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Maximizing Activity Profit in Social Networks
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Abstract—1In the past decade, tremendous research effort has
been devoted to viral marketing. Most existing works on seed
selection in social networks do not take into account the scenario
when a profit can be generated from group activities. Each
activity has a profit that can be measured by the excitement of the
participants. The excitement about one piece of information can
vary significantly among different groups of people. Given a social
network and a profit function, how can we select the seed users
to maximize the expected total amount of profit? This problem
is essentially different from the classic influence maximization
problem, and existing approaches cannot be directly applied
to solve the problem. In this paper, we study the problem of
activity profit maximization in social networks. We first prove
that the maximizing activity profit problem is nondeterministic
polynomial time-hard and cannot be approximated within a
constant factor by the simple greedy algorithm. Supermodular
degree of a function measures the extent to which it violates
submodularity. We design an algorithm that achieves an approx-
imation ratio of (1/(A + 2)) provided that the supermodular
degree of the social graph is bounded with A. We then develop
an exchange-based technique to further improve the quality of
the solution. We also devise a randomized variation approach to
overcome the computational burden of the proposed algorithms.
Extensive experimental results on three real benchmark data sets
demonstrate the efficacy and efficiency of our algorithms over
several baseline heuristics.

Index Terms— Activity profit maximization, approximation
algorithms, social computing.

I. INTRODUCTION

OWADAYS, more and more people own personal
accounts in various online social medias, such as Face-
book, LinkedIn, ResearchGate, and so on. Online social net-
works have been booming so rapidly with users contributed
data that their impact cannot be ignored in many areas, such
as presidential election and viral marketing. Recent research
revealed that social advertising is more effective than tradi-
tional broadcast advertising channels.
Overtime social information diffusion and influence
propagation get into people’s daily life more deeply and
more frequently through online social media. Therefore, the
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influence-driven information technology and influence-based
research problems have been studied extensively in the litera-
ture. Among existing works in the viral marketing, most of the
efforts have been devoted into topics focusing on products used
by a single person. However, some products may require more
than one user. For example, co-op video games like Monaco
require two or more players to beat the games’ hardest levels.
Other examples include online games like Texas hold em that
requires multiple users to join before the game starts.

Wang et al. [1] initiated the study on products that require
interaction between two users. In this paper, we would like to
consider products that involve cooperation among any number
of users. Consider a social network with certain information
diffusion model. In the well-known influence maximization
problem, a positive integer k is given and the problem is
to find a set of k seeds to maximize the influence spread,
i.e., the number or the expected number of active nodes. In the
activity maximization problem formulated in [1], the objective
function measures the total “activity strength" or say activity
profit, instead of the influence spread. To consider products
with any number of users, we consider an activity as an
event with two properties. First, this event has two or more
participants. Second, the occurrence of this event would gen-
erate a profit. For example, a group of users would jointly
purchase a product or play a game together. Since each activity
can be represented by a group of users, all activities form
the hyperedge set of a hypergraph. Different activities may
generate different profits. We are going to maximize the total
profit or the expected total profit generated by active users.

As indicated in [1], the objective function of the activity
maximization problem is neither submodular nor supermod-
ular in the independent cascade (IC) model and the linear
threshold (LT) model. A technique, so-called the sandwich
method, is employed in their work to obtain an approximation
algorithm with theoretical guaranteed performance. In this
paper, we will employ a different technique to deal with
our activity profit maximization problem. We will present
new theoretical improvement on the technique, together with
computational experiments to support our results.

A. Related Works

Influence maximization is a fundamental research prob-
lem in the study of social networks [2]-[8]. With many
information diffusion models, especially the IC model and
the LT model, the influence maximization is a nondeter-
ministic polynomial time (NP)-hard problem and comput-
ing the influence spread is a #P-hard problem. However,
there are randomized algorithms [9]-[11] that generates
(1 — e~ ! — &) approximation within time O((m + n)) with
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probability 1 — &, where n is the number of nodes and m
is the number of edges in the input social network. For
influence maximization, Bharathi ef al. [12] had an interesting
conjecture that the influence maximization problem is NP-hard
even for arborescence directed into a root. This conjecture
is proven by Lu et al. [13] for the IC model. For the LT
model, Wang et al. [14] proved that the influence maximization
is polynomial-time solvable. This is the first time to know
that the IC model and the LT model may give different
computational complexities for the same problem.

The influence maximization problem has important appli-
cations in the field of viral marketing [15]-[18]. While
most research efforts have been devoted to the advertise-
ment of products to single user (i.e., one-user activities),
Wang et al. [1] study a problem for advertising a product
with two-user activities. Their difference in the definition of
activity leads to an essential change in the property of the
mathematical formulation, that is, from submodular maxi-
mization to monotone nonsubmodular maximization. Both of
them belong to nonlinear combinatorial optimization. In this
area, the monotone submodular maximization [19] and the
nonmonotone submodular maximization [20]—[22] have been
well-studied. However, the monotone nonsubmodular maxi-
mization gets ones’ attention only recently [1], [23]-[26]. We
are going to make a contribution in this research direction.
B. Our Contributions

In this paper, we make several contributions that are sum-

marized as follows.

1) We propose a novel maximizing activity profit (MAP)
problem to maximize the expected total profit in a social
network. A unique novel feature of our problem is that
our objective captures interactions among multiple active
users. We are the first to explore the generalized multi-
user interactions in the information diffusion process.
Our problem includes the classic influence maximization
problem as a special case.

2) We analyze the complexity of the MAP problem.
We also prove that the objective function for the problem
is neither submodular nor supermodular. We present an
approximate algorithm that yields an approximation ratio
of (1/(A + 2)) provided that the supermodular degree
is bounded with A. We also develop an exchange-based
algorithm to further improve the quality of the solution.

3) We prove that computing the exact value of the objective
function of MAP problem given a seed set is #P-hard.
In order to tackle this challenge, we devise a randomized
variation (RV) technique to overcome the computation
burden of the problem. Experimental results confirm
the benefits of incorporating this technique with our
algorithms.

4) We conduct extensive experiments on real benchmark
social network data sets to evaluate the efficacy and
efficiency of our algorithms. Empirical evaluation results
validate the superiority of our algorithms in both effec-
tiveness and efficiency compared with a few baseline

heuristics.
The rest of this paper is organized as follows. We formulate

the problem in Section II. Complexity results and an

approximation algorithm are presented in Section III.

We propose an improved exchange-based algorithm and a RV

technique in Section IV and V, respectively. Evaluation results

are discussed in Section VI. Section VII concludes this paper.
II. FORMULATION

In the study of influence maximization, two most widely
used influence propagation models are the IC model and the
LT model. In this paper, we use a directed weighted graph
G = (V, E) to capture the structure of the social network and
adopt the IC model to capture the diffusion dynamics in the
social network. In IC model, each node has two states, either
active or inactive, and each directed edge (u, v) is associated
with a weight called influence probability, denoted by p,,,
measuring the probability that v is activated by u once u
becomes active. The activation between a pair of nodes is
independent of other nodes in the network. In IC model, time
unfolds in discrete slots. In the beginning of the propagation
process, or time slot 0, only the nodes in the seed set are active,
all the other nodes are inactive. Once a node is activated in
a time slot #, he/she has one chance to independently activate
each of his/her inactive neighbors, with the probability of
corresponding edge weight, in time slot # + 1. This process
can be simulated as flipping a coin on the edge with a bias of
its influence probability showing heads. If the coin flip shows
a head, the edge is declared /ive and the activation attempt is
considered a success. Otherwise, the edge is declared blocked
and the activation attempt is considered a failure. An activated
node stays active until the end of the diffusion process. The
process ends when there is no new node can be activated in
the network.

Since we consider activities involving multiple users,
we denote an activity as a hyperedge e with a set of head nodes
H, and a set of tail nodes 7,. Note that when |H,| = |T,| = 1,
e reduces to a simple edge. Since a simple edge is a special
type of hyperedge, we use the term edge without ambiguity
to unify the notion of both simple edges and hyperedges in
the graph. We employ a simple extension of the original IC
model to capture the information diffusion in a hypergraph
(i.e., graph containing hyperedges). Given an edge e, once all
nodes in its head set H, become active in time slot ¢, they
have one chance to independently activate each node in the
tail set T, in time slot 7 + 1. The diffusion process ends when
no new activations can be made.

Since an activity involves multiple users, it can be repre-
sented by this group of users. Therefore, all activities form a
hyperedge set of a hypergraph with the node set V, denoted
by A. The profit ¢ : A — R™ is a nonnegative function.
For any seed set S, denote by 7(S), the set of active nodes
at the end of the diffusion process with initial seed set S.
An activity is considered active if all nodes in H, U H; are
active. We consider the profit generated by active activities.
The expected profit of activities generated by active nodes
would be defined as

f§)=E

>

ACI(S),AcA

c(A) .

In this paper, we study the following problem.
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Definition 1 (Maximizing Activity Profit): Given a social
network G = (V, E) with the extended IC model, a collection
of activities, 4, a profit function ¢ : A — R*, and a positive
integer k, find a set S of k seeds to maximize the expected total
profit of activities consisting of users activated by S through
influence.

From the definition of MAP problem mentioned above,
we can see that it is a generalization of many classic influence
maximization derived problems, including the following.

1) Influence Maximization Problem: When A is defined as
A =V only including all the single vertex activity and
¢ : A — R' is defined as c¢(v) = |v| = 1, influence
maximization problem is a special case of MAP.

2) Activity Maximization Problem: When A is defined as
A = E only including all the edge set activity and c :
A — R7T is defined as c(e) = w,, activity maximization
problem is a special case of MAP.

III. COMPLEXITY AND ALGORITHM

In this section, we first give the complexity results of MAP
problem. Then, we analyze the properties of the objective
function of the MAP problem. Based on these properties,
we present the algorithm to solve the MAP problem.

Theorem 1: The MAP problem is NP-hard.

Proof: This is because the influence maximization prob-
lem is NP-hard and influence maximization problem is a
special case of MAP. O

Theorem 2: For a given set S, the computation of

>

ACI(S),AcA

f(S)=E c(A)

is #P-hard.

Proof: This is because activity maximization problem is
#P-hard and activity maximization problem is a special case
of MAP. O

Now, we turn to analyze the submodularity of the objective
function of MAP problem. Unfortunately, the objective func-
tion of MAP problem is neither submodular nor supermodular.
The definitions of submodular and supermodular are given as
follows.

Definition 2 (Submodular Function): Suppose that f
2V — RT is the nonnegative set value function, where V
is the ground set. f is called submodular if for any subset S,
Sy of V with §§ € S € V, and any v € V\S2, we have
Ay f(S1) = Ay f(S2), where A, f(S) = f(SU{v}) — f(S).

Definition 3 (Supermodular Function): Suppose that f :
2V — RT is the nonnegative set value function, where V
is the ground set. f is called supermodular if for any subset
S1, S of V with S € §> € V, and any v € V\S,, we have
Ay f(S1) < Ay f(S2).

Theorem 3: The objective function

>

ACI(S),AcA

fS)=E c(A)

of MAP is nonsubmodular.
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Proof: This is because the objective function of activity
maximization problem is nonsubmodularity and activity max-
imization problem is a special case of MAP as we explained
in Section II. O

Similarly, we have
Theorem 4: The objective function

>

ACI(S5),AcA

fS)=E c(A)

of MAP is nonsupermodular.

Proof: This is because the objective function of activity
maximization problem is nonsupermodularity and Activity
maximization problem is a special case of MAP. O

A. Supermodular Degree Algorithm

In this section, we use the supermodular degree to mea-
sure to what degree the nonsubmodular version violates the
submodularity inspired by Feldman and Izsak [24]. When the
supermodular degree is bounded, denoted by A, an algorithm
improved extendible system greedy (IESG) with consistant
approximation ratio (1/(A + 2)) is proposed. For this propose,
we first give some definitions with respect to supermodularity.

Definition 4 (Supermodular Set): Given a monotone set
value objective function f(-), the supermodular set of a node
v eV is th(o) = {0 € VIAf(SU}Y) > A, f(S),
3S < V}, which includes all nodes that might increase the
marginal gain of v € V.

Definition 5 (Supermodular Degree): The  supermodular
degree, denoted by A, is defined as the maximum cardinality
among all supermodular sets, i.e., A = max,ecy | D}“ ) |.

It is obvious that when A = 0, the function f(-) is submod-
ular. As for the nonsubmodular case of influence maximization
problem with bounded supermodular degree, we design an
IESG algorithm based on the average marginal gain. As given
in Algorithm 1, we start with an empty set Sp. The algorithm
iteratively selects a set of seed nodes that mitigates the negative
effect of the nonsubmodularity. Once a node v is selected as a
seed node, partial nodes in D;f (v) (denoted by D)) are jointly
selected as seed nodes. In each iteration, a node v is selected
along with nodes in its supermodular set to maximize the
marginal gain of the current solution set. While the constraint
on the size of the solution set, k, is satisfied, we update the
seed set with newly selected nodes. The algorithm runs until
k seed nodes are selected.

Compared with the naive greedy algorithm, we use a new
rule in IESG to select the nodes that maximize the joint
marginal gain instead of a single node with maximal marginal
increment. This rule is more beneficial due to the monotone
property of the objective function. The idea is that the influ-
ence of a node can be boosted by the nodes in its supermodular
set, in each iteration, the algorithm always selects the set of
nodes with maximal boosted influence.

IV. ANALYSIS

In this section, we analyze the approximation ratio of the
IESG algorithm. Then, we introduce the exchange improve-
ment algorithm (EIA) to further improve the performance.



120 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 6, NO. 1, FEBRUARY 2019

Algorithm 1 IESG

Input: a hyper-graph, G, and a constant, k.

Output: a set of seed nodes, S.

1: Initialize i = 0 and Sy = ¢.

2: While |S;| < k do

3: Find out
argmaxuevjpégp}'(u) [f(S U} U D1/)) - f(S5 U D1/))L
constrained by [S; U {v} U D] | < k.

4: Update S;+1 = S; U {o} U D;.

5: Update i to be i + 1.

6: Return S = §; as the set of seed nodes.

A. Approximation Ratio of IESG

First, we show that the IESG algorithm designed above has
(1/(A +2)) approximation ratio. Then, we present an EIA
for MAP problem to further improve the performance of the
solution.

Theorem 5: Algorithm IESG has an approximation ratio of
(1/(A + 2)) to the optimal solution.

Proof: Let S§* denote the optimal set of seed nodes,
in terms of maximizing f(-). An auxiliary parameter,H;,
is used. With Hy = S*, H; is recursively defined as an arbitrary
subset of H;_1 U S;, under the constraint that S; € H; and
|H;| = k. Intuitively, H; consists of S; and a part of S*. When
i becomes larger, nodes from S; are added to H;, and nodes in
S* are removed from H;, maintaining |H;| = k. By definition,
we have

|Hit1] = |H;| — [H\Hj+1] + |Si+1\Si]. (1)
Since |Hjy1| = |H;| = k, we have
|H\Hi11] = [Si+1\Si| < [{o}UD)| <1+ A. (2)

This is because D] C D;f (v) and A = max, |D}' ()]
Equation (2) means that, in each greedy iteration, at most 1+ A
nodes in S* are ignored by Algorithm IESG.

We claim that the marginal gain in each greedy iteration of
Algorithm IESG has a lower bound with respect to f(H;)

f(H) — f(Hiz1) < (14 A)[f(Si U{v} U D))
—f(SuD)]. 3
To prove (3), let us order nodes of H;\H;; in an arbitrary

order (say v1,v2,...,0;), and let H! = H;j\{v1,02,...,0;}
for 1 < j <1, where H’ = H; and H! C H;yy. For each j,

we have
F(SiU ) U (D), N HY)) = (5 U (D), N H)
> £(SiUoj) UHT) = £(Si UH)
= f(S;UH/TY) = £(5;UH]). @)

The inequality is from the definition of the modularity
set, because only nodes in D}r (vj) can increase the marginal

gain of v;. Hence, nodes in Hl.j \D}L (v;) might decrease the
marginal gain of v;. The equality results from the definition

of Hl.j, since {v;} U Hl.j = Hl.j_l. By accumulating (4) among

J, we obtain

MN

[£(S: Utvhu (D), N H])) = f(s:U (D), nH]))]

~.
Il

H
MN
I

FUH ) = f (s 0 H])]

((S, UH) = f(Si UH])) = f(H) = f(Hit1).  (5)

The first inequality is from (4). The last inequality is
because f(S; U HY) = f(H;) and f(S; U H') < f(Hi1).
We have f(S; U HO) = f(H,), since H0 H; and S; C H;.
We have f(S; U H ) < f(Hi+1) by the monotonicity, since
Si € Si+1 € Hit+1 and H; € Hiy1. We have

1+ M)[f(SiU{pyUD)) — (S UD,)]
1

> > [£(

SiU{vluD;) — f(SiuD,)]

1

= > [F(Si Uy U (D), nHY)) — £(5:0 (D), N HY))]
j=1
> f(Hi) = f(Hi1). (6)

The first inequality results from (2), in which 1 < j <
|H\H;i+1| < 1 4+ A. The second inequality comes from
Line 3 in Algorithm IESG, which always selects the maximum
average marginal gain in each greedy iteration. The third
inequality comes from (5). Therefore, (3) is valid.

Since the marginal gain in each greedy iteration of Algo-
rithm IESG has a lower bound, we can accumulate (3) among
all greedy iterations (note that S;y1 = S; U {v} U D))

-1

f(Ho)— f(Hy) = D [f(H) = f(Hit1)]

i=0
-1
< D (+M)[f(SUi}uD])—f(Si U D,)]
i=0
-1
<(+8) > [F(Siui}uD)) = f(S)]
i=0
-1
<+ M) > [fSien) = £(S)]
i=0
< £(S1) — £(S0). (7

Here, we assume that the algorithm IESG terminates in [
iterations. The first inequality is again by the monotonicity of
f(S;UD)) > f(S;) based on (S;UD)) 2 S;. Since Hy = S*,
H; = S; = S when Algorithm IESG terminates, and Sy = @,
we have

F(8) =(A+2)f(S). ®)

The theorem follows. O
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B. Exchange Improvement Algorithm

Although we can obtain approximation ratio for MAP, there
is still a big gap between the approximate solution and the
original optimal solution. In this section, we present the EIA
designed based on the nice properties observed in MAP. We
first discuss the optimization condition of MAP and obtain
an optimum criterion. Then, we discuss M-convexity of the
feasible region of MAP. At last, we present the EIA.

First, we derive the optimization condition. Although greedy
algorithm IESG returns (1/(A + 2))-approximate solution to
MATP, it is still a big gap between the approximate solution
obtained and the optimal one in theory. How to determine
whether an approximate solution can be improved or not is still
a fundamental question deserve further study. To this problem,
we have the following theorem.

Theorem 6: Suppose S* is the optimum solution of the
MAP problem, then

Snélsn Asf(S*\S) = Bui As f(S*\Sk) (C))

where Sgp = argmingcs+ Ag f(S*\S) and

>

ACI(S),AcA

JS)=E c(A)

Proof: Suppose the following inequation:
in Agf(S™\S) > Asf(S*\S
min sf(S\S) = Bui sf(S"\Sr)

is not satisfied, then there exists Sy

ASRf(S*\SR) < ASAf(S*\SR)'
On the other hand

F(8%) = f(S*\SR) + As f(S*\Sr) ~ (10)
(8" = Sr+Sa) = f(S"\Sr) + As, f(S"\Sr). (11)

Therefore, f(S* — Sg + S4) > f(S8*). This is conflict with
the optimality of S*. O
When just the singleton subset of S* is considered,
a corollary of the above optimization criterion is immediately
obtained as follows.
Corollary 1: Suppose S* is the optimum solution of the
MAP problem, then

?figk Ay, f(S*\{oi}) = max, Ay f(S*\{or})

C VA\S* such that

1 (12)
where og = mini<;<k Ay, f(S*\{v;}).

Proof: ~ The proof is similar to optimization crite-
rion theorem above. Suppose minj<;<i Ay, f(S*\{v;}) >
max,ev\s+ Ay f(S*\{vr}) is not satisfied, then there exists
04 € V\S* such that Ay f(S*\{or)) < Ay, f(S*\{or)).

On the other hand

(8% = fS\forD+ A f(S*\{vr))  (13)
F(S"={or} + {va}) = f(S"\forD+Av, f(S"\{vr})). (14)

Therefore, f(S*—{og}+{va}) > f(8*). This is conflict with
the optimality of S*. O

Now, we turn to the property of the feasible region of MAP
problem. It is easy to see that the feasible region of MAP is
an M-convex set [27].
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Algorithm 2 EIA
Input: a solution Sy of influence function maximization prob-
lem with |So| = k.
Output: a set of non-improvable solution s.
1: Initialize i = 0 and S = Sp
2: Find out vg = argmeigl Ay f(S\{v}), let A(vg) =
v
Avg f(S\{vr})
3: Find out vy = argvren\e/ligs Ay f(S\{or}) and let A(vy) =

Ay, f(S\{or})
4. If A(vr) > A(va), then S is non-improvable, stop;
otherwise S := S —ovg +v4 and go to step 2.

Theorem 7: The feasible region of MAP problem F =
(SIS € {0, 1}V A\ I S |l1= k} is M-convex set.

Proof: For S1,S8, € F, and u € supp™(S; — S3), there
exists v € supp~ (S; — S2) such that S| — y, + y» € F and
S>+ xu—xo € F where y, is the indicator vector of singleton
set {u#}. In fact, any v € $>\S; is candidate that meets the
requirements. By the definition of M-convex set, it follows
the theorem. O

Make use of the M-convexity of feasible region of influence
function maximization problem, a feasible solution is reserved
unchanged under exchange operations. Therefore, we have the
following exchange improvement property.

Theorem 8: For any feasible solution S of MAP problem,
if necessary condition for optimality (12) is not satisfied, then
S can be improved through exchange operations.

Proof: ~ According to the optimization criterion and
M-convexity of feasible region, S — y,, + x», € F outper-
forms S, that is, f (S — fog + £v4) = £ (S)+ Au, f(S\or)) —
Ay f(S\{or}) > f(8), if necessary condition for optimality
(12) is not satisfied. O

Now, the definition of nonimprovable solution of activity
profit maximization problem is presented.

Definition 6 (Nonimprovable Solution): S is said to be non-
improvable solution of MAP problem, if condition (12)
in the necessary condition for optimality (Corollaryl) is
satisfied.

Inspired by the exchange improvement property mentioned
above, we design an EIA as follows. The basic idea behind
the EIA is to replace the node with the minimum marginal
gain in the current solution with the node with the maximum
marginal gain in V\S.

V. RANDOMIZED VARIATION

Although the algorithm designed in the above sections have
good approximate performance, there is still insurmountable
difficulties to solve the MAP problem in practice due to
the NP-hardness of the problem and the #P-hardness of the
objective function value computation. Furthermore compute
the supermodular set is still NP-hardness. In this section,
we use random technique design practical algorithm for the
MAP problem.

In improved greedy algorithm (IESG), we should deter-
mine supermodular set D}r(v) for each node v € V at the
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initial phase. Unfortunately, to decide whether a node u is in
supermodular set DT (v) of any given node v is NP-hard [28].

Theorem 9 [28]: To determine whether a node u is in
supermodular set D}' (v) of any given node v is NP-hard.

As proposed by Theorem 2, in social network computation,
the spread value of a given S is #P-hard. Traditionally, f(S)
is evaluated through random sampling method such as Monte
Carlo simulation but how to determine the simulation number
is very difficult. Therefore, it is meaningful to find effective
and efficient ways to evaluate the f(S) directly for any given
S. In this section, we given a successive iteration update
method (SIUM) to compute the f(S) from the marginal gain
perspective.

Definition 7 (Marginal Gain): Suppose that f : 2V — Rt
is nonnegative set value function, where V is the ground set.
For any subset S of V, A, f(S) = f(SU{o}) — f(S) is called
marginal gain of o € V\S at S. In addition, we can define
A7 f(S)= f(SUT)— f(S) as marginal gain of 7 C V\S at
S in the similar way.

Based on the definition of marginal gain, we have the
following property in the marginal increment form.

Property 1: For a given set S € V and any subset 7 C S,
then we have

F(8) = f\T)+ Ar f(S\T) =

for any given set value function f.

Let f(S) = > ,cy 45 is the influence function value (or the
spread value) of a given S, where q,f is the active probability
(or expectation equivalently) of the node u when S is selected
as seed set under the IC propagation model. Denote p,, the
probability of node v can activate node u along a given path.
Using these notations, we have the following property.

f(T)+ As\r f(T)

Property 2: f(8) = X ey[pou+ (1= pou)qu | for any S
and v € §.
Proof: According to property 1, we have
f(8) = f(S\v) + A, f(S\v)

S
= Zuev qu v and

Apf(S\0) = D [1= (1= )0 = pou) — i ]

ueV

= Z I_CIS\U Pvu)-

ueV

where f(S\v)

Thus, we have

s s
£ = [a" + (1= ") pou]
ueV
= Z Pou+ (1 — puu)qS\U]-
ueV
L
Thus, we have an upper bound of
f(S)=E > )
ACI(S),AcA
which can  be  reformulated as f(S) <

ZACI(S) Aealc(A) mlnveA{q }). The upper bound can be
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Fig. 1. Node degree and supermodular degree distribution.

further reformulated as f(S) = ZAgI(S),AeA(C(A)(l/MD
zveA{q } due to the inequality minveA{qDS} <

(1/|A|) ZUEA{ql) —
Theorem 10: The upper bound objective function f(S) of

MAP is submodular.

Proof: This is because the upper bound
of  objective  function of MAP  f(S) =
Yaci)aeaC@IAD X enlas) = X,evare).

where ¢c(v) = ZUGA,AEA (1/]ADc(A). This is a weight
version of influence maximization problem which is
submodular. O
Considering the NP-hardness of both the MAP problem and
supermodular set determine, a polling-based method inspired
by Wang ef al. [1] and based on algorithmic framework
established in [29] and [10] can be generalized well to
the MAP problem. For a given social hypernetwork G, IC
information diffusion model, and a seed set S, let g be a
"live-edge" graph instance of G and R, (S) be the set of nodes
reachable from § in g. Denote by R, 7 (v) the reverse reachable
set for node » in g, where g’ is the transpose graph of
g:(u,v)eg < (v,u) eg’. We write A ~ A to indicate
that we randomly pick A from A4 as a sample according to a
certain distribution. Then, we have the following result.
Theorem 11: For any seed set S € V

f&=c- P’”g~G,A~A|: ﬂ (SN Ryr(v) # VJ]

veA

where C = > 4. 4 c(A).

Proof:
f=E| > @A)
ACI(S),Ac A
=> Prgwg|: () (SN R, () # Q)}(A)
AeA veEA
=c.-> PrgNG[ () (SN R,r @) # w} C(CA)
AeA veEA

=C- Prgwg,AwA[ () (SN R, () # w}.

veA

In the fourth equality, the activity A is randomly picked
with probability (c(A)/C). The theorem is obtained. O

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on bench-
mark data sets to evaluate the effectiveness and efficiency of
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TABLE I
CHARACTERISTICS OF SOCIAL NETWORK DATA SETS

[ Name [ #Nodes [ #Edges [ Avg. degree |
Facebook 899 72,821 165
arXiv 16,726 66, 759 11.9
Epinions 22,166 | 353,546 33.5

the proposed algorithms. Table I summarizes the basic statis-
tics of the data sets used in our experiments. Fig. 1 presents
the distributions of node degree and node supermodular degree
for each data set.

We compare our algorithms with three baseline algorithms.
Myopic selects a node with the largest increment of the total
profit in each iteration, until k seeds are selected. DegMax
selects a node with the highest out-degree in each iteration,
until k£ seeds are selected. InfMax selects a node with the
largest increment of the influence spread in each iteration,
until k seeds are selected. This algorithm only considers social
influence but ignores the profit distribution.

A. Quality Evaluation

Experimental results are reported on two metrics: the
expected total profit yielded and the sensitivity to varying
activity profit distributions.

Figs. 2 and 3 shows the expected total profit yielded by
various algorithms and baselines when the seed set size, k,
ranges from 2 to 16. The x-axis holds the value of the size
of the seed set and the y-axis holds the expected total profit
gained from activities. Note that Fig. 2 shows the results
of various algorithms under the uniform setting for activity
profit distribution. Specifically, each activity is assigned a
profit equal to 1. In this case, the expected total profit is
exactly the number of active edges among the nodes. The
expected total profit grows as k increases, since a larger k
increases the chance for seeds to influence more nodes, leading
to more active activities at the end of the diffusion process.
Fig. 2(a)—(c) manifest that EIA and IESG outperform all the
other baselines for any k under the uniform setting. We also
observe that the gap between the DegMax algorithm and other
algorithms becomes larger as k increases. DegMax performs
poorly as it only uses the structure properties of the social
network without considering social influence. InfMax fails

Expected total profit versus seed set size produced by various algorithms under uniform profit setting. (a) Facebook. (b) arXiv. (c) Epinions.

to find good solutions since it only considers the diffusion
process but the activity profit is not examined during seed
selection. Myopic only selects one seed node at a time
without considering the combinations of nodes that may
activate many more activities via hyperedges, i.e., the marginal
increase in the expected profit of a node may be boosted by
the nodes in its supermodular set.

For data set Facebook, Fig. 2(a) shows that the expected
total profit yielded by both EIA and IESG converges as k
reaches 12. The underlying reason is that compared with the
other two data sets, Facebook contains a smaller number of
nodes and has a much denser network structure. Therefore,
a small set of seed nodes is possible to influence almost all
the nodes in the social graph. On this data set, Myopic has a
similar performance compared with EIA and TESG. On arXiv
and Epinions, the expected total profit produced by all the
algorithms keeps growing as k increases. The gap between
Myopic and our proposed algorithms becomes larger as k
increases. Taking the node combinations into account, EIA
and IESG obtain a better solution by taking advantage of the
power of exchange and examining a node’s supermodular set
to incorporate the influence boosting from selecting more than
one seed at a time.

Fig. 3 shows the results of various algorithms under the
influence probability setting for activity profit distribution.
Specifically, each activity is assigned a profit equal to the
influence probability associated with the corresponding edge
in the graph. As expected, the expected total profit increases
as k increases. Fig. 3(a)-(c) manifest that the results are
quite similar to those shown in Fig. 2(a)—(c). The proposed
algorithms EIA and IESG consistently outperform all the
baseline algorithms in all cases. The reason is that the baseline
algorithms only consider the structure properties of the social
network or the influence diffusion process but totally ignore
the distribution of activity profits. This is why our proposed
algorithms always have a good performance while the baseline
algorithms fail in many cases.

It was worth noting that results produced by InfMax
exhibit a better performance under the influence probability
setting as measured by the expected total profit. In each
iteration, InfMax selects a seed node that leads to the largest
marginal increment of the influence spread based on current
seed set until £ seed nodes are selected. Therefore, InfMax
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tends to select a group of highly influential nodes as the
seed set. Under the influence probability setting, the activity
profit for each edge is equal to the influence probability
associated with the edge, and edges with higher influence
probabilities have higher chance to become live and contribute
to the influence diffusion. While the algorithm selects the seed
set that leads to a largest influence spread, as a side effect,
the edges with higher influence probability (i.e., activity profit)
become active and contribute to the total profit obtained at the
end of the diffusion process.

To understand the effectiveness of various algorithms,
we take a closer look at the results across different data sets.
We plot the distributions of node degree and node supermod-
ular degree for each data set, and the result is illustrated
in Fig. 1. We observe that the fraction of nodes decreases
rapidly as the node degree increases. The fraction of nodes
with higher degree is much smaller than the fraction of nodes
with lower degree. These results empirically illustrate the
phenomenon that the node degree distribution follows a power-
law distribution for each of the three tested data sets. Recall
that as we discussed in Section III, the supermodular degree
A is defined as the size of the largest supermodular set of the
nodes in the social graph. It measures the degree to which the
objective function violates the submodularity. As illustrated
in Fig. 1, the fraction of nodes with supermodular set of size
over 80 is less than 2% for data set Facebook, and it is less
than 0.1% for data sets arXiv and Epinions. These results
empirically demonstrate that for each of the three data sets,
the supermodular degree of the social graph is very small
compared with the number of nodes |V| in the graph. This
intuitively suggests that the degree to which the objective
function violates the submodularity is limited. Therefore,
the improved greedy algorithm has a good performance on
each of all three data sets. Taking the node combinations into
account, IESG fully utilizes the power of boosted influence
from a node’s modularity set and selects a high-quality set
of seed nodes in each iteration, leading to a comprehensive
solution set as a result.

B. Scalability Evaluation

We further evaluate the efficiency and scalability of our
algorithms. In our experiments, we adopt two synthetic

10 15

Expected total profit versus seed set size produced by various algorithms under influence profit setting. (a) Facebook. (b) arXiv. (c) Epinions.

profit settings to evaluate our proposed algorithms. Since
the activity profit settings do not affect the running time,
we only report the result of running time on the three data
sets.

Fig. 4 shows the running time produced by our algorithms
and the baselines with varying seed set sizes. The seed set
size k varies from 2 to 16. The x-axis holds the value of k
and the y-axis holds the running time (measured in seconds).
As can be seen, our algorithms show scalability and efficiency
and finish within 2 min for Epinions. The running time of
the algorithms grows when the size of seed set k increases.
The growth rate is almost linear except DegMax. Taking the
source combinations into account, EIA and IESG examine
the combinations of node set and obtain a better solution by
spending more time since the number of node combinations
is much higher than the number of nodes. DegMax has the
shortest running time, as it only considers the node degree
when selecting the seed set. InfMax and Myopic are also
faster than our algorithms. Since they only consider the
influence diffusion and marginal increment of single nodes
but totally ignore the distribution of activity profits and node
combinations, their performance is substantially weaker than
our algorithms. Therefore, it is worthwhile to take a bit
more time to produce comprehensive solution sets with higher
quality.

We further evaluate the efficiency of the RV as discussed
in Section V. The simple greedy algorithm for estimating
the expected influence spread is computationally prohibitive,
as computing the marginal gain for each node is #P-hard [4],
and is typically approximated by a sufficiently large number
of Monte Carlo simulations. In our problem, we have proved
in Section III that computing the expected profit of activities
given a seed set is also #P-hard. Next, we incorporate the RV
technique to evaluate the benefit of the method in terms of
performance and efficiency.

Fig. 5 shows the performance and running time produced by
IESG and IESG-RV, improved greedy with RV. This set of
experiments is conducted on the data set Epinions. Fig. 5(b)
shows the running time of both algorithms. The results are
reported with the varying seed set sizes. The seed set size k
varies from 2 to 16. The x-axis holds the value of k£ and the
y-axis holds the running time (measured in seconds). As we
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discussed earlier, the running time of TESG grows when the
size of seed set k increases, and the growth rate is almost
linear. In contrast, the running time of /G-RV decreases when
k increases. This is because the time cost in the RV depends on
the number of sampled edges. As we discussed in Section V,
the expected number of samples is inversely proportional to
the probability of the event (), .4 (S N R,7(v)) # 0. The latter
increases when k increases. The improved greedy with RV is
faster than the original improved greedy algorithm on Epinions
in all cases. Specifically, when k = 16, the running time
is reduced by 89%. This empirically suggests that the RV
proposed in Section V provides a promising technique to speed
up the improved greedy algorithm, especially on large data
sets.

Fig. 5(a) shows the performance of the two algorithms
as measured by the expected total profit on Epinions. The
parameter setting is the same as above. We observe that the
performance of the two algorithms is quite similar with varying
size of the seed set. Taking both effectiveness and efficiency
into account, it demonstrates that by incorporating with the
RV technique, the running time of the improved greedy
algorithm is reduced significantly while the good performance
is preserved.

VII. CONCLUSION

In this paper, we study a novel and important MAP problem.
We are the first to explore the generalized multiuser interac-
tions in information diffusion. Our problem includes several
classic influence maximization related problems as special
cases. We present an approximate algorithm with approximate
ratio of ﬁ provided that the supermodular degree is bounded
with A. We design an exchange-based algorithm to further

improve the quality of the solution. We develop a RV tech-
nique to reduce the computation burden of the MAP problem.

REFERENCES

Z. Wang, Y. Yang, J. Pei, and E. Chen. (2016). “Activity maximization by

effective information diffusion in social networks.” [Online]. Available:

https://ieeexplore.ieee.org/document/8010858

[2] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2003, pp. 137-146.

[3] W. Xu, Z. Lu, W. Wu, and Z. Chen, “A novel approach to online social

influence maximization,” Social Netw. Anal. Mining, vol. 4, no. 1, p. 153,

2014.

W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization

for prevalent viral marketing in large-scale social networks,” in Proc.

16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,

pp- 1029-1038.

[5] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in Proc. IEEE 10th
Int. Conf. Data Mining (ICDM), Dec. 2010, pp. 88-97.

[6] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization

in social networks,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, 2009, pp. 199-208.

Y. Zhang, Q. Gu, J. Zheng, and D. Chen, “Estimate on expectation

for influence maximization in social networks,” in Proc. Adv. Knowl.

Discovery Data Mining, pp. 99-106, 2010.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based approach
to social influence maximization,” Proc. VLDB Endowment, vol. 5, no. 1,
pp. 73-84, Sep. 2011.

[9] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal

time complexity meets practical efficiency,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, 2014, pp. 75-86.

Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear

time: A martingale approach,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2015, pp. 1539-1554.

H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal

sampling algorithms for viral marketing in billion-scale networks,” in

Proc. Int. Conf. Manage. Data, 2016, pp. 695-710.

S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximiza-

tion in social networks,” in Internet and Network Economics. Berlin,

Germany: Springer, 2007, pp. 306-311.

[13] Z. Lu, Z. Zhang, and W. Wu, “Solution of Bharathi-Kempe—Salek

conjecture for influence maximization on arborescence,” J. Combinat.

Optim., vol. 33, no. 2, pp. 803-808, 2017.

A. Wang, W. Wu, and L. Cui, “On Bharathi—-Kempe—Salek conjecture for

influence maximization on arborescence,” J. Combinat. Optim., vol. 31,

no. 4, pp. 1678-1684, 2016.

M. Richardson and P. Domingos, “Mining knowledge-sharing sites for

viral marketing,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, 2002, pp. 61-70.

[16] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of

viral marketing,” ACM Trans. Web, vol. 1, no. 1, p. 5, 2007.

P. Domingos and M. Richardson, “Mining the network value of cus-

tomers,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, 2001, pp. 57-66.

[18] E. Bonchi, C. Castillo, A. Gionis, and A. Jaimes, “Social network

analysis and mining for business applications,” ACM Trans. Intell. Syst.

Technol., vol. 2, no. 3, p. 22, Apr. 2011.

[1

—

[4

=

[7

—

[10]

(1]

[12]

[14]

[15]

[17]



126 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 6, NO. 1, FEBRUARY 2019

[19] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Math. Oper. Res., vol. 3,
no. 3, pp. 177-188, 1978.

U. Feige, V. S. Mirrokni, and J. Vondrdk, “Maximizing non-monotone
submodular functions,” SIAM J. Comput., vol. 40, no. 4, pp. 1133-1153,
2011.

J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko, “Non-monotone
submodular maximization under matroid and knapsack constraints,” in
Proc. 41st Annu. ACM Symp. Theory Comput., 2009, pp. 323-332.

M. Feldman, J. Naor, and R. Schwartz, “A unified continuous greedy
algorithm for submodular maximization,” in Proc. IEEE 52nd Annu.
Symp. Found. Comput. Sci. (FOCS), Oct. 2011, pp. 570-579.

U. Feige and R. Izsak, “Welfare maximization and the supermod-
ular degree,” in Proc. 4th Conf. Innov. Theor. Comput. Sci., 2013,
pp. 247-256.

M. Feldman and R. Izsak. (2014). “Constrained monotone func-
tion maximization and the supermodular degree.” [Online]. Available:
https://arxiv.org/abs/1407.6328

W. Lu, W. Chen, and L. V. Lakshmanan, “From competition to comple-
mentarity: Comparative influence diffusion and maximization,” VLDB
Endowment, vol. 9, no. 2, pp. 60-71, 2015.

W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou, “Robust influence
maximization,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 795-804.

K. Murota, Discrete Convex Analysis. Philadelphia, PA, USA: SIAM,
2003.

G. Tong, private communication, Dec. 2017.

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proc. 25th Annu. ACM-SIAM Symp.
Discrete Algorithms, 2014, pp. 946-957 s.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

Wenguo Yang received the M.A. degree in operation
research and control theory from Beijing Jiaotong
University, Beijing, China, and the Ph.D. degree
in operation research and control theory from the
Graduate University of the Chinese Academy of
Sciences, Beijing, in 2006.

He is currently a Professor with the School
of Mathematics Sciences, University of Chinese
Academy of Sciences, Beijing, China. He has
authored or co-authored more than 50 research
papers in reputed refereed academic journals and
conference proceedings, such as Journal of Combinatorial Optimization,
Optimization, International Journal of Computer Mathematics, and Journal of
Systems Science and Complexity. He has presided over two national science
foundation programs and several practical applications. His current research
interests include social network, robust optimization, nonlinear combinatorial
optimization, emergency management, and telecommunication network opti-
mization. He has supervised many M.Sc. and Ph.D. students in these areas.

Jing Yuan (S’15) received the B.S. degree in
computer science from Nanjing University, Nanjing,
China. She is currently pursuing the Ph.D. degree
with the University of Texas at Dallas, Richardson,
TX, USA.

Her current research interests include span social
computing, ecommerce, combinatorial optimization
and algorithms.

Ms. Yuan is a Student Member of ACM.

Weili Wu (M’00) received the M.S. and Ph.D.
degrees from the Department of Computer Science,
University of Minnesota, Minneapolis, MN, USA,
in 1998 and 2002, respectively.

She is currently a Full Professor with the Depart-
ment of Computer Science, University of Texas,
Dallas, TX, USA. She is involved in the design and
analysis of algorithms for optimization problems that
occur in wireless networking environments and var-
ious database systems. Her current research interests
include data communication and data management.

Jianmin Ma received the Ph.D. degree in mathe-
matics from Colorado State University, Fort Collins,
CO, USA.

He is currently a Professor of mathematics with the
College of Mathematics and Information Science,
Hebei Normal University, Shijiazhuang, China. His
current research interests include machine learn-
ing, data mining, social networks, and discrete
mathematics.

Ding-Zhu Du received the M.S. degree from the
Chinese Academy of Sciences, China, in 1982, and
the Ph.D. degree from the University of California
at Santa Barbara, Santa Barbara, CA, USA, in 1985,
under the supervision of Prof. Ronald V. Book.

He was a Professor with the Department of Com-
puter Science and Engineering, University of Min-
nesota, Minneapolis, MN, USA. He was with the
University of Texas at Dallas, Richardson, TX, USA,
Mathematical Sciences Research Institute, Berkeley,
CA, USA, and the Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, MA, USA. He was also
with the Department of Computer Science, Princeton University Princeton,
NJ, USA. Forty Ph.D. students have graduated under his supervision.

Dr. Du is the Editor-In-Chief of the Journal of Combinatorial Optimization
and also on the editorial boards for several other journals.



