis algorithms can be altered, thus impacting even genes
with similar counts when mapped to different reference
genomes (e.g., Fig. 5F). This effect on genes which are
similar across the reference genomes reveals that the
DEG-analysis algorithms we used all learn their parame-
ters from the entire data set. Therefore, the impacts of se-
quence relatedness and genome annotation quality
persist even when restricting the analysis to conserved
gene annotation models. We propose that when working
with nonmodel species, if researchers have a choice of ref-
erence genomes of similar annotation quality, the refer-
ence genome of the closest evolutionary relative should
be used to maximize gene discovery efforts. In many spe-
cies, on-going efforts exist to sequence multiple individu-
als to quantify the genetic diversity within genus and
species (The 1000 Genomes Project Consortium 2015;
The 1001 Genomes Consortium 2016). Recent sequenc-
ing efforts show that major differences exist between
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sequenced human genomes (Sherman et al. 2018). The
large effects we observe of reference genome choice in
transcriptional analysis, particularly for investigating iso-
form variant expression, underscores an additional benefit
of these sequencing efforts, the improvement of down-
stream analysis. These results suggest that continued ef-
forts to improve annotation and provide additional
individual genome sequences will have effects on discov-
ery and evaluation of transcriptomes in both nonmodel
and model organisms.

MATERIALS AND METHODS

Plant material

IR64 rice plants were grown under field conditions at the
International Rice Research Institute, Philippines (14° 13N, 121°
15'E, 23 MASL) in 2014 during the dry season. Panicles from pri-
mary tillers were collected at 6:15 a.m. (dawn) and 6:00 p.m.
(dusk) from plants when 50% of the middle portions of the pani-
cles were flowering (i.e., the upper 50% of the panicle had fin-
ished flowering). Four biological replicates were collected for
each time point.

RNA extraction and RNA-seq

For RNA extraction, the panicle samples were first ground in lig-
uid nitrogen with a metal pestle. The tissue was then lyophilized
at —60°C overnight before RNA extractions. Total RNA was ex-
tracted using RNeasy Plant Mini Kit (Qiagen) with the RLT lysis
buffer. The provided RNA extraction protocol was followed with
the inclusion of DNase treatment. After the RWI wash step, 3 uL
of DNase | (Roche),8 pL buffer (200 mM Tris, pH 8.0, 20 mM
MgCl,, 500 mM KCI), and 69 pL nuclease-free water was added
to each column and incubated for 10 min. Following DNase
treatment, the column was washed again with the RWI  buffer
from the Qiagen kit.  RNA concentration was then measured
with NANOdrop 2000 (Thermo Scientific). mRNA was isolated
from 2 ug of total RNA using the NEBNext Poly(A) Magnetic
mRNA Isolation Kit (NEB). Before library preparation, the mRNA
was heated to 95°C for 15 min to achieve 150-200 bp fragment
sizes. NEBNext Ultra RNA Library Prep Kit for lllumina was then
used to generate directional libraries for sequencing. First strand
cDNA was primed with random hexamers using Protoscript |l re-
verse transcriptase and followed by second strand synthesis. The
cDNA was purified using AMPure beads. End repair, adaptor liga-
tion, and size selection with AMPure beads were performed as
described to recover 150-200 bp fragments and removed adap-
tors. Fifteen cycles of PCR using USER for strand specificity were
performed. Concentration and size verification of the libraries
was performed on an Agilent Bioanalyzer high sensitivity DNA
chip after a 1:4 (or 1:10) dilution. Concentrations were verified
using the NEBNext Library Quant Kit for lllumina. Raw single-
end sequencing reads were generated from libraries diluted to
10 nmol/pL concentrations using the lllumina HiSeq2000 plat-
form at North Carolina State University’s Genomics Science
Laboratory.

Quality control and transcriptome alignment

For quality control, seqtk (https://github.com/Ih3/seqtk) and
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) were used to generate high-quality trimmed reads.
Trimmed fastq files  were uploaded to NCBI GEO (Series
GSE92302, Samples GSM2425416-GSM245419 and GSM242
5432-GSM2425435). STAR (version 2.5.3a), TopHat2 (v2.0.4),
and Segmehl (0.2.0-418) were used to align trimmed reads to ei-
ther the Minghui 63, Zhenshan 97, or Nipponbare (MSU annota-
tion) genomes. For all aligners, the option for a reverse stranded
library was used; all other parameters used were default. GFF
and genome sequence files were obtained from RIGW (http
:/Irice.hzau.edu.cn/rice/) or the Rice Genome Annotation Project
websites (http://rice.plantbiology.msu.edu/). Genome sequence
and annotation files were downloaded from their respective web-
sites in September 2016. Original GFF files were parsed and refor-
matted to GTF files that matched input requirements for DESeq2,
EdgeR, NOISeq, LIMMA, and JunctionSeq packages (scripts avail-
able at www.github/DohertyLab).

Differential gene expression and splicing analysis

The DESeq2 package (Love et al. 2014), EdgeR (Robinson et al.
2010), NOISeq (Tarazona et al. 2011, 2015), and LIMMA (Ritchie
et al. 2015) were used to identify DEGs for each of the three ge-
nomes independently. Significance cutoff values were set to ad-
justed P-value <0.05 for DESeq2, EdgeR, and LIMMA. For
NOISeq, genes were considered DEGs with a probability of differ-
ential expression (q) >0.95. The JunctionSeq package (Hartley and
Mullikin 2016) was used for differential splicing analysis for the
Minghui 63 and Nipponbare genomes (MSU annotation), using
the companion package QoRTs to generate raw counts (Hartley
and Mullikin 2015). Analysis was performed for both known and
novel splice junctions. For JunctionSeq analysis, the FDR was set
to 0.05; all other parameters used were default.

Identification of syntenic orthologs

The MCScanX package (Wang et al. 2012b) was used to identify
conservative syntenic orthologs between MH63, ZS97, and
Nipponbare (MSU annotation) genomes. MCScanX allows for
the comparison of multiple custom genomes and identifies ortho-
logs using pairwise best reciprocal BLAST and syntenic relation-
ships. GFF files were parsed and reformatted to match input
requirements. A data frame of the MCScanX collinearity results
was compiled using a customized script in R (available at www
.github/DohertyLab). Only gene loci that were filtered by recipro-
cal best BLAST and had syntenic orthologs in all three genomes
(21,145 loci; Supplemental Table S1) were used to make cross ge-
nome comparisons.

gRT-PCR (for DEG validation)

Reverse transcription was performed, following manufacturer in-
structions, from 1 ug of total RNA using the Bio-Rad iScript
Reverse Transcription Supermix. cDNA was diluted to 1:100.
Bio-Rad SYBR Green Master Mix was used for gPCR using a
Bio-Rad CFX instrument. Gene-specific primers were selected
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that produced only a single, sharp inflection using a dissociation
curve. Each biological replicate was measured by the average of
four technical replicates; outlier technical replicates were re-
moved from the analysis. Data analysis was performed using
Bio-Rad CFX Software, dawn samples were set as the reference,
and UBC-E2 was used as a reference housekeeping gene.

Semiquantitative RT-PCR (for splicing validation)

cDNA was synthesized from total RNA samples using the iScript
Advanced cDNA Synthesis Kit (Bio-Rad)with 600 ng of RNA as
the input for each sample. One microliter of undiluted cDNA
was used as the template for each PCR reaction. Primer sequenc-
es can be found in Supplemental Table S13. Relative quantifica-
tion of gel bands was performed using a Bio-Rad Gel Doc EZ
Imager using the UBC-E2 band from the dawn sample as the ref-
erence. Semiquantitative PCR was carried out on three biological
replicates for both dawn and dusk.

SNP identification

A custom script was developed to identify SNPs between IR64
RNA-seq reads and the MH63, ZS97, and Nipponbare (MSU
annotation) genomes (available at www.github/DohertylLab).
The pipeline uses picard (version 2.10.2; https://github.com/
broadinstitute/picard) to order and remove duplicated sequence
alignments and GATK functions (version 3.7; https://software
.broadinstitute.org/gatk/) for SNP identification. Exonic SNPs
per transcript were assessed by counting the number of SNPs
per exon based on the longest transcript model for each syntenic
loci. Total read counts per gene were obtained from the DESeq2
output. Exonic SNP density was calculated by dividing the num-
ber of exonic SNPs per gene by total gene length.

Linear model regression

Counts represents the log , difference in total counts between
syntenic orthologs when mapped to the compared reference ge-
nomes. Gene Length represents the difference in annotated tran-
script length syntenic orthologs between genomes. IR64 SNPs
represents the difference in SNP density identified by mapping
IR64 RNA-seq reads on syntenic orthologs between genomes.
Number of Exons represents the differences in annotated exons
in the syntenic orthologs between genomes. Sequence Identity
represents the percentage of sequence similarity calculated by
nBLAST of syntenic orthologs between genomes. Alignment
Length represents the length aligned by nBLAST of syntenic
orthologs between genomes. Genomic SNPs represents the
number of nucleotide mismatches found by nBLAST of syntenic
orthologs between genomes. Sequence gaps represent the
length of gaps found by nBLAST of syntenic orthologs between
genomes. Counts between IR64 reads mapped to the MH63
and Nipponbare (MSU annotation) genome were obtained from
the DESeq2 output. A custom script was developed to calculate
gene length and exon length. Exon length and the total number
of exons were calculated using the longest transcript model. For
exonic SNP density, 1.0 x 10'° was added to each value for all
genes to avoid dividing by zero for genes that had zero SNPs.
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Values used for the response and explanatory variables in the lin-
ear model were generated by taking the log of the ratio between
the values for the MH63 and Nipponbare genomes [log >(MH63/
Nipponbare)]. A linear model was generated with the Im function
in R using the difference in counts of the two genomes as the re-
sponse variable.

Altering mismatch rate of STAR alignment

To vary the allowed mismatch parameter in STAR (Supple-
mental Fig. S8), we changed the following parameters in the
STAR alignment command: —outFilterMismatchNmax 100 —out-
FilterMultimapNmax 2 —outFilterMismatchNoverLmax 999 —out-
FilterMismatchNoverReadLmax 999 —outFilterMatchNmin 0 -
outFilterMatchNminOverLread 0 —outFilterScoreMinOverLread

0. For each mismatch setting, 20 million IR64 reads were mapped
to either the MH63 or Nipponbare genome. We used —outFilter-
ScoreMax as the mismatch allowed cutoff and this was varied from
0-10.

Custom scripts

Please refer to our github page (www.github/DohertyLab) for ac-
cess to all custom scripts developed by the Doherty laboratory
used in this study.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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