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Abstract. Modern knowledge bases have matured to the extent of being
capable of complex reasoning at scale. Unfortunately, wide deployment
of this technology is still hindered by the fact that specifying the req-
uisite knowledge requires skills that most domain experts do not have,
and skilled knowledge engineers are in short supply. A way around this
problem could be to acquire knowledge from text. However, the current
knowledge acquisition technologies for information extraction are not up
to the task because logic reasoning systems are extremely sensitive to er-
rors in the acquired knowledge, and existing techniques lack the required
accuracy by too large of a margin. Because of the enormous complexity of
the problem, controlled natural languages (CNLs) were proposed in the
past, but even they lack high enough accuracy. Instead of tackling the
general problem of text understanding, our interest is in a related, but
different, area of knowledge authoring—a technology designed to enable
domain experts to manually create formalized knowledge using CNL.
Our approach adopts and formalizes the FrameNet methodology for rep-
resenting the meaning, enables incrementally-learnable and explainable
semantic parsing, and harnesses rich knowledge graphs like BabelNet in
the quest to obtain unique, disambiguated meaning of CNL sentences.
Our experiments show that this approach is 95.6% accurate in standard-
izing the semantic relations extracted from CNL sentences—far superior
to alternative systems.

1 Introduction

Much of human knowledge can be represented as facts and logical rules and then
fed into state of the art rule-based systems, such as XSB [22], Flora-2 [11, 27],
or Clingo [8], to perform formal logical reasoning in order to answer questions,
derive new conclusions and explain the validity of statements. However, human
knowledge can be very complex and domain experts typically do not have the
training needed to express their knowledge as logical rules, while trained knowl-
edge engineers are, unfortunately, in short supply.

Ideally, one could try to extract the requisite knowledge from text, but this
is an extremely complex task. Although impressive advances have been made in
text understanding and information extraction (e.g., [15, 2, 9]) the technology is
still very far from approaching the accuracy required for logic knowledge bases,
which are extremely sensitive to errors (both wrong and missing data).

Controlled natural languages (CNLs) [12]—languages with restricted, yet
fairly rich, grammars and unambiguous interpretations—were proposed as a



technology that might help bridge the gap. CNL systems allows domain ex-
perts who lack the experience in logic to specify knowledge that can be cast into
logical statements suitable for reasoning. Such systems include Attempto Con-
trolled English (ACE ) [6], Processable English (PENG) [24], and BioQuery-CNL
[5]. However, CNL systems perform rather limited semantic analysis of English
sentences and do not provide for accurate authoring of knowledge. Specifically,
they fail to recognize when sentences have the same meaning but are expressed
in different syntactical forms or using different language constructs. For instance,
the state of the art system ACE translates the sentences Mary buys a car, Mary

is the purchaser of a car, Mary makes a purchase of a car, and many other
equivalent sentences into very different logical representations. As a result, if
any of these sentences is entered into the knowledge base, the reasoner would
fail to answer questions like Who purchases a car? or Who is the buyer of a car?

because ACE and others would translate these questions into logical sentences
that are very different from the logical formulas used for the data. Clearly, this is
a serious obstacle to using CNL as input to logical reasoning systems. The typi-
cally proposed “solution” is to manually specify bridge rules between equivalent
forms, but this requires a huge number of such rules and is impractical.

Aim of this work. This work is not about text understanding or informa-
tion extraction from general prose or even from technical manuals. Instead, we
propose an approach to knowledge authoring with the aim of providing domain
experts with tools that would allow them to translate their knowledge into logic
by means of CNL. The difference between knowledge authoring and information
extraction or knowledge acquisition is quite significant: whereas information ex-
traction aims to enable machines to understand what humans write, knowledge
authoring aims to enable humans to write in natural language so that machines
could understand. At present, knowledge authoring technology (compared to
knowledge acquisition and extraction) is in an embryonic state. Knowledge au-
thoring was, in fact, the target that CNLs were eyeing, but failed to reach because
not enough attention was paid to semantics. We believe that our work fills in
much of the void left unfilled by CNLs, which will turn the latter into a widely
accepted technology for creation of formalized knowledge.

Contributions. The contributions of this paper are four-fold:

(a) A formal, FrameNet-inspired [10] ontology FrameOnt that formalizes FrameNet
frames and integrates linguistic resources from BabelNet [19] to represent the
meaning of English sentences.

(b) An incrementally-learned semantic parser that disambiguates CNL sentences
by mapping semantically equivalent sentences into the same FrameOnt frames
and gives them unique logical representation (ULR). The parser is layered
over the Attempto Parsing Engine (APE ),1 and utilizes FrameOnt , Babel-
Net, and our novel algorithms for frame-based parsing and ontology-driven
role-filler disambiguation.

1 https://github.com/Attempto/APE



(c) Explainability: the approach makes it possible to explain both why particular
meanings are assigned to sentences and why mistakes were made (so they
can be fixed).

(d) We developed the Knowledge Authoring Logic Machine (KALM )2 to enable
subject matter experts, who need not be proficient in knowledge represen-
tation, to formulate actionable logic via CNL. KALM achieves unmatched
accuracy of 95.6% in standardizing the semantic relations extracted from
CNL sentences—far superior to alternative systems.

Organization. Section 2 gives background information on APE (the Attempto
parser), FrameNet, and BabelNet, that is necessary in order to understand the
proposed approach and make the paper self-contained. Section 3 describes the
framework of KALM, its frame-based parser and the role-filler disambiguation
algorithms. Section 4 describes the parallelization and the other optimizations
that make role-filler disambiguation feasible. Section 5 describes the explainabil-
ity aspect of KALM. Section 6 presents an evaluation of our approach, which
indicates very high accuracy. Section 7 concludes the paper with a discussion of
related work and future extensions.

2 Background

This section provides background on the systems used by KALM; specifically,
the Attempto parsing engine (APE), the FrameNet methodology for representing
the meaning of sentences, and the BabelNet knowledge graph.
Attempto. KALM accepts sentences that follow the grammar and interpreta-
tion rules of Attempto Controlled English, ACE.3 ACE represents the semantics
of text in a logical form, called discourse representation structure (DRS) [7],
relying on seven predicates: object/6, predicate/4, property/3, relation/3,
modifier adv/3, modifier pp/3, and has part/2 (in p/N, N is the number of
arguments in predicate p). An object-fact represents an entity—a noun-word
with some properties (e.g., countable or uncountable, quantity). A predicate-
fact represents an event—a verb-word and its participating entities. A property-
fact represents the syntactic relation between a noun and its adjective modifier.
A modifier adv-fact represents the syntactic relation between a verb and its
adverbial modifier. A modifier pp-fact represents the syntactic relation of a
verb, its prepositional modifier and its prepositional complement. A relation-
fact represents the genitive relation between two noun-words. For conjunctions
of noun phrases, the Attempto Parsing Engine, APE, uses an additional pred-
icate, has part/2, to represent the grouping of these entities. Each object-,
predicate-, or has part-fact has a unique identifier. Lastly, each fact has an
index (e.g., -1/2 in the first fact) showing the position of the word in the original
sentence that generates this fact. For example, the sentence A customer buys a

watch for a friend is represented using Prolog terms of the form:
object(A,customer,countable,na,eq,1)-1/2.

object(B,watch,countable,na,eq,1)-1/5.

2 https://github.com/tiantiangao7/kalm
3 http://attempto.ifi.uzh.ch/site/docs/syntax_report.html



object(C,friend,countable,na,eq,1)-1/8.

predicate(D,buy,A,B)-1/3.

modifier_pp(D,for,C)-1/6.

where A, B, and C are identifiers that represent the customer -, watch- and friend -
entities, respectively, and D the buy-event. In each object-fact, the second ar-
gument represents the stem form of the word the fact represents; the rest of the
arguments are the properties of this entity. In each predicate-fact, the third
argument represents the subject of the event and the fourth argument represents
the object of the event. In this case, the identifier A (resp. B) indicates that cus-
tomer (resp. watch) is the subject (resp. object) of the event. A modifier pp-fact
connects the buy-event and its prepositional complement, the friend -entity.

As explained in the introduction, a very serious issue with Attempto Con-
trolled English, ACE, is that sentences that have the same meaning may be rep-
resented by very different logical terms, preventing logic engines from making
useful inferences from ACE parses. The often proposed workaround to manually
build bridge rules is impractical. This paper solves this and related problems.

FrameNet. FrameNet is a knowledge base of semantic relations based on a the-
ory of meaning called frame semantics [1]. The meaning of a sentence is under-
stood as a semantic frame along with the semantic roles that the various words
in the sentence play in the frame. FrameNet calls these roles frame elements. For
example, in a sentence about purchasing goods, the frame Commerce Buy4 typ-
ically involves an individual purchasing a good (i.e., Buyer), the items that are
purchased (i.e., Goods), the thing given in exchange for goods in the transaction
(i.e., Money), the individual that has the possession of the goods and exchanges
them with the buyer (i.e., Seller), the individual intended by the buyer to re-
ceive the goods (i.e., Recipient), the place and time of purchase (i.e., Place and
Time), and so on. A frame is associated with a list of lexical units (words plus
their part-of-speech). A lexical unit represents the basic language unit in a sen-
tence that can trigger an application of the frame. For example, the lexical units
buy.v, purchase.v, buyer.n, and purchaser.n can trigger the Commerce Buy

frame. But not only: the lexical unit buy.v can also trigger the frame, Fall for.
Given the flexibility of natural languages, the same lexical unit can be used

in multiple ways in sentences that match the same frame. To capture this, each
pair (lexical unit, frame) in FrameNet is associated with a set of valence patterns,
which represent the syntactic contexts in which a particular lexical unit and some
of the frame elements can appear in sentences. For instance, one valence pattern
for (buy.v, Commerce Buy) says that the Buyer-role is the subject of the buy-
event and the Goods-role is the object of that event. Therefore, the sentence
Mary buys a watch matches the frame Commerce Buy via the lexical unit buy.v
and the valence pattern that extracts Mary as the filler for the Buyer-role and
watch as the filler for the Goods-role.

BabelNet. BabelNet is a multilingual knowledge base that contains a rich se-
mantic network for words with their linguistic and semantic information. It is

4 https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Commerce_buy.
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constructed by integrating multiple well-known structured knowledge bases, such
as WordNet [17], DBpedia [3], and Wikidata [26]. Similarly to WordNet, each
word has a part-of-speech tag and a gloss representing its meaning. Words with
similar meanings are grouped into synsets that have unique identifiers (of the
form bn:dddddddp, where d is a digit and p is a part of speech symbol v, n, etc.).
BabelNet is structured as a knowledge graph where synset nodes are connected
by directed edges representing semantic relations (i.e., hypernym, hyponym, etc.)
Compared to WordNet, BabelNet has a much larger vocabulary and richer se-
mantic relations. For instance, there are many named entities like famous peo-
ple, locations, songs, books, etc. Besides, each edge in the knowledge graph has
a weight that intends to capture the degree of relevance between two connected
synset nodes with respect to the type of the edge. This abundance of informa-
tion is the main reason we ended up using BabelNet as the underlying semantic
network of words after trying many knowledge bases, such as WordNet, DB-
pedia, and Wikidata. Along with the richness, however, comes certain amount
of noise and incompleteness—in part because integration of the data sources in
BabelNet is done algorithmically and without much further curation by domain
experts. While BabelNet is very large and rich in synsets and semantic relations,
it also contains rarely used meanings of words, wrong semantic links, and words
incorrectly associated with various synsets. Such errors can (and do) lead se-
mantic parsers astray and therefore analysis and countermeasures are required
to mitigate the impact of such noise in the knowledge base.

3 The KALM Framework

The KALM’s frame-based parser is designed to parse CNL sentences and extract
frame relations. Before embarking on building our own, we tried a number of
semantic relation extraction tools, including Ollie [15], Stanford CoreNLP [14],
the LCC system [13], SEMAFOR [4], and SLING [21]. These tools are designed
for general text understanding and are strong contenders in that difficult domain,
but their accuracy is far below the quality required for the knowledge that would
be acceptable for logical knowledge bases. By accuracy we mean both precision
and recall because, as mentioned earlier, our aim is to provide high-quality data
and rules for logic-based reasoners, and these systems are very sensitive both
to errors in the data as well as to missing data. In the KALM framework, high
accuracy is achieved both through reliance on CNL, which makes our job much
simpler compared to the aforesaid Open IE extractors, due to the extensive use
of rich off-the-shelf knowledge bases, and due to the algorithms unique to KALM.
Our frame-based parser uses a model that contains a set of logical frames and
logical valence patterns. The logical frames are mostly modeled after FrameNet’s
frames, but we represent them in logical form and disambiguate the semantic
meaning of each role via BabelNet synsets. The logical valence patterns are
modeled after FrameNet’s valence patterns, but we represent them in a form
compatible with APE parses. These logical valence patterns are constructed
in an automatic way by learning linguistic structures from annotated training
sentences. For the rest of the paper, we use the acronyms frame and lvp to denote
the concept of a logical frame and logical valence pattern, respectively.



3.1 FrameOnt—the Logical Model of Frames

FrameNet is not formal enough—it contains only textual descriptions of frames
and valence patterns, so FrameNet cannot be directly used for frame-based pars-
ing. We formalize FrameNet as FrameOnt , an ontology that models frames and
valence patterns using logical facts and rules. A frame consists of a set of roles
(or “frame elements” in the terminology of FrameNet), each representing the
semantic role an entity plays in the frame relation. Unlike FrameNet, FrameOnt

disambiguates each role via a set of BabelNet synsets that capture the relevant
meanings of the role. In addition, constraints may be imposed on roles. For in-
stance, a data type constraint may state that the Money role must be a number
representing an amount in some currency.

The below fp-fact represents the Commerce Buy frame that describes pur-
chases involving buyers, sellers, goods, etc.

fp(’Commerce_Buy’,[

role(’Buyer’,[’bn:00014332n’],[]),

role(’Seller’,[’bn:00053479n’],[]),

role(’Goods’,[’bn:00006126n’,’bn:00021045n’],[]),

role(’Recipient’,[’bn:00066495n’],[]),

role(’Money’,[’bn:00017803n’],[’Currency’])]).

The first argument here is the name of a frame; the second is a list of role
descriptors in the frame. In each role descriptor, the first part is the name of the
role, the second is a list of BabelNet synset IDs representing the meaning of the
role (there can be several: Goods above can mean article of commerce or article
of a sale), and the third lists data type constraints for that role. To extract an
instance of the frame from a sentence, we use lexical units (from the previous
section) and logical valence patterns, or lvps. We call the word extracted from
a sentence to correspond to a role a role-filler. For instance, the Commerce Buy

frame has this logical valence pattern:
lvp(buy,v,’Commerce_Buy’, [

pattern(’Buyer’,’verb→subject’,required),

pattern(’Goods’,’verb→object’,required),

pattern(’Recipient’,’verb→dep[for]’,optnl),

pattern(’Money’,’verb→dep[for]’,optnl),

pattern(’Seller’,’verb→dep[from]’,optnl)]).

(1)

The first three arguments of an lvp-fact identify the lexical unit and the frame.
The fourth argument is a set of pattern-terms, each having three parts: the
first is the name of a role in the frame; the second is the grammatical pattern

that specifies the grammatical context that relates the lexical unit, the role, and
suitable role-filler words; and the third says whether the pattern is required in
order to trigger the lvp or is optional. Each grammatical pattern is bound to a
separate parsing rule that may be applied to extract the role-filler based on the
APE parses. For example, in the first pattern-term, verb→subject says that
the role-filler for the Buyer-role must be the subject of the buy-event. Based
on the format of APE output described in Section 2, the corresponding parsing
rule will find a suitable object-fact whose identifier equals the third argument



(the subject) of a predicate-fact representing the buy-event. If so, the word
representing the object-fact will be extracted as the role-filler of the Buyer-
role. For example, given the sentence Mary buys a watch for John from Bob, the
above lvp applies the Commerce Buy frame and extracts Mary as the Buyer, Bob
as the Seller, watch as the Goods, and John as the Recipient. The lvp is used
even though a filler for the optional Money role was not present.

Both the lexical units and the associated lvps are generated by KALM when
a knowledge engineer designs and marks up sentences to train the parser to rec-
ognize frames and roles in various linguistic structures. This aspect is discussed
next.

3.2 Frame Construction

Figure 1 shows the pipeline for frame and lvp construction. The frames and roles
are designed by a knowledge engineer in advance, based on FrameNet and Ba-
belNet. For each frame, the knowledge engineer must provide the semantics for
the roles. In KALM, this requires searching BabelNet to find the most appro-
priate synsets for the roles in question. This has to be done because role-words
tend to have multiple senses, and disambiguation of the role senses is key to
ensuring accuracy of the extracted information. New frames may also have to
be created, if the target domain requires that. (For instance, some important
relations, such as human gender are not provided by FrameNet.) Some other
frames in FrameNet must also be made more precise or expanded.

Fig. 1. Pipeline for frame and lvp construction

Once a frame and its roles are identified, the lvps are learned automatically
from a set of marked-up training sentences designed by a knowledge engineer. In
FrameNet, each valence pattern is associated with a set of exemplar sentences.
Since KALM uses CNL, the knowledge engineer needs to rephrase sentences so
that they will follow the ACE grammar. For each sentence, the engineer needs to
mark the frame type, the lexical unit, the relevant roles, and the synonyms of the
lexical unit. For instance, for a sentence like Mary buys a watch for John from

Bob for 200 dollars, the knowledge engineer would create the following mark-up
sentence and ask this query:

?- train(’Mary buys a watch for John from Bob for 200 dollars’,
’Commerce Buy’, ’LUIdx’=2,

[’Buyer’=1+required, ’Goods’=4+required,

’Recipient’=6+optnl, ’Seller’=8+optnl, ’Money’=11+optnl] ,

[purchase, acquire] ).



This says that the training sentence triggers the frame Commerce Buy with the
word buy as the lexical unit (buy is identified by the word index 2), that Mary

(identified by the word index 1) is a filler for the required role Buyer, Bob (word
index 8) fills in the optional role Seller, watch (word index 4) is a filler for the
role Goods (also required), 200 dollars (word 11) fills in the optional role Money,
and John is the Recipient. The words purchase and acquire are defined as
the synonyms of buy which can trigger an instance of the Commerce Buy frame
the same way as buy does.

Our lvp generator is a Prolog program that takes marked-up sentences de-
scribed above and learns the appropriate grammatical patterns and parsing
rules. These parsing rules can check if the syntactical context of the lexical unit
with respect to the role-fillers in the marked-up sentence can be applied to new
sentences and extract role-fillers from that sentence. For instance, the aforemen-
tioned marked-up sentence will lead to the lvp (1) shown earlier. An example of
such a learned parsing rule is given below. It takes an APE parse and extracts
the role-filler for Buyer according to the grammatical pattern verb→subject.

apply_pattern_to_target(’verb→subject’,APEParse,LUIdx,RoleFilIdx) :-

get_pred_from_word_idx(APEParse,LUIdx,LUPred),

get_subj_from_verb(APEParse,LUPred,RoleFilIdx).

(2)

The rule takes an Attempto parse (APEParse) of a sentence and the word index
for the lexical unit (LUIdx) as input, and outputs the word index of the extracted
role-filler (RoleFilIdx) in the sentence. In the rule body, get pred from word idx

takes APEParse and LUIdx and finds the corresponding predicate (LUPred) repre-
senting the lexical unit, which is an event in this case. Next, get subj from verb

searches APEParse to find an object-fact whose identifier matches the third ar-
gument (the subject) of LUPred. If found, the word index of the object-fact
representing the role-filler is returned.

3.3 Frame Parsing

Having parsed a CNL sentence, the next step is to identify the frames and
lvps (described in Section 3.2) that match the sentence. To this end, the sen-
tence is scanned for lexical units of the existing lvps and then one checks
if these lvps can be applied. If an lvp is applicable, all the extracted role-
fillers from the sentence are collected and candidate frame-based parses are con-
structed. A candidate frame-based parse (abbr., candidate parse) has the form
<FN,{(RNi,RFi)i=1,...k}>, where FN is the name of a frame the sentence possibly
belongs to, and the second component in the tuple is a set of extracted role-
name/role-filler pairs. This is a purely syntactic check and some parses may be
rejected later on semantic grounds. For example, consider the following lvps:

lvp(buy,v,’Commerce_Buy’,[pattern(’Buyer’,’verb→subject’,required),

pattern(’Goods’,’verb→object’,required),

pattern(’Recipient’,’verb→dep[for]’,optnl),

pattern(’Money’,’verb→dep[at]→rel→dep’,optnl),

pattern(’Seller’,’verb→dep[from]’,optnl)]).

(3)



lvp(buy,v,’Commerce_Buy’,[pattern(’Buyer’,’verb→subject’,required),

pattern(’Goods’,’verb→object’,required),

pattern(’Recipient’,’verb→dep[for]’,optnl),

pattern(’Money’,’verb→dep[for]’,optnl),

pattern(’Seller’,’verb→dep[from]’,optnl)]).

(4)

lvp(buy,v,’Commerce_Buy’, [pattern(’Buyer,’verb→subject’,required),

pattern(’Goods,’verb→object’,required),

pattern(’Recipient,’verb→dep[for]’,optnl),

pattern(’Money,’verb→dep[for]→rel→dep’,optnl),

pattern(’Seller’,’verb→dep[from]’,optnl)]).

(5)

In our running example, the sentence Mary buys a watch from John for Bob for

200 dollars, the word buys triggers the above lvps. In all three cases, the pattern
verb→subject lets rule (2) extract Mary as the Buyer. The pattern verb→object

triggers another rule in the parser, which will extract watch as the Goods, and so on.

Based on these lvps, the system will construct several candidate parses, but some
will be wrong, useless, or redundant. First, some candidate parses may be subsumed
by others. For example, lvp (3) above yields a candidate parse where Mary is a Buyer,
watch is the Goods, Bob is the Recipient, and John is the Seller. However, this parse
is subsumed by the parse obtained from lvp (4) because our sentence contains all the
components mentioned in lvp (4).

Second, the parser may misidentify the roles for the words extracted from the CNL
sentence, so wrong role-fillers may get associated with some of the frame’s roles in the
candidate parses. For example, in lvp (4) the grammatical patterns for Recipient and
Money are the same. Therefore, it will generate two candidate parses: in one case Bob is
a role-filler for the Recipient role and 200 dollars is a role-filler for Money; in another
case, Bob is the role-filler for the Money and 200 dollars is the role-filler for Recipient.

The third problem arises when a candidate parse extracts wrong role-fillers. For
example, given the sentence Mary buys a watch from John for Bob for a price of 200

dollars, lvp (5) will give the right result. However, lvp (4) also applies, so we will get
price as a role-filler for either the Recipient or the Money.

All of these problems are solved in the following subsection, via an algorithm for
semantic role-filler disambiguation—a process related to word-sense disambiguation
[18] but more narrow and so it has higher-accuracy solutions than the general problem
of word-sense disambiguation.

3.4 Role-Filler Disambiguation

Role-filler disambiguation is akin to word-sense disambiguation but it does not try
to disambiguate entire sentences. Instead, the goal is to disambiguate different senses
of the extracted role-fillers and find the best sense for each role-filler with respect to
the roles in particular logical frames. Consider the sentence Mary grows a macintosh,
which belongs to the Growing Food frame where Mary is the Grower and macintosh

is the Food. In BabelNet, macintosh has several meanings like an early-ripening apple

(bn:00053981n), a computer sold by Apple Inc. (bn:21706136n) and a kind of water-

proof fabric (bn:00052580n). Since Food is much more semantically related to an apple
than to a computer or a fabric, macintosh should be disambiguated with the synset
bn:00053981n denoting an apple.



Role-filler disambiguation works on candidate parses produced by frame parsing,
as explained in the previous subsection. Each role-filler is often associated with several
synsets. The disambiguation process first scores BabelNet synsets in relation to the
frame roles filled by the role-filler words and then combines the individual scores into
scores for entire candidate parses, ranks the parses, and removes the ones that score
below a threshold.
The disambiguation algorithm for candidate parses queries BabelNet for each role-
filler and gets a list of candidate role-filler synsets, which are BabelNet synsets for the
role-filler words. Then it performs a heuristic breadth-first search to find all semantic
paths that start at each candidate role-filler synset and end at a role synset, or vice
versa. A heuristic scoring function assigns a score to each path, prunes the unpromising
paths, and selects the path with the highest score. The starting (or ending) point
of that path is the role-filler synset chosen as the semantically most likely BabelNet
synset for the role-filler in question. At this stage, each role-filler in a candidate parse is
disambiguated, yielding a disambiguated candidate parse of the form <FN, {(RNi,RFi,
BNSyni, Scorei)}>, where FN is a frame name, RNi a synset for a role in FN, RFi a
role filler synset for the role RNi, and Scorei is a score that signifies the semantic
relatedness of the role filler RFi to the particular meaning of the frame role represented
by the synset RNi. This disambiguated candidate parse thus extends the notion of a
candidate parse described previously by adding the disambiguating information (in the
form of the synsets RNi and RFi along with the relatedness score). For the score of the
entire disambiguated parse, we take the geometric mean of all the individual role-filler
scores. Candidate parses with lower scores are then discarded. The key to this process
is choosing an appropriate scoring function, which is described next.
Computing semantic scores. Ideally, each role should be a direct or indirect hy-

pernym of its role-filler, or vice versa. Consider the sentence A person buys a car that
belongs to Commerce Buy frame, where person is the Buyer and car is the Goods. Here,
person is a hypernym of Buyer and Goods is a hypernym of car. At the first glance,
one might try to focus on hypernym paths between the role-filler synsets and the role
synsets, but this would have been too easy to actually work. First, BabelNet does
not contain the entire knowledge of the world and many hypernym links are missing.
Second, despite the overall high quality of this knowledge base, it still contains many
wrong hypernym relations. Therefore, one must consider a broader class of semantic
relations (like derivationally related, gloss related, and more) in building semantic paths
between pairs of synsets. Note that some of the errors can be detected and corrected—
see Section 5. Since it is impractical to fix all the wrong semantic relations or add all
the missing ones, one must consider all kinds of semantic paths, not only the shortest
ones. Also, not all links are created equal. As mentioned, hypernym links are probably
a good bet, but following hyponym or gloss-related links (which connect words with
related glossaries) is riskier. To compute the semantic score, we consider three factors:
the semantic connection number (total number of semantic links connected to each
synset node), the edge type and weight, and the path length. The first two can be
obtained by querying BabelNet, but the edge weight information there is rather sparse
and cannot be relied upon too much. For instance, many good hypernym links have
the weight of zero in BabelNet. We therefore bump up the weight of hypernym and
other links by various constants (e.g., larger for hypernyms, lower for hyponyms).

The scoring function in KALM was chosen to encourage the paths with higher
semantic connection numbers and edge weights, and to penalize the longer paths. Ad-
ditionally, different relevance factors are given to different types of edges in a path. For
instance, the hypernym edges have the highest relevance factor. Derivationally-related



and gloss-related edges are given the next highest relevance factor, etc. Formally, let n1

be a role-filler synset node, nl be a role synset node and L = {n1, e12, n2, · · · , nl} be
a semantic path from n1 to nl, where ni represents a BabelNet synset node and ei,i+1

represents an edge between ni and ni+1. The semantic score of the path is computed
by the following formula based on the above principles:5

score =

∑n−1

i=1

√

fn(ni)× fw(ei,i+1)

5
∑n−1

i=1
fp(ei,i+1)

(6)

where fn(ni) is ni’s semantic connection number, fw(ei,i+1) is the sum of ei,i+1’s
BabelNet edge weight and its relevance factor, and fp(ei,i+1) is the penalty value for
ei,i+1, defined based on the edge type. The base of the exponent in the denominator is
5, which imposes a serious penalty for longer paths.

The above algorithm is fairly naive and takes hours to compute the score of a
disambiguated candidate parse. This is because BabelNet is very large, the number of
BabelNet queries required by this algorithm is in millions, and even a local such query
takes about 10 ms. On average, each word is associated with 15 synsets and each synset
is semantically related to a few hundred other synsets, so the number of semantic paths
can be huge. Section 4 deals with this complexity, reducing the time to seconds.

3.5 Constructing Unique Logical Representation from Parses

We now show how frame parsing and role-filler disambiguation work in tandem to yield
unique logical representation (ULR) for sentences. The process is shown in Figure 2.

Fig. 2. Pipeline for translating a sentence into ULR

ULR uses the predicates frame/2 and role/2 for representing instances of the
frames and the roles. The predicates synset/2 and text/2 are used to provide synset
and textual information. Consider these sentences: Mary buys a watch for Bob at a

cost of 200 dollars, Mary buys a watch for Bob for 200 dollars, and Mary buys a watch

for Bob for a price of 200 dollars. Although these sentences are different in structure,
they trigger the same frame (Commerce Buy) because they match the lvps (3), (4), and
(5) in Section 3.3, respectively, and this leads to exactly the same candidate parses.
Therefore, when these sentences are stated as facts, they would be translated into
exactly the same logical representation, shown below.

frame(id_1,’Commerce_Buy’).

role(id_1,’Buyer’,id_2). role(id_1,’Recipient’,id_3).

role(id_1,’Goods’,id_4). role(id_1,’Money’,id_5).

5 The parameters were chosen experimentally. As part of future work, we will explore
using a neural net to fine-tune this formula.



synset(id_2,’bn:00046516n’). // person synset

text(id_2,’Mary’).

synset(id_3,’bn:00046516n’). // person synset

text(id_3,’Bob’).

synset(id_4,’bn:00077172n’). // watch synset

text(id_4,’watch’).

synset(id_5,’bn:00024507n’). // currency synset

text(id_5,’200 dollars’).

The symbol id 1 here is a unique ID given to the event of Mary buying a watch. The
other IDs are assigned to the various role-filler entities extracted from the sentence.
For instance, id 2 represents the entity corresponding to Mary and id 3 to Bob. These
entities are further described by the predicates synset/2 and text/2.

4 Taming the Complexity of Role-Filler Disambiguation

BabelNet is a very large knowledge graph and the role-filler disambiguation relies on
massive amount of querying of that graph, while each query is relatively expensive
(even when BabelNet instance runs locally and is called directly, via Java). To solve
the performance problems with the naive disambiguation algorithm of Section 3.4, we
developed a number of optimizations whose collective effect is reducing the computation
time from hours to seconds. These techniques are described below.
Parallel computation. The first obvious observation is that the base algorithm is
easily parallelizable, since finding semantic paths connecting different synsets pairs can
be done independently. To this end, we create a thread pool where each separate thread
finds paths from a specific candidate role-filler synset to a role synset. Moreover, if one
such path is found, the highest current score among such a paths is shared with all the
parallel threads and is used as a cut-off for pruning the computation of any low-score
path that is in progress. Our test machine had 12 CPU cores; with more cores, more
threads could be created by elaborating on the above idea. Parallelization reduces the
running time by an order of magnitude in some cases. Role-filler disambiguation could
also be done in parallel across the different candidate parses, and one could further
parallelize the process across sentences.
Caching BabelNet queries. BabelNet queries are relatively expensive and collec-
tively take most of the computing time. Our experiments showed that in role-filler
disambiguation about 70% of such queries are repeated more than once. Although Ba-
belNet does some caching on its own, it is insufficient. To hasten the search for paths
between pairs of synsets, KALM caches the results of BabelNet queries internally, which
results in a big speedup (3-5 times, depending on specifics of the case).
No duplicate computation in role-filler disambiguation. For a sentence, dif-
ferent candidate parses (generated from different lvps) that represent the same frame
often share some of the role/role-filler pairs. We avoid such duplicate computations by
creating one thread for each unique role/role-filler pair.
Priority-based BabelNet path search. Given the complexity of BabelNet, any pair
of synsets can have many connecting paths and even more paths wonder astray without
connecting the requisite nodes. Although we prune away paths that score low, naive
breadth-first search for connecting paths can get stuck exploring wrong parts of the
graph for a long time. To avoid this problem, we use adaptive priority-based search with
a priority queue in which unpromising paths get downgraded and eventually pruned.
Inverse path search. The aforementioned algorithm is designed to find a semantic
path from the role-filler synset to the role synset. However, in the car-buying example



of Section 3.4, the role could be either a hypernym of the role-filler, as in (car, Goods),
or a hyponym, as in (person, Buyer). In principle, we could use the same priority-queue
based approach to find a hyponym path from the person synset to the Buyer synset.
Once the path is found, we could compute one semantic score based on the hyponym
path and another based on the inverse semantic path that goes from Buyer to person

and uses hypernym links. We could then pick the best-scoring path.

However, not all BabelNet edges have semantically inverse edges (e.g., entailment

edges do not). Besides, the fan-out in the BabelNet graph at a role-filler synset and
that at the frame role synset can be very different. For example, the person-synset
(bn:00046516n) has more than a thousand hyponyms, and starting the search from
that synset is almost always costlier than going from, say, the role Buyer to the role-
filler person. To take advantage of this asymmetry, separate threads are created to
search from role synsets to their candidate role-filler synsets. This inverse path search
is also based on the priority queue and is computed similarly.

5 Explaining Semantic Parses

This section discusses the explainability aspect of the KALM approach. This includes
both explaining the correct semantic parses and also why errors are made.

5.1 Explaining Correct Parses

Section 3.4 explained the process of role-filler disambiguation, which assigns a BabelNet
synset to each role-filler word. This is done by finding highest-scoring semantic paths
that connect the candidate synsets for role-filler words and the synsets for the roles
in selected FrameOnt frames. The KALM explanation mechanism is based on analysis
of these paths. Consider the sentence Robin Li is a founder of Baidu, which has three
candidate parses with the following lvps:

lvp(founder,n,Create_Organization, [

pattern(Creator,object|→verb→subject,required),

pattern(Organization,object→rel→object,required) ] ).

(7)

lvp(be,v,People_by_Origin, [

pattern(Person,verb→subject,required),

pattern(Origin,verb→object,required) ] ).

(8)

lvp(be,v,Being_Employed, [

pattern(Employee,verb→subject,required),

pattern(Position,verb→object,required) ] ).

(9)

Here, the lvp (7) belongs to the Create Organiazation frame, where Robin Li fills
the Creator-role and Baidu fills the Organization-role. The lvp (8) belongs to the
People by Origin frame, where Robin Li fills the Person-role and founder fills the
Origin-role. The last lvp, (9), belongs to the Being Employed frame, where Robin Li

fills the Employee-role and founder fills the Position-role. The parse corresponding to
the first lvp (7) gets the highest score with the following semantic paths that can be
shown to the user (who is the domain expert in this case) as explanations:

Creator: Robin Li (bn:03307893n) −hypernym→ a person who founds or establishes

some institution (bn:00009631n)

Organization: Baidu (bn:00914124n) −hypernym→ an institution created to conduct

business (bn:00021286n) −hypernym→ an organization (bn:00059480n)



These paths justify the chosen parse by demonstrating the semantic connections in
BabelNet between each role (Creator and Organization in this case) and their role-
fillers. The alternative disambiguations, like Origin: founder (that stems from the
lvp (8)) and Position: founder (that stems from the lvp (9)) receive very low scores
because the concepts represented by these roles and their role-fillers (founder for both)
are semantically incompatible, which results in low-scoring connecting BabelNet paths.

5.2 Explaining Erroneous Parses

Along with plethora of useful data, BabelNet contains fair amount of uncurated noise
due to the fact that much of this knowledge graph was created automatically, by
merging information from various sources with the help of sophisticated heuristics. Like
any algorithm of that kind, this process admits certain amount of errors, including
wrong synset assignments to words, incorrect semantic links, and missing links. For
instance, BabelNet makes the concept of job position a hypernym of the concept of
womanhood and the concept of engineering science a hypernym of the concept of
building structure. It also wrongly assigns the concept of engineering science as one of
the meanings of the word engineer. These errors can throw role-filler disambiguation
off-course and hurt the accuracy of knowledge authoring.

To deal with such errors, it is necessary to be able to both explain (to a domain
expert) why KALM has selected a wrong semantic parse and then to provide the means
to correct or mitigate the noise in BabelNet that was responsible for that particular
error. We illustrate these issues using three examples where errors in BabelNet cause
wrong parsing results and show how a domain expert can deal with such problems.

First, consider the case of a wrong synset assignment to words in BabelNet. This
problem arises in the sentence Mary buys a watch for Susan’s daughter, among others.
Here the frame parser selects the Commerce Buy frame where Mary fills the role of
Buyer, watch fills the role of Goods, and daughter fills the role of Recipient. The
word daughter is disambiguated with the BabelNet synset bn:00018346n (a human

offspring—son or daughter—of any age). Although this synset has a connection with
the Recipient role, it is not equivalent to the daughter concept which only refers to
a female human offspring. The domain expert can record this synset assignment error
and add it to an exception list, so KALM will not associate daughter with synset
bn:00018346n in the next run.

Now consider a case of incorrect semantic links using the sentence Mary works in

Rockefeller Center as an example. Our semantic parser will generate three parses based
on three different lvps—all belonging to the same frame Being Employed:

{(Employee,Mary),(Place,Rockefeller Center)}

{(Employee,Mary),(Field,Rockefeller Center)}

{(Employee,Mary),(Employer,Rockefeller Center)}

Obviously, only the first parse is intended, but the second one gets the highest
score. The reason is that Rockefeller Center is connected to Field (as a branch of
knowledge) via the following path which has a very high score:

Field: Rockefeller Center (bn:00897288n) −hypernym→ a building structure (bn:
00013722n) −hypernym→ a discipline dealing with art or science (bn:00005105n)
−hypernym→ a branch of knowledge(bn:00007985n).

Clearly, the second link is wrong because a building structure is not a special case
of a discipline dealing with art or science. A domain expert can record this incorrect
semantic link and KALM will not consider it as a valid link next time.



Finally, consider the case when BabelNet has a missing semantic link using the
sentence John travels to Los Angeles. The frame parser would select the Travel frame
where John is the Traveler and Los Angeles is the Goal. Surprisingly, the synset
bn:00019336n, which refers to the city of Los Angeles in California, does not get
the highest score because BabelNet is missing an important hypernym link connect-
ing bn:00019336n (Los Angeles, CA) and the concept of municipality with the synset
bn:00056337n. The highest score gets a relatively small city in Argentina (bn:02084491n)
under the same name. This fact is immediately clear when one compares the semantic
path from Los Angeles in Argentina to the role Goal (the highest-scoring path) to
the path from the intended synset of Los Angeles, CA to that same role. This simple
analysis immediately suggests to the user that the missing link should be added.

Another source of errors is when BabelNet associates different synsets to the same
meaning. For instance, BabelNet synsets bn:00071215n (which comes from WordNet)
and bn:15385545n (which comes from Wikidata) denote the same concept as a place

where items or services are sold. This can be corrected by establishing an equivalence
between these two synsets.

6 Evaluation

Dataset. Acting as knowledge engineers, we used the methodology described in Section
3.2 and created a total of 50 logical frames,6 mostly derived from FrameNet but also
some that FrameNet is missing (like Restaurant, Human Gender). We then used KALM
to learn 213 logical valence patterns from 213 training sentences.6 We used 28 additional
tuning sentences to adjust the parameters of the scoring function (6) used for role-filler
disambiguation and to deal with noise in BabelNet.

We evaluated the KALM system using 250 test sentences6 (distinct from the train-
ing sentences) and verified whether the system returns the expected frames and dis-
ambiguates each role-filler correctly. Note that our approach is based on CNL and so
public and standardized data sets are not available for comparison. The test sentences
were instead constructed by rephrasing the sentences from FrameNet into CNL. While
Attempto CNL and KALM can handle quite complex sentences, the test sentences
were on purpose selected to be very simple and common, to rule out the possibility of
a bias towards KALM. We claim that to be of any use for knowledge acquisition or
authoring, any system should grok such sentences out of the box. Here is a sample of
the typical test sentences:

Mary buys a laptop.

Kate obtains a master degree in biology from Harvard University.

Kate makes a trip from Beijing to Shanghai.

John works at IBM.

Kate Winslet co-stars with Leonardo DiCaprio in Titanic.

Warren Buffett stays in Omaha.

A student borrows a textbook from a library.

Comparison Systems. The aim of this work is to create a technology to enable
domain experts to author high-quality knowledge using CNL. This goal is quite unique
in the literature and there do not seem to be systems that are directly comparable
to our work. It is interesting, however, to compare KALM with systems designed for
general text understanding, like SEMAFOR, SLING, and Stanford CoreNLP. Since
these systems are much more general than KALM and tackle a much more difficult
problem, it cannot be expected that they would produce the same quality of knowledge

6 https://datahub.csail.mit.edu/browse/pfodor/kalm/files



as KALM. However, given the simplicity of our test sentences, it is still reasonable to
anticipate that these systems would do well. Nevertheless, KALM bested all of them
by a margin much wider than expected.

A few more observations about the differences between KALM and other systems
are in order. First, none of the other systems do disambiguation or attempt to find
synsets for role-fillers, so in this aspect KALM does more and is better attuned to the
task of knowledge authoring. Second, none of these systems can explain their results,
nor do they provide ways to analyze and correct errors. Third, two of the comparison
systems use ontological frameworks that differ from FrameOnt . Whereas SEMAFOR
is based on FrameNet and is similar in this respect to KALM, SLING is based on
PropBank [20], and Stanford CoreNLP is based on Knowledge Base Population (KBP)
relations [16]. In our view, PropBank is not well-suited to support disambiguation
because it does not maintain equivalence among frames well enough. For instance, given
the sentences Mary buys a car and Mary purchases a car, the word buy and purchase

would trigger buy.01 and purchase.01 frames, respectively. Although these sentences
mean the same, they are not mapped to the same frame in PropBank. As to KBP, it
has too few types of semantic relations usable for knowledge acquisition compared to
FrameNet and PropBank. In any case, although the three ontological frameworks are
different, FrameOnt , FrameNet, and PropBank all cover the concepts used in the test
sentences, and KBP covers many of them as well. Therefore, the comparison systems
were expected to parse our test sentences and extract correct semantic relations.

Results. The evaluation is based on the following metrics.

FrSynC all frames and roles (semantic relations) are identified correctly
and all role-fillers are disambiguated

FrC all frames and roles are identified correctly
PFrC some frames/roles are identified, but some are not
Wrong some frames or roles are misidentified

KALM: 239 sentences are FrSynC (95.6%), 248 sentences are FrC (> 99%), and 2
sentences are Wrong (< 1%). Note that FrSynC applies only to KALM, since none
of the comparison systems can disambiguate the senses of the extracted entities.

SEMAFOR: parses 236 sentences out of the 250 test sentences, where 59 sentences are
FrC (25%), 44 sentences are PFrC (18.6%), and 133 sentences are Wrong (56.4%).

SLING: parses 233 sentences, where 98 sentences are FrC (42.1%), 63 are PFrC

(27%), and 72 sentences are Wrong (30.9%).

Stanford CoreNLP: parses 26 sentences, out of which 14 sentences are FrC (53.8%),
10 sentences are PrC (38.5%), and 2 sentences are Wrong (7.7%).

Compared to the other three systems, KALM is by far more accurate: in only two
cases it misidentifies the semantic frames. In one of these cases SEMAFOR succeeds
partially (PFrC ) and in the second case all other systems fail also. An example of such
a difficult sentence is Kate makes a purchase of a company, which belongs to the frame
Commerce Buy, where Kate is supposed to fill the role of Buyer and company the role
of Goods. However, KALM selects the Building frame instead and marks Kate as the
Agent and purchase as the Created Entity.

In the other 9 cases where KALM is less than perfect, all frames and roles are
identified correctly, but some of the synsets are misidentified. For instance, in the
sentence Kate purchases a house, KALM assigns the synset of a “public building for
gambling and entertainment” to the role-filler house, but house was correctly extracted
to fill the role Goods. Recall that the comparison systems do not have the means for
assigning any synsets at all.



7 Conclusion

Controlled natural languages were proposed as a technology designed to enable do-
main experts who have no skills in knowledge representation to become effective as
knowledge engineers. Unfortunately CNLs fell short of this promise due to insufficient
attention to the semantics, which led to serious gaps in accuracy between what CNLs
provide as knowledge authoring tools and what logic knowledge bases actually require.
In this paper, we introduced a logic-based knowledge authoring approach, KALM, and
demonstrated that bridging this gap is possible if CNLs are combined with linguis-
tic frameworks, like FrameNet and knowledge bases like BabelNet, and with role-filler
disambiguation. We have shown that this approach can be made efficient and that it
achieves the unprecedented accuracy of 95.6% for CNL sentences. We also believe that
this result can be further improved with machine learning techniques for tuning the
relatedness scoring functions in KALM.

Before converging on FrameNet and BabelNet, we considered a number of other
linguistic and general knowledge bases, such as ConceptNet [25], VerbNet [23], Prop-
Bank, DBpedia, Wikidata, and of course, the original WordNet. However, none of
these systems could match the breadth of BabelNet, and we found the FrameNet-
based methodology to be a good match for a logic-based approach such as ours. We
also considered SEMAFOR, SLING, and Stanford CoreNLP as alternative frame ex-
tractors, but found that they target unrestricted natural language and have accuracy
that is too low for our purposes.

For future work, we plan to extend the KALM framework to enable high-accuracy
authoring of complex rules and to deal with rules that have exceptions, which are
common in human knowledge.
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