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In recent years, social networks have become important platforms for people to disseminate information.
However, we need to take effective measures such as blocking a set of links to control the negative rumors
spreading over the network. In this article, we propose a Rumor Spread Minimization (RSM) problem, i.e., we
remove an edge set from network such that the rumor spread is minimized. We first prove the objective func-
tion of RSM problem is not submodular. Then, we propose both submodular lower-bound and upper-bound
of the objective function. Next, we develop a heuristic algorithm to approximate the objective function. Fur-
thermore, we reformulate our objective function as the DS function (the Difference of Submodular functions).
Finally, we conduct experiments on real-world datasets to evaluate our proposed method. The experiment
results show that the upper and lower bounds are very close, which indicates the good quality of them. And,
the proposed method outperforms the comparison methods.
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1 INTRODUCTION

In the past decade, social networks such as Twitter and Facebook have become an important part
of people’s daily lives. According to the statistics, there have been 2.13 billion monthly active users
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and 1.4 billion daily active users on Facebook.1 On one hand, these social networks not only help
people stay in touch with family and friends, but also keep abreast of breaking news and emerging
contents. And, they have become significant platforms for people to generate, search, and share
multiple social contents. On the other hand, online social networks are used by some people or
organizations to disseminate negative influence such as malicious rumors we want to block or
contain [7, 14, 22, 27].

With widespread of the malicious rumors, social network would lose its reliability and even
cause public panic. There are some characteristics of social networks would speed up and expand
the diffusion of rumors. As we all know, one of the most valuable characteristics of social networks
is its capability for users generating contents to circulate rapidly through the whole network. But
when it comes to rumors this valuable characteristic will make things even worse. For example,
when the devastating wildfires happens in California in October 2017, the officers were evacuating
residents and searching through the burned ruins of homes for missing persons they still had to
deal with the fake news.2 Although the rumor was shot down by the officers and was debunked
by some government websites afterwards, the original story was shared 60,000 times and similar
stories were shared 75,000 times on Facebook.

Another characteristic of social networks is the openness. Whatever government organizations
or ordinary citizens, they can disseminate their influence such as news, events and experience [27].
Due to the openness, anyone could share any influence without validating. For example, a tweet
“Two Explosions in the White House and Barack Obama is injured” appears on the Twitter which
turns out to be a fake since the Twitter account was hacked. The news leads social media and the
stock market went wild. The temporary loss of market cap in S&P 500 alone was totally $136.5 bil-
lion.3 Therefore, it is very important to adopt effective strategies to block rumors and to minimize
negative influence on social networks.

Existing researches have discussed the rumor blocking problem from different perspectives.
Some studies show that removing nodes with high out-degree can often be an effective strategy [18,
24]. However, removing high degree nodes may cause dramatically change in network structure
and may not work once the rumor has already spread out by those high degree nodes. Other studies
either consider to find a minimal set of protectors to limit the negative influence of rumor [9] or
introduce a positive cascade competing against the rumor [21]. In addition, there are extensive
studies about the influence diffusion phenomenon in social networks [4, 12].

We use a vivid example in Figure 1 to illustrate the drawbacks of the existing methods. First,
removing finite neighbors of the rumor seed node seems to be a feasible approach. However, the
social network has the property of power-low distribution. Once the seed node has high degree,
this approach may not work. For example, removing any two neighbors is no better than removing
two protectors. The reason is that removing these two protectors will “protect” more inactive
nodes. Second, removing the protectors may cause dramatically change in network structure. In
reality, this method is expensive such as deleting the users’ Twitter or Facebook accounts. Third,
using protectors to spread the positive influence fights against the rumor. This method usually has
a strong assumption: if the rumor and positive influence reach a node at the same time, the node
will adopt the positive influence. However, this assumption is not realistic. The researches show a
node’s adoption depends on its neighbors. For example, a node has seven neighbors in which five
neighbors spread rumor to the node and two neighbors spread positive influence to the node. As
a result, this node has a higher probability to adopt the rumor instead of the positive influence.

1https://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/.
2https://www.sfgate.com/bayarea/article/The-worst-rumors-about-the-Wine-Country-fires-12270530.php.
3https://www.cnbc.com/id/100646197.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.

https://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/
PLX-HTTPS://www.sfgate.com/bayarea/article/The-worst-rumors-about-the-Wine-Country-fires-12270530.php
PLX-HTTPS://www.cnbc.com/id/100646197


Rumor Blocking through Online Link Deletion on Social Networks 16:3

Fig. 1. An example to illustrate drawbacks of the existing methods.

Different from the above methods, our method is to remove some edges (dashed lines) such that
the rumor spread as little as possible. On one hand, our method does not cause dramatically change
in the network structure. On the other hand, our method is a direct control of rumor rather than
an indirect control like protectors spreading the positive influence.

In this article, we address a novel problem: How can we effectively control or block the rumor
spreading over the network? More specifically, given a social network G, a rumor seed set S , a
candidate edge set E′, a positive integer parameter K and an influence diffusion model M, we
aim at identifying K edges from the candidate set and removing them from network such that the
rumor spread value is minimized. In other words, we want to minimize the total probability that
the nodes are activated by the seed set at the end of the rumor propagation. We call this problem
Rumor Spread Minimization (RSM).

We consider RSM problem from a marginal decrement perspective to compute the rumor prop-
agation as accurately as possible. As opposed to other edge blocking methods [13, 14, 23, 26], the
process of edge blocking in this article could be considered as an online process. More specifically,
we obtain the marginal decrement of rumor spread at each node by removing one edge from the
candidate edge set at one time. In each iteration, we remove an edge that minimizes the rumor
spread value. In addition, if there are multiple rumors spreading over the network, our method is
still applicable. We summarize main contributions in this article as follows:

—We propose a novel RSM problem and formalize it from marginal decrement perspective
for the first time.

—We analyze properties of the objective function and prove objective function is not submod-
ular. Without the submodularity, the basic greedy algorithm could not provide performance
guarantee.

—Considering the objective function without submodularity, we give a submodular lower-
bound and an upper-bound. Furthermore, we also propose a heuristic algorithm to approx-
imate the original objective function.

—We explore the relationships between the original objective function and the lower-bound
as well as the upper-bound. And we prove the following: (1) The original function minus the
lower-bound is a supermodular function; (2) The upper-bound minus the original function
is a submodular function. Based on this, we discuss RSM problem with DS function (the
Difference of Submodular functions).

—We evaluate the proposed method and compare with other popular approaches on four real-
world social networks in experiments. Experiment results show that our method is outstrip
to the comparison approaches.
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The rest of this article is organized as follows. In Section 2, we begin by recalling some existing
related work. In Section 3, we introduce influence diffusion model and problem description. In
Section 4, we construct a submodular upper-bound and a submodular lower-bound, respectively.
Algorithms are designed for solving RSM problem in Section 5. The experiment results are shown
in Section 6. We draw conclusions in Section 7.

2 RELATED WORK

Domingos and Richardson [8] first study the influence between users in social networks. Kempe
et al. [12] model viral marketing as a discrete optimization problem named Influence Maximization

(IM). They propose two influence propagation models: the Independent Cascade (IC) model and the
Linear Threshold (LT) model. Based on Kempe’s results, other variant models have been proposed
such as [2, 22, 25]. In our study, it is in the same fashion that the rumor spreads from users to users
via influence propagation. We summarize the related work of the rumor blocking in the following
three categories.

2.1 Removing Node Based Method

The first category is removing the global influential nodes such that the rumor spread is mini-
mized [6, 15, 24]. Wang et al. in [24] try to discover and block k uninfected users to minimize
the size of ultimate contaminated users. Comin et al. in [6] analyze three spreading schemes. And
they propose and validate an effective methodology for the identification of the source nodes.
Their method is based on the calculation of the centrality such as degree, betweenness, closeness,
and eigenvector of the nodes on the sampled network. Kitsak et al. in [15] show that the most
efficient spreaders are those located within the core of the network as identified by the k-shell
decomposition analysis [1, 3]. The way to remove the global influential nodes is expensive, e.g.,
deleting users’ Facebook or Twitter accounts may not be desirable for both companies.

2.2 Removing Edge Based Method

The second category is removing some edges that play a key role in rumor propagation [13, 14, 23,
26]. Kimura et al. in [14] propose a link blocking method to minimize the expected contamination
area of the network. Tong et al. in [23] address the NetMelt problem, i.e., delete k edges from the
original graph so that the rumor spread as less as possible. They show which edges being removed
depends on the eigenvalue of the adjacency matrix of the network. Khalil et al. in [13] propose a
greedy algorithm to address Edge-deletion problem, that is, find a set of k edges to remove such
that rumor spread is minimized under the LT model. Yao et al. in [26] develop a greedy and two
heuristic algorithms for the problem of minimizing the rumor spreading by blocking a limited
number of links in a network. However, the above methods are all coarse-grained. In other words,
they do not consider the network structure changing after each edge is removed in each iteration.
Different from the above edges deletion strategy, our method is from a fine-grained level.

2.3 Spreading Positive Influence Based Method

The third category is spreading positive influence against the rumor, such that the positive influ-
ence is adopted by as many nodes as possible [2, 9, 19]. In [9], Fan et al. identify a minimal subset
of individuals as initial protectors to minimize the number of people infected in neighbor commu-
nities at the end of rumor diffusion processes. Authors propose algorithms under two influence
diffusion models and show the theoretical analysis in detail. Budak et al. in [2] propose a prediction
algorithm that is based on generating random spanning trees and evaluate the performance of this
approach. Nguyen et al. in [19] study a set of problems named node protectors, which aims to find
the smallest set of highly influential nodes whose decontamination with good information helps
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Fig. 2. The propagation process of the IC model.

to contain the viral spread of rumor. Compared with the first two of categories rumor blocking
methods, this category is an indirect control of rumors.

3 INFLUENCE DIFFUSION MODEL AND PROBLEM DESCRIPTION

3.1 Influence Diffusion Model

We briefly introduce the widely used influence diffusion model: IC model. Given a directed social
network G = (V,E, p), where V is the node set (users) and E ⊆ V × V is the edge set (the rela-
tionships between users), evu = (v,u) ∈ E denotes an arbitrary edge, and pvu ∈ p of the edge evu

denotes the probability that nodev activates nodeu. We call a node active if it accepts information
(influence) from other nodes, inactive otherwise. Influence propagation process unfolds in discrete
time steps. The initial seed set is S0. Let ST denotes the active nodes in time stepT , and each nodev
in ST has single chance to activate each inactive neighbor u through its out-edge (v,u) with prob-
ability pvu at time stepT + 1. But whether or not v succeeds, it cannot make any further attempts
in subsequent rounds. Repeat this process until no more new nodes can be activated. Note that a
node can only switch from inactive to active, but not in reverse direction. Figure 2 illustrates an
example of the propagation process of the IC model.

In Figure 2, nodes are divided into three categories: seed node, newly active node, and inactive
node. And the number embedded on each edge indicates the propagation probability, e.g.,p13 of the
edge (1, 3) denotes the probability that the node 1 activates the node 3. According to the previous
description, we know the influence propagation process is a random process. In Figure 2(a), without
loss of generality, we assume node 1 is the seed node, i.e., S = {1} at time step T = 0. In this time,
the node 1 is ready to activate its inactive neighbors node 3 and node 4 through out-edge (1, 3) and
(1, 4), respectively. At time stepT = 1, the node 3 and node 4 become newly active.4 In Figure 2(b),
the newly active node 3 and node 4 are ready to activate their respective inactive neighbor nodes.
More specifically, on one hand, the node 3 respectively attempts to activate inactive neighbor node
5 and node 6 through out-edge (3, 5) and (3, 6). On the other hand, the node 4 only attempts to
activate inactive neighbor node 6 (since the node 3 is already active). Consequently, the node 5
becomes newly active but the node 6 is still inactive at time step T = 2 in Figure 2(c). When the

4Here, we assume that node 3 and node 4 become newly active. In fact, node 3 may become newly active or inactive at
time step T = 1. The state of node 4 is similar to the node 3.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.
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Table 1. Frequently Used Notations

Notation Description
G = (V,E) social network G with node set |V| = n and edge set |E| =m

pst the propagation probability from node s to node t
est the directed edge from node s to node t
S the rumor seed node set
M information diffusion model
E′ the candidate edge set
K a positive integer parameter

θE (v, S,M) the probability v is activated by S on topology E underM
θE\{est } (v, S,M) the probability v is activated by S on topology E\{est } underM

θE (v ) the abbreviation for θE (v, S,M)
E the deleted edge set from candidate edge set E′ and |E | = K

N out
E

(v ) the out-neighbors of v on topology E

N out
E\{est } (v ) the out-neighbors of v on topology E\{est }

ΔEθE\E (v ) the marginal decrement of node v after removing edge set E from E

Δest
θE\{est } (v ) the marginal decrement of node v after removing edge est from E

Vs the ancestor node set of the node s
d the network diameter

σE (v ) the rumor spread ability when v is a seed node on topology E

time stepT ≥ 3, the influence propagation process stops because no node becomes a newly active
node.

The readers may ask how to specifically compute the probability that a node v can be activated
when given a seed set S . To address this issue, we first list frequently used notations in Table 1,
then we show how to compute based on these notations. In [12], authors provide the following
formula to compute the probability that a nodev is activated successfully if the seed set is S under
the IC model

θE (v, S,M) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if v ∈ S
0, if N in (v ) = ∅

1−
∏

u ∈N in (v )

(1 − θE (u, S,M)puv ), otherwise.

Where N in (v ) is the in-neighbor set of v and M denotes the IC model. It can be seen that
the probability of a node v being activated depends on its all in-neighbors. Let’s take the node 1
activating the node 3 as an example, i.e., θE (3, 1,M).

According to the above formula, we have

θE (3, 1,M) = 1 −
∏

u ∈N in (3)

(1 − θE (u, 1,M)pu3),

where N in (3) = {1, 4}. Thus, we rewrite as follows:

θE (3, 1,M) = 1 − (1 − θE (1, 1,M)p13) · (1 − θE (4, 1,M)p43),

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.
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where p13 and p43 are given. In addition, θE (1, 1,M) = 1 since θE (v, S,M) = 1 if v ∈ S . Therefore,
we only need to compute θE (4, 1,M). Analogously,

θE (4, 1,M) = 1 −
∏

u′ ∈N in (4)

(1 − θE (u ′, 1,M)pu′4),

where N in (4) = {1, 2}. Thus, we have

θE (4, 1,M) = 1 − (1 − θE (1, 1,M)p14) · (1 − θE (2, 1,M)p24),

where p14 and p24 are given. Furthermore, θE (1, 1,M) = 1 and θE (2, 1,M) = 0 since N in (2) = ∅.
Therefore,

θE (4, 1,M) = 1 − (1 − 1 · p14) · (1 − 0 · p24) = p14 = 0.8.

Adding θE (4, 1,M) = 0.8 in θE (3, 1,M), we have

θE (3, 1,M) = 1 − (1 − θE (1, 1,M)p13) · (1 − θE (4, 1,M)p43)

= 1 − (1 − 1 · 0.7) · (1 − 0.8 · 0.2)

= 0.748.

3.2 Problem Description

Given a directed acyclic social network G = (V,E, p), where V represents users and E represents
relationships between users, an information diffusion modelM (IC model), a candidate edge set
E′ ⊆ E and a predetermined seed set S for rumor. Further, each node v ∈ V has the following
parameters: (1) Let pvu ∈ p denotes the probability that v independently disseminate rumor or
influence to the neighbor u; (2) Let θE (v, S,M) denotes the probability that the nodev is activated
by the seed set S on topology E under information diffusion modelM. We omit parameters S and
M if the context is clear, i.e., θE (v ).

The goal of this article is to identify K edges denoted by E from E′ and to remove from the
original graph G such that the rumor spread is minimized. We define RSM problem as follow.

Definition 3.1 (RSM). Given a directed acyclic social network G = (V,E, p), an influence diffu-
sion modelM, a predetermined rumor seed set S , a candidate edge set E′ and a positive integer
parameter K , RSM finds an edge set E with |E | = K from the candidate edge set E′ such that
f (E) =

∑
v ∈V θE\E (v ) is minimized, namely, it is equivalent to seeking

E∗ = arg min
E⊆E′, |E |=K

∑

v ∈V

θE\E (v ), (1)

where θE\E (v ) denotes the probability that the node v is activated by the seed set S on topology
E\E under the influence diffusion modelM.

To effectively address this problem, we consider it from the perspective of marginal decrement.
More specifically, it’s satisfactory if the marginal decrement of each node in the network can be
accurately calculated when an edge set is removed from the current network. Let θE\{est } (v ) denote
the probability that the node v is activated by the seed set S when the directed edge est = (s, t )
is removed from current topology E. And, we have following lemma to calculate the marginal
decrement of each node iteratively.

Lemma 3.2. If a directed edge est = (s, t ) is removed from current topology E, we have the following

two steps to calculate the marginal decrement of each node:

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.
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—Step 1: For the node t , let Δest
θE\{est } (t ) be the marginal decrement of t , then

Δest
θE\{est } (t ) =

pst · θE (s ) · (1 − θE (t ))

1 − pst · θE (s )
, (2)

where θE (s ) and θE (t ) denote the probabilities that node s and node t are activated by the seed

set S on topology E, respectively.

—Step 2: For any node v ∈ N out
E\{est } (t ), let Δest

θE\{est } (v ) be the marginal decrement of v , then

Δest
θE\{est } (v ) =

1 − θE (v )

1 − ptv · θE (t )
· ptv · Δest

θE\{est } (t ), (3)

where N out
E\{est } (t ) denotes the out neighbor set of t on topology E\{est } and θE (v ) denotes the

probability that node v is activated by the seed set S on topology E.

Proof. We first prove Step 1. Note that the probability of node t being activated by seed set S
after removing the edge est plus the marginal decrement of t , which is equal to the probability of
t being activated by seed set S before removing the edge est , i.e.,

θE\{est } (t ) + Δest
θE\{est } (t ) = θE (t ). (4)

We assume the maximum effect of node s on node t is 1 if we can remove the edge est . Thus,
the marginal decrement of node t satisfies Δest

θE\{est } (t ) = (1 − θE\{est } (t )) · pst · θE (s ). Adding
Δest

θE\{est } (t ) to (4), then we have following equation:

θE\{est } (t ) + (1 − θE\{est } (t )) · pst · θE (s ) = θE (t ).

⇒ θE\{est } (t ) + pst · θE (s ) = θE (t ) + θE\{est } (t ) · pst · θE (s ).

⇒ θE\{est } (t ) =
θE (t ) − pst · θE (s )

1 − pst · θE (s )
. (5)

Combining (4) and (5), it holds following equation:

Δest
θE\{est } (t ) = θE (t ) − θE\{est } (t )

= θE (t ) − θE (t ) − pst · θE (s )

1 − pst · θE (s )

=
pst · θE (s ) · (1 − θE (t ))

1 − pst · θE (s )
. (6)

Now, we prove Step 2. On one hand, removing a directed edge est and removing two sequential
directed edges est as well as etv satisfies following equation:

θE\{est } (v ) = θE\{est ,etv } (v ) + (1 − θE\{est ,etv } (v )) · ptv · θE\{est } (t ),

⇒ θE\{est ,etv } (v ) =
θE\{est } (v ) − ptv · θE\{est } (t )

1 − ptv · θE\{est } (t )
, (7)

where v ∈ N out
E\{est } (t ).

On the other hand, we know the following equation by (4):

θE (v ) = θE\{est } (v ) + Δest
θE\{est } (v )

= θE\{est ,etv } (v ) + (1 − θE\{est ,etv } (v )) · ptv · (θE\{est } (t ) + Δest
θE\{est } (t )). (8)

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.
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Adding (7) into (8), we have

Δest
θE\{est } (v ) = θE (v ) − θE\{est } (v )

=
1 − θE\{est } (v )

1 − ptv · θE\{est } (t )
· ptv · Δest

θE\{est } (t )

=
1 − θE (v )

1 − ptv · θE (t )
· ptv · Δest

θE\{est } (t ), (9)

where v ∈ N out
E\{est } (t ). Proof is complete. �

From Lemma 3.2, we recursively use these two steps to compute the probability of each node
being activated by seed set in social network when the edge est is removed from current topology
until no more nodes can be updated. In particular, if there exists multiple paths from node t to
node w (e.g., path1 : t → v1 → w and path2 : t → v2 → w), computing the marginal decrement of
w is independent of the updating order. More specifically, computing the marginal decrement of
w first passing path1 and then passing path2 is equal to calculating the marginal decrement of w
first passing path2 and then passing path1, where w ∈ N out

E\{est } (v1)
⋂

N out
E\{est } (v2).

Based on above discussion, the objective function f (E) can be rewritten with marginal decre-
ment of each node in the network, that is,

f (E) =
∑

v ∈V

(θE (v ) − ΔEθE\E (v )). (10)

It can be interpreted as the objective function value is equal to the probability that nodes in the
network are activated by the seed set on the original topology minus the corresponding marginal
decrement after removing an edge set from original topology. In (10), θE (v ) denotes the probability
of node v being activated by the seed set S on original network, E denotes the edge set removed
from the original network and |E | = K , and ΔEθE\E (v ) denotes the marginal decrement of node
v after removing the edge set E. The item

∑
v ∈V θE (v ) is fixed when given the original network

G. Note that minimizing the function (10) is equivalent to maximizing total marginal decrement.
Therefore, we focus on total marginal decrement caused by removing edge set E, i.e.,

д(E) =
∑

v ∈V

ΔEθE\E (v ). (11)

4 SUBMODULAR LOWER-BOUND AND UPPER-BOUND

In this section, we first show that the objective function f (E) is not submodular. Based on non-
submodularity, then we propose a submodular lower-bound and a submodular upper-bound. The
main results are as follows.

Example 4.1. The object function f (E) is not submodular under the IC model.

Proof. Submodularity indicates a natural diminishing returns property. Specifically, a submod-
ular function is a set function F : 2E →
, where 2E denotes the power set of E, which satisfies for
everyA ⊆ B ⊆ E and e ∈ E\B, F (A ∪ {e}) − F (A) ≥ F (B ∪ {e}) − F (B). We prove objective function
f (E) is not submodular by the counterexample in Figure 3.

In Figure 3, the nodes are divided into three categories: seed node, newly active node and inactive
node. The original social network is Figure 3(a). And, the number embedded on each edge indicates
the propagation probability. Here, we set the propagation probability of all edges to be 1, so the
propagation process is deterministic once the seed node set is selected. Without loss of generality,
let S = {1} be the rumor seed set and other nodes are inactive at time step T = 0.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.
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Fig. 3. A counterexample to show non-submodularity.

—Case 1: Without deleting any edges, the influence propagation process is shown in
Figure 3(a)–(c). More specifically, at time T = 0, the node 1 is ready to activate its inac-
tive neighbor node 2 and node 4, respectively. At timeT = 1, the node 2 and node 4 become
newly active since the propagation probabilities are 1. At this time, the node 2 attempts to
activate node 3. At time T = 2, the node 3 becomes newly active and the influence propa-
gation process stops.

—Case 2: Let A = {(1, 4)} and delete A from the original network (see Figure 3(d)). At time
T = 0, the node 1 attempts to activate node 2. At timeT = 1, the node 2 becomes active and
it attempts to activate the node 3. At time T = 2, the node 3 become active and it attempts
to activate the node 4. At time T = 3, the node 4 becomes active and the influence propa-
gation process stops (see Figure 3(d)–(g)). Let function f (A) denote the sum of the proba-
bilities that each node is activated by the seed node after removing the edge set A, that is,
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f (A) =
∑

v ∈V θE\A (v ). Apparently, f (A) = 4 since all nodes in network can be activated by
the seed node.

—Case 3: Let B = {(1, 4), (3, 4)} and delete B from the original network (see Figure 3(h)). At
timeT = 0, the node 1 attempts to activate node 2. At timeT = 1, the node 2 becomes active
and it attempts to activate the node 3. At time T = 2, the node 3 become active and the
influence propagation process stops (see Figure 3(h)–(j)). Similarly, f (B) =

∑
v ∈V θE\B (v ) =

3 since there are three nodes in network activated by the seed node.
—Case 4: Let e = (2, 3) and delete A ∪ {e} from the original network (see Figure 3(k)). At time
T = 0, the node 1 attempts to activate node 2. At timeT = 1, the node 2 becomes active and
the influence propagation process stops (see Figure 3(k) and (l)). Similarly, f (A ∪ {e}) =∑

v ∈V θE\{A∪{e } } (v ) = 2 since there are two nodes in network activated by the seed node.
—Case 5: Let e = (2, 3) and delete B ∪ {e} from the original network (see Figure 3(m)). At time
T = 0, the node 1 attempts to activate node 2. At timeT = 1, the node 2 becomes active and
the influence propagation process stops (see Figure 3(m) and (n)). Similarly, f (B ∪ {e}) =∑

v ∈V θE\{B∪{e } } (v ) = 2 since there are two nodes in network activated by the seed node.

In summary, we observe that A ⊆ B ⊆ E and e ∈ E\B. f (A) = 4, f (A ∪ {e}) = 2, f (B) = 3 and
f (B ∪ {e}) = 2. Thus, f (A ∪ {e}) − f (A) < f (B ∪ {e}) − f (B) indicates function f (·) is not sub-
modular. �

From Example 4.1, the objective function is not submodular. We analyze the reasons that lead
to its without submodularity. Let E = {es1t1 , . . . , esK tK

} be the set of K removed edges and Ek =

{es1t1 , . . . , esk tk
} be the set of first k removed edges where k = 1, . . . ,K . In particular, E0 = ∅. Thus,

we rewrite the function (11) as follow

д(E) =
K∑

k=1

Δesk tk
д(Ek ), (12)

where Δesk tk
д(Ek ) denotes the marginal decrement when we remove the kth edge esk tk

= (sk , tk )

on topology E\Ek , that is, Δesk tk
д(Ek ) =

∑
v ∈V Δesk tk

θE\Ek (v ). LetN out
E

(v ) be the out-neighbor set

ofv on topology E. Apparently, as the number of removed edges increases, they satisfy N out
E

(v ) ⊇
N out

E\E1 (v ) ⊇ · · · ⊇ N out
E\EK

(v ). According to influence propagation process unfolding in discrete time

steps, Δesk tk
д(Ek ) can be rewritten as follows:

Δesk tk
д(Ek ) =

∑

v ∈V

Δesk tk
θE\Ek (v )

= (Δesk tk
θE\Ek (tk )

+
∑

v1∈N out

E\Ek
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E\Ek
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E\Ek
(vd−1 )

Δesk tk
θE\Ek (vd )), (13)

where d is the network diameter and k = 1, . . . ,K . From Equation (13), we can observe the
following:
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—The out-neighbors of v ∈ V become fewer when the more edges are removed, i.e., the
number of items in the summation symbol is reduced. As a result, it causes д(E) to
decrease.

—Δesk tk
θE\Ek (v ) is monotone increasing with respect to Ek . This is because the more

edges that are deleted, the greater the total marginal decrement. It causes д(E) to
increase.

Based on these two observations, whether the function д(E) increasing or decreasing is uncer-
tain with respect to Ek . Exactly, this reason makesд(E) non-submodular. Since function (12) is not
submodular, there is no approximate guarantee if we adopt the basic greedy algorithm. Therefore,
we propose a submodular upper-bound and a submodular lower-bound such that the Sandwich

Algorithm (SA) [16] can be applied.

4.1 Submodular Upper-Bound

Based on analysis in previous section, we construct a submodular upper-bound of the function
(12) as д(E) =

∑K
k=1 Δesk tk

д(Ek ), where

Δesk tk
д(Ek ) = (Δesk tk

θE\Ek (tk )

+
∑

v1∈N out

E
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E
(vd−1 )

Δesk tk
θE\Ek (vd )) (14)

≥
∑

v ∈V

Δesk tk
θE\Ek (v )

= Δesk tk
д(Ek ).

The key idea is if we fix the out-neighbors ofv ∈ V on original topology E, then Equation (14) is
obviously the upper-bound of function (12). Furthermore, the upper-bound is submodular as long
as Δesk tk

д(Ek ) is monotone decreasing with respect to E\Ek . We prove this result by following
theorem.

Theorem 4.2. The upper-bound function д(E) =
∑K

k=1 Δesk tk
д(Ek ) is submodular with respect to

E\Ek .

Proof. For any edge set A ⊆ B ⊆ E\Ek and any edge est = (s, t ) ∈ {E\Ek }\B, we have
Δest

θ {E\Ek }\A (v ) ≥ Δest
θ {E\Ek }\B (v ) since Δest

θE\Ek (v ) is monotone decreasing with respect to

E\Ek , where Δest
θ {E\Ek }\A (v ) = д(A ∪ {est }) − д(A) and Δest

θ {E\Ek }\B (v ) = д(B ∪ {est }) − д(B).
Furthermore, the number of marginal decrement terms remain unchanged during the removing
edges process. Therefore, we have

д(A ∪ {est }) − д(A) = (Δest
θ {E\Ek }\A (t )

+
∑

v1∈N out

E
(t )

Δest
θ {E\Ek }\A (v1)

... +
∑

vd ∈N out

E
(vd−1 )

Δest
θ {E\Ek }\A (vd ))
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≥ (Δest
θ {E\Ek }\B (t )

+
∑

v1∈N out

E
(t )

Δest
θ {E\Ek }\B (v1)

... +
∑

vd ∈N out

E
(vd−1 )

Δest
θ {E\Ek }\A (vd ))

= д(B ∪ {est }) − д(B), (15)

where d is the network diameter. It indicates upper bound function д(E) is submodular. �

4.2 Submodular Lower-Bound

Analogously, we can also construct a submodular lower-bound of function (12) as д(E) =
∑K

k=1 Δesk tk
д(Ek ), where

Δesk tk
д(Ek ) = (Δesk tk

θE\Ek (tk )

+
∑

v1∈N out

E\E′ (tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E\E′ (v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E\E′ (vd−1 )

Δesk tk
θE\Ek (vd )) (16)

≤
∑

v ∈V

Δesk tk
θE\Ek (v )

= Δesk tk
д(Ek ).

When we fix the out-neighbors ofv ∈ V on the topology E\E′, then function (16) is obviously the
lower-bound of function (12). Furthermore, the lower-bound is submodular as long as Δesk tk

д(Ek )

is monotone decreasing with respect to E\Ek . We use the following theory to prove this result.

Theorem 4.3. The lower-bound function д(E) =
∑K

k=1 Δesk tk
д(Ek ) is submodular with respect to

E\Ek .

The idea of proof is similar to Theorem 4.2, therefore we omit the proof. From above two theo-
rems, we can obtain the removed edge set Ek if we take complementary set of E\Ek . In addition,
it’s worth noting that

—The function д(E) corresponds to the lower-bound of original objective function, i.e.,
f (E) =

∑
v ∈V θE (v ) − д(E);

—The function д(E) corresponds to the upper-bound of original objective function, i.e.,

f (E) =
∑

v ∈V θE (v ) − д(E).

5 ALGORITHM

The importance of submodularity in machine learning and data mining applications has been
demonstrated in many literatures [5, 13, 16, 25]. They apply submodularity to tasks such as finding
a set of nodes in a social network that maximize influence while satisfying a cardinality constraint.
Narasimhan and Bilmes in [17] propose an algorithm for minimizing the difference between two
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Fig. 4. An example to show the rumor spread ability of each node.

submodular functions using a variational framework, which is based on the concave-convex proce-
dure. They also show that any set function can be expressed as a difference between two submod-
ular functions and hence every set function optimization problem can be reduced to minimizing a
difference between submodular functions. In this section, we first propose a heuristic algorithm to
approximate the original objective function. Then, we discuss the difference between the upper-
bound function and the original function.

5.1 Heuristic Algorithm

RSM problem aims at selecting aK edge set E from the candidate edge set E′ and removing from the
original network such that the total rumor spread value

∑
v ∈V θE\E (v ) is minimized on topology

E\E. A feasible method is to delete or block edges between the seed nodes and the influential nodes
who have strong ability to disseminate influence. Thus, how to measure the strength of a node to
disseminate influence? This issue is very important.

Given a social network G = (V,E, p) with |V| = n and |E| =m, for v ∈ V, let σE (v ) be the ru-
mor spread ability when the v is a seed node on topology E. The n dimensional column vec-
tor σE = [. . . ,σE (v ), . . .]T denotes the rumor spread abilities of all nodes on topology E. Let
A = (auv )n×n be the adjacency matrix of G whose auv = puv if (u,v ) ∈ E and auv = 0 otherwise.
The n dimensional column vector U = [1, . . . , 1]T denotes unit vector and d is the network diam-
eter. Then, we have σE =

∑
0≤i≤d AiU . We adopt this method to evaluate the ability of each node

to disseminate influence because the AlU indicates the lth hop propagation spread of all nodes
on network. Figure 4 shows an example.

Figure 4(a) shows a simple social network whit 6 nodes and 6 edges, where all the propagation
probabilities are 0.5. Figure 4(b) shows the adjacency matrix of this network. Figure 4(c) shows how
to compute the rumor spread ability of each node. More specifically, the AU = [0.5 0 1 1.5 0 0]T

indicates the 1th hop propagation spread of all nodes. Similarly, theA2U = [0 0 1 0 0 0]T indicates
the 2-th hop propagation spread of all nodes. And the A3U = [0 0 0 0 0 0]T since the network
diameter d is 2. Finally, σE =

∑
0≤i≤d AiU = [1.5 1 3 2.5 1 1]T . Therefore, we say the node 3 has

the strongest rumor spread ability.
Based on the σE and previous lemma, we design a heuristic strategy (see Algorithm 2), which it-

eratively selectsK edges from the candidate edge set E′. Specifically, in kth iteration, we first deter-
mine which edge est = (s, t ) ∈ E′ has the maximum decrement spread, i.e., est = arg maxevu ∈E′ (1 −
θE\Ek (u)) (σE\Ek (v ) + σE\Ek (u)), where θE\Ek (v ) denotes the probability that node v is being acti-

vated by seed set S on topology E\Ek and σE\Ek (v ) denotes the rumor spread ability of v . Then,
we remove the edge est = (s, t ) from the network. Finally, we update σE\Ek (v ) of each node in
network because the network topology changes when we remove an edge.

Note that it is not necessary to update σE\Ek (v ) for all nodes. Three consequences will appear
if we remove the edge est = (s, t ) in kth iteration:
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—The σE\Ek (s ) should be updated. The reason is removing the edge (s, t ) will have an impact
on the rumor propagation ability of s .

—LetVs be ancestors of the node s . For each nodev ∈ Vs ,σE\Ek (v ) should be reversely updated
from node s because its rumor spread ability has changed when removing the edge (s, t ).

—For each node v ∈ V\{s ∪ Vs }, σE\Ek (v ) remain unchanged. This is because its network
topology does not change. In other words, its rumor spread ability does not change when
removing the edge (s, t ).

We propose a subroutine (Algorithm 1) to update the rumor spread ability of node v in kth
iteration of Algorithm 2 if we remove the edge est = (s, t ), i.e., σE\Ek (v ).

ALGORITHM 1: Updating the σE\Ek (v )

Input: a social network G, an edge est = (s, t ) and the (k − 1)-th σE\Ek−1 (v )

Output: the rumor spread ability σE\Ek (v )

if the node v ∈ Vs ∪ {s} then

if the node v = s then

σE\Ek (s ) ← σE\Ek−1 (s ) − pst · σE\Ek−1 (t ) ;

else

while each ancestor node v ∈ Vs do

σE\Ek (v ) ← σE\Ek−1 (v ) − pvu · σE\Ek−1 (u) for v , u ∈ Vs and u ∈ N out
E\Ek−1 (v );

end

end

else

σE\Ek (v ) ← σE\Ek−1 (v ) ;

end

In Algorithm 1, first updating process starts from the node s . Second, we update the parent
nodes of s . Finally, we recursively updating the parent nodes of parent nodes of s untilv ∈ Vs have
been updated where Vs denotes the ancestors of s . Based on this subroutine, we propose a heuris-
tic algorithm (Algorithm 2) to get a high quality approximate solution of the original objective
function.

Algorithm 2 consists of two steps: the initialization step and the iteration step. In the initializa-
tion step, we compute the rumor spread ability σE (v ) and the probability that a nodev is activated
by the seed set S , that is, θE (v ). In the iteration step, we select K edges which have the maximum
marginal decrement as the output of algorithm.

Let’s analyze the time complexity of Algorithm 2. It takes at most O (dm) time to compute
σE (v ) with adjacency matrix A, where d is network diameter. For each v ∈ V, computing θE (v )
needs O (nm) time. The loop contains K iterations. In each iteration, selecting best edge est from
candidate set needs |E′ | comparisons. And, updating σE\Ek (v ), Δest

θE\Ek (v ), θE\Ek (v ) takesO (2m)
time. Therefore, the total time is O (dm + nm + K ( |E ′ | + 2m)).

5.2 Difference of Submodular Funcitons

In this section, inspired by the results of [10, 11], we study the difference between original objective
function and these two submodular bounds. The main results are Theorem 5.1 and Theorem 5.2,
respectively.

Theorem 5.1. The function h(E) = f (E) − f (E) is supermodular.
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ALGORITHM 2: Marginal Decrement Strategy (MDS) for RSM

Input: A social network G = (V,E, p), a candidate edge set E′, a positive inter K , a rumor seed set S and the
IC modelM

Output: a rumor deletion edge set E
E0 ← ∅;
for each node v ∈ V do

Compute the rumor spread ability σE (v );

Compute the probability that v is activated by the seed set S , i.e., θE (v );

end

while |Ek | < K do

est = (s, t ) ← arg maxevu ∈E′ (1 − θE\Ek (u)) (σE\Ek (v ) + σE\Ek (u));

Update σE\Ek (v ) with Algorithm 1;

Update Δest
θE\Ek (v ),θE\Ek (v ) with Lemma 3.2;

Ek ← Ek ∪ {est };
end

return E ← Ek .

Proof. According to Equations (10) and (11),

f (E) =
∑

v ∈V

θE (v ) − д(E), (17)

f (E) =
∑

v ∈V

θE (v ) − д(E). (18)

Let function

h(E) = f (E) − f (E) = д(E) − д(E).

On one hand, according to Equations (12) and (14), the submodular upper-bound д(E) =∑K
k=1 Δesk tk

д(Ek ), that is,

д(E) =

K∑

k=1

(Δesk tk
θE\Ek (tk )

+
∑

v1∈N out

E
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E
(vd−1 )

Δesk tk
θE\Ek (vd )). (19)

On the other hand,

д(E) =

K∑

k=1

(Δesk tk
θE\Ek (tk )

+
∑

v1∈N out

E\Ek
(tk )

Δesk tk
θE\Ek (v1)
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+
∑

v2∈N out

E\Ek
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E\Ek
(vd−1 )

Δesk tk
θE\Ek (vd )). (20)

Combining Equations (19) and (20), we have

h(E) = д(E) − д(E)

=

K∑

k=1

���
�

∑

v1∈N out

Ek
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

Ek
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

Ek
(vd−1 )

Δesk tk
θE\Ek (vd )

	


�
. (21)

We have the following observations based on the above equation:

—The marginal decrement is monotone increasing with respect to the removed edge set Ek

on current topology.
—The number of terms such as v1 ∈ N out

Ek
is also monotone increasing with respect to the

removed edge set Ek .

Therefore, the function h(E) is supermodular. �

Theorem 5.2. The function l (E) = f (E) − f (E) is submodular.

Proof. According to Equations (10) and (16),

f (E) =
∑

v ∈V

θE (v ) − д(E), (22)

f (E) =
∑

v ∈V

θE (v ) − д(E). (23)

Let function

l (E) = f (E) − f (E) = д(E) − д(E).

On one hand, according to Equations (12) and (16), the submodular lower-bound д(E) =
∑K

k=1 Δesk tk
д(Ek ), that is,

д(E) =

K∑

k=1

���
�
Δesk tk

θE\Ek (tk )

+
∑

v1∈N out

E\E′ (tk )

Δesk tk
θE\Ek (v1)
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+
∑

v2∈N out

E\E′ (v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E\E′ (vd−1 )

Δesk tk
θE\Ek (vd )

	


�
. (24)

On the other hand,

д(E) =

K∑

k=1

���
�
Δesk tk

θE\Ek (tk )

+
∑

v1∈N out

E\Ek
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E\Ek
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E\Ek
(vd−1 )

Δesk tk
θE\Ek (vd )

	



�
. (25)

Combining Equations (24) and (25), we have

l (E) = д(E) − д(E)

=

K∑

k=1

����
�

∑

v1∈N out

E′\Ek
(tk )

Δesk tk
θE\Ek (v1)

+
∑

v2∈N out

E′\Ek
(v1 )

Δesk tk
θE\Ek (v2)

... +
∑

vd ∈N out

E′\Ek
(vd−1 )

Δesk tk
θE\Ek (vd )

	



�
. (26)

We have the following observations based on the above equation:

—The marginal decrement is monotone decreasing with respect to set E′\Ek ;
—The number of terms such asv1 ∈ N out

E′\Ek
is also monotone decreasing with respect to E′\Ek .

Therefore, the function l (E) is submodular. �

According to Theorem 5.2, f (E) can be rewritten as the difference of two submodular functions,
i.e., f (E) = f (E) − l (E) where E ⊆ E′. In this setting, we can evaluate the quality of the bound-
aries. Iyer et al. in [10] propose algorithms for minimization of the difference between submodular
functions. More specifically, given two submodular functions f ′ and д′, solve the optimization
problem: minX ⊆E[f ′(X ) − д′(X )] where E is a ground set. Their Modular-Modular procedure
(MMP) is shown in Algorithm 3.
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Table 2. The Statistics of Datasets

Dataset Relationship #Node #Edge Diameter
Wikipedia Voting activity 7.1K 103.7K 7
Slashdot Friendship 13.1K 30.9K 14
Google+ Friendship 23.6K 39.2K 8
HEP-TH Citation 27.7K 352.8K 15

ALGORITHM 3: Modular-Modular Procedure (MMP)

Let X 0 = ∅, t ← 0;

repeat

Choose a permutation γ t whose chain contains the set X t ;

X t+1 := arg minX w
f ′

X t (X ) − qд′

X t ,γ t (X );

t ← t + 1;

until converged (i.e., X t+1 = X t );
return X t

In order to apply MMP, we let f ′ = f (E) and д′ = l (E). In Algorithm 3, the key is the iterative

loop. In each iteration, we find the modular lower bound q
д′

X t ,γ t (X ) and modular upper bound

w
f ′

X t (X ) that can be done inO (n) time (see [10]), where n is the number of nodes. Furthermore, we
are guaranteed to monotonically decrease the objective at every iteration and converge to a local
minimal.

6 EXPERIMENTS

In this section, we conduct experiments on four real-world datasets to test and evaluate the per-
formance of algorithms. We first give the description of each dataset and experiment setup. Then,
we analyze and discuss the main results.

6.1 Datasets

Four real-world datasets represent a variety of relationships. Table 2 provides the details of these
datasets.

—Wikipedia: This dataset is generated by a voting activity, which Wikipedia community dis-
cuss and vote for people who to become an administrator. There are 7,115 nodes and 103,689
edges. Each node in the network represents a user attend the voting procedure. Each di-
rected edge denotes who vote for whom.

—Slashdot: This dataset represents the friendship of users in the Slashdot site. If one user tag
the other user as “friends,” there is directed edges between them. It contains 13,182 nodes
and 30,914 edges.

—Google+: This directed network contains Google+ user-user links. A node represents a user,
and a directed edge denotes that one user has the other user in his circles. This network
contains 23,628 nodes and 39,242 edges.

—HEP-TH: This is a citation network which from the e-print arXiv and covers all the citations
within a dataset of 27,770 papers with 352,807 edges. If a paperv cites paper u, the network
contains a directed edge from v to u.
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6.2 Experiment Setup

We make the following experiment setups for our rumor propagation process: 1% of total nodes are
selected randomly and uniformly as rumor seed nodes by a rate from each dataset. We generate a
candidate edge set E′ on each network by choosing the edges that could block the paths from seed
nodes to the strong rumor spread ability nodes and the paths between the strong rumor spread
ability nodes. For computing the rumor spread ability of nodes, we have described in Section 5.1.
And, we adopt the IC model as the influence propagation model in all experiments. In addition,
since all data sets lack propagation probability, we assign the propagation probability of each edge
in the following two ways. One assigns a uniform probability p = 0.05 for each edge in a network.
Another assigns a probability with the trivalency model (p = TRI ). More specifically, for each edge,
we uniformly select a value from {0.1, 0.01, 0.001} at random, which corresponds to high, medium,
and low influences.

In experiments, we observe that the rumor spread will be very weak after 6 iterations. So we set
the propagation hops from 1 to 6. And we update the rumor spread ability and the probability that
a node is activated by the seed set after removing each edge until the number of total removed
edges are 0.8|E′ |.

We use the basic greedy algorithm to compute the upper-bound and lower-bound. Since the
bounds have been proved submodular thus we can achieve (1 − 1/e)-approximation guarantee.
Here, we use the following two evaluation criteria:

—Rumor spread value: That is total probability of each node being activated by the seed nodes
after removing K edges. The smaller the value, the better the performance of the algorithm.

—Running time: The running time of the algorithm indicates the scalability of the algorithm.

6.3 Comparative Methods

To evaluate proposed algorithm, we compare with existing popular greedy method and heuristic
methods. For the greedy algorithms, we compare with the work [14, 23]. For the heuristic algo-
rithms, we compare with the Out-degree [12], Pagerank [20] and Random. We briefly introduce
these greedy and heuristic algorithms.

—Bond Percolation Method (BPM) [14]. Authors develop an estimation method on the basis of
the BPM and greedily remove K edges from the network.

— K edge deletion (KED) [23]. Authors prove that deletingK edges on original graph is equiva-
lent to removing K nodes on the line graph. And, they propose a greedy algorithm to delete
K nodes on the line graph such that creates the largest decrease in terms of the leading
eigenvalue of the line graph.

—Out-degree (OD) [12]. We adopt this method and remove K edges between the nodes with
high out-degree. In other words, we select the topK edges with the sum of nodes out-degree
from the candidate edge set.

—Pagerank (PR) [20]. The pagerank score indicates the importance of a node. There is a damp-
ing factor, and we set it to 0.9. And, we select K edges from the candidate edge set by pager-
ank score and remove them from the network.

—Random (RAN), we randomly select K edges and remove them from the network.

6.4 Experiment Results

We evaluate the effectiveness of Algorithm 2 for RSM problem. First, we show the rumor spread
value by choosing high rumor spread ability nodes in different propagation hops. Second, we com-
pare the upper-bound, lower-bound, and Algorithm 2 by varying number of blocking edges and
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Fig. 5. Rumor spread value vs. propagation hops on Slashdot and Google+ networks.

seed nodes under two propagation probabilities: p = 0.05 or p = TRI . Third, we compare with ex-
isting edge selection strategies. Finally, we show the running time of each algorithm. Notice all
the experiments we run 10 times to take the average as a record to show in the figures.

6.4.1 Rumor Spread Value vs. Varying Propagation Hops. We show the rumor spread value by
varying the hop from 2 to 10. We randomly and uniformly select 1% of total nodes as rumor seed
nodes on Slashdot network and Google+ network. And, we set the propagation probability p =
TRI and p = 0.05 for each edge on Slashdot network and on Google+ network, respectively. In
addition, we let |E′ | = 500 and remove 0.8|E′| edges from each network. The results are shown
in Figure 5. The horizontal axis holds the number of propagation hops and vertical axis holds
the rumor spread value (total probability of each node being activated by seed nodes). We use
Algorithm 2 to calculate MDS_original, which is the original objective function. MDS_upper and
MDS_lower are the upper bound and the lower bound, respectively. Baseline means that no edges
are deleted from the network. We can observe as the hops increases, the rumor spread value is
gradually going down until reach a certain number. Here, in both Slashdot and Google+ datasets,
the rumor spread value tents to converge after 6 or 7 hops. It is easy to understand a node has large
influence to the nodes within few hops but the influence is getting smaller to the nodes far away.
So we set propagation hops to 6 in the following experiments since after 6 hops the influence will
not have large impact.

6.4.2 Rumor Spread Value vs. the Number of Seed Nodes. We also simulate proposed Algorithm 2
by varying the percentage of seed nodes from 1% to 10%. We set the propagation probability
p = 0.05 and p = TRI for each edge on Wikipedia network and Slashdot network, respectively.
And, we set |E′ | = 500 and remove 0.8|E′| edges from networks. The results are shown in Figure
6. The horizontal axis denotes the seed nodes percentage from 1% to 10%. The vertical axis de-
notes the rumor spread value. From the figure, we have the following observations: (1) The rumor
spread value grows with the seed nodes size increases in MDS_original, MDS_upper, MDS_lower
and Baseline. This phenomenon is reasonable because the more seed nodes are selected, the more
the rumor spread value will be. (2) In Figure 6(a), the Wikipedia network shows the rumor spread
value reduces almost half of the baseline in different percentage settings, which corresponds to Fig-
ure 7(a) that when we set seed nodes to 1% the rumor spread value also shows half of the Baseline.
The same trend also happens in Slashdot datasets in Figures 6(b) and 7(b). (3) The MDS_original,
MDS_upper, and MDS_lower are very close in both subfigures. It indicates the high quality of
bounds.
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Fig. 6. Rumor spread value vs. increasing the seed nodes on Wikipedia and Slashdot networks.

Fig. 7. Rumor spread value vs. removing number of edges in |E′|.

6.4.3 Rumor Spread Value vs. the Number of Blocking Edges. We evaluate the rumor spread
value by comparing upper-bound (MDS_upper), lower-bound (MDS_lower), and original objective
function (MDS_original) for RSM problem along with different number of removed edges. More
specifically, we first randomly and uniformly select 1% of total nodes as rumor seed nodes on all
networks. Then, we perform simulations on four networks under two propagation probabilities:
p = 0.05 or p = TRI , respectively. We vary the size of candidate edge set |E′ | from 0 to 3,000 and
remove 0.8|E′| on each network. Finally, the results are shown in Figure 7. The horizontal axis
denotes the number of edges in candidate edge set E′ and the vertical axis denotes the rumor
spread value over the network after removing K = 0.8|E′ | edges. Baseline shows the rumor spread
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Fig. 8. The rumor spread vs. the number of edges in E ′ in each comparison method.

value without removing any edges. In Figure 7, the rumor spread value drops as the number of
edges decreases. This indicates the edges we select have large impact on the rumor spreading
over the networks. In other words, the rumor spreading can be weaken by removing these edges.
Take Wikipedia network as an example, when we remove 80 edges (the total number of edges in
candidate set is 100.) which is only 0.08% of total 100,000 edges in E, the rumor spread value drops
almost half of the Baseline. This illustrates the effectiveness of the algorithm.

We also observe that the rumor spread value reduction shows a dramatically change at the
beginning when removing a relative small number of edges. That is to say when dealing with
RSM problem it just need to remove a small number of edges to achieve a good result. It is well
explained although our RSM problem is not submodular theoretically, two submodular bounds
could ensure the submodularity of RSM to a large extend. We also see that the difference between
lower-bound and upper-bound is very close and also close to the MDS_original, which indicates
the good quality of the bounds we proposed.

6.4.4 Comparing with Other Edge Deletion Strategies. To fully evaluate MDS algorithm, we
compare our algorithm with the existing popular greedy algorithms such as BPM [14] as well
as KED [23] and heuristic algorithms such as Out-degree (OD), Pagerank (PR), as well as Random
(RAN). Each method represents a strategy for removing edges.

We first randomly and uniformly select 1% of total nodes as rumor seed nodes on all networks.
Then we respectively set the propagation probabilities: p = 0.05 or p = TRI on networks. And,
we vary the size of candidate edge set |E′ | from 0 to 3,000 and remove 0.8|E′| on each network.
Finally, the experimental results are shown in Figure 8. The horizontal and vertical axes denote
the number of edges in E′ and rumor spread value, respectively.
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Table 3. The Proportion of the Same Edges Appear in the Solutions

of Algorithm 2 and Algorithm 3

Dataset Wikipedia Slashdot Google+ HEP−TH
Proportion of same edges 15.4% 18.1% 17.2% 13.6%

Form the figure, we have the following observations: (1) In general, the rumor spread value
of all methods decreases as the number of removed edges increases. (2) Greedy algorithms (BPM
and KED) are better than heuristic algorithms (OD, PR, and RAN). The reason is that the greedy
algorithm always reduces the rumor spread value at each iteration. However, for the heuristic
algorithm, it does not have a strong effect on the rumor spread value such as RAN. Among the
three heuristic methods, Pagerank performs better than the other two because high pagerank score
means the nodes are more important than the others on networks. When we remove the edges be-
tween important nodes the rumor spread value will decrease. (3) The Maxdegree performs not as
well as we expected. It is intuitively that high degree nodes have greater rumor spreading ability,
but it is not always the case. The rumor spread ability of a node is also highly relied on the prob-
ability of being activated and the influence ranking. (4) Our proposed method outperforms the
greedy algorithms since our method has an approximate guarantee based on submodular upper
and lower bounds. Furthermore, the rumor spread value drops dramatically at the beginning of
MDS while the other methods in a slow motion. From Figure 8(c), we can see the rumor spread
decrement of MDS is three times of that of Pagerank when the removing 40 edges (candidate edge
set size is 50) even though the Pagerank performs the best among the three heuristic methods. That
is, to say MDS could reduce the rumor spread three times of Pagerank over the network. (5) Note
that the difference between MDS and other methods grows rapidly in the beginning with a small
number of removed edges. And, then the difference will not change too much. This is because two
submodular bounds could ensure the submodularity of RSM to a large extent even though it is not
submodular.

6.4.5 The Difference between Algorithm 2 and Algorithm 3. We implement the MMP (Algo-
rithm 3) and compare with the solutions of Algorithm 2. We observe that their solutions are not
exactly the same. The reason for this phenomenon is that the objective functions of these two
algorithms are essentially different. In addition, we also find that some solutions appear in the
results of Algorithm 2 and Algorithm 3 at the same time. This indicates these solutions (removed
edges) play a key role in the dissemination of rumor. Table 3 shows the proportion of the same
edges appear in the both solutions of Algorithm 2 and Algorithm 3.

6.4.6 The Running Time of Each Methods. We show the running time of all methods with the
same parameter settings in Figure 9 on Slashdot network and HEP-TH network. In the figure,
the horizontal and vertical axes denote the number of edges in E′ and running time (minutes),
respectively. From the figure, we have the following observations. (1) RAN method has the least
running time. (2) The running time of the heuristic algorithm is less than the running time of the
greedy algorithm. For example, on Slashdot network, the running time of the heuristic algorithm is
in two minutes when we remove 0.8|E′ | edges. However, the running time of the greedy algorithm
is more than 2.8 minutes. This is because heuristic algorithms only select edges based on certain
heuristic criteria rather than performing Monte-Carlo simulations like greedy algorithms, which
is time consuming. (3) For the greedy algorithm, our algorithm is slightly slower than BPM and
KED. Although these two algorithms are slightly faster than MDS, they suffer in the quality of the
total rumor spread value.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 16. Publication date: March 2019.



Rumor Blocking through Online Link Deletion on Social Networks 16:25

Fig. 9. Running time of each method on Slashdot network and HEP-TH network.

7 CONCLUSIONS

In this article, we study a RSM problem that removes an edge set from the network such that the
rumor spread value (total probability of each node being activated by the seed nodes) is minimized.
We first prove objective function is not submodular, which means this problem is challenging. Con-
sidering the objective function without submodularity, we propose a submodular lower-bound and
an upper-bound. Furthermore, we develop a heuristic algorithm (MDS algorithm) to calculate orig-
inal objective function value. We also discuss the difference between the original objective function
and the upper as well as the lower bound. Then, we prove the following: (1) The original objec-
tive function minus the lower-bound function is a supermodular function. (2) The upper-bound
function minus the original objective function is a submodular function. Based on the above con-
clusions, we observe that the original objective function can be expressed as the difference between
the two submodular functions. Finally, in order to evaluate our proposed method, extensive ex-
periments have been conducted on real-world networks. The experiment results show the good
quality of upper and lower bounds and our method outperforms comparison methods with respect
to the rumor spread value.
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