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Abstract

A dynamical system is a system of variables that show some regularity in
how they involve over time. Change concepts described in most dynamical
systems models are by no means novel to social and behavioral scientists,
but most applications of dynamic modeling techniques in these disciplines
are grounded on a narrow subset of — typically linear — theories of change. I
provide practical guidelines, recommendations, and software code for explor-
ing and fitting dynamical systems models with linear and nonlinear change
functions in the context of four illustrative examples. Cautionary notes,
challenges, and unresolved issues in utilizing these techniques are discussed.
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A dynamical system is, broadly speaking, a system of variables that show some regular-
ity in how they involve over time. This admittedly broad and somewhat abstract definition
is in part a reflection of the changing definition of dynamical systems in the literature in
the past few decades. For instance, Scheinerman (1996, p. 1) referred to a dynamical sys-
tem as “a system that is doing the same thing repeatedly” and one that “always knows
what it is going to do next.” One alternative definition, offered by Boker and Nesselroade
(2002), describes dynamical systems as systems that change over time such that their cur-
rent states are somehow dependent upon their previous states. This definition does not
emphasize the notion of perfect predictability, but it does impose some constraints on the
type of systems that may be considered as dynamical systems. Thus, a system that shows
a constant amount of change (i.e., a linear true change trajectory) would be considered as a
dynamical system under Scheinerman’s, but not Boker’s definition. As such, the definition
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of dynamical systems is itself “dynamic” because it varies in breadth and in some selected
properties depending on the specific tools, and relatedly, modeling assumptions adopted by
individual researchers.

Scheinerman’s definition targets a class of systems whose patterns of regularity may
be extracted, elucidated, and predicted perfectly in the future given the right tools. Sys-
tems with perfect predictability are known as deterministic systems. That is, given perfect
knowledge of their previous values and the rules that govern their changes, such systems’ fu-
ture values can be predicted perfectly despite their seemingly complex observed patterns of
change. The belief that such systems exist, and may have change functions that can be con-
trolled experimentally, has fueled much of the enthusiasm in earlier research on dynamical
systems. With more researchers collaborating across disciplines and contributing collec-
tively to the development of dynamical systems analytic tools, more common grounds have
since been discovered between dynamical systems tools and other well-known techniques,
such as time series analysis, differential and difference equation modeling, and latent vari-
able modeling. Consequently, more tools are now available for modeling stochastic systems,
namely, systems that show regularity, but also some uncertainties in how they change over
time. These tools have helped expand what researchers typically think of as dynamical sys-
tems. Regardless of whether a researcher endorses the notion of deterministic or stochastic
change mechanisms, extraction and examination of the regularity in a system’s dynamics
have remained one of the core features of dynamical systems-inspired techniques.

Dynamical systems modeling tools are unique in that they require researchers to identify
the change mechanism that dictates in what ways the system has changed, and any regular-
ity and heterogeneity therein. Earlier dynamical systems approaches tended to emphasize
exploratory tools that help reveal the graphical relations among the variables that constitute
a dynamical system (Kaplan & Glass, 1995). These tools have some unique strengths and
natural appeal in scenarios involving nonlinear systems, especially those whose long-term
behaviors are difficult or impossible to infer analytically. They are not always as powerful in
discerning the dynamics embedded in the kinds of longitudinal data commonly encountered
in the social and behavioral sciences — namely, data that are noisy, of finite time lengths,
involve multiple replications across individuals (or other units of analysis), and are possibly
heterogeneous within and/or across units over time.

My goal in this article is to provide practical demonstrations and recommendations
on how standard graphical and inferential tools in the regression and related frameworks
can be used to clarify the change mechanisms characterizing dynamical systems, using data
that more closely mirror the kinds of longitudinal data commonly available in the social
and behavioral sciences. In the remainder of this article, I will first introduce differential
equations (DEs) as ways to characterize change mechanisms. This is followed by four
didactic demonstrations of how tools for derivative estimation can be used in conjunction
with regression and related modeling tools to explore and construct DE models. To provide
benchmark comparisons to the results of exploratory techniques, one possible way of fitting
confirmatory differential equation models is described. Practical guidelines, software code,
recommendations, and cautionary notes in using these exploratory and model-fitting tools
are discussed.

Differential Equation (DE) Models

One possible mechanism for modeling the recurrence in a system’s dynamics over time
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is through DE modeling. DE modeling has been widely employed as a modeling tool in the
physical sciences, engineering, and many other scientific disciplines long before the advent
of dynamical systems analytic approaches. As a class, DE models provide a framework for
expanding the quest for describing whether people have changed to how they have changed.
In practice, DE models are particularly useful for the study of continuous processes that are
observed at regular intervals (e.g., panel and observational studies), or intermittently (e.g.,
experience sampling, ecological momentary, event-contingent, and other related designs;
Hawkley, Burleson, Berntson, & Cacioppo, 2003; Merrilees, Goeke-Morey, & Cummings,
2008). In the social and behavioral sciences, researchers have also utilized DEs to capture the
dynamic aspects of social processes, organizations, and human behaviors (e.g., Arminger,
1986; Coleman, 1968; Tuma & Hannan, 1984).

Given repeated observations of a continuous process, y;(t), for unit (e.g., person) i (i =
1,...n)at times t =0, ... T, the first derivative (rate of change) of y at any arbitrary time
point is the change in y that occurs within a (infinitely) small window of time, a. Formally,

dyi(t) lim yi(t +a) — yi(t)_

dt a—0 a

The notation “(¢)” is a continuous index of time that may take on any real value. A positive

value of derivative dy#p reflects an instantaneous increase or growth in the value of y;(t)

(%)

at that particular moment; a negative value of dy#
dy#p = 0, then y;(¢) is said to be “static” or manifest no change at that particular moment.
Generally, fixed points for any dynamical system are values of the dependent variables for
which the rates of change for all its constituent dependent variables, including derivative
variables, are all equal to zero.

In a similar vein, the second derivative is the change in the rate of change of y:

dei(t) . [yi(t'f'ag_yi(t)] _ [yi(t)_zi(t_a)] . yi(t +a) — 2ui(t) + vi(t — a)
dt? a—0 a a—0 a2

indicates an instantaneous decline. If

i

where this change in instantaneous growth or decline may be conceptualized as the curvature

2.,
in y;(t). Higher positive values of d#é“ signify greater or more precipitous growth or

decline in the level of y;(t), much like acceleration occurs when a car travels successively
greater distances at close intervals; negative values of d?;g(t) indicate reductions in growth or
decline, much like deceleration in a car as travels decreasing distances. Other higher-order
derivatives then capture further changes in these change qualities. All of the variables that
determine the current values of a system, including level and derivative variables, constitute
the state space of the dynamical system. The order of a DE model, denoted as m below,
indicates the highest-order derivative in a model.

When multiple dependent variables are involved or in systems that are of higher orders
than 1 (i.e., involving higher-order derivatives beyond first derivatives), it is often convenient

to gather the functions of derivatives into a vector form as:

dyi(t)
dt

In Equation (1), %(.) is a differential operator that takes the derivative of the element

enclosed in parentheses with respect to time, and y,;(t) is now a vector of variables of

= fly;(t), wi(t)], i=1,...mt=0,...,T. (1)
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interest containing level and derivatives at time ¢ that are of lower order than m. f[.] is a
vector of functions, typically referred to as drift functions, that describe how the variables
in y,;(t) drift (i.e., change) instantaneously over an infinitely small time interval, as related
to their current values, y;(t), and u;(t), a vector of exogenous predictors (e.g., t). These
exogenous predictors are shown here as time-varying, but they may also be time-invariant
and specific only to i. y,;(t) may include derivative variables needed to define higher-order
DEs, namely, DEs involving higher-order derivatives than the first derivatives. For instance,
a second-order DE model in which the highest-order derivative is the second derivative can
be written as two first-order DEs. In this case, y,(t) would contain y;(t) as well as dy#p.

If all functions in f[.] involve only linear functions of y,(t), Equation (1) is said to
be a linear DE model. Generally, linear functions are those that give a straight line in a
graph. A function that is linear in y has the form f(y) = ¢+ ay, in which ¢ and a are
constants that represent the intercept and slope of the straight line, respectively. A linear
DE can — and typically does — have nonlinear integral solutions. These integral solutions
are analytic functions that map out all values of y;(t) at any ¢ > 0 beginning from some
initial conditions that specify the values of y;(0), namely, the system’s values before any
changes are realized (Arnold, 1974; Zill, 1993).! Linear DEs typically have known analytic
solutions.

In contrast, functions that do not fall into any special cases of the form ¢+ ay are gen-
erally nonlinear functions. Examples of nonlinear functions include interactions among the
variables in y;(t), or polynomial functions of y,(¢) beyond the first degree (e.g., quadratic,
cubic functions; Zill, 1993). Some examples of nonlinear DEs have already been pro-
posed in studies of ovulatory regulation (Boker, Neale, & Klump, 2014), circadian rhythms
(E. N. Brown & Luithardt, 1999), cerebral development (Thatcher, 1998), substance use
(Boker & Graham, 1998), cognitive aging (Chow & Nesselroade, 2004), parent-child in-
teractions (Thomas & Martin, 1976), dyadic relationships (Chow, Ferrer, & Nesselroade,
2007); and sudden transitions in attitudes (van der Maas, Kolstein, & van der Pligt, 2003).
Most nonlinear DEs do not have analytic solutions. In such cases, the trajectories of the
variables in y,(¢) can alternatively be mapped out using numerical solvers, which are ap-
proaches for computing the predicted numerical values of the system successively in time
using the hypothesized DEs at some pre-determined time steps (Press, Teukolsky, Vetter-
ling, & Flannery, 2002).2
Latent Stochastic Differential Equation (SDE) Models
Suppose that the true processes of interest, represented as 1,(t), a w x 1 vector of latent
variables at time ¢, are unobserved but may be identified using the variables in y,,, which are
possibly contaminated by measurement errors. Let’s suppose further that our representation
of the change mechanisms of the underlying latent processes may also be imperfect, or
are influenced by other sources of uncertainty. This scenario requires the use of a latent
stochastic DE (SDE) model, expressed as (Arnold, 1974):

dn;(t) = f (n(t), ui(t)) dt + dw;(t), (2)

!These solutions may equivalently be expressed in exact discrete time form (Harvey, 2001), which specifies
the values of y,(¢; ;) at discrete time point ¢; ; using the projected values of y,(¢; j—1) at a previous time
point.

2These time steps are distinct from the time intervals of the observed data — the former can be specified
to be smaller than the latter to reduce the numerical errors that arise from such approximations.
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f(.) is again, a vector of differentiable linear or possibly nonlinear drift functions that
describe the changes in a vector of latent variables, m;(t), over an infinitely small time
interval. These drift functions now depend on n,(t) and wu;(t), a vector of person- and
time-specific covariates. As in Equation (1), n,(¢) may include latent derivative variables
needed to define higher-order SDEs, namely, SDEs involving higher-order derivatives than
first derivatives. w(t) is a vector of Wiener processes, which can be understood as process
noises, or dynamic errors, that contribute to the uncertainty of the change mechanisms of
n,(t). Wiener processes have been used to characterize, for instance, Brownian motion, the
diffusion of minute particles suspended in fluid (R. Brown, 1828). dw;(t¢) denotes differences
in the Wiener processes over dt, with a covariance matrix, Q (also known as the diffusion
matrix), whose values depend on dt. When Q is a null matrix (i.e., there are no process
noises in the system), the equation in (2) reduces to a deterministic ordinary differential
equation (ODE) model. This is in contrast to situations where Q is not a null matrix, in
which case future values of m,(¢) can only be predicted as subjected to the dynamic errors
in w;(¢t). That is, the DEs include a stochastic component so that Equation (2) is an SDE
model. Note that the instantaneous rate of change of the Wiener process does not exist
or is not defined over infinitely small intervals (Arnold, 1974; Molenaar & Newell, 2003).
Thus, I express the dynamic model in the differential form in Equation (2), as opposed to
the alternative form in which d%t(t) appears on the left-hand side of the equation.

The latent variables in m;(¢; ;) at discrete time point ¢; ; are indicated by a p x 1
vector of manifest observations, y;(t; ;). These observations are assumed to be measured at
individual-specific and possibly irregularly spaced time points ¢t = ¢; ;, j = 1, ..., T}, as are
the vector of person- and time-varying covariates, u;(t). The vector of manifest observations
is linked to the latent variables as

Yi(tig) = 7+ An,(ti;) + Aui(ti ;) + €i(tiz), €i(tij) ~ N(O,R). (3)

In Equation (3), t; ; denotes the jth observed time point for person i, T is p x 1 vector of
intercepts, A is a p X w factor loading matrix that links the observed variables to the latent
variables, and A is a matrix of regression weights for the covariates in w;(t; ;) observed at
time t; ;. Adopting the modeling tradition in the state-space literature (see e.g., Durbin &
Koopman, 2001), we assume that all sources of time dependencies of interest are specified as
part of the dynamic model in (2) and consequently, €;(t; ;) is a p x 1 vector of measurement
errors assumed to be serially uncorrelated over time and normally distributed with a mean
vector of zeros and covariance matrix, R. Equations (2) and (3) represent the dynamic
model and measurement model, respectively, that collectively define a dynamic system. All
of the illustrative examples considered in this article are special cases of Equations (2) and
(3).
Model Building and Model Exploration

New methodological extensions continue to augment the repertoire of tools for fitting in-
creasingly complex DE models (Beskos, Papaspiliopoulos, & Roberts, 2009; Mbalawata,
Sarkkd, & Haario, 2013; Ramsay, Hooker, Campbell, & Cao, 2007). Applications and
methodological developments that involve fitting linear ordinary and stochastic DE (ODE
and SDE, respectively) models have evidenced considerable growth in recent years (Boker &
Graham, 1998; Boker et al., 2014; Deboeck, 2010; Oravecz, Tuerlinckx, & Vandekerckhove,
2016; Oud & Jansen, 2000; Trail et al., 2013; Voelkle & Oud, 2013). In contrast, studies on
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methods for fitting nonlinear ODEs and SDEs are still nascent, (e.g., Chow et al., 2007;
Chow, Lu, Sherwood, & Zhu, 2016; Cobb & Zacks, 1985; Lu, Chow, Sherwood, & Zhu,
2015; Molenaar & Newell, 2003; Singer, 2002; Wagenmakers, Molenaar, Grasman, Hartel-
man, & van der Maas, 2005), even though a subset of nonlinear DE models have received
widespread attention.

Despite recent advances in fitting confirmatory DE models, few theories exist in the
social and behavioral sciences to guide the formulation of confirmatory models of change
mechanisms. Exploratory approaches can be helpful as a first step to unveil possible deter-
minants of and linkages among change mechanisms when there is a lack of theory to guide
confirmatory modeling efforts. Two-stage approaches that produce intermediate output
such as derivative estimates can be especially helpful for model exploration and building
purposes because the derivative estimates serve as proxies for a system’s instantaneous
changes and any higher-order changes thereof (Butner, Gagnon, Geuss, Lessard, & Story,
2015; Deboeck, Montpetit, Bergeman, & Boker, 2009). In these approaches, researchers
first obtain derivative estimates by using different variations of numerical differencing pro-
cedures to approximate the instantaneous (first and higher-order) changes, and subsequently
use the derivative estimates for model building and exploration purposes. Model building
then becomes a direct variable selection problem wherein the goal is to identify predictors
that can help explain those derivative estimates. The utility of these derivative estimation
approaches can be further expanded by capitalizing on the recent surge of nonparamet-
ric (e.g., spline-based) modeling tools that allow researchers to explore, without assuming
any a priori model, interrelations among variables and their associated derivatives. These
spline-based methods include GAMs (GAMs; Hastie & Tibshirani, 1990), modifications
of classical GAMs to enable efficient variable selection from a large pool of candidate pre-
dictors (Hastie, Tibshirani, & Friedman, 2009; S. N. Wood, 2006), tools that target broad
accessibility (Li, Tan, Huang, Wagner, & Yang, 2014), as well as functional data analysis
(FDA) tools that offer flexible, spline-based approximations for curves, their derivatives,
and corresponding analysis (Ramsay & Silverman, 2005).

For the purpose of derivative estimation, the generalized local linear approximation
(GLLA; Boker, Deboeck, Edler, & Keel, 2010) and the generalized orthogonal local deriva-
tive (GOLD; Deboeck, 2010) are among some of the better-known tools in the psychological
literature. Chow, Bendezi, Cole, and Ram (2016) provided an overview of the respective
strengths of the GLLA, GOLD, and a spline-based approach typically adopted in the FDA
literature. Particular advantages of the FDA approach include built-in mechanism to ac-
commodate irregularly spaced data, and enhanced smoothing of the derivative estimates in
cases involving noisy, possibly nonlinear dynamics. Here, I utilize FDA for derivative esti-
mation in all illustrative examples. The key ideas behind the FDA approach to derivative
estimation are outlined next.

Spline-Based FDA

FDA is a branch of analytic methods focusing on the analysis of curves, within which splines
and derivatives play a prominent role. One type of popular spline function is the basis spline
(B-spline; De Boor, 1977, 1978; Dierckx, 1993), which approximates a time series at any
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arbitrary time ¢ as a linear combination of B basis functions, ¢ (), as:

B
ni(t) = 0i(t) = cipi(t), (4)
b=0

where ¢ ;(t) is the bth basis function for person i, and c¢; is its associated weight or
coefficient. All of the B basis functions are known and fixed functions of ¢, usually taken to
be some form of polynomials functions up to degree B, one popular special case of which
is the B-splines. B-splines serve to approximate segments of a time series in a piecewise
way using polynomials (De Boor, 1977; Dierckx, 1993). Each segment of the time series
is separated from its immediately adjacent segment(s) by a knot point, with the first and
last measurement occasions typically constituting the outer or ending knots. The number
of basis functions used in each segment, also known as the order of a B-spline, is equal to
B+ 1. It is customary to specify the order of the B-spline to be at least two higher than
the order of the derivative estimates of interest or alternatively, the order of the derivatives
invoked in the estimation process, whichever one is higher.

To ensure that smoothness of the approximation curve at each interior knot point, two
adjacent polynomials are typically specified to match in the values of a fixed number of their
derivatives, usually chosen to be B-1. Using this convention, a spline of degree 0 yields a
step function that is discontinuous at knots; a spline of degree 2 is piecewise quadratic with
matching level and first derivative at the interior knot points. Cubic spline — a popular
spline function in many substantive applications (e.g., Tarvainen, Georgiadis, Ranta-aho,
& Karjalainen, 2006) — is piecewise cubic with matched 1st and 2nd derivatives at knot
points to yield visibly smooth approximation curves.

Once 7#;(t) is available from Equation (4), the derivatives of 7);(t) of order p then follow
directly from differentiating Equation (4) with respect to time, which yields:

dPii(t) EB:c dP yi(t) (5)
- ar
b=0

To proceed with derivative estimation, one requisite step is to estimate the unknown
coefficients, ¢,. However, if too many values of ¢, are allowed to be non-zero, one may
end up with approximation curves, 7);(¢) and corresponding derivative estimates that are
overly “wiggly” — in other words, they capture too much of the nuanced fluctuations in the
data. Thus, it is often of interest to use some regularization procedures to penalize against
excessive roughness in the approximation curves to ensure that they satisfy some notion
of smoothness (Ramsay & Silverman, 2005). One way of doing so is to estimate the basis
function coefficients, ¢y, by minimizing the penalized residual sum of squares function

PENSSEy = [ni(ti;) — hi(ti;)]> + \APENALTY (#);) (6)

i,J
where PENALTY (7;) is a penalty function that captures the extent of deviations from a
predefined smoothness criterion; A > 0 is a smoothing parameter such that the larger A is,
the heavier the penalty (i.e., the estimated curve is smoother). A has to be estimated, or

selected using selection criteria such as the generalized cross-validation index (GCV; Craven
& Wahba, 1978) or information criterion measures (Tan, Shiyko, Li, Li, & Dierker, 2012).
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In this article, I use the GCV for A selection purposes, with GCV values being preferred as
they indicate better cross-validation results.?

Different penalty functions may be used to regularize the approximation curves and their
corresponding derivatives. One penalty function typically used in the context of derivative

estimation purposes is
2
R dm+2ﬁi( S)

where m is the highest derivative desired, and fr denotes integration (i.e., “summation”)
over I', a bounded interval containing the range of ¢ values that are of interest to the
researcher. For instance, with m = 2 (i.e., a researcher wishes to estimate up to the second
derivatives), the integrated squared fourth derivative is used in the penalty function (7) to
penalize against excessive curvature in the second derivatives. Consequently, B-splines of
order 6 (two higher than the order of the derivatives invoked in the estimation process) may
be used for estimation purposes.

The number and placement of knot points are among some of properties that determine
characteristics of the approximated curves. Even though some automated schemes exist to
help guide these decisions (e.g., Eilers & Marx, 1996; Tan et al., 2012; S. N. Wood, 2003),
simultaneous estimation of the smoothing parameter and other quantities related to the
knot-point is often computationally formidable. In all the illustrative examples in this
article, I place the knot points, a priori, at the observed measurement occasions and choose
the smoothing parameter, A, by minimizing the GCV function. Then, after selecting the
order of the basis functions, knot points, and an initial value for the smoothing parameter,
the basis coefficients of the penalized approximation curves are estimated by minimizing the
penalized residual sum of squares function given in Equations (6) — (7). Estimation of the
basis coefficients and smoothing parameter may be repeated, as needed, until reasonable
approximations of individual curves are obtained, for instance, through graphical inspection
of the approximation curves. Other variations to this approach to accommodate higher
degrees of heterogeneity across curves are described in the Other Practical Issues section.
Graphical and Other Variable Selection Tools
Many of the initial hurdles to model building may be greatly circumvented by having ac-
cessible graphical tools that can help highlight and clarify the relations among the variables
that define a dynamical system, especially for the derivative variables (Butner et al., 2015).
In this section, I describe selected standard regression diagnostic and variable selection
tools that can be used to detect interrelations among variables and/or their derivatives
once derivative estimates of reasonable quality have been computed.

Graphical tools. Many popular exploratory tools within the realm of dynamical systems
analysis are graphical tools that help to highlight the topological properties of various
dynamical systems. Examples of such plots include phase portraits, which are plots of
the variables (including derivative variables) that constitute a dynamical system (see e.g.,

3In a standard leave-out-one cross-validation approach, the goal is to optimize fit by minimizing the
sum of the squared discrepancies from predicting each observed data point using an approximation curve
constructed using coefficients estimated using all but that specific data point. The GCV generalizes this kind
of leave-one-out approaches by incorporating a weight function to accommodate scenarios with irregularly
spaced data points and non-periodic curves (Craven & Wahba, 1978).
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Butner et al., 2015); and vector field plots, which show the predicted (model-implied)
changes characterizing a dynamical system starting from one or multiple initial conditions
(for a statistically enhanced version of the vector field plot see Boker & McArdle, 1995).
When used with noise-free theoretical dynamical systems, these plots often show clearly
discernible patterns of regularity in dynamics that have become the “signatures” of various
dynamical systems. When used with empirical data that are contaminated with noise, the
regularity in dynamics as revealed through the plots may not be immediately salient. Thus,
additional tools are needed to help clarify the interrelations among variables.

Many graphical tools from the regression framework have considerable potential to fa-
cilitate model building, but are clearly underutilized in the dynamical systems literature.
One example includes variable selection tools that are often utilized in the regression frame-
work to help researchers select the predictors (variables) that can best explain one or more
dependent variables in some optimal but parsimonious way. In a similar vein, these tools
can also be used to help build dynamical system models, except that some of the implicated
variables are now derivative variables. One such graphical variable selection tools in the
regression framework is the component-plus-residual plot (Fox, 2015; F. S. Wood, 1973). A
component-plus-residual plot is a plot of the residuals of the dependent variable against a
predictor after the effects of other predictors have been partialled out. Additionally, a loess
line and a linear least squares line are overlaid on the plot to help visualize any possible
deviations in associations from linearity (Fox, 2015). This plot can be created, for instance,
using the crPlots function in the “car” library in R (Fox & Weisberg, 2019). In this article,
I will demonstrate the use of components-plus-residual plots with other commonly adopted
plots for visualizing higher-dimensional data, such as contour plots, to visualize (possibly
nonlinear) patterns of association among derivative and level variables.

Semiparametric GAM-based tools. In the absence of clear theories of change, one alter-
native route is to begin from a reasonably flexible model — specifically, a semiparametric
model — that explores, within a partially confirmatory framework, the unknown interrela-
tions among a set of level and derivative variables, as well as their influences on one or more
dependent variables of interest. For instance, one possible semiparametric model shown in
the special case involving two arbitrary predictors, u;; and ug;, on an observed dependent
variable y;, can be expressed as (Harrell, 2001; Hastie & Tibshirani, 1990; S. N. Wood,
2003):

E(yiluii,u24,0;)) = g(u1i,u2;,6;) parametric component
+  s1(u1y) + s2(ug,;)  additive smoothed effects
+  s3(uig)ug; + sa(uz)ur,;  varying coefficients
+ s5(u14,u2;)  tensor products for jointly nonlinear effects, (8)

wherein ¢(.) denotes a parametric function (of known — usually linear — form) involving the
two predictors and 6;, a vector of person-specific parameters. Following this component are
five nonparametric functions (s; — s5) that have unknown forms, which are each approxi-
mated via regularized spline functions. The notation s (us ;) denotes the kth nonparametric
function that involves the hth predictor, uy ;; whereas si(up, ;)u;; denotes multiplication of
the predictor u;; with the kth nonparametric function that involves the predictor wy, ;.
The nonparametric functions in Equation (8) include three sets of terms, which I will
elaborate in turn. The first set includes functions that capture additive effects of each
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predictor (s; — s2). As an example, consider the Yerkes-Dodson law (Yerkes & Dodson,
1908), which predicts an inverted U-shaped relation between individuals’ arousal levels and
their performance on difficult cognitive tasks. That is, moderate, as opposed to low or high
arousal levels, are assumed to optimize performance. Suppose a researcher wishes to clarify
this relation empirically, as opposed to imposing a parametric (i.e., known mathematical)
function that dictates the nature of this relation. In this case, the researcher may specify
performance to be the dependent variable, y;, and arousal level to be the predictor, u ;.
Consequently, any linear or nonlinear effect of arousal level on performance may be revealed
through the estimated form of s;.

The second set of terms (s3 — s4) are varying coefficient functions (Hastie & Tibshi-
rani, 1993) that allow the effect of each predictor to vary in a linear or nonlinear manner
depending on the values of another predictor. Building on the same example, the Yerkes-
Dodson law additionally states that the inverted U-shaped relation is expected to arise
under challenging cognitive tasks. With simpler tasks, individuals’ performance levels are
expected to increase consistently with rises in arousal levels. In this case, the researcher may
specify task difficulty level to be uy;, arousal level to be ug;, and use the term s3(u1;)ug;
to approximate the effect of arousal level as dependent on task difficulty level. Even though
I use the example of a categorical predictor for u; here, u;; may also be continuous in
nature. In the case where u; ; represents time, the resultant function s3(uj ;)us,; shows the
time-varying effect of ug; on y;. Such time-varying coefficient models have been applied in
areas such as psychophysiology (Tarvainen et al., 2006), brain imaging (Molenaar, Beltz,
Gates, & Wilson, 2007), and affect (Chow, Zu, Shifren, & Zhang, 2011).

The third set of terms in Equation (8) consists of a tensor product function, s5(u1 i, u2;),
that allows for approximations of jointly nonlinear effects involving both uq; and wusg;.
Roughly speaking, tensors are multidimensional arrays that comprise a series of univariate
functions. In our case, these univariate functions are univariate spline functions. Ten-
sor products are used to approximate possibly nonlinear multivariate functions via linear
combinations of the products of all the univariate splines. Extending the earlier example,
suppose the relations among arousal level, task performance, and task difficulty level are
more complex than was originally hypothesized by the Yerkes-Dodson law. Specifically,
the researcher speculates that task difficulty itself affects task performance following a “Z-
shaped” function: that is, relatively little decrements in task performance are expected as
the task varies from easy to moderate difficulty, followed by precipitous declines in per-
formance when the task moves beyond some threshold difficulty level. In this case, task
difficulty itself has a nonlinear relation to task performance. Thus, the interactive relation
between task difficulty and arousal level is best clarified with a tensor product term.

The full model, which involves a combination of parametric and nonparametric com-
ponents, is thus a semiparamatric additive model. If the data for model fitting follow any
of the special cases in the exponential family (e.g., Gaussian, Poisson, Bernolli, Binomial,
Multinomial), then E(y;|.) can be mapped to the observed data y via a link function, thereby
constituting a generalized linear modeling framework (McCullagh & Nelder, 1989).

Extrapolating to the context of DE modeling, the dependent variable is typically the
highest-order derivative of interest to a researcher, the mth order derivative at time ¢; ;.
Furthermore, u;; and ug2; may be level or derivative variables of a lower order than m.
Here, an arbitrary example involving two predictors is shown. Scenarios that motivate the
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use of such semiparametric variable selection routines in the regression framework typically
involve a large number of potential predictors. The form of the relation of each predictor
to the dependent variable is unknown and may be linear or nonlinear in nature. The use
of penalized estimation routines further affords the possibility to shrink the coefficients
associated with unimportant predictors to zero, thereby accomplishing variable selection
and model comparison simultaneously (Geweke, 1996; Lu, Chow, & Loken, 2017).

I use the penalized least squares estimation routines in the R package, Mixed GAM
Computation Vehicle with Automatic Smoothness Estimation (mgcv; S. Wood, 2018), to
perform estimation of GAMs. The thin plate regression splines use an eigenvalue decom-
position procedure to select piecewise regression spline coefficients that can maximize the
amount of variance explained in the data (S. N. Wood, 2003, 2006). For didactic introduc-
tions to GAMs see McKeown and Sneddon (2014) and S. N. Wood (2006).

Single-Stage, Confirmatory Approaches to Fitting SDE Models: The
Continuous-Discrete Extended Kalman Filter (CDEKF) as One Possible
Approach
I have highlighted some possible tools for exploring and building DE models, both graph-
ically and via semiparametric modeling techniques. However, as I will demonstrate in one
of the illustrative examples, multi-stage exploratory/semiparametric approaches, though
flexible, can often come at the costs of reduced statistical precision, efficiency, and power
compared to single-stage, confirmatory approaches that fit correctly specified models to
the data. Thus, for inferential purposes, it can be advantageous to supplement initial ex-

ploratory results with results from single-stage, confirmatory model fitting.

Some limited confirmatory tools have been proposed and developed in the statistical
and psychometric literature for fitting latent SDE models (e.g., Chow et al., 2007; Chow,
Lu, et al., 2016; Driver, Oud, & Voelkle, 2017; Kou, Olding, Lysy, & Liu, 2012; Lu et
al., 2015; Molenaar & Newell, 2003; Oravecz et al., 2016; Singer, 2010, 2012). Of these
approaches, I use the continuous-discrete time extended Kalman filter (CDEKF) algorithm,
provided as part of the R package, Dynamic Modeling in R (dynr; Ou, Hunter, & Chow,
2018, revised and resubmitted), for confirmatory estimation of linear and nonlinear DE
models with Gaussian data.

The implementation of the CDEKF has been described in more detail elsewhere (Chow
et al., 2018; Kulikov & Kulikova, 2014; Kulikova & Kulikov, 2014) and is not reiterated here.
In brief, the CDEKF (Bar-Shalom, Li, & Kirubarajan, 2001; Kulikov & Kulikova, 2014; Ku-
likova & Kulikov, 2014) is a procedure for estimating the latent variables that appear in a
system of (linear and possibly nonlinear) SDEs. The linear, discrete-time analogue of the
CDEKEF, known as the linear Kalman filter, has some known parallels to well-known factor
score estimators in the psychometric literature (Chow, Ho, Hamaker, & Dolan, 2010; Dolan
& Molenaar, 1991; Lawley & Maxwell, 1973; Oud, van den Bercken, & Essers, 1990). The
CDEKF algorithm as implemented in the dynr package uses the fourth-order Runge-Kutta
(Press et al., 2002), one possible numerical DE solver that derives successive approxima-
tions of the over-time values of the latent variables via weighted averages of four sets of
model-implied changes. In cases involving nonlinear DEs, a Jacobian matrix composed of
first-order symbolic differentiations of the (possibly) nonlinear dynamic functions with re-
spect to the latent variables is used in all covariance functions to enable approximations
of the nonlinear changes using first-order Taylor series expansion (i.e., piecewise linear ap-
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proximations).

Under the constraint of a linear measurement model and normally distributed process
noises, Chow and colleagues (2007) noted that a closed-form log-likelihood function can
be constructed using by-products of Kalman filtering algorithms, and maximized using an
optimization procedure (e.g., Newton Raphson) to obtain estimates of all unknown param-
eters in the system. The estimates of the standard error are obtained using a matrix of
numerical Hessians (second derivatives) of the loglikelihood function with respect to the
parameters. In addition, information criterion measures such as the Akaike Information
Criterion (Akaike, 1973) and Bayesian Information Criterion (Schwarz, 1978) can also be
computed based on the loglikelihood function (Harvey, 2001) for model comparison pur-
poses. Thus, the procedures for confirmatory model fitting adopted in this article capitalize
on a suite of routines implemented in dynr to handle latent variable estimation, parameter
estimation, and model comparisons involving ODEs/SDEs.

Illustrative Examples

I present four illustrative examples to demonstrate the respective strengths of multistage
exploratory vs. single-state confirmatory approaches. I begin with a univariate ODE model
(Illustration I) and a bivariate ODE model (Illustration II) that are relatively well-known
in the psychometric literature. These illustrations are followed by two illustrations (III
and IV) that utilize exploratory tools to reveal evidence of qualitative changes in dynam-
ical systems. The last illustration (V) underscores some of the inadequacies of two-stage
exploratory approaches in comparison to results from single-stage confirmatory modeling.
For all illustrations, I used numerical solvers to generate all the data; the time intervals for
deducing numerical solutions were specified to coincide with the empirically observed time
intervals. The code for all illustrative examples is provided in the supplementary materials.
Illustration I: Linear Oscillator Model

My first illustrative example features the simpler case of a linear ODE with only mea-
surement errors and no process noise. In this illustration, standard derivative estimation
approaches such as the FDA, the GLLA and GOLD typically provide satisfactory derivative
estimates; subsequent use of these derivative estimates for model fitting in a second stage
generally yields reasonable estimates of the parameters and their standard errors. This
example serves to demonstrate the utility of component-plus-residual plots in revealing
interrelations among level and derivative variables from FDA.

One of the most prominent and broadly used ODE in the psychological literature is the
damped linear oscillator model (Boker & Graham, 1998), a mathematical model describing
the behavior of a swinging pendulum with friction. This model is expressed as:

2., .
T _ oty + 210, Q

in which 7;(t) represents the true level or displacement of the pendulum relative to its
equilibrium position (the center of motion); w is a frequency parameter that governs how
rapidly the pendulum swings back and forth relative to the equilibrium point, and ( is a
parameter that controls the extent to which the pendulum. When ¢ < 0, shows damping,
or reduction in the magnitudes of displacement over time. Alternatively, if { > 0, the
extent to which the pendulum shows amplification in displacement over time. Damping
and amplification are both characteristics that pertain to how a system’s amplitude of
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fluctuations changes over time. With damping and in the absence of further external shocks,
the system will, as time increases, eventually settle into a stable fixed point — often called
attractor of sink — at 0. With amplification, 0 becomes an unstable fixed point, termed a
repeller, from which the system moves away as time increases.

Equation (9) is the DE representation of a swinging pendulum that, when subjected
to friction, shows damping or successive reductions in its displacements from a set-point,
eventually coming to rest at the set-point. It also describes how a heater, given input from
a thermostat, operates to reduce the discrepancies between the current room temperature
and a target temperature. Chow, Ram, Boker, Fujita, and Clore (2005) used this mathe-
matical model to describe an “emotional thermostat” that delineates emotion regulation as
a process through which individuals damp deviations in their emotional levels toward their
characteristic set point levels.

I generated over-time trajectories of n;(t) using Equation (9) with w =-0.8, ¢ = -0.1 for
n = 50 individuals from ¢ = 0 to 10 across T; = T = 100 measured time points. The initial
conditions, 7;(0) and dnégo) , were specified to be normally distributed across people with
zero means and variances of 4 and 0.25, respectively. The time intervals between successive
time points, namely, A(t; ;) = t;; — t;j—1, were fixed to 0.1 for all of the j = 1,...,T;
measurement occasions, and for all ¢ = 1,...,n individuals. In addition, after obtaining
the numerical solutions, normally distributed measurement errors with zero mean and a
variance of 1.0 were added to n;(¢t) to yield y;(t).

As noted, the over-time trajectories of 7;(t) (see Figure 1) were generated with the same
set of values for w and (. Differences in the magnitudes of fluctuations over time were due
primarily to individual differences in the initial conditions. The lack of individual differences
in dynamics (i.e., in w and ¢) may be difficult to deduce from the over-time individual tra-
jectories in Figure 1(A) per se, but inspection of the corresponding component-plus-residual
plots in Figure 1(B)—(C) helps clarify the lack of salient interindividual differences in the

slope relating n;(t) to d2;z2(t) after the effect of dn#p has been partialled out. In addition,
the component-plus-residual plots indicate that it is reasonable to assume linear relations
among the levels and first derivatives with the second derivatives, as evidenced by the clear
overlap between the linear regression lines (the dashed lines) and the loess lines (the solid
lines). Unlike the linear regression line, the loess lines do not impose linearity assump-
tions on the relations between the independent and the dependent variables, and thus, has
been used as part of the diagnostic steps for identifying potential nonlinear relations in a
regression context.

In this illustrative example, given the linear relations among all independent and de-
pendent variables and the lack of interindividual differences in dynamics, the smoothed
levels as well as first and second derivative estimates can be used as variables in a standard

25,
regression model. The estimated regression coefficient linking 7;(¢) to d;’l;(t) provides an
A 24,
estimate of w, and the coefficient linking dngl—gt) to dgfz,(t) provides an estimate of (. Provided

that the data have reasonable reliability and sample size, and the smoothed levels offer
a reasonable approximation of the underlying true scores, w and { can generally be well
recovered. In previous work, my collaborators and I have tried scenarios where reliability,
defined as the ratio between the true score and total variance, was as low as .6 and the
true parameters were still well recovered. In the illustration shown here, the reliability of
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the simulated data was around .57. Of course, myriad other factors may also impact the
quality of the derivative estimates, such as the complexity of the DE models, the presence
of process noises, and the presence of other confounds, such as under- or over-smoothing
in the estimated levels and derivatives used for model fitting. Some of these factors are
explored in subsequent illustrative examples.
Illustration II: Classical Predator-Prey Model

In this example, I utilize a nonlinear ODE model, the classical predator-prey model (Lotka,
1925; Volterra, 1926), often termed the Lotka—Volterra equation, to demonstrate how non-
linear relations among level and derivative variables may be visualized and explored using
graphical methods, GAMs, and another common technique to probe interaction effects in
regression analysis, simple slope analysis (Cohen, Cohen, West, & Aiken, n.d.).

The classical predator-prey model captures the interaction between a predator and a
prey population as:

dm (t)

i rim(t) — a1z (t)n2(t), and (10)
dn;t(t) = —rame(t) + aam ()n2(), (11)

where 71 (t) corresponds to the true density of the prey population at time ¢ and 72(t) the
the true density of the predator population. The terms dné—t(t) and d"jt(t) on the left-hand-
side of the two equations represent the rates of change in the densities of the prey and
predator populations at time ¢. The parameter r; > 0 is used to represent the growth rate
of the prey population in the absence of the predator population (i.e., when 72(t) = 0);
and ro > 0 is the death rate of the predator population in the absence of its sole food
source (i.e., the prey, when 7;(t) = 0). Relatedly, the interaction between the predator and
prey population is hypothesized to lead to negative outcome for the prey population (thus
Equation (11) has the component —aj9 instead of +aj2), whereas the predator population
is assumed to benefit from this interaction (the magnitude of which is determined by as1).
In certain parameter ranges, this model is known to yield cyclic fluctuations in predator
and prey densities in a lead—lag manner.

The classical predator-prey model features a single population of predator and prey;
thus, there is no subject or population index i in Equation (11). Chow et al. (2007) used
a multiple-subject extension of the predator-prey model to describe the “encroachment”
of positive affect of individuals in a dyadic romantic relationship by the negative affect
of their partners. An extended version of this model was used by Chow and Nesselroade
(2004) to represent age differences in cognitive performance due to individuals’ increased
difficulty in ignoring interference from irrelevant information with age. In other words, the
irrelevant information is “preying on” individuals’ ability to attend to cognitive tasks. Here,
I generated simulated trajectories for n = 10 participants across T = 200 time points with
0.08 as the time interval. The parameters were set to be ri = 1.5, r9 = 1, a12 = .5, a9 = 4,
with normally distributed additive measurement errors with means of zero and variances of
1.0 for both the prey and the predator. Note that because of the specification of normally
distributed measurement errors, the density values of prey and predator could actually
extend below 0 — an artifact that does not make sense from a population density standpoint.
To aid interpretation, these densities were subjected to exponential transformations so that
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Figure 1. (A) Over-time trajectories generated using the linear oscillator model; (B)
component-plus-residual plot revealing the association between d?#;(t)/dt?> and 7;(t) af-
ter the linear effect of di);(¢)/dt has been partialled out; (C) component-plus-residual plot
revealing the association between d?);(t)/dt?> and d;(t)/dt after the linear effect of 7);(t)
has been partialled out.
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the final observed data, y1;(t) and y2;(t), could only take on values in the positive range.
These transformations are similar to those used in Poisson regression models, which posit
that the logarithm of the expected value of a dependent variable (usually some sort of count
data) is a linear combination function of a set of predictors. In other words, the expected
value of the dependent variable is explained by exponential transformation of the linear
combination of predictors (Fox, 2015; McCullagh & Nelder, 1989).

Simulated over-time trajectories generated using the specification above are plotted in
Figure 2(A). Here, the classical cyclic lead-lag relations between the predator and prey
populations, following the exponential transformations, are manifested as sequential bursts
in density values. The corresponding scatterplot of the observed and smoothed log trans-
formed prey and predator density values, as shown in Figure 2(B), provides an alternative
portrayal of the cyclic dependencies between the two species. The scatterplot indicates that
there is a positive relation between the smoothed log density values of the two species, but
only up until particular levels of smoothed log predator density (around 4 — 6). Above this
value, the predator’s smoothed log density either stays stagnant, or actually declines with
further increases in smoothed log prey density. This relationship corresponds to the delay
with which the predator’s density resumes growth following the earlier depletion in the
prey’s density. The scatterplot depicts the relation between two of the key variables in the
predator-prey system (levels of the two processes), and as such, is one example of a phase
portrait. Note, however, that when measurement errors are present, the cyclic relations
between the two sets of observed log density values are not evident without smoothing from
FDA.

The component-plus-residual plots shown in Figures 2(C) and (D) feature residuals
from two linear regression models in which the smoothed first derivatives of the log prey
and predator density values, denoted respectively as dlog(ni;(t))/dt, and dlog(ne;(t))/dt,
were predicted using only the linear effects of the two species’ smoothed log density values,
denoted respectively as log(n1;(t)) and log(n2;(t)). In this case, reliance on the loess lines
in the component-plus-residual plots alone did not provide enough sensitivity to detect the
nonlinear dependencies between the two species: There were very little deviation of the loess
lines from the linear regression lines in Figures 2(C) and (D). However, some indication of
potential nonlinearity can be deduced from the divergence in the values of the smoothed
first derivative estimates at the same values of 71;(¢). Such divergence is more salient in
Figure 2(C), in which values of the first derivatives can be both positive and negative at
one particular set values of smoothed, log transformed prey density values.

To probe for potential nonlinear dependencies between the two sets of derivative vari-
ables, I fit a GAM in which the linear parametric effects of 71;(t) and 7jo;(t), as well as
the tensor product between the two (i.e., the term, s5(71;(¢), 72i(¢t)) in Equation (8), with
u1; and ug; set to 71;(t) and 7j2;(t), respectively), were used to predict the smoothed first
derivative estimates of the log predator density, dlog(n}i(t)) /dt. Results from model fitting
indicated that the linear parametric effects as well as the tensor product term were all sta-
tistically significant, suggesting that the linear terms alone did not adequately characterize
the patterns of the smoothed derivative estimates.

One way to visualize the effects of the model is to use a contour plot (see Figure 3(A)).
In the contour plot in Figure 3(A), the vertical axis represents smoothed log predator density
level, log(nAgi(t)), and the horizontal axis plots values of the smoothed log prey density level,
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10g(77A1i(t)). Lines on the plot are known as contour lines. They are marked with numbers
that convey the predicted values of the dependent variable in the GAM of choice, in this

case the smoothed first derivative of the log transformed predator density, %. Each
contour line connects values of the predictors on the horizontal and vertical axes that yield
the same predicted value for the dependent variable. In instances where the effects of the
two plotted independent variables on the dependent variable are linear and do not depend
on the values of the other variable, the contour lines would be roughly evenly spaced across
all values of those independent variables.

Here, we observe that the contour lines at very low log predator density values (e.g.,
10g(77A2i(t)) < 1.5) were closer together than those at high smoothed log predator density
values. Within this region of the contour plot, even slight changes in log prey density are
predicted to yield relatively large changes in the values of growth (i.e., positive predicted
first derivatives) or declines (negative first derivatives) in log predator density. In contrast,
the contour lines were further apart at high values of log predator density. This suggests
that at high values of log predator density, greater increases in log prey density are needed to
stop/reduce the declines in log predator density when the levels of log prey density are low;
or further increase the growth in log predator density when the levels of log prey density are
high. In sum, the growth in log predator density with increase in log prey density does not
occur at a uniform rate but rather, depends on the current log density size of the predator.
Thus, even without articulating a full parametric model, some of the interrelations between
the two species may be inferred from the contour plot.

Finally, I show how standard procedures in classical regression analysis, such as simple
slope analysis used to probe interaction effects between predictors (Aiken & West, 1991),
may be utilized to facilitate interpretations of the nature of the predator-prey interaction
here. Here, I probed the simple effect of the smoothed log predator density, log(ﬁgi(t)) on
the log prey population’s first derivatives, dlog(nAli(t)) /dt, at different values of smoothed
prey density values, log(n1i(t)), using a linear regression model in which dlog(n;(t))/dt was
predicted using linear parametric effects of log(nAli(t)), log(n;i(t)), and their product term,
log(nAli(t))log(nAgi(t)). In Figure 3(B) in which the simple slope of the smoothed log predator
density, log(r2;(t)), is depicted on the vertical axis (marked as 6), the simple slope values
are observed to be statistically significant and positive at smoothed log prey density values
that are greater than 2.57, but statistically significant and negative at log prey density
values that are less than 2.40. The switch in values of the simple slopes from negative to
positive provides some indication of how the same unit of increase in log predator density
was associated with reductions as compared to increases in log predator density levels at
low versus high log prey density level.

Illustration III: Bifurcation as Discontinuous Changes in Dynamics
One of the ways in which a dynamical system can show discontinuous changes in dynamics
is through the phenomenon of bifurcation. Bifurcation refers to qualitative changes in the
dynamics of a system with continuous changes in one or more parameters in the system
(Poston & Stewart, 1978). One everyday example of bifurcation resides in instances where
individuals show sudden switch from walking to running on a treadmill as the treadmill
slowly speeds up or slows down. In this case, treadmill speed is a control variable — or
specifically, a bifurcation variable, rather than a parameter. Continuous changes in the
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Figure 2. (A) Over-time trajectories generated using the classical predator-prey model;
(B) a scatterplot of the smoothed predator density levels, 7j2;(t), against the smoothed prey
density levels, 71;(t), overlaid with their corresponding observed values; (C) component-
plus-residual plot revealing the association between dfy;(t)/dt and 71,(t) after the linear
effect of 7j2;(t) has been partialled out; (D) component-plus-residual plot revealing the as-
sociation between dij;(t)/dt and 71;(t) after the linear effect of 7jy;(¢) has been partialled
out
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Figure 3. (A) A contour plot of the predicted dij1;(t)/dt generated using predicted values
from a GAM in which d#;(t)/dt was predicted using linear parametric effects of 71;(¢) and
72i(t), as well as the tensor product between the two; (B) a plot of the simple slope of the
smoothed predator density level, 7j2;(t), on the prey population’s smoothed first derivatives,
dipi(t)/dt, at different values of smoothed prey density, 71;(¢).
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control variable yield discontinuous shifts in behavior from walking to running. The point
of transition at which the shifts in behavior occur (e.g., the value of treadmill speed at
which an individual switches from walking to running and vice versa) is called a bifurcation
point. The goal of this illustrative example is to highlight more concretely how to use a
GAM to probe for evidence of nonlinearity that contributes to bifurcation.

For this illustrative example, I focus specifically on one kind of bifurcation that may be
especially applicable to the study of human dynamics: supercritical bifurcation (Strogatz,
1994). Supercritical bifurcation occurs when a stable fixed point that exists at some values
of a control parameter suddenly splits into two sets of stable fixed points with continuous
changes in the value of that parameter. The normal (basic or simplest) mathematical
function for a supercritical bifurcation is

dn;(t)
dt

= r;(t) = mi(t)°, (12)

where n;(t) is the true process of interest, and r is a control parameter that drives bifurcation

in the system. For this system, the fixed points of the system, at which d%p = 0, occur at

three sets of possible values: 0, \/r, and —/r. This is highlighted in the vector field plot in
Figure 4(A)—(C). In the plot, the model-implied d”#(t) values at different values of y(t) are
shown. Added to the vector field plot are the fixed points, shown as the intersection points
between the horizontal line of d"d"—tt) = 0 and the cubic-shaped model-implied dnjgt) curves.
Here, the three sets of fixed points of the system are located at n* = 0 and n* = /7.

Figure 4 shows that at negative values of r (see plot (A)), the fixed point at 0 is the
only stable fixed point. At r = 0, the cubic curve becomes flatter at the origin. When r
> 0, two new sets of stable fixed points now exist and take on the values of ++/r. Thus,
if r is varied continuously from negative to positive values, qualitative differences in the
system’s dynamics would arise. In particular, the number and location(s) of the fixed
points would change abruptly with continuous changes in the value of . The point n* = 0
remains a bifurcation point whose stability cannot be determined (i.e., it is neither stable
nor unstable). That is, when r = 0, whether a system stays at n* = 0 depends on the
system’s initial values. Typically, only trajectories that start off close enough to 0 would
settle into this fixed point.

A bifurcation diagram that showcases the number and values of fixed points at different
values of the bifurcation parameter, r, is shown in Figure 4(D). Here, solid lines indicate
the values of stable fixed points whereas the dashed line marks the fixed point at 0 that
becomes unstable as r becomes greater than 0. The curve is disconnected at » = 0 and n*
= 0 because at r = 0, n* = 0 is a bifurcation point whose stability cannot be determined.
Across different values of r, it can be seen that the values of fixed points in the bifurcation
diagram constitute the pattern of a pitchfork — thus giving the name of supercritical
pitchfork bifurcation to this type of bifurcation.

I generated over-time trajectories using a constant time interval of 0.01 across T =
300 measurement occasions and 30 hypothetical participants using the ODE in Equation
(12), and added normally distributed measurement errors with zero mean and variance of
1.0. Each hypothetical participant was assumed to cycle through three possible values of
r: -2, 0, and 2. The over-time trajectories of 20 randomly selected subjects’ true n;(¢) (i.e.,
not contaminated with measurement errors), as grouped by the participants’ values of r,
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Figure 4. (A)-(C) Vector field plots showing the rates of change of a system showing super-
critical bifurcation; (D) the corresponding bifurcation diagram of the system. Bifurcation
point, stable and unstable fixed points are marked with gray-filled, solid, and unfilled circle,
respectively, in plots (A)—(C). r is is a control parameter that drives bifurcation in the
system in Equation (12).
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are plotted in Figure 5(A). The corresponding component-plus-residual plot of dn;(t)/dt
against 7);(t) after the linear effects of r and 7;(¢t) have been partialled out is shown in
Figure 5(B). Two systematic patterns may be gleaned from the component-plus-residual
plot. First, there appear to be clusters of cubic trends in the plot. Second, multiple values
of 7;(t) yield dn;(t)/dt values that are 0. Recall that values of y that give rise to a 0 rate of
change in y are potential fixed points in the system. The simultaneous existence of multiple
fixed points provides some initial insight into the potential nonlinearity of the system. The
cubic trends further suggest the need to incorporate a cubic term involving 7);(¢) into the
fitted model. In addition, the clustering of the points in the component-plus-residual plot
based on values that correspond closely to values of r also suggests the need to probe for
possible interaction effect between r and 7);(¢) on df;(t)/dt. A GAM was then fitted to the
smoothed level and derivative estimates in which I predicted dfj;(t)/dt using an intercept,
a parametric interaction effect between r and #);(t), and a nonparametric smooth of the
effect of 7;(t). The estimated nonparametric smooth term for the effect of the effect of 7;(t)
is plotted in Figure 5(C). The cubic relation is saliently captured by the nonparametric
smooth term. Although not shown here, other nonparametric smooths, such as a smooth
of the coefficient of 7);(t) as dependent on the value of r, i.e., s(r;)7;(t), may also be used
to clarify the interactive relation between r and y.

Bifurcation is one of the fundamental characteristics inherent to another class of well-
known dynamical systems termed catastrophe systems (Thom, 1993). In particular, if an
intercept term, h, is added to the right-hand side of Equation (12), then we obtain the
equilibrium points or solutions for a dynamical system known as the cusp catastrophe
system (Chow, Witkiewitz, Grasman, & Maisto, 2015; Strogatz, 1994). Zeeman (1976)
used the cusp catastrophe system to describe a dog’s abrupt shifts in behavioral response
between attacking (fight) and retreating (flight) with continuous changes in rage and fear
(i.e., the control variables). Bifurcation occurs in this example as continuous changes in one
of the independent variables (e.g., rage) yield sudden, qualitative changes in behavior (e.g.,
a shift from a single mode of outcome involving moderate behavior such as growling to the
coexistence of two extreme modes of behavior, namely, attacking and retreating). Other
examples include applications of the cusp catastrophe model to represent the dynamics
of human driving speed (Poston & Stewart, 1978), attitude (Flay, 1978), affective states
(Strahan & Conger, 1999), alcohol use (Clair, 1999; Witkiewitz, van der Maas, Hufford,
& Marlatt, 2007), and developmental discontinuities (Freedle, 1977; van der Maas et al.,
2003).

Despite catastrophe models’ conceptual appeal and contributions, widespread applica-
tions of the catastrophe model and other related dynamic models that yield bifurcation
have been impeded by challenges in identifying appropriate control parameters or variables
that could drive bifurcation in human behaviors, and replicating instances of bifurcation in
empirical studies involving human participants. Even though the current illustration does
not solve all of these challenges, my hope is that it helps demonstrate the feasibility of per-
forming general model exploration procedures that reveal potential nonlinear dependencies
among variables and their derivatives, regardless of whether the system of interest shows
bifurcation.
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Figure 5. (A) Over-time trajectories from 20 randomly selected subjects generated three
possible values for the control parameter, r, using the dynamical system model with su-
percritical bifurcation in Equation (12); (B) component-plus-residual plot revealing the
association between dn;(t)/dt and 7);(t) after the linear effects of r and 7);(¢) have been
partialled out; (C) estimated nonparametric smoothed effect of 7;(¢) on dn;(t)/dt.
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Illustration I'V: Time-Varying Linear Oscillator Model

The linear oscillator model shown in Equation (9) assumes perfect constancy in how the
oscillatory process unfolds over time. Now suppose the system undergoes gradual changes
in the extent of damping over time. The damping parameter in this case is a time-varying
parameter (TVP). My goal in this illustration is to evaluate the utility and potential limita-
tions of the varying coefficient component of the GAM in revealing evidence of TVPs, and
in regularizing (“smoothing out”) these changes to facilitate construction of parsimonious
mathematical functions for confirmatory modeling purposes.

Dynamical systems with TVPs generally violate longitudinal invariance and hence the
stationarity as well as stability assumptions. At first sight, this seems to violate one of
the fundamental premises that enable researchers to study change in the first place: How
can we study change if there is no strict constancy in how individuals change over time?
The caveat here is that we assume the changes in the TVPs to occur at much slower time
scales than those associated with other variables in the model (e.g., 1;(t)). As such, the
processes of interest can at least be defined in a locally consistent way within segments of
the data. This is one of the key assumptions that allow a model with TVPs to be estimated
and for inference to be made. In this sense, such changes are not uncommon in “real-
world” settings. The lead-lag influences between fluid and crystalized intelligence change as
developmental changes unfold (Ferrer & McArdle, 2004). In a similar vein, affect researchers
have suggested that the associations between positive and negative emotions may vary under
low- as compared to high-activation scenarios (e.g., while reading a book versus during one’s
College graduation ceremony; Chow et al., 2011). Still, such dynamic associations among
constructs should, in principle, be changing slowly enough that homogeneity and constancy
can be expected within shorter windows of time.

There is no shortage of TVP models in the social and behavioral sciences literature.
For example, Molenaar (1994) considered one variation of a dynamic factor analysis model,
a one-factor model with first-order autoregressive [AR(1)] process at the latent level. Poly-
nomial functions of time were used to represent the dynamics of the TVPs, including the
AR(1) and factor loading parameters. Similar polynomial functions were used by Oud and
Jansen (2000) to allow for TVPs in the context of fitting linear SDE models within the struc-
tural equation modeling framework. In the econometric literature, Del Negro and Otrok
(2008) examined a dynamic factor analysis model with time-varying factor loadings within a
Bayesian framework. Other researchers (e.g., Stock & Watson, 2008) have also considered
exploratory approaches aimed at identifying shifts in the factor loadings and time series
parameters of dynamic factor analysis models. Other examples of popular TVP models are
the the local linear trend model (Harvey, 2001), time-varying autoregressive moving aver-
age (ARMA) model (Tarvainen et al., 2006; Weiss, 1985), and stochastic regression model
(Pagan, 1980).

In previous studies, researchers have estimated TVPs by specifying them as additional
latent variables that are governed by their own dynamic functions. Subsequently, a dynamic
model, usually a nonparametric model or other model that is deemed flexible enough to
capture a variety of different change trajectories, is used to approximate changes in the
TVPs (e.g., Chow et al., 2011; Molenaar & Newell, 2003; Tarvainen et al., 2006). I refer to
this approach as a confirmatory-based approach. More recently, Bringmann et al. (2017)
used penalized regression splines with GAMs to explore and model TVPs. The same GAM
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approach is used to probe the dynamics of TVPs in this example, but the extension to DE
models is novel and has not been previously tested or illustrated.

Similar to the work by Chen, Chow, and Hunter (2018, in press), I specified the damping
parameter, (;(t), to be varying over time following an Ornstein-Uhlenbeck model (Oravecz
et al., 2016; Uhlenbeck, 1980), a model often used to describe processes with quick (expo-
nential) returns to a set point. This model is expressed as:

Pon(t) = (om(t) + G0 D)ot 4 1), "
TG — 1) - o) + duatt)

In Equation (13), dw(t) and dws(t)) denote the differences in Wiener process over dt,
assumed to be normally distributed with zero means and variances, o2,dt and 02 ,d¢t, re-
spectively. Of particular interest in this equation is the scenario where § is greater than
0, in which case the values of (;(t) are assumed to approach the equilibrium (y at a rate
controlled by 8. The more positive 3 is, the faster the approach rate. This special case may
be helpful for representing situations in which individuals show emotional outbursts that
initially amplify over time, but later self-regulate to show progressively smaller magnitudes
of emotional fluctuations.

Equation (13) additionally posits that there may be other unmeasured stochastic
changes, termed process noises, that drive those individuals to deviate from a perfectly
smooth and predictable oscillatory trajectory. For example, this process would occur given
exposure to new perturbations that intensify a child’s emotional outbursts despite the child’s
initial tendency to return to a homeostatic status. Unlike measurement errors which affect
only one measurement occasion, the effects of these process noises would continue to affect
the system’s true underlying levels beyond just that particular time point.

Consider first a deterministic special case of Equation (13) with the process noise vari-
ances, 02, 25, both set to 0. Similar to the setting used in Illustration I, I set w to
-0.8, and set the initial conditions for 7;(0) and dﬁfl—go) to be univariate normally distributed
with means of 2.0 and 0, and variances of 1 and 1, respectively. I set the initial value of (;(0)
to 0.3 at t = 0 to 0.3 for all participants, 8 to 0.05, and (p to -0.2. These parameter values
were selected to mirror the hypothetical scenario described earlier: Individuals manifesting
initial amplification in emotional outbursts (with ¢;(0) = 0.3), followed by eventual return
to a homeostatic status as (;(¢) settles into the small negative baseline value of (y = -0.2.
I generated over-time trajectories using Equation (13) for 10 participants across 7" = 1200
measurement occasions at a constant time interval of 0.1.

Smoothed, over-time trajectories of the data are plotted in Figure 6(A), with the
component-plus-residual plot depicting the relations between the smoothed second deriva-
tive estimates and the smoothed first derivative estimates after partialling out the effects of
the smoothed levels. In this case, a regular linear regression model indicated no significant
association between the smoothed first and second derivatives, thus suggesting the lack of
damping or amplification in the magnitude of 7;(t), despite clear visual evidence of over-time
reduction in the amplitude of 7;(¢) over time in Figure 6(A). Consonant with the results
from the linear regression model, the loess line in the component-plus-residual plot also did
not provide clear indication of the time-varying association between the first and second

and o
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derivative estimates, even though eyeballing the component-plus-residual plot revealed two
clusters of points that highlight the possible existence of negative as well as positive slopes
linking some of the smoothed first derivative estimates to the smoothed second derivative
%t(t) is close to zero. It may be tempting to infer the
existence of between-individual or between-class differences in dynamics based on Figure
6(B) alone. However, we know that in reality, there are absolutely no between-individual
differences in dynamics at all in the true data generation mechanism in this particular
simulation, except for individual differences in initial conditions.

I then fit a GAM with:

4?7 (t)
dt?

estimates around the area where

dn;(t)
dt

9170 (t) + s1(Time; (1)) + €(t), (14)
in which e;(¢) is assumed to be independent and normally distributed error. g¢; denotes

the regression slope associated with the parametric, linear effect of 7;(t), and s1(Time;(t))
m(t)

denotes the smoothed time-varying slope of , plotted in Figure 6(C) over time.

The results indicated that the smooth term associated with the time-varying effect of
%gt) on % were statistically significant (p < .0001), with effective degrees of freedom
(edfs) that deviated considerably from 1.0 (edf = 10.0)). An edf value that deviates sub-
stantially from 1.0 suggests that the associated smooth term shows notable deviations from
linearity. Edfs are inversely related to the smoothing parameter used in the penalized basis
functions to smooth out “wiggliness” in the data. Roughly speaking, they may be viewed
as weights that map the penalized smoothed coefficient associated with a predictor (e.g.,
%}ft) in this example) to the unpenalized linear parametric coefficient associated with the
predictor. An edf value that is close to zero implies that a particular predictor does not
have substantial effect on the dependent variable whereas an edf value close to 1.0 suggests
insufficient evidence for the effect of the predictor to be nonlinear (S. N. Wood, 2006).

Figure 6(C) suggests that the smoothed time-varying slope of dﬁéf) provides a rea-
sonable approximation for the true, over-time trajectory of (;(¢). However, some spurious
nonlinearity in the form of amplifying oscillations is detected between ¢ = 80 and 120. An-
other possible methodological issue is that the estimated edf is close to the starting value
of the number of basis functions used, suggesting possible 1nadequacy in using 10 or fewer
basis functions to approximate the smoothed time-varying slope of 4 ( ) . However, the es-
timated edf values continue to increase and closely mirror the startmg Value of the number
of basis functions when the latter was increased to 15, 20, and even 200. As the number
of basis functions increases beyond 10, even greater noisy oscillations were captured in the
smooth term beyond ¢ = 80. This result is an instance in which the penalized basis function
is under-smoothing the curvatures in the time-varying slope of dm(t).

Next, I simulated data using the same setting, with the exceptlon that I allowed differ-
ences in the Wiener process for the oscillatory process to have a variance o2, = 2.25, and
0121)2 =.0009. Thus, in this case, the oscillatory process is contaminated with both process
and measurement noises, with the latter designed to be normally distributed with mean zero
and variance 02 = 1.0. Applying FDA to these data yielded the smoothed level estimates
plotted in Figure 7(A). Compared to the smoothed trajectories in Figure 6(A), the trajec-
tories depicted in Figure 7(A) are characterized by greater between- and within-individual

heterogeneity in the extent of damping or amplification over time. That is, even though
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Figure 6. (A) Over-time trajectories generated using the linear oscillator model with time-
varying ( parameter; (B) component-plus-residual plot revealing the association between
d?f;(t) /dt? and d#;(t) /dt after the linear effect of 7);(t) has been partialled out; (C) estimated
smoothed, time-varying effect of d#j;(t)/dt on d?#;(t)/dt? using thin-plate regression splines.
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the drift function for the time-varying (;(t) is identical to that used in the deterministic
special case presented earlier, the addition of process noise to the data obscures some of the
regularity in dynamics manifested by the individuals as a group.

As in Chen et al. (2018, in press), I used the CDEKF to fit the correctly specified
stochastic time-varying oscillator model to the simulated data, with initial condition mean
and variance parameters fixed at their true values, and the remaining parameters freely esti-
mated (see supplementary materials for sample dynr code for fitting this model). Smoothed
estimates of the time-varying (;(t) and the latent oscillatory process, 7;(t), as obtained us-
ing the CDEKF for one hypothetical subject, are shown in Figures 7 (B) and (C). The
smoothed estimates of the latent variables, including the time-varying (;(t)— now repre-
sented as part of the expanded latent variable vector — are generally well recovered. For
instance, the 95% confidence interval (CI) for the CDEKF estimates of (;(¢) included the
true (;(t) for that subject most of the time. The parameter estimates from the CDEKF
also closely approximated their true values (see Table 1).

To provide some comparisons of the results from confirmatory modeling to semipara-
metric results from the GAM framework, I fit the GAM in Equation (14) to the same set of
simulated data. The corresponding smoothed estimates of (;(¢) from GAM are also plotted
in Figure 7(B). Because GAM is a semiparametric representation of the original parametric
model, not all of the parameters reported in Table 1 from the confirmatory framework were
available or estimated. The only common parameter that was estimated in both frameworks
was w, which was estimated within the GAM framework to be -0.78 (closely mirroring the
point estimate from the confirmatory model, -0.79). However, the standard error estimate
based on the semiparametric GAM was 0.002 — approximately 4 times smaller than the
standard error estimate from the confirmatory model (.008; see Table 1). The GAM results
also returned relatively large value of estimated residual variance (1.98; no standard error
estimate was provided), as compared to the estimated measurement error variance of 02 of
0.99 from fitting the correctly specified confirmatory model.

The estimated trajectory of ;(¢) from the semiparametric framework in (B) represents
the entire sample’s smoothed, over-time variations in ¢;(¢). This trajectory is in contrast to
the estimated (;(t) trajectory from the CDEKF depicted in the same plot, which shows the
estimated trajectory for the one hypothetical subject whose true (;(t) is also shown in the
plot. The GAM estimates provided a reasonable, smoothed approximation of the true group-
based drift function of ¢;(t), even though they did capture a slight upward, spurious trend in
(i(t) toward the end of the data span. Note also that the 95% CI for the ((¢) estimates from
the GAM was notably narrower than that from the CDEKF (see Figure 7(C)). This is due in
part to the fact that the former captures the uncertainty in the ((¢) estimates for the entire
sample, whereas the 95% CI from the CDEKF reflects the uncertainty for one hypothetical
subject over time. There were some non-trivial deviations of the GAM trajectory from
the group-based deterministic drift function, which predicts eventual convergence of the
trajectory of (;(t) toward (y = -0.20. The 95% CI from GAM, unfortunately, was overly
narrow and did not include the value of (p -0.20 after approximately ¢;; = 60. Other
parameters (e.g., 3, (o, 02, 025) Were not available from the GAM framework and are thus
not discussed here.

In summary, this final example shows that GAMs have some utility in approximating
the change trajectories of TVPs in situations where insufficient theoretical knowledge exists
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Figure 7. (A) Over-time trajectories generated using the stochastic linear oscillator model
with time-varying ¢ parameter; (B) the true ((t) trajectory (as densely overlapping circles),
smooth of the time-varying weight of %ﬁt) (in thin solid line) with corresponding 95% CI
(in solid dashed lines) from using penalized thin-plate regression in mgcv, and smoothed
estimates of ;(¢) (in thick long dashed line) with corresponding 95% CI (in thin long dashed
lines) for one hypothetical participant using the CDEKF; (C) smoothed estimates of the
latent oscillatory process, 7;(t) (in solid line), and the true n;(¢) values (as dots) from the
same hypothetical participant using the CDEKF. CDEKF = Continuous-Discrete Extended
Kalman Filter.
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Table 1

True and Estimated Parameters for the Time-Varying Stochastic Oscillator Model in II-
lustration IV for One Replication Using the CDEKF Algorithm in dynr and GAM from
mgcu.

Parameters ~ True Estimated values (standard errors) Estimated values (standard errors)
values from confirmatory modeling with dynr from mgcv
w  -0.80 -0.79 (0.008) -0.78 (0.002)
B 0.05 0.05 (0.01)
¢  -0.20 -0.20 (0.03) —
o2, 2.25 2.29 (0.13)
o2, 0.0009 0.0005 (0.0003)
o? 1.00 0.99 (0.01) 1.98 (—)

dynr = the R package, Dynamic Modeling in R

CDEKF = Continuous-Discrete Extended Kalman Filter

mgcv = the R package, Mixed Generaized Additive Modeling (GAM) Computation Vehicle
with Automatic Smoothness Estimation

to aid the construction of a confirmatory model. However, many methodological issues will
remain unresolved if inferential conclusions are to be drawn based on multistage, exploratory
results alone. For instance, the fitted GAMs using smoothed level and derivative estimates
generally violate the independent error assumption because of the inherent within-subject
time dependency in the data. In addition, the quality of the estimation (e.g., in terms of
point and standard error estimates) may be compromised due to progressive accumulation of
estimation errors throughout different stages of the estimation procedures. Thus, if adequate
information can be garnered to construct a reasonable confirmatory dynamic model, results
from confirmatory modeling should be used for inferential purposes.
Discussion

I presented four illustrative examples of using exploratory, semiparametric, and also con-
firmatory modeling tools to study features of dynamical systems such as nonlinear inter-
actions, bifurcation, and time-dependent change characteristics (e.g., time-varying damp-
ing/amplification). All the illustrative examples considered in the present article involved
simulated data. One immediate concern is what sorts of data in the social and behavioral
sciences can support the explorations and model fitting covered in this article. The answer,
in my view, is an encouraging one. The sample size configurations considered in the first
three illustrations were in the range of 100 — 300 time points, and n = 10 — 50 participants.
The last illustration was based on data with relatively large 7" and small n (T" = 1200, n
= 10) to highlight the specific nature of the TVP considered — the damping/amplification
parameter, whose effects tend to emerge more slowly (requiring multiple iterations of cy-
cles) than those associated with other parameters. Simulation studies elsewhere involving
dynamic models with other TVPs have suggested reasonable results with larger n (e.g., 100
—300), and T that mirrors those used in Illustrations I-1II (e.g., ' = 50 — 300).

The sample size configurations noted above are becoming more common. Many labora-
tory studies now include planned designs to obtain second-by-second coding of individuals’



DYNAMICAL SYSTEMS MODELS 31

behaviors over the course of laboratory tasks that typically last between 5 to 15 minutes.
Such coded data have been used in the past for dynamical systems modeling (Cole, Ben-
dezi, Ram, & Chow, 2017; Morales et al., 2018). In a similar vein, an increasing number
of experience sampling studies now feature time-series between 50 and 800 occasions, often
from 100+ participants (Ram, Shiyko, Lunkenheimer, Doerksen, & Conroy, 2014), all of
which produce data that are conducive for dynamical systems modeling. At faster time-
scales, studies involving ambulatory physiological, sleep and physical activity data routinely
yield multiple-subject time series that span many thousands of occasions. Generally, the
growing repertoire of intensive longitudinal data produced by advances in mobile and web
technology, miniaturization of sensors, and widespread adoption of digital communication
platforms speaks directly to the need to develop better and more powerful dynamic modeling
tools.

Beyond studies with intensive longitudinal data, several researchers have also tested
theories of change using panel data and longitudinal models that have a “dynamical sys-
tems flair” (i.e., in their emphasis on representing change mechanisms; see e.g., Ferrer &
McArdle, 2004). Tt is plausible to test theories of change using data of limited time lengths
from a large number of subjects, but only under some conditions (Molenaar, 2004). One
such conditions is that the change and measurement functions characterizing all individuals
are homogeneous in nature. This assumption may not be tenable and should be relaxed
as needed. Relatedly, data of limited time lengths or those measured at overly coarse in-
tervals may lack power to distinguish different types of intraindividual changes from each
other (e.g., diurnal from event-related variations in emotions), and from confounds such as
interindividual differences in initial conditions.

Some researchers may be interested in adopting a mixed effects framework to model
change patterns across multiple participants. Within this framework, individuals are pos-
tulated to conform to the same change mechanisms, but with some between-individual
differences in selected modeling parameters. In this case, the techniques reviewed thus far
support the evaluation of the fixed effects, namely, the effects that describe the population
change trajectory as a whole. Selected extensions can be performed to allow for random
effects for key parameters to be represented as latent variables in confirmatory model fitting
(Ou, 2018), or estimated with Monte Carlo sampling techniques (see e.g., Chow, Lu, et al.,
2016, and the references therein). The GAM framework as implemented in the mgev pack-
age also allows for the inclusion of additional linear parametric random effects. Another
alternative is to consider multiple-group and latent class extensions that allow different
groups/latent classes to conform to distinct dynamics (Chow et al., 2018). If sufficient data
are available from each individual and high degrees of between-person heterogeneity are
expected, model exploration and fitting should be performed at the individual level.

In obtaining derivative estimates, the formulation in Equations (4) — (6) assumes
that the same smoothing parameter and a group-based penalty term are used to derive
approximation curves for all units (e.g., individuals). These constraints can also be relaxed
as appropriate. That is, curve approximation and derivative estimation can be performed
separately for each unit of analysis, including using individual-specific smoothing parameters
to customize the amount of smoothing applied to each individual’s data. In situations where
the data from different units of analysis follow trajectories that are out of phase relative to
each other, a procedure called curve registration should first be performed to ensure that
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the peaks and troughs in all units’ curves are aligned with each other (Ramsay & Silverman,
2005).

The methods demonstrated in the present article are by no means exhaustive, nor
are they without their limitations. For instance, I used one particular smoothing routine
within the mgcv library, thin-plate spline regression splines (S. N. Wood, 2003, 2006), to
automate the estimation of selected nonparametric effects. In practice, a variety of spline
or penalized spline functions may be used to obtain the smoothed values [i.e., all terms
involving s (.) in Equation (8)]. Popular choices include cubic splines, B-splines, P-splines
and other penalized regression splines (Green & Silverman, 1994). The thin plate regression
splines have the advantages of: (a) not having to choose knot locations, thereby reducing
subjectivity in modeling and selection of optimal basis functions (S. N. Wood, 2006); and
(b) being able to accommodate a higher number of predictors than other spline regression
methods. The same routines within the mgcv package have also been utilized by Bringmann
et al. (2017) to fit discrete-time vector autoregressive models with time-varying coefficients.
Despite the practical advantages of this approach, caution should still be exercised because
complete reliance on model exploration indices such as edfs to explore the interrelations
among multiple noisy variables can often lead to instances of under- or even over-smoothing.
The final number of selected knot points and the corresponding edfs may also be sensitive
to the starting values specified by the user, despite the robustness of such approaches to
initial knot point specifications when used to approximate simpler nonparametric trends. In
addition, given that multivariate models and problems are at the core of the modeling work
in the social and behavioral sciences, more thorough investigation of the performance of
such nonparametric approaches in cases involving multiple dependent variables is essential.

Even though T focused on FDA as the derivative estimation approach of choice in
the present article, other approaches, such as the GOLD and the GLLA are also viable
approaches for this purpose. Chow, Bendezt, et al. (2016) provided comparisons among
the FDA, GOLD and the GLLA. It may be helpful to note a few distinctions here. First, the
derivative estimates from the GLLA and GOLD tend to be “rougher” compared to those
from the FDA due to the explicit use of a penalized regulation approach via Equations (6)
— (7) in the FDA. Second, some data reduction always occurs in the cases of the GLLA
and GOLD due to the particular data processing procedure used in these approaches (i.e.,
time delay embedding). In contrast, in the FDA, the sample size is always equal to the
original available sample size regardless of the placement of knot points. Third, the FDA
can be used readily with either equally spaced or irregularly spaced time series data. In the
GLLA as well as GOLD, it is possible to make adaptations to account for irregularly spaced
time intervals. But current implementation of GLLA and GOLD has not yet incorporated
these adaptations. Finally, even though it may appear, at first glance, that use of the
FDA approach requires quite a few decisions on multiple fronts (perhaps more so than the
GLLA and GOLD), most of these decisions can be automated due to the availability of well-
established guidelines. The remaining decisions can be made in relatively straightforward
ways using output from freely available software packages.

The CDEKF and related algorithms implemented in the dynr package are but one
possible way of fitting confirmatory DE models to Gaussian distributed data. Other al-
ternative software packages include the Continuous Time Structural Equation Modeling
(ctsem; Driver et al., 2017), dim (Petris, 2010), KFAS (Helske, 2017), dse (Gilbert, 2015),
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OpenMz (Neale et al., 2016) and bssm (Helske & Vihola, 2018) in R, and the Bivariate Hier-
archical -Uhlenbeck Model toolbox in Matlab (BHOUM; Oravecz et al., 2016). Unlike the
dynr package, ctsem, dlm, KFAS, dse, OpenMz, and BHOUM only allow for linear dynamic
models, but they have other unique strengths in fitting particular types of linear models.
For a review, see Petris and Petrone (2011) and Ou et al. (2018, revised and resubmitted).

I have limited the scope of the present article to Guassian distributed, continuous ob-
served data. Categorical and other non-Gaussian data are quickly becoming the norm in
many empirical studies. There is thus a clear need to extend the approaches considered
in this article (e.g., the derivative estimation approaches, the use of GAMing for model
exploration purposes) to accommodate such data. Alternative model exploration and es-
timation approaches amenable to non-Gaussian data (e.g., Bayesian and simulation-based
approaches; Doucet, de Freitas, & Gordon, 2001; Durbin & Koopman, 2001; M. West &
Harrison, 1997) and associated software packages (e.g., the bssm package; Helske & Vihola,
2018) are available.

Model identification in DE models is another key issue that warrants more attention
from researchers. One necessary condition for DE models to be empirically identified is
for them to be observable, or “estimable” from available observed data. When a system is
observable, then the values of the system at any time can be fully and uniquely determined
from observed measurements over a finite time interval (see p. 28; Bar-Shalom et al., 2001).
Ou (2018) considered an approach in fitting nonlinear stochastic DE models in which the
random effects are included and estimated as part of the latent variable vector, similar to
how TVPs are included as part of the latent variable vector in Illustrative Example IV.
One important result from Ou (2018) was that such a system is only observable if the
number of random effects is no more than p (i.e., the number of manifest variables) or
w (i.e., the number of latent variables), whichever one is smaller. Similar steps can be
applied in the present context to prove that the system with TVPs is only observable if
the total number of new latent variables introduced by the inclusion of the TVPs is no
more than p or w, whichever one is smaller. A related issue with respect to identification
is controllability, which ensures that the values of the latent variables can be controlled
through manipulation of elements in the vector of exogenous variables, u;(t). For the
specific applications considered in the present article, the issue of controllability does not
arise.

In fitting dynamical systems models, it is often strategic to incorporate theoretically
driven constraints to ensure that the fitted model yields sensible values. Such constraints
not only aid estimation, but are sometimes critical for model identification. For the models
considered in the present article, it is possible to apply appropriate transformation functions
on selected parameters to yield transformed parameters that are unconstrained during the
optimization process to facilitate model estimation. For instance, optimization of param-
eters that are expected to be positive, such as all the parameters in ODE of the classical
predator-prey model, can be performed on a log scale so these parameters are unconstrained
during the optimization process. Still, in some limited cases, some of the parameters may
be located on the boundary of the parameter space over which optimization is done, thereby
violating regularity conditions for performing standard model comparison practices such as
likelihood ratio tests (Savalei & Kolenikov, 2008).

More generally, most contemporary model fit indices designed to inform absolute fit of
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latent variable models (for a review see e.g., Hu & Bentler, 1998; McDonald & Ho, 2002;
S. G. West, Taylor, & Wu, 2012) may not be as useful for assessing the fit of dynamical
system models. This is because such indices of absolute fit do not help pinpoint how, in
what ways, and for which time points a hypothesized dynamical systems model fails to
approximate key summary statistics (e.g., means and variance-covariance structures) of the
data. Information criterion measures such as the Akaike Information Criterion (Akaike,
1973) and the Bayesian Information Criterion (Schwarz, 1978) have been used and found
to yield reasonable model selection results in some special cases (Chow et al., 2015). Still,
much remains to be done.

Along a similar line, extension of regression diagnostic analyses to the context of DE
models is another important topic that has received limited attention in the literature. In
particular, it is possible to develop diagnostics similar to those considered elsewhere (Chow,
Hamaker, & Allaire, 2009) to identify outlying cases (both in terms of individuals and
measurement occasions), and modeling features that are influential to modeling results.
The need for formal diagnostic analysis and corresponding tools is especially critical in
the context of dynamical systems modeling given that some nonlinear or more complex
patterns of change could either arise as part of the true underlying dynamics of a system,
or as driven by outliers. Finally, tools for diagnosing optimal sampling intervals to better
facilitate reconstruction of the underlying dynamics of a system are also crucially needed.

Closing Remarks

Due in part to concerted efforts by groups of researchers to provide accessible tools for
studying dynamical systems (e.g., Boker & Graham, 1998; Deboeck, 2010; Molenaar &
Newell, 2003), the last decades have seen a steady growth in enthusiasm for dynamical sys-
tems research in the social and behavioral sciences. Applications of DE models, particularly
nonlinear DEs, require mastery of some technical knowledge that may not be accessible to
all social and behavioral scientists (Kolata, 1977). At times, mathematical concepts may be
misconstrued or misrepresented, much as how the analogy of a butterfly flapping its wings
— famously used by Lorenz as an exaggeration of the property of sensitive dependence
on initial conditions manifested by the weather system — has been distorted by popular
media. With few exceptions (Smith & Thelen, 1993; Vallacher & Nowak, 1994), the scarcity
of working theoretical knowledge on the ways in which a system may manifest changes has
deterred many researchers from undertaking a dynamic perspective to formulating research
questions. Indeed, many hurdles still exist before we can broadly integrate dynamical sys-
tems concepts and ideas into mainstream research. My intent in this article is to remove
some of those hurdles by presenting and illustrating some possible exploratory and con-
firmatory techniques as possible first steps for discovering, describing, and understanding
linear as well as nonlinear human dynamics.
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