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Abstract

An extremely large corpus with rich acoustic properties is very useful for training
new speech recognition and semantic analysis models. However, it also brings some
troubles, because the complexity of the acoustic model training usually depends on
the size of the corpora. In this paper, we propose a corpora subset selection method
considering data contributions from time-continuous utterances and multi-label con-
straints that are not limited to single-scale metrics. Our goal is to extract a sufficiently
rich subset from large corpora under certain meaningful constraints. In addition, tak-
ing into account the uniform coverage of the target subset and its internal property, we
design a constrained subset selection algorithm. Specifically, a fast subset selection
algorithm is designed by introducing n-grams models. Experiments are implemented
based on very large real speech corpora database and validate the effectiveness of our
method.
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1 Introduction

Artificial Intelligence (AI) based on speech recognition and semantic analysis has
been gaining increasing popularity both in the research community and in industry.
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Al systems have been proposed for a wide range of applications such as smart man-
ufacturing, marketing, medical care, home services, etc. A fundamental problem that
underpins the effective coordinate operation of these systems is Large Corpora (Glavas
and Ponzetto 2017; Matthew 2018). Many researchers suggested that the development
of very large training corpora be very important, even more important than improving
algorithms based on existing smaller training corpora (Clarke 2002; Schwenk and
Gauvain 2005). Large corpora are ubiquitous in today’s world, which contain more
than a billion words each (Liu 2017). But unfortunately, simply relying upon large
corpora is not sufficient (Curran and Osborne 2002). Moreover, the size of the corpora
itself becomes a new serious issue for novel researches (Lin and Bilmes 2011).

Very large corpora have amounts of rich acoustic characteristics, semantic infor-
mation, tokens, etc., which are very helpful for new speech recognition and semantic
analysis models training. However, it also brings some trouble to the new model train-
ing, because the complexity of acoustic model training usually depends on the size
of the corpora (vocabulary size, duration or storage size, etc.) (Liu 2017). Therefore,
the selection of subsets with limited size and sufficient data (acoustic, semantic, etc.)
is very important for corpora based researches. Most of the previous works studied
the problem of reducing the influence of the size of corpora through finding subsets
of large corpora based on the characteristics of their objective (Banko and Brill 2001;
Boleda 2006; Braunschweiler and Buchholz 2011; Drouin 2004; Ogren 2006; Peris
et al. 2017; Richmond et al. 2011). In contrast, the research of general method for
subsets selection has gained less attention, but still there have been consistent efforts
on designing algorithms for effectively finding parts of large corpora. McDonald et al.
(1999) introduced a method of extracting parts of objects from the original corpora
by ranking all the words. King et al. (2005) used greedy algorithm to create a subset
of Switchboard, but the algorithm performs poorly because of the unsubmodularity of
the objective function. Lin and Bilmes (2011) solved this problem. It studied the opti-
mal selection of limited vocabulary speech corpora by presenting it as a combinatorial
optimization problem on bipartite graph. These works introduced the subset selection
problem and proposed some algorithms to solve it. However, there are some deficien-
cies in those works. First, in the design of the strategies, they failed to take into account
the data among time-continuous utterances (TCUs) in the original corpora, which will
drop much semantic information. Second, most of them simply measure the data of
the resulting subset based on the number of vocabularies. This is not convincing.

As the development of technologies, more and more very large speech corpora have
been created (Table 1 gives some examples of speech corpora). They usually consist
of giant number of speeches from real conversations, phones, news, etc. Utterance
is the unit of corpora, with many types of tags. These very large corpora promoted
the research of speech recognition. Microsoft’s speech and dialog research group
announced 5.1% word error rate with their transcription system in 2017, which is the
same to professional human transcribers’. However, the study of semantic analysis
methods still falls far short of this level. Therefore, it is very important for future
researches to preserve as much semantic information as possible during subset selec-
tion. Obviously, if we consider utterances separately, there will be a lot of semantic
information lost because the semantics of speech are always contained in the context.
For example, Table 2 shows two conversation segments from the Ubuntu Corpus,
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Table 1 Some examples of Speech Corpora

Speech Corpus Type of data Tokens (words) Types

HKUST Mandarin telephone speech 1,001,895 27,210
KMITL Reports from ACM 5,141,456 (10,000,000) 87,421
Switchboard News, phone conversations 2,400,000 (5000,000) 20,000

between strangers on an
assigned topic

Table 2 Example from ubuntu corpora

No. From To Utterance Conversation
1 Dell Well, can I move the drives? cl
2 Cucho Dell Ah not like that c1
3 Dell Cucho I guess I could just get an cq
enclosure and copy via USB
4 Cucho Dell I would advise you to get the cl
disk
5 Dell Well, can I move the drives? c
6 RC Dell You can’t move the drives, c

definitely not. This is the
problem with RAID :)

7 Dell RC Haha yeah )

consisting of two sets of time-continuous utterances. Although Dell said the same
sentence:” well, can I move the drives”, they have different meanings.

In this paper, we investigate the problem of subset selection from very large speech
corpora considering the semantics among TCUs. The first contribution of this paper
is incorporating data contributions from TCUs and multi-tag constraints that are not
limited to single-scale metrics (number of vocabularies) into the system model. To our
best knowledge, there has been no similar research before. We analyze the submod-
ularity of the objective function and the internal property of the target subset. Taking
into account the uniform coverage of the target subset, we construct a constrained
subset selection algorithm. Finally, inspired by the n-grams model (Goémez-Adorno
2018) and the experiments from IBM (Brown et al. 1992), we design a fast subset
selection algorithm.

The remainder of this paper is organized as follows. In Sect. 2, we introduce our
formulation of corpora subset selection problem and prove it is NP-hard. In Sect. 3, we
prove the unsubmodularity of the objective function and some basic theorems about
the internal property. In Sect. 4, we design a new subset selection algorithm which
can optimize objective function, a fast algorithm based on n-grams model is presented
too. In Sect. 5, we perform experiments on Switchboard-I corpus and verified our
algorithm. Finally, Sect. 6 concludes the paper.
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2 Problem formulation

This section presents the problem model and formalizes the language and variables
used throughout this paper. Speech corpora can be divided into two types: Read speech
and Spontaneous Speech (Richey 2007). The first one includes: Excerpts from books,
News broadcasts, Word lists, etc. The latter includes: Conversations, Narratives, Map-
tasks, etc. For the simplicity of discussion, this article only focuses on the conversation
subclass in the latter type. All conclusions can be easily used to other types. Given a
corpora of N utterances, the goal of the subset selection algorithm is to find a subset
with maximum data while satisfying size limit. A pair of utterances are said to be
time-continuous if they appear in the same conversation and one right follows the
other. Let U represent the original utterance set with size N. Each utterance u; € U
belongs to a conversation of the conversation set C with size m, each conversation
C; has [; number of utterances. Let L := (I, l»,...,1,) € R™ represent the size
vector of C, and X, := (xl.l,xiz, .,xf ) represents the attributes or tags vector of
utterance u;. The attributes could be duration, time, tone, semantics, number of types
and number of tokens, etc. For § C U let X5 = {X,; |u € S}.

Definition 1 (Data Maximized Subset Selection Problem: DMSS) Given character-
istics and subset coverage rate limitations, DMSS problem can be written as the
following mixed-integer (possibly nonlinear) program:

DMSS arg max£2(S) = G(S) + H(S)
s.it. f(Xs)<a
1Sil/IUil=< © (H

where S C U is an utterance subset of the original corpora U, which has maximum
data with the constraints. 2 : 2Y — R is a set function, which measures the data of
an utterance set. It consists of two parts: 2(S) = G(S) + H(S). G(S) measures the

data in S when considering each utterance separately, and G(S) = Y g(u;), where
u; €S
cmax(S)
g : u; — R represents the data contained in one utterance u;. H(S) = >  h;(S)
i=2
represents data generated from all TCUs in S, where /;(S) is the data contained in all
TCUs of length i in S, cmax(S) is the max length of TCUs in S. f(Xs) = > f(Xy,)
u; €S
is a constraint function on some attributes of all utterances in S. In order to keep the
result set from being concentrated in a few conversations, we set a second constraint: 7,
which is the maximum coverage rate of the result set. Here S; = {u;|u; € S, u; € C;},
Ui = {uilu; € Ci}.

For the simplicity of discussion, we also use a directed graph G(U, E) represent
the original corpora, the node set U represents the original utterance set. The edge set
E represents the time-continuous relationship between utterances, if a pair of utter-
ances are time-continuous, there is a directed edge (u;, u ;) from u; to u ;. Obviously,

m
the graph consists of m paths and ) (/; — 1) edges. Assume that the original corpus

i=1
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Fig. 1 The graph corresponding to Table 2. g(u1) = 2, g(uz) = 1, g(uz) = 4, g(ug) = 2, glus) = 2,
glug) = 5, guz) = 1, hp = ({ur,u2}) = 1, by = ({ug, u3}) = 2, by = ({3, u4}) = 0.5, hy =
({us,ue}) = 3, hy = ({ug,u7}) = 0.5, h3 = ({ur,uz,uz}) = 1, h3 = ({uz, u3,u4}) = 1, h3 =
({us, ug, u7}) = 1, hg = ({uy, up, u3, ug}) = 0.5, f(Xul ) =38, f(Xuz) =5, f(Xu3) =15, f(Xu4) =38,
f(Xus) =8, f(Xug) =18, f(Xu;) =2, f(Xs) <25, 7 = 0.6. Blue nodes constitute the final result set

contains only the two conversations shown in Table 2, then Fig. 1 shows the corre-
sponding graph of the corpora. We just consider duration attribute of each utterance,
and f(X,,) represents the duration of u;. Utterances and conversations are numbered
in the order shown in Table 2.

We aim to provide the optimal subset S, given characteristics vector X s and subset
coverage rate 7, such that the data contained is maximized. The key challenge in
solving the above optimization problem DMSS in (1) is in unsubmodularity and NP-
hardness.

Theorem 1 The optimization DMSS problem (1) is NP-hard.

Proof Consider an instance of the NP-complete Knapsack problem. Given a set
of commodity C = (c1,c¢2,...,c,) with weights (aj, az, ..., a,) and profits
(p1, p2, - .., pn), finding a subset of commodity whose total profit is as large as pos-
sible, and the total weight is at most b. We show that this can be viewed as a special
case of DMSS. Given an arbitrary instance of the Knapsack problem, we define a
corresponding speech corpora with n utterances: there is an utterance u; correspond-
ing to each commodity c;, and it contributes £2({u;}) data which is equal to p;. In
addition, there is a character constraint value f(X,;) of each utterance corresponding
to a;. The Knapsack problem is equivalent to find an utterances subset S containing
maximum data in this corpus with constraints a = b, when we do not consider the
data contribution from TCUs and take 7 > 1. If any subset S can be obtained, then
the Knapsack problem must be solvable. a

3 Solution approach

In this section, we firstly analyze the unsumodularity of DMSS and properties of the
solution S, which could make the problem complex. Then we analyze the search space
of DMSS, and find some important properties of it. Finally, through these properties,
we obtain a solution approach to the problem.
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3.1 Unsubmodularity of DMSS

Submodularity gives rise to polyhedra with very nice properties (Fujishige 2005).
Researchers issue various programming problems [especially the corpus subset selec-
tion (King et al. 2005; Lin and Bilmes 2011)] which have submodular properties,
such that the appropriate version of the greedy algorithm can be used to solve these
problems. A set function w : 2¥ — R is submodular if it satisties the following

property:
w(A)+w(B) > w(AU B)+ w(AN B) 2)

for all set A and B. This means the value of considering two sets A and B separately is
at least as high as the value from considering them together. If the objective function is
submodularity, we can use greedy algorithm to get approximate solution in polynomial
time. Unfortunately, when we consider the data contribution from time-continuous
utterances in DMSS, it is not submodular.

Theorem 2 The optimization DMSS problem (1) is not submodular.

Proof For the objective functionin (1), 2(AUB) = G(AU B)+ H(A U B), obviously,
G(AUB) = G(A)+G(B)and H(AU B) > H(A) + H(B), then 2(A) + 2(B) <
£2(A U B) + 2(A N B), which contradicts (2), so §2 is unsubmodular. O

3.2 Solution space of DMSS

As can be seen from Theorem 2, the objective function is not submodular, so we can
not simply use greedy algorithm to solve it. Therefore, analyzing the property of the
solution helps us find an effective algorithm.

Consideration of TCUs feature makes the selected subset contain richer data infor-
mation. However, it also brings trouble to the solution of the problem. For example, in
Fig. 1, when we decide the data from u;, we must consider the data from {u»}, {u1, us},
{uz, us}, {uy, uz, us}, {ur, u3, us}, and {uy, uy, us, us}. The amount of data that

m
related to uj is 6.5, (» 1 that is from only u5). In fact, there are at least > (I; — 2)I; /2
TCUs which generate more data. This is far more than the data genler;ted without
considering time continuousness, which makes the problem more complex.

TCUs feature also bring another trouble: it makes the search space of the target
subset larger. In the previous example, because of the consideration of all TCUs
containing u», the semantic data can be reserved as much as possible during the subset
selection process, but it also causes the exponential growth of the search space of the
problem. Fortunately, TCUs in the result subset show some patterns like Theorem 3.

Theorem 3 For $* = argmax$2(S), S C C;, |S|=k, if T C S* consists of | —TCUs
and T is not adjacent to any utterance in S* — T, then 2(T) must be among the
largest I(k — 1) + 1 elements of {2(X)| X arel — TCUs of C;}.
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Proof When! = k, all utterances in S* are time-continuous, and 7T = S*, [(k—[)+1=1.
The theorem holds.

For any [ < k, assume the conclusion is not true. Let X; =
{X|X arel —TCUs of C;}.VYu € §* — T, there are at most [ elements in X; which
contain u. Therefore there are at most [(k — [) elements in X; that contain utterance of
S*—T.80,3T € X;, T'N(S*—T)=Pand 2(T') = 2(T).Let S = (S*—T)UT,
then .Q(S/) > §2(S), which is a contradiction. O

In the proof of Theorem 2, we can find that G(A)+ G(B) = G(AUB)+G(AN B),
but H(A)+ H(B) < H(A U B)+ H(A N B). Therefore, the introduction of the TCUs
feature is the cause of the unsubmodularity. At the same time, we also realize that,
if AN B = ¢ and there are other utterances between A and B (especially when A
and B belong to different conversations), H(A) + H(B) = H(A U B) + H(A N B).
Interestingly, this also helps simplify the objective issue, we will see it in Sect. 4.

3.3 Solution approach

We know the size of speech corpora is usually very big, and the amount of time and
resources needed to solve this problem grows exponentially with it. Fortunately, the
single conversation is much smaller, moreover, the utterances in different conversations
are not time continuous. Therefore, we can find the subsets from each conversation
and then merge all the subsets. However, Theorem 1 tell us that, even for one single
conversation, the DMSS problem is NP-hard, so heuristics are needed to find a good
solution faster.

From the previous section, we know that the time continuousness of utterance
makes the problem space very large. Researchers usually studied the semantic effects
of continuous words in sentences through n-grams models. IBM researchers found
through experiments that in the n-grams models, when n is equal to 3, the generated
phrases are almost impossible to appear in the actual language, let alone more than
3 (Brown et al. 1992). Therefore, most of the semantic researches based on n-grams
models only consider 2 or 3-grams (Gémez-Adorno 2018; Kumar and Satyanarayana
2017; Walter et al. 2017), ignoring the larger ones. Since it is so for a single word, it
should be more like this for utterances in conversations. Therefore, we do not need to
consider the data contribution of TCUs longer than 2. Moreover, from Theorem 3, we
know that we only need to search from z; = |U; |t unit utterances and z» = 2|U;|t —3
2-TCUs (TCUs of 2 length), which are much lesser than 2|U;|. This will allow us
to get a solution faster. At the same time, for a single conversation, we can still use
greedy algorithms in our algorithm, because the search space will be very small after
preprocessing (we can see this in Sect. 4).

4 2-grams based algorithm
In this section, we propose one 2-grams based algorithm (shown in Algorithm 1) to

solve the DMSS problem. The idea is to reduce search space by selecting part of
the largest 1-TCUs and 2-TCUs. Then the selected TCUs are merged based on their

@ Springer



1244 Journal of Combinatorial Optimization (2019) 37:1237-1248

® SIS

0 1 2 i—1 i i+1 i+2 i+3 i+4

time line

>
>

Fig.2 A merging example. The abscissa represents the time axis. Nodes in the same dashed box
overlap in occurrence time and need to be merged. After merging, we get the final utterances

set{uy, {uj—1, ui, i1}, {Uiv2, w3}, uiva}

occurrence time. Finally, the subset can be selected by greedy algorithm. Thus, the
partitioning consists of three phases.

4.1 Initialization and search space creation

Line 1 to Line 8. We make the necessary variable initialization in this section. And,
more importantly, the search space is reduced by sorting and filtering. Line 4 means
that the amount of data contained in each utterance in U; (U; is the set of utterances
in conversation C;) is sorted and the largest /; T utterances are placed in Ul.l. Line 5
to Line 6 select all 2-TCUs and place them in Ul-, . Line 8 is similar to Line 4, but it
should be noted that u € U l/ is a 2-TCUs, so its data contains not only the data of each
utterance, but also the compound data from them two together. The search space of
the problem will be significantly reduced after the filtering of Line 4 and Line 8.

4.2 Merging

Line 9, and the function detail is shown in Algorithm 2. We merge utterances over-
lapping in occurrence time to further reduce search space. Figure 2 shows a merge
example. It should be noted that in order to avoid excessive very long TCUs, which
will make the result subset only in a few segments of the original conversation, we
do not merge time-continuous TCUs. There can be many kinds of merging strategies.
For example, we can merge all the continuous utterances one by one. If merging one
utterance fragment in makes the sum of the constrained attribute value be greater than
the predetermined value y;, no merging will be done. We can also merge as many
fragments as possible. If the constraint attribute value of the result segment is greater
than y;, we can perform a split such as dichotomy to ensure that the value of the
constraint attribute of the obtained result utterance segment does not exceed the limit.
Due to space limitations, we only give the first method here (Algorithm 2).

4.3 Subset selection

Line 10-Line 24. After the second phase, although some of the remaining utterance
segments could also be time continuous, and the objective function in formula (1) is
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still unsubmodular, we can use greedy algorithm to find the best subsets by choosing
better initial nodes.

Algorithm 1 DMSS Algorithm

Input U : Original Utterances Set; C :Original Conversations Set; Y :Original characteristics
value of U a : Maximum Value of Total Constraint Characteristics; 7 : Maximum Coverage
Constraint.

OutPut: § : Maximum Subset of U

1: S« ,m=C|,n=U|
2:for i=1—mdo
3 S« @1 —U, |y «la/mU, Q@

4 U {Sort(U,Qu))}(1:17) for allue U,,

S: for j=2—1/do

6 U,(j) = {U,(7U,G+ D}

7:  end for

8: U’ « U+ {Sort(U.,Qu))}(1:21r3) forall ueU,

9: U} =Merge(U!,U})

10: S, =S, + FindLargest(U;)

I1: z=1y'=0

12: while z<|U;|and y <y, do

13: for all u such that ue U} and ue S, do

14: dataincre = the data increased by adding « in U to S,
15: end for;

16: newu = argmax , (dataincre)

17: if y' +Y(newu)<Y, and Length(newu)+|S, |<7l, then
18: S, =S, +newu

19: z=z+1, y =y +Y(newu)

20: else break

21: end if

22: end while

23: S« S+,

24:end for

5 Experimental results

We performed experiments on Switchboard-I corpus and verified our algorithm. In
our experiments, we measured the amount of data contained in each utterance by its
correlation coefficient to the topic of the conversation. Utterance tags were used to
measure the amount of compound data produced by a 2-TCUs. For example, if the
tag of an utterance is “aa”, “qy”, “qw”, “bk”, “nn”, etc., the amount of compound
data from the utterance and its adjacent utterances will be bigger. In addition, for the

characteristics constraint, we used the total duration.
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Algorithm 2 Merge Algorithm
1: function MERGE(U/, U}, y,)

2: U T

3: forall ue U} LU do

4: if Ju' e U] then

5: u' =u merge u
6: if f(u)=<y,—f(u")then
7: U =U’-u
8: U =U’+u
9: else

10: U =U’+u
11: end if

12: else

13: U =U’+u

14: end if

15:  end for;

16:  return U;

17:end function

Because the test data set and result set are too large, we can’t list all of them here.
We put the lgorithm source code and result set at the following URL: https://githu
b.com/18700197078/Ed/tree/master/src. Table 3 shows some of the result from our
experiments. Each conversation was divided into several time-continuous segments
that represent the semantics of the dialogue. While significantly reducing the size of the
corpora, semantic information was remained as much as possible, which was consistent
with our expectations. The subset selection process was very fast. For example, for
conversations with sequence number 4327, regardless of t being 0.1, 0.2, or 0.3, the
result set is always concentrated in two specific segments (23 ~25, 72 ~77). These two
segments exactly represent the semantics of the entire dialogue. The average search
time for each conversation was 5 ms, and the search process of the entire corpora
could be completed within 5 min. Although this is only the speed under the simple
constraints and measurement method of data as we set, it is also sufficient to show that
our algorithm is relatively high in efficiency. This would provide a very good basis for
the selection of the ideal prospective subset, and it could also effectively shorten the
development period of the Al algorithm.
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Table 3 Experiments results

T Con no. Con size Result Subset size Time (S)
0.1 4327 88 23~25,72~717, 9 125
4330 72 35~37,43~48,88~89 11
4171 108 32~39,52~53, 10
4321 110 23~30 8
4329 137 30~33,72~77,137~139 13
0.2 4327 88 22~27,72~83 18 151
4330 72 2~5,35~38,43~49, 58~59, 11
88~91
4171 108 32~40,43~53,107~ 108 22
4321 110 20~33 14
4329 137 19~20,30~37,63~79, 27
0.3 4327 88 19~29,72~79, 101 ~ 107 26 204
4330 72 33~38,40~50, 83~101, 32
4171 108 32~63 32
4321 110 6~63 32
4329 137 30~37,63~87,137~143 41

Con no., conversation no.; con size, conversation size measured by utterances number; result, result subset
represented by its members’ utterance no.; subset size, measured by utterances number of result subset;
time, time used for subset selection

6 Conclusion

The speech corpora subset selection problem considering time continuous utterances’
compound data contribution brings new challenges, and is not addressed by the previ-
ous researches. In this paper, we propose a search space reducing process and 2-grams
based subset selection algorithm. We first analyze the unsubmodularity, NP-hardness,
and properties of the problem. With the estimated range of the result set, a TCUs fil-
tering and merging process is proposed to get the smaller search space. Finally, greedy
algorithm can be used by appropriately selection of initial TCUs, and its speed is fast.
Experiments on Switchboard-I prove that the algorithm is efficient and correct.
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