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ABSTRACT

Continuous provision of quality supply air to data center’s
IT pod room is a key parameter in ensuring effective data
center operation without any down time. Due to number of
possible operating conditions and non-linear relations between
operating parameters make the working mechanism of data
center difficult to optimize energy use. At present industries are
using computational fluid dynamics (CFD) to simulate thermal
behaviour for all types of operating conditions. The focus of
this study is to predict Supply Air Temperature using Artificial
Neural Network (ANN) which can overcome limitations of
CFD such as high cost, need of an expertise and large
computation time.

For developing ANN, input parameters, number of neurons
and hidden layers, activation function and the period of training
data set were studied. A commercial CFD software package
6sigma room is used to develop a modular data center
consisting of an IT pod room and an air-handling unit. CFD
analysis is carried out for different outside air conditions.
Historical weather data of 1 year was considered as an input for
CFD analysis. The ANN model is “trained” using data
generated from these CFD results. The predictions of ANN
model and the results of CFD analysis for a set of example
scenarios were compared to measure the agreement between
the two.

The results show that the prediction of ANN model is
much faster than full computational fluid dynamics simulations
with good prediction accuracy. This demonstrates that ANN is
an effective way for predicting the performance of an air
handling unit.

INTRODUCTION

In the year 2006, 1.3% of total energy consumed in the
United States namely 61 billion kilowatts of energy was
consumed by data centers [1]. According to the national
resources defense council (NRDC) report for the year 2013 data
centers consumed approximately 91 billion kilowatt-hours of
electricity [2]. This shows that energy consumption of data
centers is 1.9% of the total electricity consumption in the
United States. The NRDC also reported that electricity
consumption of data centers could be 140 billion kilowatt-hours
by 2020 which could cost thirteen billion dollars annually.
Hence it is important to improve the data center energy
consumption.

Previously individual systems were used to store the data
in digital format. Due to the need of data sharing, data centers
were created and internet is used to access this data whenever
required. New technologies such as Internet of Things (IOT),
Big Data, cloud computing has increased the dependency on
internet and data centers. On the other hand, computation
power has increased rapidly making speed of data transfer as
the limitation. Hence easy and quick access to database is
important which requires continuous working of data center
with minimal downtime.

IT equipment, which stores and provides access to dynamic
data, uses electrical power, also called IT load, which varies
with time according to consumer’s demand. Electrical energy
provided to this IT equipment transforms into heat energy
resulting in heating up of the device. IT equipment fails when
the temperature of the device exceeds the maximum allowable
temperature [3]. Removal of this excess heat can be done by air

Copyright © 2018 ASME



cooling or liquid cooling techniques. In air cooling technique,
Air Handling Unit (AHU) cools the incoming air and supplies it
to the cold aisle of the data center which reduce the temperature
of IT equipment by convection mode of heat transfer. Hence
accurate prediction of supply air temperature of AHU is a
crucial parameter for continuous working of data center.

Currently, Computational Fluid Dynamics (CFD) method
is used for estimation of different parameters such as
temperature, pressure, humidity in data centers. If physical
properties of the data center are known, CFD or white-box
modeling provides accurate estimation since it is based on the
fundamental equations of mass and energy balance for fluids.
But, high cost of the CFD tool, requirement of large
computation power, time-consuming simulations and need of
an expertise are major drawbacks of this method.

This study provides an alternative approach of Artificial
Neural Network (ANN) which can overcome drawbacks of
CFD approach while retaining a useful degree of accuracy.
ANN learning is similar to the human brain. It takes available
data as input and captures nonlinear relationships between
inputs and outputs of the system in order to predict output with
useful accuracy. The quality and quantity of dataset is crucial in
ANN training. Provided the sensors are not faulty large,
historical sensor (real-time) data can be used if it captures all
the possible working scenarios. In the absence of sensor data,
synthetic data set can be obtained using CFD simulations. In
this study, the purpose of CFD modeling is only to generate
synthetic dataset for ANN training.

The objectives of this paper are: 1. Provide a summary of
the domain knowledge required for building such CFD model
and preparing the synthetic dataset. 2. using synthetic dataset,
develop ANN models to predict supply air temperature. These
ANN predictions can be used for pro-active control of energy
efficient data center.

The paper is organized as follows: section 2 describes the
CFD model of data center. Section 3 explains generation of
dataset. Section 4 focuses on development of ANN model.
Section 5 presents results and discussion; Finally, section 8
concludes this research work.

NOMENCLATURE ALPHABETICAL

ACU  Air Cooling Unit

AHU  Air Handling Unit

ANN  Artificial Neural Network
ASE  Air Side Economization

CA Cold Aisle

CAP Cold Aisle Pressure (in/ H20)
CAT  Cold Aisle Temperature (F)
CFD Computational Fluid Dynamics
CFM  Cubic Feet per Minute

DEC  Direct Evaporative Cooling
HA Hot Aisle

HAP  Hot Aisle Pressure (in/ H20)
HAT  Hot Aisle Temperature (F)

HX Heat Exchanger

IDEC Indirect Evaporative Cooling
MAE  Mean Absolute Error (F)

MAT Mixed Air Temperature (F)

MDC  Modular Data Center

OAH  Outside Air Relative Humidity (%)
OAT  Outside Air Temperature (F)

OAH  Outside Air relative Humidity (%)
RMSE Root Mean Squared Error (F)
SAT Supply Air Temperature (F)

% OA  Vent opening for outside air (%)
% RA  Vent opening for return air (%)

CFD MODEL OF DATA CENTER

The real time model chosen for this study shown in Figure
1 and 2 approximately represents a modular data center (MDC)
of MESTEX Inc, located at Dallas, Texas, USA. This reduced
order model consist of IT pod room, Air Handling Unit (AHU),
overhead cold air supply and hot air return duct which connects
the AHU and IT pod. Figure 3 shows isometric view of K-¢
turbulence CFD model which is developed in 6Sigmaroom
CFD software. IT pod is shown on the left side while AHU is
on the right side. Figure 4 and 5 shows front and top view of
MDC respectively. The IT pod room which is 3.2 m in length
3.2 m in width and 2.8 m of height consists of four racks in
single row which separates cold and hot aisles and each rack
consists of five 7U servers each of 1500 W with maximum total
IT load of 30 KW. Empty server slots are blanked. In
6SigmaRoom software, each 7U server is modeled as black box
with heat power factor of 90% and 100% heat convected to air
without internal air circulation in server. Maximum allowable
temperature of server is 90 F with thermal effectiveness of 0.8.
Weight of each server is 70 Kg with effective specific heat of
500 J/Kg K.

Hot Air
f Exhaust/Return Duct

Cald Al
Supply Duct

I/DEC Cooling Unit

Figure 1: Front view of MDC shows cold air supply duct

AHU is 4.5 m long by 1.8 m wide and 1.7 m high and
consist of heat exchanger (HX), direct evaporative cooling pad
and four supply fans. Four circuits, six rows heat exchanger has
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effectiveness of 0.75 with tube diameter of 0.013 m and fin
spacing 0.2 m. The nominal cooling capacity of heat exchanger
(HX) is 30 KW. Maximum allowable flow rate is 2 CFM with
water temperature 70 F and condensation coefficient of 1. The
evaporative efficiency of direct evaporative cooling (DEC) pad
is 90% with viscous resistance coefficient of 3 and inertial
resistance coefficient of 30. The maximum water flow rate on
the top surface areca of DEC pad is 0.8 CFM with water
temperature 70 F. On the fan wall, total four fans are installed
with diameter 18.2 in and hub diameter 6 in and thickness of 4
in. Each fan has uniform flow rate of 1500 CFM and rated
speed of 3300 rpm. Total CFM of cold air demanded by all
server fans is equal to CFM of air supplied by AHU. For the
CFD calculations, a finite-volume approximation of the
Reynolds-averaged Navier-Stokes and energy equations with
the standard k-g¢ turbulence model is solved using the
commercial CFD software package 6SigmaRoomDC. Constant
air properties and buoyancy effects are considered. Grid
independent study was carried out using AHU’s Supply air
temperature to evaluate accuracy of simulation which
concludes 1.64 million grid cells from Figure 6 with maximum
aspect ratio of 2.53. Note that solar radiation, wind speed and
contaminations are not incorporated in CFD modeling. 5% air
leakage is considered across the aisle.

Hot Air
Exhaust

Figure 2: Rear view of MDC shows hot air return duct
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Figure 3: Isometric view of CFD model
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Figure 6: Grid Independent Study

Air-flow Path in Data Center

The ambient air entering through outside air vent opening
blends with air from hot aisle entering through return air vent.
This mixed air further passes through heat exchanger (HX)
first, which provides sensible cooling and then through direct
evaporative cooling (DEC) pad which further cools the air
adiabatically. Since direct evaporative cooling increases
humidity it is leveraged as second stage of cooling while
sensible cooling using heat exchanger is the first stage. Four
fans placed after DEC pad pulls the volume of cold air and

Copyright © 2018 ASME



deliver it to the cold aisle of IT pod room through the supply
duct. Server fan of each IT equipment withdraws cold air from
cold aisle, which cools the server by convection mode of heat
transfer and raises its own temperature. This high temperature
air accumulated in hot aisle is then either exhausted from the IT
pod room or passes through the return duct towards mixing
chamber to blend with outside ambient air. This completes the
air flow loop.

Control Strategies of Air Handling Unit

AHU provides following three types of cooling:
1. Free cooling (Air-side economization)
2. Indirect Evaporative Cooling (IDEC) or Sensible cooling
3. Direct Evaporative Cooling (DEC) or Adiabatic cooling
Following control strategies are designed to incorporate above
mentioned cooling types and to ensure that supply air
temperature (SAT) of an AHU will always lie within
“Recommended” innermost envelope of ASHRAE as shown in
Figure 7.
Strategy 1: The percentage opening of outside air vent and
return air vent is controlled to maintain mixed air temperature
at least 65 F (lowest limit of ASHRAE’s “Recommended”
envelop) by attaching equal weighted 20 temperature sensors
(red circles shown in Figure 4 and Figure 5), placed before heat
exchanger which measures mixed air temperatures. Figure 8
shows the validation of this control strategy for random
consecutive 5 days of month of April when outside air
temperature (OAT) was less than hot aisle temperature (HAT),
and percentage opening of outside air vent (%0OA) was more
than percentage opening of return air (% RA) in order to
maintain mixed air temperature (MAT) at around 65 F.
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Figure 7: ASHRAE's envelopes
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Figure 8: Validation of Outside and Return Air Vent Control

Strategy 2: Water flow in heat exchanger tubes will turn ON
when four temperature sensors (red circles shown in Figure 3,4
and 5) placed equidistantly in cold aisle read above 70 F. Also
water flow on top surface area of direct evaporative cooling pad
will turn ON when cold aisle temperature sensors read above
74 F. This demonstrates that sensible cooling or IDEC provided
by heat exchanger (HX) is first stage of cooling and adiabatic
cooling or DEC provided by direct evaporative cooling pad is
second stage of cooling. Figure 9 shows random consecutive 5
days of July when outside air temperature is in the range of 70
to 90 F, water flow in tubes of heat exchanger (HX) is turned
ON (heat exchanger is providing IDEC which is measured in
KW) and water flow on top surface area of direct evaporative
cooling pad is turned ON (cooling pad is providing DEC
measured in KW). It is clear from Figure 9 that heat exchanger
provides first stage of cooling (IDEC) since heat removed by
HX has continuous non zero value while Direct evaporative
cooling pad provides second stage of cooling (DEC) since heat
removed by DEC has both zero and non-zero value. It can be
observed in Figure 9 that cold aisle temperature (CAT) is
successfully maintained in the range of 70 to 74 F. Figure 10
shows random consecutive 5 days of month of January when
outside air temperature (OAT) is below 60 F. Since the cold
aisle temperature for 5 random consecutive days in January
month is always below 70 F as shown in Figure 10, heat
removed by both heat exchanger (HX) and direct evaporative
cooling pad (DEC) has the value of zero KW since they are
never turned ON. Note that cold aisle temperature (CAT) is
varying around 65 F since previous controller attached to
outside air vent and return air vent are maintaining mixed air
temperature to 65 F. This mixed air with temperature 65 F is
being delivered in cold aisle without providing IDEC cooling
by HX and DEC cooling by evaporative pad.
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Figure 9: Validation of IDEC and DEC turn ON for in July
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Figure 10: Validation of IDEC and DEC turn OFF for in Jan

Strategy 3: Increase in IT load increases server temperature and
hence the hot aisle air temperature increases. To maintain
server temperature within safe limits (Maximum allowable
server temperature 90 F), the increased demand of CFM of cold
air from the server has to be provided by increasing speed of
supply fan of AHU. Hence hot aisle temperature (HAT) sensor
shown as red circle in hot aisle in Figure 3 and Figure 5 is
attached to supply fan speed control. The supply fan speed
increases to 3300 rpm when HAT sensor reads a value above
90 F, otherwise 2119 rpm. For five random consecutive days,
Figure 11 shows that as the IT load increases hot aisle
temperature (HAT) increases and hence supply fan speed
increases respectively. Note that supply fan speed values in rpm
are normalized in order to represent them on same graph.

Figure 11: Validation of Supply Fan Speed Control

Strategy 4: Effective cooling is achieved when cold aisle
pressure is more than hot aisle pressure, which assures that
there will be no recirculation of hot air from hot aisle to cold
aisle which otherwise increases server temperature and
decreases cooling efficiency. To avoid the recirculation, four
equidistant cold aisle pressure sensors with positive weights
and one pressure sensor in hot aisle with negative weight are
attached to this controller, which tries to keep a minimum
positive pressure difference of 0.04 inch of water (10 Pa) across
cold and hot aisle as shown in Figure 12. Note that since
pressure sensors are point sensors, which are at same location
as temperature sensors (red circles), they are not separately
displayed in model Figure 3, 4 and 5. For random five
consecutive days, Figure 12 shows that cold aisle pressure
(CAP) is always more than hot aisle pressure (HAP).
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Figure 12: Validation of positive pressure difference between
cold and hot aisle
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GENERATION OF DATA SET

In this study, hourly weather data of year 1981 for the
location Fort worth, Texas, USA available at National Solar
Radiation Data Base website is used. Since transient CFD
simulations are time consuming, we chose 4 months of data out
of complete one year weather data. These four months are:
January (winter), April (spring), July (summer), and October
(fall), which represents every season. Since one season is made
up of approximately 3 months, mid-month of every season is
selected assuming that it will truly capture weather pattern of
the respective season while other months contain transition
days. For above mentioned four months (total 123 days), hourly
data points generated from CFD simulations are 2952.Data
normalization is not necessary step in this case since both input
and output variables are in the range of 0 to 100.

Out of various parameters available Outside Air
Temperature (OAT) (F) and Outside Air Relative Humidity
(OAH) (%) are determined as the boundary conditions for CFD
model. Also variation of IT Load is internal independent
variable of the model. Figure 13 shows the assumed variation in
IT load for sample consecutive five days. The assumption is
based on the general observation that IT load starts to increase
from 10 % at dawn, reaches to a peak value of 95% during
working hours of the day and again decreases to 10% at dusk.

ANN MODEL

ANN is data driven modeling technique which is well
suited when nonlinear inter-relations between parameters of
complex system exist. This approach has been used in
applications such as classification, pattern recognition and
adaptive control. Examples applications of ANN are prediction
of prices of houses, weather conditions, stock market, etc.
Performance mechanism of ANN is similar with the
functioning of human brain [4] & [5]. ANNs are black-box
model which captures the non-linear relations between the
variables of the domain [6].
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Figure 13: Assumed IT load Variation

The structure of ANN consist of three layers: Input layer,
hidden layer, output layer. There could be multiple hidden
layers depending on the complexity of working system. More
the complexity working system, more will be the number of
hidden layers. But there will be always one layer dedicated for
input and output layer. A graphical representation of ANN
model with three layers is shown in Figure 14. Every layer is
made up of neurons (shown as circles in Figure 14) which
perform the computation. Each neuron in hidden and output
layer is connected to each neuron in its previous layer. The
progression of signals or output generated in one layer, after
computation, passes through these connections. Each
connection has ‘weight’ associated with it. More the weight
more impact on output will be made by respective neuron.

Hidden Layer
Input Layer

OA Temp @ /

OA RH

\ Output Layer

IT Load

Figure 14: Structure of ANN

Selection of Model

ANNSs are broadly classified in two categories: static and
dynamic. Curve fitting, pattern recognition and clustering are
examples of static ANN while time series problem is example
of dynamic ANN. In static ANN the data feeding is done in
random fashion. Data has been shuffled before feeding to the
network. But in the case of dynamic ANN, data has to be
provided in time series format. The output of dynamic ANN is
depended on the past values provided to network hence
availability of sequential input data is crucial for the dynamic
case. Dynamic ANN is also called time series which is a vector
sequence and a function of time.

In the case of data center, the future values of parameters
or cooling strategies depend on past thermal conditions of data
center hence a dynamic neural network also called time series
is required to capture all transient non-linear relations among
several parameters of data center. The dynamic neural network
recognizes transient variation of inputs and outputs which
captures nonlinear dynamic environment of data center.

In this study, Nonlinear Autoregressive with
Exogenous Input (NARX) has been chosen since it predicts one
time series y (t) from past values of itself and another time
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series x (t). This distinguishes NARX from rest of the time
series ANN models. Detailed explanation of Architecture and
Learning of NARX is explained in [7].

The input-output relationship defined in NARX is
described as y (t) = F[x (1), x (t — At)... x (t — nAt), y(t), y(t — Ab), .. ,
y(t — mAt)], where n is the number of time delay steps in the
input, m is the number of time delays on the feedback (output)
and F is nonlinear function. In addition to the exogenous
variables x, NARX incorporate the lagged output y. The time
and weather variables are exogenous inputs x — t, and the
supply air temperature y, is the endogenous input.

The goal of this study is to predict supply air temperature
(SAT) one hour step ahead. The NARX model was simulated
using MATLAB 2016 Neural Network Toolbox [8].ANN
Toolbox model and its architecture for one step ahead
prediction is shown in Figure 15.

Figure 15: ANN network Model

Development of ANN

Step 1: Selection of inputs

The difficulty of selecting input variables arises due to:

1. The numerous numbers of available variables in CFD
generated dataset or sensor (real-time) dataset

2. The complex correlations between potential input variables,
which creates redundancy

3. Variables that have little or no predictive power [9].

Inclusion of all significant variables that has major impact on
supply air temperature of AHU and to omit irrelevant or
redundant variable having lower impact is important since
irrelevant variables increases model complexity, learning
difficulty and performance of developed network [9].

Out of all the available variables from CFD dataset, outside air
temperature (OAT) (F), outside air relative humidity(OAH) (%)
and IT load (%) are chosen as input variables because they are
only function of time, independent and changing due to
external factors which do not belong inside the datacenter
domain. Hence x (t) = inputs variables (OAT, OAH, IT load)
and y (t) = output variable (SAT) in Figure 15.

Step 2: Number of hidden layers and neurons in hidden layer
Only single hidden layer is chosen based on the fact that data
complexity will be captured sufficiently if sufficient numbers of
hidden neurons are provided in one hidden layer [10]. Hence
number of hidden layer is one. The number of hidden neurons
is not easy to determine since there is no systematic principle to
guide. There are many thumb rules such as n/2, n + 1 and 2n +
1 where n is number of input parameters. But none of them
works well for all the cases. [11] Also, from literature survey it
has been observed that alternative way to determine number of

neurons in hidden layer is trial and error approach (analyzing
ANN predictions for different number of neurons in hidden
layer)[12-13]. Since performance analysis of ANN for different
number of neurons is out of scope of this paper the thumb rule
2n + 1 has been decided to implement in ANN development.
For three input variables number of neurons in hidden layer
become 7 as shown in Figure 15. The NARX model uses the
Levenberg-Marquardt algorithm and a non-linear sigmoid
activation function for the hidden layers and a linear activation
function for the output layer as shown in Figure 15. Number of
time delay steps in the input and output are two for one hour
step ahead prediction. This is shown in Figure 15 as 1:2.
Step 3: Training, Testing and validation sample size
As per standard practice of ANN, 70% of the available data
utilized for training, 15% for testing and 15% for validation
purpose.
Step 4: Performance Analysis
To capture multiple types of variances following statistical
indices were chosen for error evaluation:

1. Mean Absolute Error

n
1
MAE = —Z Y, —y;
- IY; — il
=1
2. Root Mean Squared Error

n
RMSE = |1/n ) (% y)?
i=1

Where,

Y = ANN Predicted supply air temperature

y= Actual supply air temperature from CFD data
n= Number of time interval

RESULT AND DISCUSSION

Four ANN models are developed for four months
representing all four seasons. The one hour step ahead
prediction of SAT provided by ANN is compared with CFD
simulation value. To measure the performance of ANN two
statistical indices have been measured namely, mean absolute
error (MAE) and root mean squared error (RMSE).

One Hour Step Ahead Prediction

Figure 16 shows outside air temperature (OAT) (F) and
outside air relative humidity (%) for the January month of
1981. Since the January month represents the winter season, it
can be observed in Figure 16 that OAT mostly remained below
70 F. For this outside air condition, AHU will work on free
cooling mode (Air Side Economization) in which outside air
and return air from hot aisle is blended and delivered to cold
aisle according to control strategy for outside air vent and
return air vent opening which tries to maintain mixed air
temperature to 65 F. From Figure 17 this can be validated as
supply air temperature is varying around 65 F. Figure 17 shows
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the comparison of one hour step ahead prediction of ANN
model with true values of CFD model for supply air
temperature (SAT). The blue line indicates the ANN prediction
whereas orange line predicts CFD value. MAE and RMSE
values for ANN of January are 0.13 F and 0.19 F as shown in
Table 1. This indicates that ANN provides useful accuracy.
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Figure 18: OAT and OAH for April

Figure 16: OAT and OAH for January

Figure 18 shows OAT and OAH for April month of 1981. Comparison
of Figure 19 is compared with Figure 18 shows that though the
maximum OAT is around 80 F, the AHU is providing supply air below
74 F. Also, Figure 19 shows one hour step ahead prediction of ANN
and CFD values which are in good agreement with each other. MAE
and RMSE values for ANN of April are 0.17 F and 0.23 F as
shown in Table 1.

Figure 20 shows OAT (F) and OAH (%) for July month of 1981.
Though the maximum value OAT is around 90 F the SAT provided by
AHU is well maintained around 74 F as shown in Figure 21. This
proves that all the control strategies of AHU are working as designed.
Also, Figure 21 shows one hour step ahead prediction of ANN with
contrast to CFD which is again in a good agreement. MAE and
RMSE values for ANN of July are 0.21 F and 0.36 F as shown
in Table 1.
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Figure 19: One Hour Step Ahead Prediction of SAT for April
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Figure 20: OAT and OAH for July
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Performance Analysis

Table 1 shows the performance analysis of all four ANN
models. It demonstrates that MAE is in range of 0.1 to 0.2 (F)
and RMSE has range of 0.2 to 0.4 (F), which is a good useful
accuracy.It can be observed that magnitude of MAE values is
less than RMSE for all four networks. This is because MAE
calculates absolute difference between CFD value and ANN
predicted value while RMSE squares the difference between the
two. This makes RMSE values bigger than MAE values [14].

Table 1. Performance Analysis of ANN models

Figure 21: One Hour Step Ahead Prediction of SAT for July

Figure 22 shows OAT and OAH for October month of 1981.
Comparison of Figure 22 is compared with Figure 23 shows
that though the maximum OAT is around 80 F, the AHU is
providing supply air below 74 F. Also, Figure 23 shows one
hour step ahead prediction of ANN and CFD values which are
in good agreement with each other. MAE and RMSE values for
ANN of October are 0.23 F and 0.31 F as shown in Table 1.
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Figure 22: OAT and OAH for October
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Figure 21: One Hour Step Ahead Prediction of SAT for
October

ANN model for the month of MAE RMSE
January 0.13F 0.19 F
April 0.17F 0.23 F
July 0.21F 036 F
October 0.23 F 031F
CONCLUSION

This study provides a summary of the domain knowledge
required for building CFD model to prepare the synthetic
dataset and development of ANN model trained using CFD
simulations data to predict supply air temperature in an air
handling unit. Predictions of ANN can be used for pro-active
control to achieve energy efficient data center.

Training and hourly prediction of ANN model for supply
air temperature for all four months which represents each of
four weather season’s working conditions of data center
consumed approximately 30 minutes whereas development of
CFD model and its simulations consumed around 30 days. For
evaluating the accuracy of ANN prediction two statistical
indices MAE and RMSE are used which has maximum value of
0.4 Fahrenheit. This implies that ANN predicts quickly with
useful accuracy and hence ANN approach can be used as an
alternative for traditional CFD approach.
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