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tions ongoing in their cores, which can last
for hundreds of millions to many billions
of years, depending on their mass. When
such a star exhausts the hydrogen fuel in
its core, it expands enormously, shatters any
close-enough planet, and becomes a white
dwarf. Thereafter, what remains of the
planetary system may move close enough to
the star to become subject to collisions and
to strong tidal forces, grinding the remain-
ing planetary cores (3). This leaves behind
a shroud of rocky debris of various sizes,
ranging from micrometer-sized dust parti-
cles to kilometer-sized bodies (4, 5). In some
cases, because of the high temperature and
strong irradiation present in proximity of a
white dwarf, these rocks release metal-rich
gas, giving rise to a disk of gas and debris
surrounding the white dwarf. The presence
of circumstellar gas is indicated by metal
emission lines in the stellar spectrum (6).
Only a few white dwarfs are known to
host a gas disk, and the rocky body detected

“..by analyzing...the
spectrum of a polluted
white dwarf, it is possible to
identify the composition of
the circumstellar gas and/or
rocks forming the disk.”

by Manser et al. orbits one of those. Because
of the chaotic motion present in the disk
surrounding 20 to 25% of white dwarfs (also
known as “polluted” white dwarfs), there is
a continuous infall of rocky, planetary mate-
rial onto the stellar surface, which reveals
itself through the presence of metal absorp-
tion lines in the stellar spectrum (7, 8). This
accretion of rocky material is continuous
because the strong stellar gravity brings any
metal lying on the surface into the inner
layers within a very short time scale (7, 9).
Therefore, by analyzing the metal absorp-
tion and emission lines in the spectrum of a
polluted white dwarf, it is possible to iden-
tify the composition of the circumstellar gas
and/or rocks forming the disk (2). The study
of Manser et al. also concluded that the den-
sity of the planetesimal should be between
7.7 and 39 g/cm?, which is compatible with
that of pure iron and of Earth’s core. It is
therefore plausible that the planetesimal is
the remnant core of a shattered planet.
Theoretical models of the orbital evolu-
tion of planetary systems indicate that pos-
sibly large (a few to hundreds of kilometers
in diameter), rocky bodies might survive the
last stages of stellar evolution toward the
white dwarf phase (10, 1I). Furthermore, the
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existence of numerous polluted white dwarfs
indicates that planetesimals indeed orbit
around these stars. However, planetesimals
orbiting white dwarfs have been directly
found in just one case using the Kepler space
telescope and the transit method (72), despite
the large number of polluted white dwarfs
discovered to date, the fact that white dwarfs
are the descendant of almost all planet hosts
known to date, and that their small size facili-
tates the detection of transiting bodies.

The method of Manser et al. has revealed
the presence of planetesimals without the
need for the particular orbital geometry that
is required by the transit method. It could
therefore be used to identify the presence of
planetesimals orbiting other polluted white
dwarfs and advance the study of the plane-
tary systems evolution. Furthermore, because
planetesimals orbiting white dwarfs are be-
lieved to be the remnant cores of shattered
planets, studying the spectra of polluted
white dwarfs known to be surrounded by
planetesimals enables one to gain informa-
tion about the chemical composition and
metal abundances of the infalling material—
that is, planetary cores (Z3). This kind of char-
acterization is not possible for bodies in the
solar system, including Earth.

Because of their small size, white dwarfs
are faint. The discovery of Manser et al.
required observations conducted with the
104-m Gran Telescopio Canarias in La
Palma, Spain, which is one of the largest
in the world. Future similar discoveries
will therefore require high-efficiency in-
struments and large telescopes. The range
of extremely large telescopes in Chile and
Hawaii, currently under construction or
planned, will have primary mirrors that are
30 to 40 m in diameter. This should be the
ideal platform for finding more planetesi-
mals orbiting white dwarfs and exploring
the innermost regions of planets.
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In defense of
the black box

Black box algorithms
can be useful in science
and engineering

By Elizabeth A. Holm

he science fiction writer Douglas

Adams imagined the greatest com-

puter ever built, Deep Thought,

programmed to answer the deep-

est question ever asked: the Great

Question of Life, the Universe, and
Everything. After 7.5 million years of pro-
cessing, Deep Thought revealed its answer:
Forty-two (I). As artificial intelligence (AI)
systems enter every sector of human en-
deavor—including science, engineering,
and health—humanity is confronted by the
same conundrum that Adams encapsulated
so succinctly: What good is knowing the
answer when it is unclear why it is the an-
swer? What good is a black box?

In an informal survey of my colleagues
in the physical sciences and engineering,
the top reason for not using AI methods
such as deep learning, voiced by a substan-
tial majority, was that they did not know
how to interpret the results. This is an im-
portant objection, with implications that
range from practical to ethical to legal (2).
The goal of scientists and the responsibil-
ity of engineers is not just to predict what
happens but to understand why it hap-
pens. Both an engineer and an Al system
may learn to predict whether a bridge will
collapse. But only the engineer can explain
that decision in terms of physical models
that can be communicated to and evalu-
ated by others. Whose bridge would you
rather cross?

Scientists and engineers are not alone in
their skepticism of black box answers. The
European Union General Data Protection
Regulation (GDPR), introduced in 2018,
guarantees subjects “meaningful informa-
tion about the logic involved” in automatic
decision-making based on their personal
data (3). The legal interpretation of this
regulation is under debate, but the mis-
trust of inexplicable systems is evident in
the statute.
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In this general atmosphere of suspicion,
it is not surprising that Al researchers fo-
cus less on defending black box systems and
more on understanding how they make de-
cisions, termed the interpretability problem
(4). In fact, this is one of the grand chal-
lenges in current computer science. But
this blanket rejection of black box methods
may be hasty. In reality, scientists and en-
gineers—like all humans—base many deci-
sions on judgment and experience, which
are the outcomes of their own “deep learn-
ing” (5). As a result, neuroscience struggles
with the same interpretability challenge as
computer science (6). Yet, we routinely ac-
cept human conclusions without fully un-
derstanding their origin. In this context, it
seems reasonable to consider whether black
box answers generated by Al systems have
a similarly useful role and, if so, when we
should apply them (see the figure).

The first and most obvious case for us-
ing a black box is when the cost of a wrong
answer is low relative to the value of a cor-
rect answer. Targeted advertising is the ca-
nonical example. From the vendor’s point
of view, the cost of posting an unwanted ad
is small, whereas the benefit of a successful
ad is potentially large (7). In my own field
of materials science, image segmentation—
the task of categorizing the pixels in a pic-
ture—typically involves a human manually
outlining the objects of interest in an im-
age of the complex, internal substructure
of a material. This is a costly process, so
much so that Ph.D. theses and industrial
quality-control systems are designed to re-
quire as little image segmentation as pos-
sible. An Al system can be trained to do
this job with high, but not perfect, fidelity
(8). Perfection is not, however, necessary to
make this system useful because the cost of
a few disputed pixels is low compared with
saving the time and sanity of belabored
graduate students.

The second case for the black box is
equally obvious but more fraught. A black
box can and should be used when it pro-
duces the best results. For example, in
reading standard field-of-view medical
images, trained AI systems enhance the
performance of human radiologists at de-
tecting cancers (9). Although the cost of a
wrong answer, whether a false negative or
a false positive, may be high, the black box
offers the best solution that is currently
available. Of course, letting Als read mam-
mograms is not controversial, in part be-
cause a human doctor checks the answer.
Letting Als drive cars is more contentious
because the black box necessarily makes
life-or-death decisions without an oppor-
tunity for human intervention. That said,
self-driving vehicles eventually will be
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safer than those piloted by humans; they
will produce the best results with respect
to traffic injuries and fatalities. When that
crossover point occurs can be determined
with appropriate objective metrics (10),
but the societal choice whether to cede hu-
man agency to the Al drivers will inevita-
bly involve decisions based on subjective
factors, including how to apply human val-
ues of ethics, fairness, and accountability
to nonhuman entities.

These arguments should not be inter-
preted as a free license to apply black box
methods. The two use cases above presume

When a black box is valuable

By definition, humans cannot assess how a black box
algorithm arrives at a particular answer. However,
black box methods can still provide value when they
produce the best results, when the cost of a wrong
answer is low, or when they inspire new ideas.

Cat Stop Benign

an ideal black box operated by a user who
can compute costs and define best results
unambiguously. Both assumptions are sub-
ject to pitfalls. Al systems may suffer from
a host of shortcomings, including biases,
inapplicability outside of the training do-
main, and brittleness (the tendency to be
easily fooled) (1I). Moreover, evaluating
costs and best outcomes is a complex and
subjective exercise in balancing economic,
individual, societal, and ethical consider-
ations. Worse, these factors can compound:
A biased model may entail hidden costs,
both from objectively wrong predictions
and subjectively measured unfairness. A
brittle model may have blind spots that
cause spectacularly bad decisions. As with
any decision-making system, the black box
must be used with knowledge, judgment,
and responsibility.

Although Al thought processes can be lim-
ited, biased, or outright wrong, they are also
different from human thought processes in

Published by AAAS

ways that can reveal new connections and
approaches. This brings us to the third case
for black box systems: as tools to inspire
and guide human inquiry. For example, in
a groundbreaking medical imaging study,
scientists trained a deep learning system
to diagnose diabetic retinopathy—a diabe-
tes complication that affects the eyes—from
retinal images. They achieved perform-
ance that met or surpassed a committee
of ophthalmological experts (12, 13). More
surprisingly, the system could accurately
identify a number of other characteristics
that are not normally assessed with retinal
images, including cardiological risk factors,
age, and gender (14). No one had previously
noticed gender-based differences in hu-
man retinas, so the black box observation
inspired researchers to investigate how and
why male and female retinas differ. Pursu-
ing those questions took them away from
the black box in favor of interpretable arti-
ficial and human intelligence.

Which returns us to the problem with
Deep Thought’s answer. We cannot use
black box AI to find causation, systemati-
zation, or understanding. A black box can-
not tell us how or why a bridge collapses
or what is the great question of Life, the
Universe, and Everything. At least for
now, these questions remain the purview
of human intelligence and the broad and
growing field of interpretable AI. In the
meantime, however, it is worth accepting
the black box on its own terms. Black box
methods can contribute substantively and
productively to science, technology, engi-
neering, and math to provide value, opti-
mize results, and spark inspiration.
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