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ABSTRACT 

Continuous provision of quality supply air to data center’s 
IT pod room is a key parameter in ensuring effective data 
center operation without any down time. Due to number of 
possible operating conditions and non-linear relations between 
operating parameters make the working mechanism of data 
center difficult to optimize energy use. At present industries are 
using computational fluid dynamics (CFD) to simulate thermal 
behaviour for all types of operating conditions. The focus of 
this study is to predict Supply Air Temperature using Artificial 
Neural Network (ANN) which can overcome limitations of 
CFD such as high cost, need of an expertise and large 
computation time. 

For developing ANN, input parameters, number of neurons 
and hidden layers, activation function and the period of training 
data set were studied. A commercial CFD software package 
6sigma room is used to develop a modular data center 
consisting of an IT pod room and an air-handling unit. CFD 
analysis is carried out for different outside air conditions. 
Historical weather data of 1 year was considered as an input for 
CFD analysis. The ANN model is “trained” using data 
generated from these CFD results. The predictions of ANN 
model and the results of CFD analysis for a set of example 
scenarios were compared to measure the agreement between 
the two. 

The results show that the prediction of ANN model is 
much faster than full computational fluid dynamics simulations 
with good prediction accuracy. This demonstrates that ANN is 
an effective way for predicting the performance of an air 
handling unit. 

INTRODUCTION 

In the year 2006, 1.3% of total energy consumed in the 
United States namely 61 billion kilowatts of energy was 
consumed by data centers [1]. According to the national 
resources defense council (NRDC) report for the year 2013 data 
centers consumed approximately 91 billion kilowatt-hours of 
electricity [2]. This shows that energy consumption of data 
centers is 1.9% of the total electricity consumption in the 
United States. The NRDC also reported that electricity 
consumption of data centers could be 140 billion kilowatt-hours 
by 2020 which could cost thirteen billion dollars annually. 
Hence it is important to improve the data center energy 
consumption.  

Previously individual systems were used to store the data 
in digital format. Due to the need of data sharing, data centers 
were created and internet is used to access this data whenever 
required. New technologies such as Internet of Things (IOT), 
Big Data, cloud computing has increased the dependency on 
internet and data centers. On the other hand, computation 
power has increased rapidly making speed of data transfer as 
the limitation. Hence easy and quick access to database is 
important which requires continuous working of data center 
with minimal downtime. 

IT equipment, which stores and provides access to dynamic 
data, uses electrical power, also called IT load, which varies 
with time according to consumer’s demand. Electrical energy 
provided to this IT equipment transforms into heat energy 
resulting in heating up of the device. IT equipment fails when 
the temperature of the device exceeds the maximum allowable 
temperature [3]. Removal of this excess heat can be done by air 

1 Copyright © 2018 ASME



cooling or liquid cooling techniques. In air cooling technique, 
Air Handling Unit (AHU) cools the incoming air and supplies it 
to the cold aisle of the data center which reduce the temperature 
of IT equipment by convection mode of heat transfer. Hence 
accurate prediction of supply air temperature of AHU is a 
crucial parameter for continuous working of data center. 

Currently, Computational Fluid Dynamics (CFD) method 
is used for estimation of different parameters such as 
temperature, pressure, humidity in data centers. If physical 
properties of the data center are known, CFD or white-box 
modeling provides accurate estimation since it is based on the 
fundamental equations of mass and energy balance for fluids.  
But, high cost of the CFD tool, requirement of large 
computation power, time-consuming simulations and need of 
an expertise are major drawbacks of this method.

 This study provides an alternative approach of Artificial 
Neural Network (ANN) which can overcome drawbacks of 
CFD approach while retaining a useful degree of accuracy. 
ANN learning is similar to the human brain. It takes available 
data as input and captures nonlinear relationships between 
inputs and outputs of the system in order to predict output with 
useful accuracy. The quality and quantity of dataset is crucial in 
ANN training. Provided the sensors are not faulty large, 
historical sensor (real-time) data can be used if it captures all
the possible working scenarios. In the absence of sensor data, 
synthetic data set can be obtained using CFD simulations. In 
this study, the purpose of CFD modeling is only to generate 
synthetic dataset for ANN training.  

The objectives of this paper are: 1. Provide a summary of 
the domain knowledge required for building such CFD model 
and preparing the synthetic dataset. 2. using synthetic dataset, 
develop ANN models to predict supply air temperature. These 
ANN predictions can be used for pro-active control of energy 
efficient data center. 

The paper is organized as follows: section 2 describes the 
CFD model of data center. Section 3 explains generation of 
dataset. Section 4 focuses on development of ANN model. 
Section 5 presents results and discussion; Finally, section 8 
concludes this research work.  

NOMENCLATURE ALPHABETICAL    

ACU      Air Cooling Unit 
AHU      Air Handling Unit 
ANN      Artificial Neural Network  
ASE       Air Side Economization 
CA         Cold Aisle 
CAP       Cold Aisle Pressure (in/ H2O) 
CAT       Cold Aisle Temperature (F) 
CFD       Computational Fluid Dynamics 
CFM      Cubic Feet per Minute 
DEC       Direct Evaporative Cooling 
HA         Hot Aisle  
HAP       Hot Aisle Pressure (in/ H2O) 
HAT       Hot Aisle Temperature (F) 

HX         Heat Exchanger  
IDEC      Indirect Evaporative Cooling  
MAE      Mean Absolute Error (F) 
MAT       Mixed Air Temperature (F) 
MDC      Modular Data Center 
OAH      Outside Air Relative Humidity (%) 
OAT       Outside Air Temperature (F) 
 OAH      Outside Air relative Humidity (%) 
 RMSE    Root Mean Squared Error (F) 
 SAT        Supply Air Temperature (F) 
 % OA     Vent opening for outside air (%) 
% RA      Vent opening for return air (%) 

CFD MODEL OF DATA CENTER 
 

The real time model chosen for this study shown in Figure 
1 and 2 approximately represents a modular data center (MDC) 
of MESTEX Inc, located at Dallas, Texas, USA. This reduced 
order model consist of IT pod room, Air Handling Unit (AHU),  
overhead cold air supply and hot air return duct which connects 
the AHU and IT pod. Figure 3 shows isometric view of K-ɛ 
turbulence CFD model which is developed in 6Sigmaroom 
CFD software. IT pod is shown on the left side while AHU is 
on the right side. Figure 4 and 5 shows front and top view of 
MDC respectively. The IT pod room which is 3.2 m in length 
3.2 m in width and 2.8 m of height consists of four racks in 
single row which separates cold and hot aisles and each rack 
consists of five 7U servers each of 1500 W with maximum total 
IT load of 30 KW. Empty server slots are blanked. In 
6SigmaRoom software, each 7U server is modeled as black box 
with heat power factor of 90% and 100% heat convected to air 
without internal air circulation in server. Maximum allowable 
temperature of server is 90 F with thermal effectiveness of 0.8. 
Weight of each server is 70 Kg with effective specific heat of 
500 J/Kg K.  

Figure 1: Front view of MDC shows cold air supply duct

             AHU is 4.5 m long by 1.8 m wide and 1.7 m high and 
consist of heat exchanger (HX), direct evaporative cooling pad 
and four supply fans. Four circuits, six rows heat exchanger has 
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effectiveness of 0.75 with tube diameter of 0.013 m and fin 
spacing 0.2 m. The nominal cooling capacity of heat exchanger 
(HX) is 30 KW.  Maximum allowable flow rate is 2 CFM with 
water temperature 70 F and condensation coefficient of 1. The 
evaporative efficiency of direct evaporative cooling (DEC) pad 
is 90% with viscous resistance coefficient of 3 and inertial 
resistance coefficient of 30. The maximum water flow rate on
the top surface area of DEC pad is 0.8 CFM with water 
temperature 70 F. On the fan wall, total four fans are installed 
with diameter 18.2 in and hub diameter 6 in and thickness of 4 
in. Each fan has uniform flow rate of 1500 CFM and rated 
speed of 3300 rpm. Total CFM of cold air demanded by all 
server fans is equal to CFM of air supplied by AHU. For the 
CFD calculations, a finite-volume approximation of the 
Reynolds-averaged Navier-Stokes and energy equations with 
the standard k-ε turbulence model is solved using the 
commercial CFD software package 6SigmaRoomDC. Constant 
air properties and buoyancy effects are considered. Grid 
independent study was carried out using AHU’s Supply air 
temperature to evaluate accuracy of simulation which 
concludes 1.64 million grid cells from Figure 6 with maximum 
aspect ratio of 2.53. Note that solar radiation, wind speed and 
contaminations are not incorporated in CFD modeling. 5% air 
leakage is considered across the aisle.   

Figure 2: Rear view of MDC shows hot air return duct 

                        Figure 3: Isometric view of CFD model 

 
                               Figure 4: Front view (x-y)
 

 
                              Figure 5: Top view (x-z)

 
                       Figure 6: Grid Independent Study 
 
 
Air-flow Path in Data Center  

The ambient air entering through outside air vent opening 
blends with air from hot aisle entering through return air vent. 
This mixed air further passes through heat exchanger (HX) 
first, which provides sensible cooling and then through direct 
evaporative cooling (DEC) pad which further cools the air 
adiabatically. Since direct evaporative cooling increases 
humidity it is leveraged as second stage of cooling while 
sensible cooling using heat exchanger is the first stage. Four 
fans placed after DEC pad pulls the volume of cold air and 
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deliver it to the cold aisle of IT pod room through the supply 
duct. Server fan of each IT equipment withdraws cold air from 
cold aisle, which cools the server by convection mode of heat 
transfer and raises its own temperature. This high temperature 
air accumulated in hot aisle is then either exhausted from the IT 
pod room or passes through the return duct towards mixing 
chamber to blend with outside ambient air. This completes the 
air flow loop.  

Control Strategies of Air Handling Unit   
AHU provides following three types of cooling: 

 1. Free cooling (Air-side economization)  
 2. Indirect Evaporative Cooling (IDEC) or Sensible cooling 
 3. Direct Evaporative Cooling (DEC) or Adiabatic cooling 
Following control strategies are designed to incorporate above 
mentioned cooling types and to ensure that supply air 
temperature (SAT) of an AHU will always lie within 
“Recommended” innermost envelope of ASHRAE as shown in 
Figure 7.  
Strategy 1: The percentage opening of outside air vent and 
return air vent is controlled to maintain mixed air temperature 
at least 65 F (lowest limit of ASHRAE’s “Recommended”
envelop) by attaching equal weighted 20 temperature sensors 
(red circles shown in Figure 4 and Figure 5), placed before heat 
exchanger which measures mixed air temperatures. Figure 8 
shows the validation of this control strategy for random 
consecutive 5 days of month of April when outside air 
temperature (OAT) was less than hot aisle temperature (HAT), 
and percentage opening of outside air vent (%OA) was more 
than percentage opening of return air (% RA) in order to 
maintain mixed air temperature (MAT) at around 65 F. 

               Figure 7: ASHRAE’s envelopes  

Figure 8: Validation of Outside and Return Air Vent Control  

Strategy 2: Water flow in heat exchanger tubes will  turn ON 
when four temperature sensors (red circles shown in Figure 3,4 
and 5)  placed equidistantly in cold aisle read above 70 F. Also 
water flow on top surface area of direct evaporative cooling pad 
will turn ON when cold aisle temperature sensors read above 
74 F. This demonstrates that sensible cooling or IDEC provided 
by heat exchanger (HX) is first stage of cooling and adiabatic 
cooling or DEC provided by direct evaporative cooling pad is 
second stage of cooling. Figure 9 shows random consecutive 5 
days of July when outside air temperature is in the range of 70 
to 90 F, water flow in tubes of heat exchanger (HX) is turned 
ON (heat exchanger is providing IDEC which is measured in 
KW) and water flow on top surface area of direct evaporative 
cooling pad is turned ON (cooling pad is providing DEC 
measured in KW).  It is clear from Figure 9 that heat exchanger 
provides first stage of cooling (IDEC) since heat removed by 
HX has continuous non zero value while Direct evaporative 
cooling pad provides second stage of cooling (DEC) since heat 
removed by DEC has both zero and non-zero value. It can be 
observed in Figure 9 that cold aisle temperature (CAT) is 
successfully maintained in the range of 70 to 74 F. Figure 10 
shows random consecutive 5 days of month of January when 
outside air temperature (OAT) is below 60 F. Since the cold 
aisle temperature for 5 random consecutive days in January 
month is always below 70 F as shown in Figure 10, heat 
removed by both heat exchanger (HX) and direct evaporative 
cooling pad (DEC) has the value of zero KW since they are 
never turned ON. Note that cold aisle temperature (CAT) is 
varying around 65 F since previous controller attached to 
outside air vent and return air vent are maintaining mixed air 
temperature to 65 F. This mixed air with temperature 65 F is 
being delivered in cold aisle without providing IDEC cooling 
by HX and DEC cooling by evaporative pad.  
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Figure 9: Validation of IDEC and DEC turn ON for in July

Figure 10: Validation of IDEC and DEC turn OFF for in Jan 

Strategy 3: Increase in IT load increases server temperature and 
hence the hot aisle air temperature increases. To maintain 
server temperature within safe limits (Maximum allowable 
server temperature 90 F), the increased demand of CFM of cold 
air from the server has to be provided by increasing speed of 
supply fan of AHU. Hence hot aisle temperature (HAT) sensor 
shown as red circle in hot aisle in Figure 3 and Figure 5 is 
attached to supply fan speed control. The supply fan speed 
increases to 3300 rpm when HAT sensor reads a value above 
90 F, otherwise 2119 rpm. For five random consecutive days, 
Figure 11 shows that as the IT load increases hot aisle 
temperature (HAT) increases and hence supply fan speed 
increases respectively. Note that supply fan speed values in rpm 
are normalized in order to represent them on same graph.  

Figure 11: Validation of Supply Fan Speed Control

Strategy 4: Effective cooling is achieved when cold aisle 
pressure is more than hot aisle pressure, which assures that 
there will be no recirculation of hot air from hot aisle to cold 
aisle which otherwise increases server temperature and 
decreases cooling efficiency. To avoid the recirculation, four 
equidistant cold aisle pressure sensors with positive weights 
and one pressure sensor in hot aisle with negative weight are 
attached to this controller, which tries to keep a minimum 
positive pressure difference of 0.04 inch of water (10 Pa) across 
cold and hot aisle as shown in Figure 12. Note that since 
pressure sensors are point sensors, which are at same location 
as temperature sensors (red circles), they are not separately 
displayed in model Figure 3, 4 and 5. For random five 
consecutive days, Figure 12 shows that cold aisle pressure 
(CAP) is always more than hot aisle pressure (HAP). 

Figure 12: Validation of positive pressure difference between               
cold and hot aisle 
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GENERATION OF DATA SET  
 

In this study, hourly weather data of year 1981 for the 
location Fort worth, Texas, USA available at National Solar 
Radiation Data Base website is used. Since transient CFD 
simulations are time consuming, we chose 4 months of data out 
of complete one year weather data. These four months are: 
January (winter), April (spring), July (summer), and October 
(fall), which represents every season. Since one season is made 
up of approximately 3 months, mid-month of every season is 
selected assuming that it will truly capture weather pattern of 
the respective season while other months contain transition 
days. For above mentioned four months (total 123 days), hourly 
data points generated from CFD simulations are 2952.Data 
normalization is not necessary step in this case since both input 
and output variables are in the range of 0 to 100. 

Out of various parameters available Outside Air 
Temperature (OAT) (F) and Outside Air Relative Humidity 
(OAH) (%) are determined as the boundary conditions for CFD 
model. Also variation of IT Load is internal independent 
variable of the model. Figure 13 shows the assumed variation in 
IT load for sample consecutive five days. The assumption is 
based on the general observation that IT load starts to increase 
from 10 % at dawn, reaches to a peak value of 95% during 
working hours of the day and again decreases to 10% at dusk.  

ANN MODEL  
 

ANN is data driven modeling technique which is well 
suited when nonlinear inter-relations between parameters of 
complex system exist. This approach has been used in 
applications such as classification, pattern recognition and 
adaptive control. Examples applications of ANN are prediction 
of prices of houses, weather conditions, stock market, etc. 
Performance mechanism of ANN is similar with the 
functioning of human brain [4] & [5]. ANNs are black-box 
model which captures the non-linear relations between the 
variables of the domain [6].     

 
                Figure 13: Assumed IT load Variation   

The structure of ANN consist of three layers: Input layer, 
hidden layer, output layer. There could be multiple hidden 
layers depending on the complexity of working system. More 
the complexity working system, more will be the number of 
hidden layers. But there will be always one layer dedicated for 
input and output layer. A graphical representation of ANN 
model with three layers is shown in Figure 14. Every layer is 
made up of neurons (shown as circles in Figure 14) which 
perform the computation. Each neuron in hidden and output 
layer is connected to each neuron in its previous layer. The 
progression of signals or output generated in one layer, after 
computation, passes through these connections. Each 
connection has ‘weight’ associated with it. More the weight 
more impact on output will be made by respective neuron.

                Figure 14: Structure of ANN 

Selection of Model
ANNs are broadly classified in two categories: static and 

dynamic. Curve fitting, pattern recognition and clustering are 
examples of static ANN while time series problem is example 
of dynamic ANN. In static ANN the data feeding is done in 
random fashion. Data has been shuffled before feeding to the 
network. But in the case of dynamic ANN, data has to be 
provided in time series format. The output of dynamic ANN is 
depended on the past values provided to network hence 
availability of sequential input data is crucial for the dynamic 
case. Dynamic ANN is also called time series which is a vector 
sequence and a function of time.  

In the case of data center, the future values of parameters 
or cooling strategies depend on past thermal conditions of data 
center hence a dynamic neural network also called time series 
is required to capture all transient non-linear relations among 
several parameters of data center. The dynamic neural network 
recognizes transient variation of inputs and outputs which 
captures nonlinear dynamic environment of data center.  
              In this study, Nonlinear Autoregressive with 
Exogenous Input (NARX) has been chosen since it predicts one 
time series y (t) from past values of itself and another time 
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series x (t). This distinguishes NARX from rest of the time 
series ANN models. Detailed explanation of Architecture and 
Learning of NARX is explained in [7].  

The input-output relationship defined in NARX is 
described as y (t) = F[x (t), x (t − ∆t)… x (t − n∆t), y(t), y(t − ∆t), ..  ,
y(t − m∆t)], where n is the number of time delay steps in the 
input, m is the number of time delays on the feedback (output) 
and F is nonlinear function. In addition to the exogenous 
variables x, NARX incorporate the lagged output y.  The time 
and weather variables are exogenous inputs x − t, and the 
supply air temperature  is the endogenous input.  

The goal of this study is to predict supply air temperature 
(SAT) one hour step ahead. The NARX model was simulated 
using MATLAB 2016 Neural Network Toolbox [8].ANN
Toolbox model and its architecture for one step ahead 
prediction is shown in Figure 15.

                     Figure 15: ANN network Model

Development of ANN 
Step 1: Selection of inputs  
The difficulty of selecting input variables arises due to: 
 1. The numerous numbers of available variables in CFD 
generated dataset or sensor (real-time) dataset 
 2. The complex correlations between potential input variables, 
which creates redundancy 
3. Variables that have little or no predictive power [9].
Inclusion of all significant variables that has major impact on 
supply air temperature of AHU and to omit irrelevant or 
redundant variable having lower impact is important since 
irrelevant variables increases model complexity, learning 
difficulty and performance of developed network [9].  
Out of all the available variables from CFD dataset, outside air 
temperature (OAT) (F), outside air relative humidity(OAH) (%) 
and IT load (%) are chosen as input variables because they are 
only function of time, independent and changing due to 
external factors which do not belong inside the datacenter 
domain. Hence x (t) = inputs variables (OAT, OAH, IT load) 
and y (t) = output variable (SAT) in Figure 15. 
Step 2: Number of hidden layers and neurons in hidden layer 
Only single hidden layer is chosen based on the fact that data 
complexity will be captured sufficiently if sufficient numbers of 
hidden neurons are provided in one hidden layer [10]. Hence 
number of hidden layer is one. The number of hidden neurons 
is not easy to determine since there is no systematic principle to 
guide. There are many thumb rules such as n/2, n + 1 and 2n + 
1 where n is number of input parameters. But none of them 
works well for all the cases. [11] Also, from literature survey it
has been observed that alternative way to determine number of 

neurons in hidden layer is trial and error approach (analyzing 
ANN predictions for different number of neurons in hidden 
layer)[12-13]. Since performance analysis of ANN for different 
number of neurons is out of scope of this paper the thumb rule 
2n + 1 has been decided to implement in ANN development. 
For three input variables number of neurons in hidden layer 
become 7 as shown in Figure 15. The NARX model uses the 
Levenberg-Marquardt algorithm and a non-linear sigmoid 
activation function for the hidden layers and a linear activation
function for the output layer as shown in Figure 15. Number of 
time delay steps in the input and output are two for one hour 
step ahead prediction. This is shown in Figure 15 as 1:2.
Step 3: Training, Testing and validation sample size 
As per standard practice of ANN, 70% of the available data 
utilized for training, 15% for testing and 15% for validation 
purpose.  
Step 4: Performance Analysis 
To capture multiple types of variances following statistical 
indices were chosen for error evaluation: 

1. Mean Absolute Error 

2. Root Mean Squared Error 

Where, 
Y = ANN Predicted supply air temperature 
y= Actual supply air temperature from CFD data 
n= Number of time interval   
 
 
RESULT AND DISCUSSION  
 

 Four ANN models are developed for four months 
representing all four seasons. The one hour step ahead 
prediction of SAT provided by ANN is compared with CFD 
simulation value. To measure the performance of ANN two 
statistical indices have been measured namely, mean absolute 
error (MAE) and root mean squared error (RMSE).  

One Hour Step Ahead Prediction 
Figure 16 shows outside air temperature (OAT) (F) and 

outside air relative humidity (%) for the January month of 
1981. Since the January month represents the winter season, it 
can be observed in Figure 16 that OAT mostly remained below 
70 F. For this outside air condition, AHU will work on free 
cooling mode (Air Side Economization) in which outside air 
and return air from hot aisle is blended and delivered to cold 
aisle according to control strategy for outside air vent and 
return air vent opening which tries to maintain mixed air 
temperature to 65 F. From Figure 17 this can be validated as 
supply air temperature is varying around 65 F. Figure 17 shows 
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the comparison of one hour step ahead prediction of ANN 
model with true values of CFD model for supply air 
temperature (SAT). The blue line indicates the ANN prediction 
whereas orange line predicts CFD value. MAE and RMSE 
values for ANN of January are 0.13 F and 0.19 F as shown in 
Table 1. This indicates that ANN provides useful accuracy.  

               Figure 16: OAT and OAH for January 

Figure 18 shows OAT and OAH for April month of 1981. Comparison 
of Figure 19 is compared with Figure 18 shows that though the 
maximum OAT is around 80 F, the AHU is providing supply air below 
74 F. Also, Figure 19 shows one hour step ahead prediction of ANN
and CFD values which are in good agreement with each other. MAE 
and RMSE values for ANN of April are 0.17 F and 0.23 F as 
shown in Table 1.
Figure 20 shows OAT (F) and OAH (%) for July month of 1981. 
Though the maximum value OAT is around 90 F the SAT provided by 
AHU is well maintained around 74 F as shown in Figure 21. This 
proves that all the control strategies of AHU are working as designed. 
Also, Figure 21 shows one hour step ahead prediction of ANN with 
contrast to CFD which is again in a good agreement. MAE and 
RMSE values for ANN of July are 0.21 F and 0.36 F as shown 
in Table 1.

Figure 17: One Hour Step Ahead Prediction of SAT for January

                        Figure 18: OAT and OAH for April

Figure 19: One Hour Step Ahead Prediction of SAT for April 

                      Figure 20: OAT and OAH for July
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Figure 21: One Hour Step Ahead Prediction of SAT for July

 Figure 22 shows OAT and OAH for October month of 1981. 
Comparison of Figure 22 is compared with Figure 23 shows 
that though the maximum OAT is around 80 F, the AHU is 
providing supply air below 74 F. Also, Figure 23 shows one 
hour step ahead prediction of ANN and CFD values which are 
in good agreement with each other. MAE and RMSE values for 
ANN of October are 0.23 F and 0.31 F as shown in Table 1.   

                      Figure 22: OAT and OAH for October 

Figure 21: One Hour Step Ahead Prediction of SAT for 
October 

Performance Analysis 
Table 1 shows the performance analysis of all four ANN 

models. It demonstrates that MAE is in range of 0.1 to 0.2 (F) 
and RMSE has range of 0.2 to 0.4 (F), which is a good useful 
accuracy.It can be observed that magnitude of MAE values is 
less than RMSE for all four networks. This is because MAE 
calculates absolute difference between CFD value and ANN 
predicted value while RMSE squares the difference between the 
two. This makes RMSE values bigger than MAE values [14]. 

Table 1. Performance Analysis of ANN models 

ANN model for the month of MAE RMSE

January 0.13 F 0.19 F
April 0.17 F 0.23 F
July 0.21 F 0.36 F
October 0.23 F 0.31 F

CONCLUSION 
 

This study provides a summary of the domain knowledge 
required for building CFD model to prepare the synthetic 
dataset and development of ANN model trained using CFD 
simulations data to predict supply air temperature in an air 
handling unit. Predictions of ANN can be used for pro-active 
control to achieve energy efficient data center.

Training and hourly prediction of ANN model for supply 
air temperature for all four months which represents each of 
four weather season’s working conditions of data center 
consumed approximately 30 minutes whereas development of  
CFD model and its simulations consumed around 30 days. For 
evaluating the accuracy of ANN prediction two statistical 
indices MAE and RMSE are used which has maximum value of 
0.4 Fahrenheit. This implies that ANN predicts quickly with 
useful accuracy and hence ANN approach can be used as an 
alternative for traditional CFD approach. 
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