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Marginal Gains to Maximize Content
Spread in Social Networks

Wenguo Yang, Jianmin Ma, Yi Li , Ruidong Yan , Jing Yuan, Weili Wu, and Deying Li

Abstract— The growing importance of social network for
sharing and spreading various contents is leading to the changes
in the way of information diffusion. To what extent can social
content be diffused highly depends on the size of seed nodes and
connectivity of the network. If the seed set is predetermined,
then the best way to maximize the content spread is to add
connectivities among the users. The existing work shows the
content spread maximization problem to be NP-hard. One of the
difficulties of designing an effective and efficient algorithm for the
content spread maximization problem lies in that the objective
function we aim to maximize lacks submodularity. In our work,
we formulate the maximize content spread problem from an
incremental marginal gain perspective. Although the objective
function we derive is not submodular, both submodular lower and
upper bounds are constructed and proved. Therefore, we apply
the sandwich framework and devise a marginal increment-
based algorithm (MIS) that guarantees a data-dependent factor.
Furthermore, a novel scalable content spread maximization
algorithm influence ranking and fast adjustment (IRFA), which
is based on the influence ranking of a single node and fast
adjustment with each boosting step in the network, is proposed.
Through extensive experiments, we demonstrate that both MIS
and IRFA algorithms are effective and outperform other edge
selection strategies.

Index Terms— Approximation factor, content spread, informa-
tion diffusion, nonsubmodularity, social network.

I. INTRODUCTION

W ITH the rapid growth of social media and the rise
in popularity of social networks, content sharing and

spreading become the major activities for the social media
users. The fact shows that there are 3.03 billion active social
media users out of 3.5 billion Internet users [1]. The massive
proportions of the Internet users are engaging in generat-
ing, searching, and spreading various social contents such
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as photos, videos, comments, reviews, news, advertisements,
and so on so forth. Spreading these contents can help with
recommendation system to amplify items’ influence, viral
marketing to broadcast products or services, and users to
maximize their influence. In general, to what extent a social
network spreads content is a key metric that impacts both user
engagement and network revenue [2].

Ideally, users recursively share the contents with their
neighbors will quickly reach and influence a large number
of users on the network. However, sometimes, content spread
efficiency is not what we expected. Cha et al. [3] observe the
dynamics of photos spread on Flickr for 104 consecutive days
and discover even most popular photos tend to influence users
within two-hop neighbors on the network then burnout quickly.
On the other hand, the breadth and depth of information
dissemination are highly related to the initial seed sets. For
example, in viral marketing, companies would like to spread
their products and services to reach target users with the
minimum startup costs. Most recent research studies focus
on the influence maximization problem of selecting initial
seeds [4], [9], [11], [32], [33]. However, there are some cases
in which the seed users are predetermined due to the limit
costs or companies’ preferences. In this case, how we can
help with content spread becomes a problem. Furthermore,
even when the seed set is not fixed, since the seed selection
problem is NP-hard [5] and the set of selected seeds is often
suboptimal. Then, it comes the question of how to boost spread
social content efficiently with fixed seed users. The classic
influence maximization problem discusses how to select the
appropriate seed set, making the ultimate influence spread as
large as possible. The issue of influence boosting focuses on
how to adopt other effective measures, such as increasing edge
connections, increasing the propagation probability of some
boosting nodes, and so on, to further promote the influence
spread for the initial given social network and the given
seed set. Both the influence maximization and the influence
boosting are NP-hard. However, the objective function of the
former is not submodular, while the latter is not, which makes
it more difficult to solve the problem of influence boosting.

One of the effective measures is to increase the number of
connected edges between the users. In some social network
sites, such as Facebook and Twitter [6]–[8], they provide the
friending services that recommend friends to you to make
possible connections. These services based on the number of
common friends, common interests, posted contents, similar
communities, and other personal related features. However,
due to some privacy issues, those information may not be
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available to us. Also, as shown in [2], these methods cannot
guarantee to maximize the content spread on social network.

Chaoji et al. [2] formulate the problem of boosting content
spread on social network by seeking to add up to k connections
per user such that the probabilistic propagation of content in
the social network is maximized. Since the content maximizing
problem is NP-hard and the content spread function is not
submodular, they construct a more restricted variant that
is submodular and devise an approximation algorithm that
computes an edge set which satisfies constraints. However,
their content spread function under independent cascade (IC)
and restricted maximum probability path (RMPP) model has a
few limitations. First, computing the spread of specific content
C with any given seed set is #P-hard. It leads to substantial
computation time for running expensive simulations. They
derive a RMPP model from a heuristic method, which first
proposed by Chen et al. [9]. This model restricts influence
propagation to be only along a maximum probability path
between a pair of nodes [9]. Based on the restriction of
maximum probability paths, the RMPP model further restricts
information propagation paths to contain at most one newly
added edge from a candidate edge set. This setting helps the
spread function under the RMPP model to be submodular
but the content spread problem is still NP-hard. Second, with
these restrictions, the information propagation may not reflect
the real information flow on the network and the calculation
of content spread for each node under the RMPP model
will have a large deviation from the actual spread value.
In addition, their model assumes that a predefined number
of new links should be added for each user in the network,
thus leading to all the users in the network to accept the same
number of recommended connections. This assumption does
not necessarily reflect the power law property of real-world
social network.

In this paper, we formulate the content spread problem from
a marginal incremental perspective to calculate the diffusion
process on social network and describe the content spread
function as accurate as possible. We propose a generalized
content spread maximization problem that selects at most
K edges from a candidate edge set and add these selected
edges on network such that the information propagation on
the network will be maximized. We obtain the marginal gain
of content spread at each node by adding one edge from
candidate edge set at a time. Our problem setting does not have
the restriction on the propagation paths and can compute the
spread value accurately. Although the content spread function
obtained is not submodular, both submodular lower bound
and upper bound are constructed, thus make the sandwich
framework [23] lend itself well to the problem. A mar-
ginal increment-based algorithm (MIS) that guarantees a data-
dependent approximation factor is proposed. We summarize
our major contribution as follows.

1) Content spread maximization problem is formulated in
a marginal gain incremental way with nearly no loss of
the content spread.

2) The non-submodularity of the content spread func-
tion is given and both submodular lower bound and
upper bound of the original content spread function

are presented. A marginal increment-based sandwich
algorithm (MIS) that guarantees a data-dependent
approximation factor is devised.

3) A novel heuristic scalable algorithm of boosting content
spread in social networks influence ranking and fast
adjustment (IRFA) is proposed.

4) We conduct experiments on four data sets varying dif-
ferent parameters and show the effectiveness of our
algorithm.

The rest of this paper is organized as follows. In Section II,
we list some of the related works in maximizing content
spread and influence propagation. In Section III, we propose
our formulation of the content spread maximization problem
and illustrate the nonsubmodularity. Then, we derive the
submodular lower and upper bounds and a marginal increment-
based algorithm (MIS) in Section IV. In Section V, we present
a novel heuristic scalable algorithm (IRFA). Our experiment
settings and results confirm the effectiveness of the proposed
MIS and IRFA algorithms in Section VI and concluding
remark and potential future works are given in Section VII.

II. RELATED WORK

In this section, backgrounds and related works about content
spread maximization problems are provided.

A. Classical Influence Maximization Problems

There have been abundant studies on various mod-
els and computational methods for influence maximization.
Kempe et al. [11] first formulate the influence maximization
problem that asks to find a set S of k nodes so that the expected
influence spread is maximized under a predetermined influence
propagation model. The problem is NP-hard under both IC and
linear threshold (LT) models. Chen et al. [9], [10] show that
to compute the expected influence spread for a given set is
#P-hard. However, it can be formulated as a submodular and
monotone function of S for both IC and LT models that can use
a simple greedy algorithm [11]. Besides studying the influence
maximization problem purely online, Shi et al. [32] considers
the cyber-physical interactions and studies a location-driven
influence maximization problem. There have been several
studies on approximating the influence maximization problem
under different diffusion models. However, in this paper,
we think of the influence maximization problem in a different
perspective. Instead of choosing the initial seed set, we aim
to add edges to maximize the content spread.

B. Content Spread Optimization

There are some works that attempt to solve content spread
optimization problem by increasing the connectivity of net-
work through adding/deleting new edges [2], [16]–[20], [34].
Yan et al. [34] study the problem of minimizing the rumors
spread via link deletion. While our work focus on max-
imizing the content spread. For maximization problems,
Chaoji et al. [2] first attempt to integrate boosting content
spread with friend recommendation. They define the content
maximization problem to find at most k edges in candidate set
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for each user that can maximize the content spread function on
the restricted maximum probability path model. Their model
differs from ours because we formulate the problem in an
incremental marginal gain approach without the spread path
restricts. Tong et al. [12] raise the question of which edges to
add or remove from a network to speed-up a dissemination.
They propose an algorithm to optimize the leading eigenvalue
of the graph adjacency matrix that control the information
dissemination process in their models. Antaris et al. [13],
Rafailidis et al. [14], Rafailidis and Nanopoulos [15] define
the link injection problem that is aiming at boosting infor-
mation cascades. The injected links are being predicted in a
collaborative-filtering fashion, based on factorizing the adja-
cency matrix that represents the structure of the social net-
work. Li et al. [16] add the edges to the target users. Some
alternative ways to maximize content spread are discussed
in the following studies. When seed set is predetermined,
Lu et al. [17] study how to maximize the expected number of
adoptions by providing initial seed users with complementing
products. Liontis and Pitoura [18] assume that it is possible to
improve the reaction to diffusion process of a small number
of nodes by investing extra resources. Then define boosting
a node as improving its probability of influencing others,
making the node react to an activation faster, or both. In [19],
a k-boosting problem is defined which aims to find k users
who are initially uninfluenced and increase their probability
to be influenced. These studies differ from ours since they are
boosting the seed nodes not the content spread. Yang et al. [20]
first propose active friending problem where a user actively
specifies a friending target and maximizes the probability that
the friending target would accept the invitation. Their work
differs from ours because they know which edges the user
would like to connect. But our setting is to find these edges.

III. FORMULATION OF CONTENT

MAXIMIZATION PROBLEM

For a given potential candidate connections set X , the con-
tent maximization problem is to find a subset X ⊆ X that
maximizes the content spread function f (X) and satisfies
some constraints. Now, we give our generalized content max-
imization problem (GCMP) as follows.

Definition 1 (GCMP): Given a directed acyclic graph G =
(V , E, P), a constant k̂ and a particular content c with given
initial seed set S, find an edge set X ⊆ X = {ei j : i, j ∈ V ,
i ∈ N j , j ∈ Ni } where Ni is the candidate node set of i to be
connected such that: 1) at most k̂ edges from X and 2) f (X)
maximize the content spread under (V , E

⋃
X, P).

In definition 1 of GCMP, we just constraint the total
cardinality of the edge set which corresponding to the most
classical settings of influence maximization problem. To add
average k edges to each seed in the work of Chaoji et al. [2]
cannot be consistent with power law property of realistic social
network. It is also validated in detail through the simulation
experiments in Section VI.

In Section I, we have shown that in order to guarantee the
submodularity of content spread function f (X), the restricted
variant RMPP model of Chaoji et al. [2] model is tight due

to their restricted influence propagation between a pair of
nodes only along the maximum probability path and only
RMPP is allowed to calculate the content spread which may
cause great deviation from the actual value. In this section,
we formulate the content spread function from a marginal
increment perspective and describe the content spread function
value as accurate as possible. Our formulation is based on
the classical discrete-time-independent cascade (IC) model
[11] and its topic-aware version, i.e., topic-aware independent
cascade (T IC), [31]. When a node v receives or generates
a new piece of content c at time t , it has only one chance
to share and active each of its inactive out-neighbors with an
independent probability.

In the TIC model, the user-to-user influence probabilities
depend on the topic. Therefore, for each edge (v, u) ∈ E and
each topic z ∈ [1, K ], we are given a probability pz

vu, repre-
senting the strength of the influence exerted by user v on user
u on topic z. For each content c that propagates in the network,
we have a distribution over the topics (γ 1

c , γ 2
c , . . . , γ K

c , ) with
γ z

c = P(Z = z|c) and �K
z=1γ

z
c = 1. The tentative succeeds

with a probability that is the weighted average of the link
probability with respect to the topic distribution of the content
c, that is pc

vu = �K
z=1γ

z
c pz

vu. (We use pvu instead of pc
vu for

the sake of simplicity of symbolic expression when content
c is fixed in the rest of this paper.) For the potential edge
(i, j) ∈ X , the link probability pc

i j (and pi j ) can be determined
in the similar way.

For the given acyclic directed social network G(V , E, P),
whose nodes indicate users and edges represent the social
relations among users. Given content c with distribution over
the topics (γ 1

c , γ 2
c , . . . , γ K

c , ) and seed set S, denote q E
v :=

qcE
v,S = �K

z=1γ
z
c qzE

v,S is the spread of a content c contained at
v ∈ V under the topology of E (which means only the edges
in E can be used in the propagation of content c) with seed
set S (that is, every node in S contain content c) and q E =
(q E

1 , . . . , q E
v , . . . , q E|V |)

T
is the content spread |V |− dimension

vector correspondingly. Denote �q E
v (s, t) = q

E
⋃

(st)
v −q E

v the
marginal gain of the spread on node v when an edge e = (s, t)
is merged into the edge set E . Then, we have the following
formula to calculate the marginal gain �q E

v (s, t) for content
spread of c at node v.

Theorem 1: The marginal gain �q E
v (s, t) of content spread

of c at node v when an edge (s, t) ∈ X from a candidate set
is added to current topology of E is calculated recursively as
follows:

�q E
t (s, t) = (

1 − q E
t

)
pstq

E
s .

and for any v ∈ Nout(t), where Nout(t) is the out-neighbor set
of vertex t , we have

�q E
v (s, t) = 1 − q E

v

1 − ptvq E
t

ptv�q E
t (s, t) . (1)

Furthermore, for other vertex v ∈ V that can be reachable
from vertex t , we can update the marginal gain similarly
according to the topology order in recursive manner. We have
�q E

v (s, t) = 0, for the vertex which is unreachable from vertex
t during this process.
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Proof: For a new edge (s, t) ∈ X is added to the network,
it is easy to see the marginal gain of content spread at t is
�q E

t (s, t) = (1 − q E
t )pstq E

s . For each vertex v ∈ Nout(t),
the content spread of c contained at v can be expressed as
q E
v = q E\{(t,v)}

v + (1 − q E\{(t,v)}
v )ptvq E

t . Therefore, we have
q E\{(t,v)}
v = ((q E

v − ptvq E
t )/(1 − ptvq E

t )). After updating the
spread at t , the content spread of c contained at v increase to

q
(E

⋃
(s,t))

v

= q E\{(t,v)}
v + (

1 − q E\{(t,v)}
v

)
ptv

(
q E

t + �q E
t (s, t)

)

= q E\{(t,v)}
v + (

1 − q E\{(t,v)}
v

)
ptvq E

t

+(
1 − q E\{(t,v)}

v

)
ptv�q E

t (s, t)

= q E
v + 1 − q E

v

1 − ptvq E
t

ptv�q E
t (s, t)

= q E
v + �q E

v (s, t) .

This update procedure can be processed recursively according
to the topology order of the network until no more nodes can
be updated. For those nodes to which there is no path from
node t , then �q E

v (s, t) = 0.
Note that during the process of updating marginal spread,

if there are paths from vertex t reaching to different in-
neighbor nodes of node w, the marginal gain of spread of
w should be updated according to (1) multitimes. However,
the overall marginal gain of content spread for w is indepen-
dent of the update orders.

In fact, suppose there exist two paths from t to w via
nodes u and v where w ∈ Nout

E (u)
⋂

Nout
E (v). We first

consider update from u to w, a marginal gain of spread
�uq E

w (s, t) = ((1 − q E
w )/(1 − puwq E

u ))puw�q E
u (s, t)

is obtained. Then considering update from v to w,
another marginal gain of spread �u+vq E

w (s, t) =
((1 − (q E

w + �uq E
w (s, t)))/(1 − pvwq E

v ))pvw�q E
v (s, t).

Thus, the overall marginal gain of spread of w is

�q E
w

= �uq E
w (s, t)+�u+vq E

w (s, t)

= �uq E
w (s, t)+ 1−(

q E
w +�uq E

w (s, t)
)

1− pvwq E
v

pvw�q E
v (s, t)

−�uq E
w (s, t)

1− pvwq E
v

pvw�q E
v (s, t)

= �uq E
w (s, t)+�vq E

w (s, t)

− 1−q E
w

1− pvwq E
v

pvw�q E
v (s, t)�uq E

w (s, t)
1

1−q E
w

= �vq E
w (s, t)+�uq E

w (s, t)

(

1−�vq E
w (s, t)

1

1−q E
w

)

= �vq E
w (s, t)+ 1−q E

w −�vq E
w (s, t)

1−q E
w

1−q E
w

1− puwq E
u

puw�q E
u (s, t)

= �vq E
w (s, t)+�v+uq E

w (s, t) .

From theorem 1 and the note above, the objective function
of content spread in the marginal gain form can be expressed
as f (X) = ∑

v∈V (q E
v + ∑

(s,t)∈X �q
(E

⋃
Xst)

v (s, t)), where
Xst denotes the edge set that have already been added into
the network before edge (s, t). The order-independent property

shows the definition of f (X) expressed above is well-defined.
More importantly, this definition is consistent with the content
propagation process and there is no loss during the content
spread process.

IV. SUBMODULAR BOUNDS AND MIS ALGORITHM

In the GCMP, the objective function f (X) =
∑

v∈V (q E
v + ∑

(s,t)∈X �q
(E

⋃
Xst )

v (s, t)) is nonsubmodular
which increases the challenges of designing efficient and
effective algorithm for the GCMP. In order to elaborate
on the structure of f (X), we can rewrite it in marginal
increment form. Denote X = {(s1, t1), (s2, t2), . . . , (sk̂, tk̂)},
Xk = {(s1, t1), . . . , (sk , tk)}, k = 1, 2, . . . , k̂ and
X0 = ∅ for convenience. Then, we have f (X) =
f (X0) + ∑k̂

k=1 �k f (Xk−1), where f (X0) = ∑
v∈V q E

v

and �k f (Xk−1) = ∑
v∈V �q

(E
⋃

Xk−1)
v (sk, tk), k = 1, . . . , k̂.

Fortunately, each term �q
(E

⋃
Xk−1)

v (sk, tk) in �k f (Xk−1)

is monotone decrease with q
(E

⋃
Xk−1)

v . Thus, we have the
following monotone decrease property of f (X).

Property 1: Content spread function f (X) = f (X0) +
∑k̂

k=1 �k f (Xk−1) is monotone decrease with q
(E

⋃
Xk−1)

v , for
v ∈ V and k = 1, . . . , k̂.

Proof: First note that �q
(E

⋃
Xk−1)

tk (sk, tk) =
(1 − q

(E
⋃

Xk−1)
tk )psktk q

(E
⋃

Xk−1)
sk is monotonically decreasing

with q
(E

⋃
Xk−1)

tk , respectively. Second, �q
(E

⋃
Xk−1)

v (sk, tk) =
((1 − q

(E
⋃

Xk−1)
v )/(1 − ptkvq

(E
⋃

Xk−1)
tk ))ptkv�q

(E
⋃

Xk−1)
tk (sk , tk)

is monotone decrease with both q
(E

⋃
Xk−1)

v and q
(E

⋃
Xk−1)

tk .
In fact, the former is obvious. To show the latter, we consider
the derivative of �q

(E
⋃

Xk−1)
v (sk, tk) with respect to

q
(E

⋃
Xk−1)

tk , that is,

∂�q
(E

⋃
Xk−1)

v (sk, tk)

∂q
(E

⋃
Xk−1)

tk

= ∂

∂q
(E

⋃
Xk−1)

tk

⎧
⎨

⎩

1−q
(E

⋃
Xk−1)

v

1− ptkvq
(E

⋃
Xk−1)

tk

ptkv�q
(E

⋃
Xk−1)

tk (sk , tk)

⎫
⎬

⎭

= ∂

∂q
(E

⋃
Xk−1)

tk

⎧
⎨

⎩

1−q
(E

⋃
Xk−1)

v

1− ptkvq
(E

⋃
Xk−1)

tk

× ptkv
(
1−q

(E
⋃

Xk−1)
tk

)
psktk q

(E
⋃

Xk−1)
sk

⎫
⎬

⎭

= ptkv
(
1−q

(E
⋃

Xk−1)
v

)
psktk q

(E
⋃

Xk−1)
sk

× ptkv −1
(
1− ptkvq

(E
⋃

Xk−1)
tk

)2
≤ 0.

for v ∈ V \{tk} and k = 1, . . . , k̂. Because monotonically
decreasing property is still hold under summation operations,
so we complete the proof.

However, the monotone decrease property does not
guarantee the submodularity of the objective function
f (X), this is just because the neighbor relationship will
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change during the new edges are added into the network.
In order to see this structural change clearly, we denote
Nout

E (v) = {u ∈ V |(v, u) ∈ E} the out-neighbor of ver-
tex v under edge set E . Obviously, we have the inclusion
relationship Nout

E (v) ⊆ Nout
E

⋃
X1(v) ⊆ Nout

E
⋃

X2(v) ⊆ · · · ⊆
Nout

E
⋃

X K (v) ⊆ Nout
E

⋃
X̄
(v). With this notation, �k f (Xk−1) can

be rewritten in a more detailed expression

�k f (Xk−1)

=
∑

v∈V

�q
(E

⋃
Xk−1)

v (sk, tk)

= �q
(E

⋃
Xk−1)

tk (sk, tk)

+
∑

v1∈Nout
E

⋃
Xk−1 (tk)

�q
(E

⋃
Xk−1)

v1 (sk, tk)

+
∑

v2∈Nout
E

⋃
Xk−1 (v1),v1∈Nout

E
⋃

Xk−1 (tk)

�q
(E

⋃
Xk−1)

v2 (sk, tk)

+ · · · +
∑

vD∈Nout
E

⋃
Xk−1 (vD−1),vD−1∈Nout

E
⋃

Xk−1 (vD−2)

�q
(E

⋃
Xk−1)

vD

× (sk , tk)

where D = Dk is the largest hops number among all the
paths originate from the vertex tk and k = 1, 2, . . . , k̂. The
reason that f (X) is not submodular lies in that the out-
neighbor set of a vertex v ∈ V may become larger and
larger with new edges added in the maximize content spread
update process. However, for a given GCMP, initial edge
set E , propagation probability P and initial seed set S that
contains content c are all fixed. When we further fix the out-
neighbor relationship of all vertexes v ∈ V during the whole
updating process, the number of marginal gain terms will
remain unchanged during the whole procedure. Due to the

monotonically increasing property of q
(E

⋃
Xk−1)

v with respect
to edge set Xk−1 and from property 1, for each newly added
edge (sk, tk), the resultant marginal gain term of content spread

�q
(E

⋃
Xk−1)

v (sk, tk) becomes monotonically decreasing with

q
(E

⋃
Xk−1)

v , for v ∈ V and thus further make it possible
to guarantee that the associate content spread function is
submodular. In the following subsection, we construct sub-
modular lower bound and submodular upper bound of the
objective functions by reasonably imposing restriction on the
neighborhood structure of each vertex v ∈ V .

A. Submodular Lower Bound and Upper Bound

Although the content spread function we obtained is not
submodular, we can fortunately construct a submodular lower
bound and submodular upper bound in a marginal gain incre-
mental way. Based on the monotone analysis of marginal
gain term of content spread above, we can construct the
lower bound of the objective function as follows: f (X) =
f (X0) + ∑k̂

k=1 �k f (Xk−1), where

�k f (Xk−1)

=
∑

v∈V

�q
(E

⋃
Xk−1)

v (sk , tk)

= �q
(E

⋃
Xk−1)

tk (sk, tk)

+
∑

v1∈Nout
E (tk)

�q
(E

⋃
Xk−1)

v1 (sk, tk)

+
∑

v2∈Nout
E (v1),v1∈Nout

E (tk)

�q
(E

⋃
Xk−1)

v2 (sk, tk)

+ · · · +
∑

vD∈Nout
E (vD−1),vD−1∈Nout

E (vD−2)

�q
(E

⋃
Xk−1)

vD (sk , tk) .

k = 1, 2, . . . , k̂. f (X) defined above is lower bound of

f (X) because all the term �q
(E

⋃
Xk−1)

v (sk , tk) in f (X) is
nonnegative and must be included in f (X) due to the inclusion
relationship Nout

E (v) ⊆ Nout
E

⋃
X1(v) ⊆ Nout

E
⋃

X2(v) ⊆ · · · ⊆
Nout

E
⋃

X K (v) ⊆ Nout
E

⋃
X̄
(v). Furthermore, f (X) have the fol-

lowing nice submodular property.
Theorem 2: The lower bound of objective function f (X) =

f (X0)+∑k̂
k=1 �k f (Xk−1) defined above is submodular with

respect to X .
Proof: For any X ⊆ Y ⊆ X and any (s, t) ∈ X\Y ,

we have �q
(E

⋃
X)

v (s, t) ≥ �q
(E

⋃
Y )

v (s, t) due to property 1
and the monotonically increasing property of q

(E
⋃

X)
v with

respect to edge set X . In addition, the number of marginal
gain terms does not change during the whole edges added
process. Therefore, we have

f
(
X

⋃
{(s, t)}) − f (X)

= �q
(E

⋃
X)

tk (s, t) +
∑

v1∈Nout
E (tk)

�q
(E

⋃
X)

v1 (s, t)

+
∑

v2∈Nout
E (v1),v1∈Nout

E (tk)

�q
(E

⋃
X)(s,t)

v2

+ · · · +
∑

vD∈Nout
E (vD−1),vD−1∈Nout

E (vD−2)

�q
(E

⋃
X)

vD (s, t)

≥ �q
(E

⋃
Y )

tk (s, t) +
∑

v1∈Nout
E (tk)

�q
(E

⋃
Y )

v1 (s, t)

+
∑

v2∈Nout
E (v1),v1∈Nout

E (tk)

�q
(E

⋃
Y )

v2 (s, t) + · · ·

+
∑

vD∈Nout
E (vD−1),vD−1∈Nout

E (vD−2)

�q
(E

⋃
Y )

vD (s, t)

= f
(
Y

⋃
{est}

) − f (Y )

which shows the submodularity of f (X).
Now, we can construct the upper bound of objective function

f (X) = f (X) − ∑
(s,t)∈X\X �(st) f (X), where

f (X) =
∑

v∈V

q
(E

⋃
X)

v
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and ∀est ∈ X\X

�(st) f (X)

=
∑

v∈V

�q
(E

⋃
X)

v (s, t)

= �q
(E

⋃
X)

tk (s, t) +
∑

v1∈Nout
E (tk)

�q
(E

⋃
X)

v1 (s, t)

+
∑

v2∈Nout
E (v1),v1∈Nout

E (tk)

�q
(E

⋃
X)

v2 (s, t)

+ · · · +
∑

vD∈Nout
E (vD−1),vD−1∈Nout

E (vD−2)

�q
(E

⋃
X)

vD (s, t))

f (X) defined above is upper bound of
f (X) because f (X) − f (X) = ( f (X) −
∑

(s,t)∈X\X �(st) f (X)) − ( f (X0) + ∑k̂
k=1 �k f (Xk−1)) ≥

∑
(s,t)∈X\X (�(st) f (Xlst −1)) − �(st) f (X))) ≥ 0, here lst

denote the edge (s, t) is the lst th edge added into the
recommendations boost network among all the edges
in X . The last inequality holds because �(st) f (Xlst −1)
has at least the same number of items as �(st) f (X)

has and �q
(E

⋃
Xlst −1)

v (s, t) ≥ �q
(E

⋃
X)

v (s, t) due to the
monotonically decreasing property which is mentioned
in property 1. Similarly, f (X) have the following nice
submodular property.

Theorem 3: The upper bound of objective function f (X) =
f (X) − ∑

(s,t)∈X\X �(st) f (X) defined above is submodular
with respect to X .

Proof: For any X ⊆ Y ⊆ X and any (ś, t́) ∈ X\Y , by the
definition of f (X), we have

f (X
⋃

{(ś, t́)}) − f (X)

= ( f (X) −
∑

(s,t)∈X\(X
⋃{(ś,t́)})

�(st) f (X))

− ( f (X) −
∑

(s,t)∈X\X

�(st) f (X))

= �(śt́) f (X) ≥ �(ś t́) f (X)

= ( f (X) −
∑

(s,t)∈X\(Y ⋃{(ś,t́)})
�(st) f (X))

− ( f (X) −
∑

(s,t)∈X\Y

�(st) f (X))

= f (Y
⋃

{(ś, t́)}) − f (Y )

which shows the submodularity of f (X).

B. MIS Algorithm

Generally, there is no effective way to optimize or approx-
imate a nonsubmodular function [21], [22]. Lu et al. [17]
propose a sandwich approximation strategy, which approxi-
mates the nonsubmodular objective function by approximating
its submodular lower bound and upper bound. As far as the
GCMP is concerned, although the original contend spread

function f (X) is nonsubmodular, we have obtained the sub-
modular lower f (X) and upper bounds f (X) in Section IV-A.
Therefore, the sandwich framework can be applied, and we
devise a marginal increment-based algorithm (MIS) that guar-
antees a data-dependent approximation factor. The sandwich
approximation strategy works as follows. First, a solution
to the original problem with any strategy is found. Then,
an approximate solution to the submodular lower bound and
the submodular upper bound is found, respectively. Finally,
the solution that has the best result for the original problem is
returned. Algorithm 1 shows the general framework of MIS.

Algorithm 1 Marginal Increment-Based Sandwich Approxi-
mation Framework (MIS)

1: Let XU be α-approximation to the upper bound f (X).
2: Let X L be β-approximation to the lower bound f (X).
3: Let X A be a solution to the original problem f (X).
4: X = arg maxX0∈{XU ,X L ,X A} f (X0).
5: return X .

The solution returned by the MIS has a data-dependent
approximation factor, which is presented in the following
theorem.

Theorem 4: Let X∗ be the edge set returned by MIS and
X∗

A is the optimal solution maximizing the GCMP, then we
have

f (X∗) ≥ max

{
f (XU )

f (XU )
α,

f
(
X∗

L

)

f
(
X∗

A

)β

}

f
(
X∗

A

)
.

Proof: Let X∗
L , X∗

U , and X∗
A be the optimal solutions

maximizing the lower bound, the upper bound, and the original
spread of GCMP, respectively. Then, we have

f (XU ) = f (XU )

f (XU )
f (XU ) ≥ f (XU )

f (XU )
α f

(
X∗

U

)

≥ f (XU )

f (XU )
α f

(
X∗

A

) ≥ f (XU )

f (XU )
α f

(
X∗

A

)
.

And

f (X L) ≥ f (X L) ≥ β f
(
X∗

L

) = f
(
X∗

L

)

f
(
X∗

A

)β f
(
X∗

A

)
.

Let X∗ = arg maxX0∈{XU ,X L ,X A} f (X0), then

f (X∗) ≥ max

{
f (XU )

f (XU )
α,

f
(
X∗

L

)

f
(
X∗

A

)β

}

f
(
X∗

A

)
.

For both submodular lower bound and upper bound,
the greedy hill algorithm can guarantee a α = β = 1 − (1/e)
approximation factor. Thus, we have the corollary as follows.

Corollary 1: Let X∗ be the edge set returned by MIS and
X∗

A is the optimal solutions to maximizing the GCMP, then
we have

f (X∗) ≥ max

{
f (XU )

f (XU )
,

f
(
X∗

L

)

f
(
X∗

A

)

}(

1 − 1

e

)

f
(
X∗

A

)
.
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Fig. 1. Example with propagation probability p = 0.5.

It is worth pointing out that the approximation factor
obtained in the above theorem and corollary is highly depend
on the quality of both the lower and upper bounds. Compared
to the second term inside the max {·}, the first term can be
calculated efficiently and can be of practical value.

V. IRFA ALGORITHM

Another key point in the MIS is how to obtain high-quality
solution to the original problem f (X). We will present a novel
scalable heuristic method IRFA, which is based on influence
ranking of a single node and fast adjustment according to the
recommendations selected in the network.

A. Influence Ranking of Single Node

Intuitively, it is beneficial to set up the connections between
seed nodes with content c and strong influence nodes to boost
content spread. Therefore, how to rank the influence of a single
node is very important. In order to obtain this useful influence
information, denote σ E

v is the spread factor if {v} is the only
seed node in the given social network G = (V , E, P) under
the edge set E and σ E = (. . . , σ E

v , . . .)T is the corresponding
spread vector under the topology determined by E . We denote
σ E = ∑

0≤l≤D σ l = ∑
0≤l≤D Ale, where e = (1, 1, . . . , 1)T

n
is a n-dimensional vector with all components of 1 and A =
(ai j )n×n is the adjacency propagation matrix of G with ai j =
pi j = pc

i j if ei j ∈ E and 0 otherwise. D is the diameter of the
network G. Usually σ l , l = 0, 1, . . . , D reflects the lth hop
propagation spread of all vertex in the network. Fig. 1 shows
an example to demonstrate how we calculate σ E .

Using this spread influence information, we know how to
establish connections to maximize the spread. Suppose that
node 7 is the only node has content c, if we want add another
connection among node 7’s two-hop neighbors, we say node 3
(σ E

3 = 2) is better than node 5 (σ E
5 = 1) because 3 has higher

spread capability or node 3 is more influential than node 5.
As for the spread vector, we have the following properties.

Property 2: For a directed acyclic graph G, if D =
diameter(G), then AD+k = 0, for all k = 1, 2, . . .

Property 2 shows that if the diameter of a graph is D, then
any node in G must finish its propagation within no more
than D hops. σ l = Ale, l = 0, 1, . . . , D is called l-hop
influence vector with the component of which is equal to the
expectation of relaxed influence of node v ∈ V in exactly l
hops propagation. Here, relaxed means that we allow multiple
counts of influence on some nodes without considering their
interactive influence.

Now, turn to the property of the spread vector from an
average point of view. Suppose d is the average out-degree

of the network and p is the average propagation probability.
Then, we have

Property 3:

1) ‖σ l‖1 = n(d p)l , l = 0, 1, . . . , D, where ‖σ l‖1 =∑n
u=1 σ l(u) denotes the 1-norm of n-dimension vec-

tor σ l . In particular, ‖σ 0‖1 = n, ‖σ 1‖1 = nd p.
2) ‖σ‖1 = ∑D

l=0 ‖σ l‖1 ≤ (n/(1 − d p)), if d p < 1;
‖σ‖1 = ∑D

l=0 ‖σ l‖1 = (D + 1)n, if d p = 1; ‖σ‖1 =
∑D

l=0 ‖σ l‖1 ≤ (n(d p)D+1/(d p − 1)), if d p > 1.
3) If d p 
 1, every node at most have (1/(1 − d p))

influence in average sense, which can be reach a good
approximation by only using 0-step and 1-step influence
vector.

Based on these properties, we present the influence ranking
algorithm of a single node (IR) in the following.

Algorithm 2 Influence Ranking IR (G(E))

Input: Social network G, diameter D and adjacency propaga-
tion matrix A which is determined by E .

Output: spread vector σ E .
1: initialize σ E = e
2: for d = 0 to D do
3: Compute σ E = +Aσ E

4: end for
5: return σ E .

For the GCMP, we aim to add new edges from X to further
boost the spread of content, therefore what we really care
about is how much the spread increment caused by newly
added edges, not content spread itself. Therefoer, another
important factor that influences the spread increment should
be considered at the same time. This factor is q E

v , the content
spread of c contained at v ∈ V under the topology of E which
is equivalent to the accumulated activate probability of each
node received before the edge added.

B. IRFA Algorithm

Based on the analysis in Section V-A, we present our IRFA
algorithm in this section.

The main idea of scalable heuristic method IRFA is to select
the node with the maximum weighted influence in the sense
of (1 − q E

t )σ E (t) from the candidate set of vertex s, and add
the connection (s, t) into edge set. That is, add edge (s, t) into
X such that t = arg maxv :(s,v)∈Xs

(1 − q
(E

⋃
X)

v )σ E (v), where

q
(E

⋃
X)

v is the probability that node v becomes activated after
the diffusion process when the edge set is E

⋃
X . In order
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to maintain the current influence of each node, a fast update
adjustment procedure is needed.

The influence fast update adjustment procedure [FA(s, t)]
is as follows.

FA(s, t): After the edge (s, t) is added into the current
edge set, first update σ E

⋃
(X

⋃{(s,t)})(s) = σ E
⋃

X (s) +
pstσ

E
⋃

X (t); then σ E
⋃

(X
⋃{(s,t)})(v) = σ E

⋃
X (v) remains

unchanged for the descendant node of node t (include t
itself); at last, reversely update the ancestor node according
to σ E

⋃
(X

⋃{(s,t)})(v) = σ E
⋃

X (v) + �(st)σ
E

⋃
X (v), here

�(st)σ
E

⋃
X (v) = pvu�(st)σ

E
⋃

X (u) for u ∈ Nout
E

⋃
X (v).

Now, we present the overall algorithm of IRFA to compute
the solution of GCMP.

Algorithm 3 Algorithm IRFA (G, k̂, X)

Input: the social network G = (V , E, P), candidate edge set
X , positive number k̂ and content seed set S of the content
c.

Output: X satisfying constraint of no larger than k̂ edges and
maximizing the boost influence spread.

1: Initialize X = ∅
2: Run Algorithm IR(G(E)) to obtain all σ E (v) and let

σ E
⋃

X (v) = σ E (v)
3: for v ∈ V do
4: Compute q E

v and let q
(E

⋃
X)

v = q E
v

5: end for
6: for k = 1 to k̂ do
7: Select Edge (s, t) = arg maxv :(u,v)∈Xu ,u∈S(1 −

q
(E

⋃
X)

v )σ E
⋃

X (v)
8: Run influence update procedure FA(s, t) to obtain

σ E
⋃

(X
⋃

(s,t))(v)

9: Compute �q
(E

⋃
X)

v (s, t) and Update q
(E

⋃
X

⋃
(s,t))

v

10: Update X = X
⋃

(s, t)
11: end for
12: return X as the solution to the GCMP.

Complexity Analysis: Our proposed algorithm mainly con-
sists of two parts: initialization and iteration. In the initial-
ization, we first calculate the influence ranking σ and initial
spread q E

v of each node. In property 2, we show that any
node will propagate at most D-hop neighbors. Therefore,
the time complexity of algorithm 2 will be O(D · m) where
m is the number of edges in the graph. For a given c,
the time complexity to compute q E

v is O(|S|m) in marginal
increment way recursively. The next iteration step consists of
k̂ loops. Each loop selects the best candidate edge which costs
|X | comparisons. The update procedure of both σ E

⋃
X and

q
(E

⋃
X)

v cost at most O(m). Therefore, the time complexity
of our algorithm costs O(D · m + |S|m + k̂(|X | + 2m)) time.

VI. EXPERIMENTS

In this section, we conduct experiments on four data sets
to test the effectiveness of MIS and IRFA and compare our
adding edges approach with other different strategies.

Fig. 2. Content spread value versus incremental edges under uniform and
trivalency propagation. (a) Synthetic p = 0.05. (b) Facebook p = 0.05.
(c) Wikipedia p = trivalency. (d) HEP-TH p = trivalency.

A. Experiment Setup

We use one synthetic graph and three real-world social
graphs in our experiment which is described in the following.
These social graphs represent a wide variety of relationship.

1) Synthetic: We randomly generated a relatively small
acyclic directed graph with 2000 nodes and 5000 edges used
to validate our experiment results.

2) Facebook: This data set includes 1899 users and a
total number of 59 835 online messages were sent over
20 296 directed ties among these users. This data set represents
an online community for students at a university. The directed
edges indicate the friend relation between two users. [28]

3) Wikipedia: The Wikipedia data set is generated by a
voting activity which Wikipedia community discuss and vote
for the people who to promote to become an administrator.
There are 7115 nodes and 103 689 edges. Each node in the
graph represents a user attend the voting procedure. Each
directed edge denotes who vote for whom.

4) HEP-TH: This is a citation graph which from the
e-print arXiv and covers all the citations within a data set
of 27 770 papers with 352 807 edges. If a paper i cites paper
j , the graph contains a directed edge from i to j [26], [27].

All of our data sets only have the relationship between
two nodes but no other information on each node or edge
can be used directly. For ease of comparison, we assume
that a content c is determined by a given distribution topics.
We further assume the following seed set generation process.
Seed set S whose node contains the content c is selected
randomly and uniformly by a rate from each data set, e.g.,
1% of total nodes. For edge selections, we first generate a
candidate edge set X in which the candidate edges are selected
from each seed node to its two-hop and three-hop neighbors to
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the ratio of 4:1. Then, we select the edges from X by the rank
of the two-hop and three-hop neighbors’ weighted influence.
We update the weighted influence after adding each edge until
the final adding edges is 0.2|X |.

The influence propagation model we adopt in our exper-
iment is IC model, which is a special case of topic-aware
IC model. We avoid cycles on networks by terminating the
propagation process when cycle appears. For the propagation
probability, first we consider to uniformly assign the weights
which assume all nodes have the same synthetic probability
p = pvu = �K

z=1γ
z
c pz

vu of sharing content. We set p = 0.05
with the same setting as in [2]. We also use a trivalency model
[5], [24], [25]. For each edge, we uniformly select a value
from (0.1, 0.01, 0.001) at random, which corresponds to high,
medium, and low influences.

We use greedy algorithm to compute the upper and lower
bounds of MIS algorithm. Since the bounds have been shown
submodular in Section IV, thus we can achieve 1−1/e approx-
imation guarantee. The content spread value is calculated as
performance evaluation because our proposed algorithm could
compute the objective function highly close to accurate value.

B. Edge Selection Methods

We compare with three heuristic edges selection strategies
and other two methods proposed in [2] and [12].

Random, we select k̂ edges from |X | randomly to add in
the graph.

Maxdegree, where the added edges are based on nodes’
degree. We first select top k̂ degree nodes in N(X ) =
{u|(v, u) ∈ X} and each seed node with content c is connected
to k̂/|S| selected nodes randomly. Intuitively, this strategy is
very competitive because high degree nodes could have high
potential to influence more nodes.

PageRank, which is widely known Google Page Rank
measure [30]. The pagerank score indicates the importance
of a node. To calculate the pagerank of each node, we set the
damping factor to 0.9. Nodes with top k̂ pagerank score in
N(X ) will be connected with seed nodes in the same way as
Maxdegree.

R1 and R2 indicate the edge selection methods in [2] and
[12], respectively.

C. Experiment Results

In this section, we evaluate the effectiveness of MIS. First,
we compare MIS upper and lower bounds with spread value of
GCMP by varying the number of added edge and seed nodes
under two probability setting. Second, we show the distribution
of added edges on each seed node. Third, we compare with
other edges selection methods. Finally, we give a table that
concludes our MIS algorithm.

1) Content Spread Value With the Increase in the Number of
Added Edges: In Fig. 2, we evaluate MIS algorithm in terms
of the content spread over network by varying the number
of edges added to graph. We perform experiments on four
data sets under two propagation probability settings. Since the
content spread grows in very similar form, we present two
data sets under uniform probability and two under trivalency

Fig. 3. Content spread value versus incremental seed set size. (a) Facebook
p = trivalency. (b) Wikipedia p = 0.05.

Fig. 4. Number of edges added on each seed node. (a) HEP-TH p =
trivalency. (b) Facebook p = 0.05.

model. The x-axis holds the number of candidate edges. The
y-axis holds the content spread over whole network after
adding these edges. Baseline shows the content spread without
any adding edges. In Fig. 2(a)–(d), the content spread value
grows dramatically as number of edges increase. This is to say,
the edges we select have large impact on the content spread
all over the network. Wikipedia data set shows when we add
200 edges (the number of candidate edges is 1000) which is
only 0.2% of total 100 000 edges the content spread under our
MIS-original becomes 3 times compared to baseline.

We also observe that the increment of content spread value
become slow with the increasing number of added edges.
It is well explained that although our original problem is
not submodular theoretically, two submodular bounds could
ensure the submodularity of GCMP to a large extent.

Fig. 2(b)–(d) also shows that the content spread of upper
bound solution is not as good as that of lower bound or orig-
inal. It is because during the process of calculation upper
bound content spread, we first add all the candidate edges
then remove the edges with small marginal gain without
updating σ E

⋃
X and q E

⋃
X thus content spread value might

loss during removing edges process. This procedure differs
from the calculation of the lower bound and original problem
which add edges in a dynamic iterative way.

2) Content Spread Value With the Increase in the Number of
Seed Nodes: We also conduct experiments on content spread
by varying the number of seed nodes. Fig. 3 shows the content
spread grows as the size of seed set increases. It is further
shown the trend that spread gain is getting slower when
the seed size getting larger as the same as Fig. 2. We also
observe that the gap between MIS algorithm and baseline
becomes smaller when the seed nodes increase from 1% to
9%. As expected, the content spread will converge as the seed
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Fig. 5. Comparison with other methods. (a) Synthetic p = 0.05. (b) Facebook p = 0.05. (c) Wikipedia p = trivalency. (d) HEP-TH p = trivalency.

set becomes very large. The upper bound is also relatively
smaller here which is due to the same reason as we discussed
above.

3) Number of Edges Added to Each Seed Node: In Fig. 4,
we show the number of edges added to each seed node
by setting probability to trivalency on data set high energy
physics-theory and Facebook. The results are very similar to
uniform probability. The x-axis holds the seed nodes with
added edges and the y-axis holds how many number of edges
we add on each seed node. From the figure, we show that
not all the seed nodes have been added edges. In Facebook
data set, we set the seed nodes to 0.01 of total nodes on
graph. 200 edges are added only on 7 nodes of 18 seed
nodes. The added edges are not uniformly distributed on each
seed. There are more than half of the edges are added on
one seed. Since the inequality role of each edge and node
in social network structure, the uneven distribution of added
edges is reasonable. This is why in our problem GCMP, we set
the added edges to be total k̂ which is different from the
RMPP problem of Chaoji et al. [2]. If the edges are added
uniformly for each seed node, it may fail to achieve an optimal
solution in terms of power law property of real-world social
network.

4) Comparison With Other Edge Selection Strategies: We
compare our MIS algorithm with random, Maxdegree, Pager-
ank score, R1 [2]- and R2 [12]-based selection methods
in Fig. 5. Our algorithm outperforms the other heuristics with
increasing added edges. The content spread grows rapidly
using MIS, R1, and R2 whereas the others increase slowly.
It is notable that the difference between ours and heuristics
(random, Maxdegree, and Pagerank score) becomes larger
when adding more edges. As shown in Fig. 5(d), at the
beginning, when we add 100 edges (500 candidate edges) our
algorithm is 1/2 times more than heuristics, when the added
edges increase to 1800 (9000 candidate edges) ours perform
three times of the Pagerank which is the best of heuristics.
Among heuristics, Pagerank performs better than the other two
because high Pagerank score means the node is more important
than the others on network. When the edges connect to
important nodes, the content spread will increase. The results
of Maxdegree and random are very similar. It is intuitively that
high degree nodes have greater spreading capability, but it is
not always the case. The spread capability of a node is also
highly relied on the probability of being activated. In addition,
our MIS is better than R1 and R2 from the figure since the
content spread value is larger.

TABLE I

SET OF OBJECTIVE FUNCTION VALUES OF FACEBOOK

5) Objective Function Values: Table I represents a set of
values for the objective functions by setting the size of candi-
date edge set |X̄ | = 1000 and p = 0.05 under Facebook data
set. Results from all data sets with two different probability
settings are very similar. Table I demonstrates the efficiency
of both lower bound and upper bound we proposed. We can
observe that the expected spread value in each row is getting
larger when calculating from lower bound, original to upper
bound function. It is also shown in the table that from each
column, the solution of the upper bound performs not as good
as that of lower or of original. We have discussed the reason of
this in the first result analysis part of this section, which is due
to the static edge-adding process of upper bound; whereas in
lower bound and original problem, we have a dynamic adding
edges process.

VII. CONCLUSION

In this paper, we formulate content spread maximiza-
tion problem from an incremental marginal gain perspective.
We reveal the reason why the objective function of this
problem lacks submodularity. We derive the submodular upper
bound and lower bound of the original problem. Using the
sandwich framework, a marginal increment-based algorithm
(MIS) that guarantees a data-dependent approximation factor
is devised. We also propose a novel algorithm IRFA which is
based on influence raking of a single node and fast adjustment
according to the recommendations selected in the network.
These algorithms calculate the content spread function value
as accurate as possible. Simulation results on real social graphs
demonstrate the property of realistic network and superiority
of our algorithms.

There are several directions on maximizing the content
spread problem that deserves further study, for example, if the
content propagation can be extended using the linear threshold
dissemination model or on a general graph and it is challenging
if the network has cycles when we recursively update the
spread gain for each node. Since we use sandwich framework,
how to find high quality submodular upper and lower bounds
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is a very important issue. Finding tighter bounds especially
submodular upper bound is still a topic worth studying in the
future work.

ACKNOWLEDGMENT

The authors would like to thank the constructive amend-
ments provided by three anonymous reviewers.

REFERENCES

[1] Brandwatch. (2017). 105 Amazing Social Media Statistics and Facts.
Accessed: Dec. 9, 2017. [Online]. Available: https://www.brandwatch.
com/blog/96-amazing-social-media-statistics-and-facts-for-2016/

[2] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, “Recommendations to
boost content spread in social networks,” in Proc. 21st Int. Conf. World
Wide Web, Apr. 2012, p. 529–538.

[3] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven
analysis of information propagation in the Flickr social network,”
in Proc. 18th Int. Conf. World Wide Web, Apr. 2009, pp. 721–730.

[4] P. Zhang, W. Chen, X. Sun, Y. Wang, and J. Zhang, “Minimizing seed
set selection with probabilistic coverage guarantee in a social network,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2014, pp. 1306–1315.

[5] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2009, pp. 199–208.

[6] Blog.facebook.com. (2017). Facebook Newsroom. Accessed:
Dec 9, 2017. [Online]. Available: http://blog.facebook.com/blog.
php?post=15610312130

[7] (2017). Anon. Accessed: Dec 9, 2017. [Online]. Available:
http://blog.twitter.com/2010/07/ discovering-who-to-follow.html

[8] J. Hannon, M. Bennett, and B. Smyth, “Recommending twitter users
to follow using content and collaborative filtering approaches,” in Proc.
4th ACM Conf. Rec. Syst., Sep. 2010, pp. 199–206.

[9] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. 16th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2010,
pp. 1029–1038.

[10] K. Liontis and E. Pitoura. (2016). “Boosting nodes for improving
the spread of influence.” [Online]. Available: https://arxiv.org/abs/1609.
03478v1

[11] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2003, pp. 137–146.

[12] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos,
“Gelling, and melting, large graphs by edge manipulation,” in Proc. 21st
ACM Int. Conf. Inf. Knowl. Manage., Nov. 2012, p. 245–254.

[13] S. Antaris, D. Rafailidis, and A. Nanopoulos, “Link injection for
boosting information spread in social networks,” Social Netw. Anal.
Mining, vol. 4, no. 1, pp. 1–16, 2014.

[14] D. Rafailidis, A. Nanopoulos, and E. Constantinou, “‘With a little help
from new friends’: Boosting information cascades in social networks
based on link injection,” J. Syst. Softw., vol. 98, pp. 1–8, Dec. 2014.

[15] D. Rafailidis and A. Nanopoulos, “Crossing the boundaries of com-
munities via limited link injection for information diffusion in social
networks,” in Proc. 24th Int. Conf. World Wide Web, May 2015,
pp. 97–98.

[16] D. Li, Z. Xu, S. Li, X. Sun, A. Gupta, and K. Sycara, “Link recommen-
dation for promoting information diffusion in social networks,” in Proc.
22nd Int. Conf. World Wide Web, May 2013, pp. 185–186

[17] W. Lu, W. Chen, and L. V. S. Lakshmanan, “From competition to
complementarity: Comparative influence diffusion and maximization,”
in Proc. VLDB Endowment, vol. 9, no. 2, pp. 60–71, Oct. 2015.

[18] K. Liontis and E. Pitoura. (2016). “Boosting nodes for improv-
ing the spread of influence.” [Online]. Available: https://arxiv.org/abs/
1609.03478?context=cs

[19] Y. Lin, W. Chen, and J. C. S. Liu. (2017). “Boosting information
spread: An algorithmic approach.” [Online]. Available: https://arxiv.org/
abs/1602.03111

[20] D.-N. Yang, H.-J. Hung, W.-C. Lee, and W. Chen, “Maximizing
acceptance probability for active friending in online social networks,”
in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2013, pp. 713–721.

[21] Y. Yang, X. Mao, J. Pei, and X. He, “Continuous influence maximiza-
tion: What discounts should we offer to social network users?” in Proc.
Int. Conf. Manage. Data., Jul. 2016, pp. 727–741.

[22] W. Chen, F. Li, T. Lin, and A. Rubinstein, “Combining traditional mar-
keting and viral marketing with amphibious influence maximization,”
in Proc. 16th ACM Conf. Econ. Comput., Jun. 2015, pp. 779–796.

[23] Z. Yu, C. Wang, J. Bu, X. Wang, Y. Wu, and C. Chen, “Friend
recommendation with content spread enhancement in social networks,”
Inf. Sci., vol. 309, pp. 102–118, Jul. 2015.

[24] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based
approach to social influence maximization,” in Proc. VLDB Endowment,
Sep. 2011, pp. 73–84.

[25] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in Proc. IEEE 12th Int. Conf. Data
Mining, Dec. 2012, pp. 918–923.

[26] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explanations,”
in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2005, pp. 177–187.

[27] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 KDD
cup,” ACM SIGKDD Explor. Newslett., vol. 5, no. 2, pp. 149–151,
Dec. 2003.

[28] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
Netw., vol. 31, no. 2, pp. 155–163, May 2009.

[29] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proc. 19th Int. Conf. World
Wide Web, Apr. 2010, pp. 641–650

[30] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the Web,” Stanford Info-
Lab., Stanford, CA, USA Tech. Rep., 1999. [Online]. Available:
http://ilpubs.stanford.edu:8090/422/

[31] N. Barbieri, F. Bonchi, and G. Manco, “Topic-aware social influence
propagation models,” Knowl. Inf. Syst., vol. 37, no. 3, pp. 555–584,
2013.

[32] Q. Shi, C. Wang, J. Chen, Y. Feng, and C. Chen, “Location driven
influence maximization: Online spread via offline deployment,” Knowl.
Based Syst., vol. 166, Feb. 2019, pp. 30–41.

[33] Q. Shi, C. Wang, J. Chen, Y. Feng, and C. Chen, “Post and repost:
A holistic view of budgeted influence maximization,” Neurocomputing,
vol. 338, Apr. 2019, pp. 92–100.

[34] R. Yan, Y. Li, W. Wu, D. Li, and Y. Wang, “Rumor blocking through
Online link deletion on social networks,” ACM Trans. Knowl. Discovery
Data (TKDD), vol. 13, no. 2, Apr. 2019, Art. no. 16.

Wenguo Yang received the M.A. degree in operation
research and control theory from Beijing Jiaotong
University, Beijing, China, in 2003, and the Ph.D.
degree in operation research and control theory from
the Graduate University of the Chinese Academy of
Sciences, Beijing, in 2006.

He is currently a Professor with the School of
Mathematics Sciences, University of Chinese Acad-
emy of Sciences, Beijing. His current research inter-
ests include social networks, robust optimization,
nonlinear combinatorial optimization, and telecom-

munication network optimization. He has supervised many M.Sc. and Ph.D.
students in these areas.

Jianmin Ma received the Ph.D. degree in mathe-
matics from Colorado State University, Fort Collins,
CO, USA.

He is currently a Professor of mathematics with the
College of Mathematics and Information Science,
Hebei Normal University, Shijiazhuang, China. His
current research interests include machine learning,
data mining, social networks, and discrete mathe-
matics.



490 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 6, NO. 3, JUNE 2019

Yi Li received the M.S. degrees in digital com-
munication and multimedia and computer science
and the Ph.D. degree in computer science from
the University of Texas at Dallas, Richardson, TX,
USA.

Her current research interests include social influ-
ence maximization/minimization, information prop-
agation, and data science.

Ruidong Yan received the B.S. degree in informa-
tion and computing Sciences from Inner Mongolia
University, Hohhot, China, in 2014. He is currently
pursuing the Ph.D. degree from the Department of
Computer Science, Renmin University of China,
Beijing, China.

His current research interests include social net-
works, algorithm design, and analysis.

Jing Yuan received the B.S. degree in computer
science from Nanjing University, Nanjing, China,
in 2008. She is currently pursuing the Ph.D. degree
with the Department of Computer Science, The Uni-
versity of Texas at Dallas, Richardson, TX, USA.

Her current research interests include online social
networks, cyber physical systems, and cloud com-
puting.

Weili Wu received the Ph.D. and M.S. degrees from
the Department of Computer Science, University of
Minnesota, Minneapolis, MN, USA, in 2002 and
1998, respectively.

She is currently a Full Professor with the Depart-
ment of Computer Science, The University of
Texas at Dallas, Richardson, TX, USA. Her cur-
rent research interests include data communication,
data management, the design and analysis of algo-
rithms for optimization problems that occur in wire-
less networking environments, and various database
systems.

Deying Li received the B.S. and M.S. degrees
in mathematics from Huazhong Normal University,
Wuhan, China, in 1985 and 1988, respectively, and
the Ph.D. degree in computer science from the City
University of Hong Kong, Hong Kong, in 2004.

She is currently a Professor with the Renmin
University of China, Beijing, China. Her current
research interests include wireless networks, ad hoc
and sensor networks mobile computing, distributed
network system, social networks, and algorithm
design.


