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Abstract—Knowledge representation and reasoning (KRR) is
key to the vision of the intelligent Web. Unfortunately, wide
deployment of KRR is hindered by the difficulty in specifying
the requisite knowledge, which requires skills that most domain
experts lack. A way around this problem could be to acquire
knowledge automatically from documents. The difficulty is that,
KRR requires high-precision knowledge and is sensitive even to
small amounts of errors. Although most automatic information
extraction systems developed for general text understandings
have achieved remarkable results, their accuracy is still woefully
inadequate for logical reasoning. A promising alternative is to ask
the domain experts to author knowledge in Controlled Natural
Language (CNL). Nonetheless, the quality of knowledge construc-
tion even through CNL is still grossly inadequate, the main
obstacle being the multiplicity of ways the same information can
be described even in a controlled language. Our previous work
addressed the problem of high accuracy knowledge authoring for
KRR from CNL documents by introducing the Knowledge Au-
thoring Logic Machine (KALM). This paper develops the query
aspect of KALM with the aim of getting high precision answers
to CNL questions against previously authored knowledge and is
tolerant to linguistic variations in the queries. To make queries
more expressive and easier to formulate, we propose a hybrid
CNL, i.e., a CNL with elements borrowed from formal query
languages. We show that KALM achieves superior accuracy in
semantic parsing of such queries.

Index Terms—Controlled Natural Language, Question Answer-
ing

I. INTRODUCTION

The vision of Web intelligence is that complex knowledge

will be available in an open format, such as RDF/OWL

[1], [2] or RIF [3], [4], and will be queriable via standard

protocols. The most popular Web query language is SPARQL

[5], designed for the simplest form of Web knowledge, RDF.

In contrast, RIF-style rules are largely absent from the Web.

Despite the existence of some RIF-aware systems, a major

obstacle is that specifying knowledge via rules requires skilled

knowledge engineers, who are in short supply.

A promising idea, but one that is hard to realize, is to extract

the requisite knowledge from text. Despite the impressive

advances in this area (e.g., various Open IE systems [6], [7]),

the technology is still far from being usable: the accuracy of

the extracted knowledge is too low for logic knowledge bases,

which are notoriously sensitive to errors.

A more feasible approach at present is to author knowledge

via controlled natural languages (CNLs) [8], such as Attempto

Controlled English (ACE) [9] or Processable English (PENG)

[10]. These CNLs are fairly rich, yet restricted languages, and

algorithms exist to accurately convert the sentences they accept

into sets of logical facts that can be queried. Unfortunately,

CNL systems do very limited semantic analysis of sentences,

and they do not recognize when sentences that have the same

meaning are expressed via different syntactical forms or using

different language idioms. For instance, they would translate

Mary buys a car, Mary is the purchaser of a car, Mary makes

a purchase of a car, and many other equivalent sentences into

different sets of facts that are not logically related. Thus, if

any of these sentences is entered into the knowledge base, the

reasoner would fail to answer questions like Who purchases a

car? or Who is the buyer of a car? Clearly, this is a serious

obstacle to using CNL as input to logical reasoning systems.

Aim of this work. Our previous work developed a high-

accuracy knowledge authoring framework called Knowledge

Authoring Logic Machine (KALM) [11], which standardizes

the meaning of CNL sentences that represent logical facts

and solves the above-mentioned semantic problems, achieving

the accuracy of 96% — far exceeding other systems. The

present work develops the query aspect of KALM to provide

high accuracy query service for the previously developed high

accuracy knowledge authoring service. A forthcoming rule

authoring component will make KALM a fairly comprehensive

framework for reasoning about human-authored knowledge.

KALM extends CNL queries with elements of formal query

languages, which we call a hybrid syntax. KALM uses a

touch of hybrid syntax because CNL cannot express many

concepts in query languages, while full natural language is

too ambiguous and cumbersome to be used for querying (cf.

variables, aggregation, many types of sub-queries).

Contributions. The contributions of this paper are four-fold:

(a) A hybrid CNL-based language for authoring queries.

(b) A semantic parser that disambiguates CNL queries by

mapping semantically equivalent queries into unique log-

ical representation for queries (ULRQ).

(c) Explainability: the approach makes it possible to explain

both why particular meanings are assigned to queries and

also why certain answers are chosen (or not).

(d) A KALM prototype that supports authoring of facts and



querying—both with very high accuracy.1

Organization. Section II provides the required background

material, including elements of the KALM framework. Sec-

tion III introduces the ACE-based query language of KALM.

Section IV describes query processing in KALM. In Section V,

we report the experiments in support of our claim of high

accuracy of query processing in KALM. Section VI presents

related work and Section VII concludes the paper.

II. PRELIMINARIES

A. Attempto Controlled English

Attempto Controlled English (ACE) is a CNL for knowl-
edge representation. It is designed as a subset of English
with restricted grammar and a set of interpretation rules
that determine the unique meaning of each sentence. Despite
the restrictions, ACE is quite general and expressive, and
requires little training to learn how to paraphrase natural
language sentences into CNL. ACE enables domain experts
who lack the experience in logic to write logical statements in
controlled English and the Attempto Parsing Engine (APE)
translates CNL sentences into a logical form called Dis-
course Representation Structure (DRS) [12]. DRS has 7 predi-
cates: object, predicate, property, modifier_adv,
modifier_pp, relation, and has_part. For instance,
an object-fact represents an entity—a noun-word with some
properties (such as countable or uncountable quantity). A
predicate-fact represents an event—a verb-word and its
participating entities (e.g., subject and object). Each fact in
DRS has a word index that refers to the relevant word in the
original sentence. Consider the sentence A customer buys a
watch2 and its DRS:

object(A,customer,countable,na,eq,1)-1/2.

object(B,watch,countable,na,eq,1)-1/5.

predicate(C,buy,A,B)-1/3.

where the identifiers A and B represent the customer- and

watch-entities, respectively, and C refers to the buy-event. In an

object-fact, the second argument represents the stem form

of the word the fact represents. The rest of the arguments

are properties of this entity. In a predicate-fact, the third

argument is the subject of the event, and the fourth argument

represents the object of the event. In our example, the identifier

A (resp. B) of the third fact indicates that the customer (resp.

watch) is the subject (resp. object) of the event. An appendage

like -1/5 in the second object-fact says that watch is the

fifth word is the first sentence.

B. BabelNet

BabelNet [13] is a multilingual knowledge base of words

and concepts that integrates multiple sources of linguistic and

general knowledge, including WordNet [14], DBPedia [15],

Wikidata [16], and others. Like WordNet, BabelNet groups the

words that express the same meaning into synsets and glosses

describe the meaning of these synsets. Synsets are linked by

semantic relations, such as hypernym, hyponym, holonym, etc.

Syntactic connections may also have weights, denoting the de-

grees of relevance between the synsets. As a result, BabelNet

1Available at https://github.com/tiantiangao7/kalm under Apache license.
The queries used for testing are found at https://datahub.csail.mit.edu/browse/
pfodor/kalm/files

2Currently, ACE supports no past or future tenses, but they can be added.

is a huge knowledge graph, where nodes are BabelNet synsets

and edges represent the semantic relationships and weights.

BabelNet can be used for many tasks, including word

sense disambiguation, measuring semantic similarity between

synsets, and so on. At the same time, this knowledge graph

contains a fair amount of noise, faulty and missing informa-

tion, which makes many of the semantic analysis tasks quite

challenging.

C. Frame-based Semantic Model of English Sentences

KALM introduced a FrameNet-inspired [17] ontology,
FrameOnt, which endows English sentences with a frame-
based semantic model. FrameOnt uses frames, described by
frame roles and other components, to capture the meaning of
English sentences. FrameOnt frames are captured formally as
Prolog-facts (called logical frames), which specify the differ-
ent roles of the frames. For instance, the Commerce_Buy
frame is shown below:
fp(Commerce_Buy,[

role(Buyer,[bn:00014332n],[]),

role(Seller,[bn:00053479n],[]),

role(Goods,[bn:00006126n,bn:00021045n],[]),

role(Recipient,[bn:00066495n],[]),

role(Money,[bn:00017803n],[currency])]).

In each role-term, the first argument is the name of the

role and the second is a list of role meanings represented via

BabelNet synset IDs. There can be several such meanings.

For instance, the role Goods above can mean an article of

commerce or an article of sale. These two concepts have

different synsets in BabelNet. The third argument of a role-

term is a list of constraints on that role. In the above frame,

Money has a type constraint. Based on the above description,

the meaning of sentences like Mary buys a car, Mary makes

a purchase of a car, Mary is a buyer of a car is represented

by the Commerce_Buy frame, where Mary fills the Buyer

role and car fills the Goods role of the frame.
Each frame also has a set of lexical units and logical

valence patterns (or lvps) that are used to extract instances
of frames from CNL sentences. We call the entities extracted
from sentences that correspond to the respective frame roles
role-filler words. A lexical unit is an English word, with its
part-of-speech, which represents a situation in which the frame
can be “triggered.” An lvp is represented as a Prolog-fact
that specifies a syntactic context in which role-filler words
and the lexical unit can occur in a sentence. All these lvps
are constructed automatically, via learning linguistic structures
from annotated training sentences that are marked with the
frame type, lexical unit, and relevant roles. For instance, the
Commerce_Buy frame has this lvp among others:
lvp(buy,v,Commerce_Buy, [

pattern(Buyer,verb->subject,required),

pattern(Goods,verb->object,required),

pattern(Recipient,verb->pp(for)->dep,optnl),

pattern(Money,verb->pp(for)->dep,optnl),

pattern(Seller,verb->pp(from)->dep,optnl)]).

The first three arguments of an lvp-fact identify the lexical

unit, its part of speech, and the frame. The fourth argument is

a set of pattern-terms, each having three parts: the name of

a role, a grammatical pattern, and the required/optional flag.

The grammatical pattern determines the grammatical context

in which the lexical unit, a role, and a role-filler word can



Fig. 1. The KALM pipeline for acquiring knowledge from CNL sentences

appear in that frame. Each grammatical pattern is captured

by a parsing rule (a Prolog rule) that can be used to extract

appropriate role-filler words based on the APE parses.

D. Knowledge Authoring in the KALM Framework

KALM is a high-accuracy knowledge authoring framework

for translating CNL sentences into actionable logic. Its first

version was limited to extraction of facts from factual sen-

tences [11]. The result of parsing is translated into a logical

form, called unique logical representations (ULR), which was

used for reasoning. The pipeline of the KALM framework

for factual sentences is shown in Figure 1. This process has

several non-trivial parts.

Syntactic parsing. KALM uses APE to perform syntactic

parsing of CNL sentences, yielding DRS logic facts as output.

Frame-based parsing. The DRS facts are fed to the frame-

based parser, which generates a set of candidate parses.

This includes the semantic frames and the lvps that the

sentences might possibly belong to. For example, Mary buys

a car has one candidate parse: Frame(Commerce_Buy,

Roles: Buyer = Mary, Goods = car), where Mary

is the Buyer and car is the Goods of the Commerce_Buy

frame. For each word in a sentence, the frame-based parser

checks whether there is an lvp whose lexical unit matches the

word and its part-of-speech. If so, the lvp is applied to the

sentence and extracts the words that fill the various roles of

the frame. This is not sufficient, however, as candidate parses

may be wrong and thus yield wrong frames or extract wrong

role-filler words.

Example 1. Consider the following sentences:

• A laborer makes a bridge.

• Mary makes a cake.

• John makes a start-up.

These three sentences have exactly the same syntactic struc-
ture, but obviously talk about very different things. Three
different lvps, belonging to different frames, apply to each
of these sentences:
lvp(make,n,Building, [

pattern(Agent,verb->subject,required),

pattern(Created_Entity,verb->object,

required)]).

lvp(make,v,Cooking,[

pattern(Cook,verb->subject,required),

pattern(Food,verb->object,required)]).

lvp(make,v,Create_Organization,[

pattern(Creator,verb->subject,required),

pattern(Org,verb->object,required)]).

Thus, the sentence A laborer makes a new bridge has three

candidate parses extracted due to these disparate lvps, and

similarly for the other two sentences:

Frame(Building, Roles: Agent = laborer,

Created_Entity = bridge)

Frame(Cooking, Roles: Cook=laborer, Food=bridge)

Frame(Create_Organization,

Roles: Creator = laborer, Org = bridge)

For the first sentence, we would like to eliminate the last

two parses; for the second, only the second lvp is right; and

for the third sentence we want only the parse based on the

third lvp. This is done via role-filler disambiguation.

Role-filler disambiguation. Given a role and a role-filler

word, disambiguation is done by first finding all semantically-

meaningful BabelNet paths between all the synsets of the

filler-word and the synsets that represent the meanings of the

role. The paths are scored for the strength of the connection

they represent, and the highest-scored connection is chosen.

The score takes into account the length of the path, the

popularity of the intermediate nodes on the path, the types

of the links (e.g., hypernym, holonym), and other factors. The

role-filler synset that achieves the highest score is chosen as the

most probable synset for the role-filler in question. Once each

role-filler word is disambiguated, the entire disambiguated

candidate parse is scored and the parses that fall below a

threshold are removed.

Role-filler disambiguation is related to word-sense disam-

biguation but it does not try to disambiguate entire sentences.

Instead, the goal is to disambiguate different senses of the

extracted role-fillers and find the best sense for each.

Translation to unique logical representation (ULR). The

disambiguated candidate parses are translated into ULR, which

represents the true meaning of the original CNL sentence and

is suitable for querying. ULR uses the predicates frame and

role to represent instances of the frames and the roles. The

predicates synset and text are used for the synset and the

textual information. This is illustrated next.

Example 2. Consider the following information:

• Mary buys a Camry for 15000 dollars.

• Mary pays 10000 dollars for a Jetta.

• Mary makes a purchase of a pen at a price of 2 dollars.

• Mary purchases a diamond with 30000 dollars.

Although these sentences have very different syntactic struc-
tures, they all trigger the same Commerce_Buy frame and
provide role-fillers for Buyer, Goods, and Money. For
instance, the first sentence matches the following lvp:
lvp(buy, v, Commerce_Buy, [

pattern(Buyer, verb->subject, required),

pattern(Goods, verb->object, required),

pattern(Recipient, verb->pp(for)->dep, optnl),

pattern(Money, verb->pp(for)->dep, optnl),

pattern(Seller, verb->pp(from)->dep, optnl)]).

Since the Recipient and Money roles share the same

grammatical pattern, the first sentence above has two candidate

parses. They differ in the Money and Recipient roles,

which come from different patterns of the above lvp:



Frame(Commerce_Buy, Roles: Buyer = Mary,

Goods = Camry, Money = 15000 dollars)

Frame(Commerce_Buy, Roles: Buyer = Mary,

Goods = Camry, Recipient = 15000 dollars)
The second parse is ruled out by role-filler disambigua-

tion since the role-filler 15000 dollars does not match the
Recipient role. After the disambiguation, the parse is
translated into the following ULR:

frame(id_1, Commerce_buy).

role(id_1, Buyer, id_2).

role(id_1, Goods, id_3).

role(id_1, Money, id_4).

synset(id_2, bn:00046516n). % Person synset

text(id_2, Mary).

synset(id_3, bn:03606178n). % Camry synset

text(id_3, Camry).

synset(id_4, bn:00024507n). % Currency synset

text(id_4, ’15000 dollars’).

Translations of sentences 2-4 have similar ULR structure

except that the frame- and role-facts will have different

IDs, and synset and text-facts will use different BabelNet

synsets and role-filler words.

III. THE KALM QUERY LANGUAGE

The KALM query language is a hybrid CNL based on

ACE. A query can be either an interrogative or an affirmative

sentence. Interrogative queries are sentences like

• Does Mary buy a car?

• What does Mary buy?

The first is a true/false query, which yields no output. The

second query has an output variable, represented by What—a

placeholder for entities to be shown in the result. Examples

of affirmative queries are

• Mary buys a $car.

• A $person buys a Toyota.

The first query has an output variable, $car, which says that

the output entities are expected to be of type car. The last

query has an output variable $person, telling that the output

entities are to be of type person. In general, output variables

are represented in one of the following ways: as wh-variables

or as explicitly typed variables.

Wh-variables include who, where, when, which, whose, what.

Each wh-variable has a type, as explained next. For some wh-

variables, the types are predefined: the type of who or whose is

fixed to be the BabelNet synsets of person or organization. The

type of where is set to BabelNet synsets for place. For when,

the type is set to be synsets of date and time, and the type of

how much/how many is the quantity of an entity. The types of

which and what are determined by the semantic parser via a

more complicated process, described in Section IV-A. Queries

that use wh-variables include sentences like:

1) Who buys a car?

2) Where does Mary live?

3) What is Mary’s job?

4) Mary lives in which city?

5) Mary buys what?

In sentences (1) and (2), the types of Who and Where are

fixed, as described above. In sentence (3), What is semantically

associated with the BabelNet synset representing a job entity;

it is done by the semantic parser. In sentence (4), which is set

to the BabelNet synset representing a city entity; again, this

is determined semantically by the parser. In sentence (5), the

type of What is Thing, which means that the answer can be

an entity of any type.

Explicitly typed variables are represented by noun words

prefixed with the $-sign. This is one instance of the hybrid

syntax in KALM. In parsing, each such variable will be

matched to a role in a frame. Queries containing explicitly

typed variables are sentences like:

• Mary buys a $car.

• A $person buys which car?

Note that the first example is an affirmative sentence, while

the second is an interrogative sentence. As we shall see, the

types of the explicitly typed variables ($car and $person here)

are determined via semantic parsing.

Aggregation. Basic aggregation is supported via how

many/much variables as in

How many apples does Mary buy?

More complex aggregation can be supported via additional

hybrid syntax. For instance,

How many products are sold per company, sorted?

This is a hybrid syntax because ACE does not support the

idioms per, and sorted and not all sentences may be gram-

matically correct English.

Coordinated conjunction is expressed in KALM by joining

independent clauses with the word and or relative pronouns

(e.g., that, which). Examples of coordinated conjunctions are

sentences like:

• Who graduates from UC Berkeley and founds Apple Inc?

• Which person who graduates from UC Berkeley founds

Apple Inc?

For the above cases, the entities that the who/which-variables

hold must satisfy the following conditions: (1) graduating from

UC Berkeley, and (2) founding of Apple Inc. More complex

coordination can be achieved via additional hybrid syntax.

IV. QUERY PROCESSING

This section describes query processing and answer filtering.

A. Query Parsing

Query parsing has these main parts: syntactic parsing,
DRS adaptation, and frame-based semantic parsing. Syntactic
parsing simply uses APE to create DRS representations for
CNL queries. For instance, the query Who buys what? is
represented in DRS as

query(A,who)-1/1

query(B,what)-1/3

predicate(C,buy,A,B)-1/2

The variables who and what appear in the query-predicate.

Phase two, DRS adaptation, serves two purposes: rewriting

DRS to prepare for frame-based semantic parsing and lexical

typing of output variables in a query. DRS rewriting is needed

because queries have different DRS structure than sentences



specifying factual knowledge, and parsing queries directly

requires additional lvps and parsing rules. DRS rewriting into

affirmative sentences obviates the need for these additions.

Typing of what and which variables is done via a syntactic

analysis of the associated words. For instance, in Mary buys

which car?, the variable which is typed as a car entity, by

a typing word appearing in the sentence (this kind of words

are called lexical answer types [18]). Similarly, in What is

Mary’s job?, the type of What will be identified to be the

noun job. Technical details are omitted due to space limitation.

In other cases, like in Who buys a car?, the variable Who

is fixed to be a person or organization entity, as explained

previously. Similarly, for explicitly typed variables, the type

is given explicitly.
DRS adaptation is done by Prolog rules that have this

structure:

change_query_DRS(OldDRS, NewDRS):-

find_output_variable(OldDRS,Var),

find_variable_type(OldDRS,Var, VarType),

to_affirmative_drs(OldDRS,Var,VarType,NewDRS).

The third phase of query parsing performs frame-based parsing

of affirmative sentences, as described in Section II-D, which

yields candidate parses for queries. The difference in case

of queries is that the parses may contain output variables.

For example, the query Mary buys a $car has one candi-

date parse: Frame(Commerce_Buy, Roles: Buyer =

Mary, Goods = $car) in which Mary is a named entity

and $car is a typed output variable.

B. Role-filler Disambiguation for Queries

As shown in Section II-D, frame-based parsing of factual

sentences may yield multiple candidate parses, which requires

disambiguation. This problem occurs for queries also. Con-

sider these queries with exactly the same syntactic structure:

• Who makes a cake?

• Who makes a start-up?

• Who makes a bridge?

These queries can be parsed using any of the three lvps shown

in Example 1 of Section II-D, but only one of the parses for

each of these sentences is semantically correct. For instance,

the query Who makes a cake? has these candidate parses:

Frame(Cooking, Roles: Cook=who, Food=cake)

Frame(Building, Roles: Agent=who,

Created_Entity=cake)

Frame(Create_Organization, Roles:

Creator=who, Org=cake)

In this example, the second and the third candidate parses

are wrong and should be eliminated at the role-filler dis-

ambiguation phase. This is similar to disambiguation for

factual sentences, as described in Section II-D. The process

disambiguates each role-filler word, scores the entire candidate

parse, and removes the parses that score low. The main

difference is that instead of words representing entities, queries

have output variables. For variables that are bound to types by

the DRS adaptor, the lexical type-words are used as role-fillers

in the scoring process. For untyped variables (e.g., the untyped

what in What does Mary buy?), a predefined score is used. We

call the synsets that represent the type of the output variables

answer type synsets.

C. Translating Queries into ULRQ

Disambiguated query parses are translated into a logical

form called unique logical representation for queries (ULRQ),

which is then used to query the acquired knowledge base.

ULRQ is similar to ULR for factual sentences (described in

Section II-D) except that ULRQ is for queries and therefore

it uses logical variables to represent instances of frames and

role-fillers. We should note that KALM queries can also

be translated into SPARQL [5] or RIF [3], [4], but ULRQ

is directly executable in our implementation platform (XSB

[19]). One can query the sentences in Example 2 as follows:

• Who is a buyer of a $car?

• Who makes a purchase of which car?

• A $person purchases a $car.

• Who buys which car?

Although these questions have different syntactic forms,
the frame-based parser generates the following unique
candidate parse for all of them, since they all have
the same meaning: Frame(Commerce_Buy, Roles:
Buyer = Who, Goods = $car). Note that no other ap-
proach does this kind of systematic query standardization,
which is absolutely essential for getting correct answers. This
parse is translated into this ULRQ (in Prolog syntax):

?-frame(FrameV,’Commerce_Buy’),

role(FrameV,’Buyer’,BuyV),

synset(BuyV,BuyerRoleFillerOutV),

role(FrameV,’Goods’,GoodV),

synset(GoodV,GoodsRoleFillerOutV),

check_type(BuyerRoleFillerOutV,bn:00046516n),

check_type(GoodsRoleFillerOutV,bn:00007309n).

where Who is associated with the person-synset (BabelNet’s

bn:00046516n) and $car is associated with the car-synset

(bn:00007309n).

Lines 1-3 in the query find all the known instances of the

Commerce_Buy frame in the knowledge base along with the

Buyer and Goods role-fillers and their synsets. This returns

Mary as the Buyer, but for the Goods role we get Camry,

Jetta, pen and watch as the role-fillers. These are candidate

answers to the query and their synsets are candidate answer

synsets. Not all of them are real answers, however, since the

query asks about cars and persons, while not all the purchased

goods are cars. The extraneous answers are eliminated by type

filtering on lines 4 and 5. Details of the algorithms for type

checking are discussed in the next subsection.
Next, consider a more complicated example of coordinated

sentences in a query: Who graduates from UC Berkeley
and founds Apple Inc? The parser generates two candidate
parses whose conjunction represents the meaning of
the entire query: Frame(Education, Roles:
Student = Who, Institution = UC Berkeley) and
Frame(Create_Organization, Roles: Creator
= Who, Org = Apple Inc). Here, the output variable
Who (represented as WhoVar in ULRQ) fills the roles of
Creator and Student, and it denotes the same entity:



Fig. 2. The KALM pipeline for query processing and answer retrieval and
filtering

?-frame(FrameV1,’Education’),

role(FrameV1,’Student’,WhoVar),

synset(WhoVar,WhoVarSynset),

role(FrameV1,’Institution’,InstitutionV),

synset(InstitutionV,bn:02547986n),

frame(FrameV2,’Create_Organization’),

role(FrameV2,’Creator’,WhoVar),

synset(WhoVar,WhoVarSynset),

role(FrameV2,’Org’,OrgV),

synset(OrgV,bn:03739345n),

check_type(WhoVarSynset,bn:00046516n).

D. Explaining Query Parses

As discussed in Section IV-B, role-filler disambiguation

assigns the most appropriate BabelNet synset to each role-filler

word by finding the highest-scored semantic path that connects

the candidate synset for the role-filler word and a synset for

the corresponding role in the selected FrameOnt frame. These

paths can be used to explain the chosen meanings for queries.

Interestingly, this same mechanism can be used to explain

why a wrong meaning was assigned to a query. A wrong

meaning may get chosen because BabelNet includes fair

amount of noise due to the fact that this knowledge graph was

created automatically by merging information from various

sources. The noise is typically manifested via wrong synset

assignments to words, incorrect semantic links, and missing

links. Explanations to disambiguation errors help domain

experts pinpoint the exact instances of BabelNet noise that

contributed to these errors and KALM provides the means

to neutralize that noise and correct the errors. Due to space

limitation, we omit examples or error correction and the reader

is referred to [11].

E. Type Filtering of Query Results

Type filtering checks whether the type of each candidate

answer synset matches the corresponding answer-type synset

by measuring their affinity in BabelNet’s network. For each

candidate answer and answer-type synset, the type filtering

process does breadth-first search to find all semantic paths

from the candidate answer synset to the answer-type synset. A

heuristic scoring function assigns a score to each path, prunes

the unpromising paths, and selects the path with the highest

score. The scoring function is chosen to encourage the paths

going through popular nodes and edges with higher weight,

and to penalize longer paths. Different types of edges in a path

also have different relevance factors. For instance, hypernym

edges have the highest relevance factor, glossary-based links

and derivational relationships have lower relevance, and hy-

ponyms even lower. Formally, let n1 be a candidate answer

synset node, nl be an answer-type synset node and L = {n1,

e12, n2, e23, · · · , el−1,l, nl} be a semantic path from n1 to

nl, where the ni’s are BabelNet synset nodes and ei,i+1 is an

edge between ni and ni+1. The semantic score of the path is

score =

∑n−1

i=1

√

fn(ni)× fw(ei,i+1)

5
∑n−1

i=1
fp(ei,i+1)

(1)

where fn(ni) is ni’s popularity score, fw(ei,i+1) is the sum

of ei,i+1’s edge weight and its relevance factor, and fp(ei,i+1)
is a penalty for following the edge ei,i+1, defined based on the

edge type. The exponent base of 5 in the denominator implies

serious penalty for longer paths. The candidate answer synsets

with higher scores are retained in the output and the synsets

with scores that fall below a threshold are removed.

Unfortunately, scoring paths using a brute-force search takes

hours because BabelNet is very large and the number of

required BabelNet queries is in millions, while even a local

query takes at least 10 ms. To deal with this issue, we

developed a heuristic search algorithm, which reduces the

computation time from hours to seconds. The algorithm is

based on the optimizations described below.

Parallel computation. The first obvious observation is that

the brute-force algorithm is easily parallelizable, since finding

the semantic paths connecting candidate answers and answer-

type synsets can be done independently. A thread pool is

created where each thread finds paths from a specific candidate

answer synset (cand ans synki) to an answer type synset

(ans type synk). If one such path is found, the highest known

score (max scorek) for the found paths is shared with all the

parallel threads that have the same answer-type synset; it is

used to compute a cut-off value (cutoff valk) for pruning the

computation of any low-scoring path that is in progress. Here,

variable cutoff valk is computed as α·max scorek (0 < α ≤
1), where α is a learned parameter. With more CPU cores,

more threads could be created, which would speed up the

computation even further.

Caching BabelNet queries. As mentioned, BabelNet queries

are relatively expensive, even when no network is involved,

and collectively they take most of the computing time. Pro-

filing shows, however, that about 70% of such queries are

repeated more than once. To improve the search for paths be-

tween pairs of synsets, KALM caches the results of BabelNet

queries internally, which yields a speedup of 3-5 times.

Priority-based BabelNet path search. Given the complexity

of BabelNet, any pair of synsets can have many connecting

paths and even more paths may wonder astray without con-

necting the target nodes. Although we prune away paths that

score low, naive breadth-first search can get bogged down

exploring wrong parts of the graph. To avoid this problem, we

use priority-based search, which downgrades and eventually

prunes unpromising paths.

The pseudo-code of the parallel priority-based path search

is shown in Algorithm 1. The setup phase initializes the



Algorithm 1: priority based path search thread

Input: cand ans synki, ans type synk, BabelNet semantic
network

Output: scoreki
1 global max scorek, cutoff valk, protected path len,

path len limit;
2 initialize queueki; // priority queue for synset nodes
3 initialize htki<synset id, score>; // hash table for scores
4 initialize scoreki := 0; // max score for input synset pair
5 queueki.add(cand ans syn

ki
);

6 while not empty(queueki) do
7 cur node := queueki.top();
8 cur len := path len(cand ans synki, cur node);
9 next len := cur len + 1;

10 if cur node.score > max score ∨

11 cur len ≤ protected path len then
12 for nbr node ∈ get neighbors(cur node) do
13 nbr node.score:=score(cand ans synki,nbr node);
14 if nbr node.sid == ans type synk then
15 if nbr node.score > max score then
16 max scorek := nbr node.score;
17 cutoff valk := α·max scorek;
18 if nbr node.score > scoreki then
19 scoreki := nbr node.score;
20 else
21 if (nbr node.score > cutoff valki ∧
22 next len < path len limit)
23 ∨ (next len ≤ protected path len) then
24 if not hti.hasKey(nbr node.sid) then
25 queueki.add(nbr node);
26 htki[nbr node.sid] := nbr node.score;
27 else
28 if hti[nbr node.sid]<nbr node.score
29 then
30 queueki.add(nbr node);
31 htki[nbr node.sid]=nbr node.score;

global variables max scorek and cutoff valk, which are shared

with all threads that have the same answer-type synset

ans type synk. A priority queue, qi, for each candidate answer

synset cand ans synki is also initialized.

The algorithm starts a thread per each candidate answer

synset cand ans synki, trying to reach the answer-type synset

ans type synk via a path with as high a score as possible.

During the breadth-first search, each time a synset is encoun-

tered, we create a new synset node that records the synset

ID, total number of semantic links, semantic score, and the

parent information. In each round of the computation, we

pick the top element (cur node) from the priority queue and

compare its semantic score with cutoff valk. If this score is

below cutoff valk, we discard the current node and choose the

next element from the priority queue. Otherwise, we inspect

each neighbor nbr node of cand ans synki and compute

the score of the path from cand ans synki to nbr node.

If the neighbor is the requisite answer-type synset, a path

from cand ans synki to ans type synk has been found and

we update max scorek if the score of the newly found path

exceeds max scorek; we also update cutoff valk accordingly.

If the node’s neighbor is not the requisite answer-type synset,

we push the node onto the priority queue, if it satisfies certain

conditions. First, the length of the path from cand ans synki
to nbr node should not exceed a certain limit (e.g., 7).

Second, the semantic score for the path from cand ans synki
to nbr node must be greater than the global cutoff valk.

Third, if nbr node was visited before, it means we have seen

a different path from cand ans synki to nbr node and the

score for the current path must be greater than that for the

previous path. Finally, paths that are too short (e.g., shorter

than 3) are never pruned on a theory that they may turn out

to be “late bloomers.” The process continues until the priority

queue is empty.

Note that, similarly to query parsing, type filtering can be

explained to the user.

V. EXPERIMENTS

Data. At present, KALM contains 50 logical frames with

213 logical valence patterns. It was shown in [11] that this

achieves an accuracy of 95.6% for factual sentences. This

section presents an evaluation of the question answering aspect

of KALM. We used 179 queries3 to check whether the system

returns the expected frames, disambiguates role-filler words

correctly, and identifies the types of the output variables. Note

that since these queries are against the databases authored

using KALM, correct queries are guaranteed to return correct

results. Since our approach is based on CNL, public standard-

ized data sets are not available and so our queries are based

on factual CNL sentences with appropriate modifications ac-

cording to English grammar.

Results. The results are summarized below. In a nutshell, 170

out of 179 sentences are parsed correctly, 5 partially correctly,

and 4 incorrectly. Note that KALM’s 95% accuracy compares

favorably to about 62% accuracy of query systems for open

domain, such as [20].

Sentences Explanation

170

(94.97%)

all frames, roles & output variables are identified

correctly; all role-filler words & variable types are

disambiguated correctly

5 (2.79%) all frames, roles and output variables are identified

correctly, but some have disambiguation mistakes

4 (2.23%) some frames, roles or variables are misidentified

An example of a misidentified frame is the sentence

Who releases an article on waltz? which should have been

placed in the Publishing frame, but finds itself in the

Releasing_from_custody frame instead. The reason is

that BabelNet does not think “waltz” is a likely topic for an

article. An example where the frame is identified correctly, but

not all role-fillers are disambiguated correctly is the sentence

Which country does Shinzo Abe visit? Here, “country” was

misinterpreted as “countryside.”

VI. RELATED WORK

In our previous work [11] on high precision knowledge

authoring, we compared KALM with the state-of-the-art infor-

3https://datahub.csail.mit.edu/browse/pfodor/kalm/files



mation extraction systems such as SEMAFOR [21], SLING

[22], and Stanford CoreNLP [23]. We showed that other

systems lack sufficient accuracy even for simple and common

sentences. These systems are not designed for query process-

ing and so are ill-suited for comparison with the present work.

Related work includes natural language interfaces for

database and linked data query systems, such as ATHENA

[24], Quadri [25], NaLIR [26], and PRECISE [27], PowerAqua

[28], and Pythia [29], which are tuned to specific ontologies.

However, these systems do not support knowledge authoring

and they query existing databases via ontologies constructed

for each case separately. In contrast, KALM reuses general

linguistic resources and knowledge bases in an incremental

fashion, and is suitable both for knowledge authoring and

querying—with superior accuracy.

Another related field is textual entailment [30]. These works

have achieved impressive results, but the corresponding sys-

tems are not incremental and their accuracy tends to be below

80%—too low for reasoning about knowledge.

VII. CONCLUSION

Although considerable work has been done on question

answering, we are unaware of a query system that can respond

to questions about knowledge that was automatically acquired

from text and has very high accuracy. KALM, which combines

CNL-based knowledge authoring and question answering, is

unique in that respect. In this paper, we described the question

answering aspect of KALM, including a CNL-based query

language, semantic parsing of queries, disambiguation and

answer filtering. We show that this approach is within 5% of

perfect accuracy. This superior accuracy was achieved through

a unique combination of logic, linguistic knowledge bases

FrameNet and BabelNet, and sophisticated parsing, disam-

biguation, and answer filtering algorithms. For future work,

we plan to extend KALM to acquire rules with near perfect

accuracy, and support common sense and other complex types

of reasoning.
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