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Abstract

We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for
complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly
available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger
fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and
Widmanstitten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical
cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The

full annotated dataset is available on materialsdata.nist.gov.
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Introduction

Quantitative microstructure analysis is central to materials engi-
neering and design. Traditionally this entails careful measure-
ments of volume fractions, size distributions, and shape
descriptors for familiar microstructural features such as grains
and second-phase particles. These quantities are connected to
theoretical and/or empirical models for materials properties,
e.g., grain boundary (Hall, 1951) or particle (Zener, 1948)
strengthening mechanisms. Contemporary microstructure seg-
mentation methods rely on specialized image processing pipelines
that often require expert tuning for application to a particular
microstructure system. Furthermore, the microstructures accessi-
ble to quantitative analysis are limited by the use of segmentation
algorithms that rely on low-level image features (intensity and
connectivity constraints). In this work, we apply deep learning
methods for image segmentation to complex microstructure
data, with the goal of extending the reach of quantitative analysis
to microstructure systems that are currently evaluated subjectively
or through laborious manual annotation.

Since 2012, deep learning methods (LeCun et al,, 2015) have
dominated many computer vision applications,' including object
recognition and detection, scene summarization, semantic
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segmentation, and depth map prediction. The success of deep
learning is often attributed to the ability of convolutional neural
networks (CNNs) to learn to effectively represent the hierarchical
structure of visual data, comprising low-level image features
(edges, color gradients) into higher level features corresponding
to abstract qualities of the image subject (e.g., object parts).
Recently, materials scientists have begun exploring a limited set
of applications of contemporary computer vision techniques for
flexible and generic microstructure representation. DeCost &
Holm (2015) and Chowdhury et al. (2016) explored these tech-
niques in the context of microstructure classification Lubbers
et al. (2016) and DeCost et al. (2017a) used pretrained CNN rep-
resentations to study relationships between processing conditions
and microstructure via dimensionality reduction and visualization
techniques. Azimi et al. (2018) used a CNN segmentation model
to identify constituent phases in steel microstructures.

In this report, we train a pixelwise CNN (Bansal et al., 2017) to
segment microstructures at a high level of abstraction, and inves-
tigate the potential for this technique to enable quantitative
microstructure analyses that conventionally would require a
large amount of hands-on image processing. We evaluate the fea-
sibility of this approach on a subset of the openly available utra-
high carbon steel (UHCS) microstructure dataset (Hecht et al.,
2016; 2017b; DeCost et al., 2017b). CNNs can distinguish between
the four principal microconstituents in this heat-treated UHCS:
proeutectoid cementite network, fields of spheroidite particles,
the ferritic matrix in the particle-free denuded zone near the net-
work, and Widmanstitten laths. We also train a network to seg-
ment individual spheroidite particles, and briefly explore
automated microstructure metrology techniques enabled by this
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kind of powerful segmentation model. Our training data and
annotations for both microstructure segmentation tasks will be
publicly available through the NIST materials resource registry
(DeCost et al., 2018).

Our primary contributions are:

o Establishing two novel microstructure segmentation benchmark
datasets

« Connecting microstructure science to the deep semantic seg-
mentation literature

« Exploring novel means of expanding contemporary quantitative
microstructure measurement techniques to more complex
structures

For microstructure scientists, CNN-based microstructure seg-
mentation tools require an initial investment in annotation and
training, but can enable longer-term or larger-scale research
and characterization efforts. This trade-off is particularly attrac-
tive for its potential to enable microstructure-based material qual-
ification by making it easier/cheaper to obtain statistical data on
high-level microstructure features known to mediate critical engi-
neering properties of materials [e.g., particle size distributions
(PSDs); denuded zone widths, and particle coarsening kinetics]. In
industrial settings where reliance on semi-automated segmentation
techniques is common, the barrier to entry is even lower because
the training data has already been collected. CNN-based microstruc-
ture segmentation tools also offer a path forward to high-throughput
microstructure quantification techniques for accelerated alloy design
and processing optimization, where acquisition and analysis of high-
quality microstructure data is often a limiting factor.

Methods
Segmentation Model

Recently a variety of deep CNN architectures have been developed
for dense pixel-level tasks (Wang et al., 2017), such as semantic
segmentation (Badrinarayanan et al., 2017), edge detection,
depth map, and surface normal prediction (Bansal et al., 2016).
Conceptually, a modern deep CNN computes a highly nonlinear
function through a layerwise composition of convolution, activa-
tion, and pooling (i.e., downsampling) functions, the parameters
of which are learned from large annotated datasets by some var-
iant of stochastic gradient descent (LeCun et al., 2015; Goodfellow
et al.,, 2016). Classification CNNs reduce an input image to a sin-
gle latent feature vector, where CNNs designed for pixel-level
tasks produce a latent representation for every pixel of the input
image. This is typically accomplished by upsampling the interme-
diate feature maps via a fixed bilinear interpolation (Hariharan
et al., 2015; Bansal et al., 2017) or a learned deconvolution oper-
ation (Long et al,, 2015). In the latter class of networks, popular
architectures include SegNet (Badrinarayanan et al, 2017),
Bayesian SegNet (Kendall et al, 2015), U-Net (Ronneberger
et al, 2015) with heavy data augmentation, and fully-
convolutional DenseNets (Jégou et al, 2016). In particular,
U-Net (Ronneberger et al., 2015) was designed for application
to medical image segmentation tasks with small dataset sizes, rely-
ing on strong data augmentation to achieve good performance.

PixelNet Architecture
The PixelNet (Bansal et al., 2017) architecture is illustrated sche-
matically in Figure 1. PixelNet applies bilinear interpolation to
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intermediate feature maps to form hypercolumn features h(x) =
[conv,(x), conv,(x), ..., convs(x)], which represent each pixel in
the input image with information drawn from multiple scales.
A non-linear classifier implemented as a multi-layer perceptron
(MLP, i.e., a traditional artificial neural network) maps the hyper-
column features to the corresponding pixel-level target. Instead of
computing dense high-dimensional feature maps at the input res-
olution as in other popular pixel prediction networks, at training
time PixelNet performs a sparse upsampling to efficiently obtain
hypercolumn features only for a small sample of the input pixels.”
This is attractive for quickly training segmentation networks from
scratch with small training sets because it reduces the memory
footprint during training and makes training a non-linear predic-
tor with high-dimensional latent representations feasible (Bansal
et al,, 2017).

The feature extraction portion of our PixelNet variant uses the
VGG-16 architecture (Simonyan & Zisserman, 2014) used by the
original PixelNet (Bansal et al., 2017); this architecture consists of
13 convolution layers and two fully-connected layers 1, 1,, 21, 25,
31, 32, 33, 41, 42, 43, 51, 52, 53, 6, 7. The MLP layers in our PixelNet
variant consist of 1024 neurons with rectified linear (ReLU) acti-
vations (Nair & Hinton, 2010) (ReLU( y;) = max (0, y;)) followed
by batch normalization (Ioffe & Szegedy, 2015). Following the
original PixelNet implementation, our hypercolumn features con-
sist of the highest convolution feature map within each block of
the VGG architecture ({1,, 2,, 33, 43, 53, 7}), converting layer 7
to a 7 x 7 convolution filter as in Long et al. (2015) and Bansal
et al. (2017). We apply batch normalization (Ioffe & Szegedy,
2015) to each VGG-16 feature map before upsampling via bilinear
interpolation, immediately after the ReLU activations.

Training Details

We initialize the feature extraction portion of our networks with a
pre-trained VGG-16 (Simonyan & Zisserman, 2014) network
trained on the ImageNet (Russakovsky et al., 2015) classification
dataset. We train the pixel classification layers from scratch, ran-
domly sampling initial weights from Gaussian distributions with
zero mean and standard deviation o = /2/c (He et al., 2015),
where c is the dimensionality of the input to the layer. To prevent
overfitting, we use a combination of batch normalization (Ioffe &
Szegedy, 2015), Dropout regularization (Srivastava et al., 2014),
weight decay regularization (Loshchilov & Hutter, 2017), and
data augmentation. We set the weight decay strength to 0.0005
and apply Dropout regularization with a rate of 10% after the
final MLP layer. Training images are subjected to local histogram
equalization to mitigate differences in overall brightness across
different samples and datasets. The training input and label
images are augmented with random rotations in the range [0,
2m), horizontal and vertical mirror symmetry, scaling in the
range [1, 2], and a 5% random intensity shift. Rotated versions
of the training input and label images are computed with mirror
boundary conditions, with bilinear interpolation for the input
images and nearest-neighbor interpolation for the (discrete)
label images. We train the networks with the AdamW optimizer
(Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with the recom-
mended default parameters. First we fix the parameters in the fea-
ture extraction portion of the network and train the pixel
classification layers with an initial learning rate of 10™> for 20
epochs (125 gradient updates). Each gradient update is computed

*Our tensorflow implementation of PixelNet is available at https://github.com/bde-
cost/pixelnet.
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Fig. 1. The PixelNet (Bansal et al., 2017) image segmentation model. A pixel in the input image (left) is represented by the concatenation of its representations in
each convolution layer (white dots). A MLP classifier is trained to associate the pixel representation with membership in a microstructure constituent (right).

from a random sample of 2048 pixels each from four augmented
training images. We then fine-tune the entire CNN for 125 addi-
tional gradient updates using AdamW with an initial learning rate
of 107°.

Our dataset has a heavy class imbalance (e.g., Widmanstatten
cementite only accounts for ~3% of pixels), so we compare a
model trained using the standard cross-entropy classification
loss with another trained using the focal loss (Lin et al., 2017),
which is designed for unbalanced datasets. The focal loss extends
the cross-entropy loss function CrossEntropy( p,) = —log(p,),
where

p ify=1

P 0 (1)

pe(p,y) = { 1

with ground truth y and predicted class probability p=P(y=1).

The focal loss adds a modulating factor (1 —p,)” to emphasize

examples about which the classifier is less confident during train-
ing, and a scaling parameter & to account for class imbalance:

FocalLoss(p;) = —a;(1 — p;)? log( p;) (@)

We follow the recommendation of (Lin et al.,, 2017) in setting

the focusing parameter y=2 and setting the class imbalance

parameters «, proportionally to the inverse frequency of each
class.

Dataset

The semantic microstructure segmentation dataset consists of 24
manually annotated” micrographs from the open UHCS dataset
(DeCost et al., 2017b; Hecht et al., 2017a); examples are shown
in Figure 2 and in the online Supplementary materials. These
645 x 484 pixel micrographs focus on the characteristic features
of heat-treated UHCS: the proeutectoid cementite network and
the associated denuded zone, and spheroidized and
Widmanstitten cementite. Multiple heat treatment conditions
and magnifications are represented in the semantic microstruc-
ture segmentation dataset.

The particle segmentation dataset consists of 24 micrographs
collected at a single magnification in support of the particle coars-
ening analysis reported in Hecht et al. (2017b). Particle annota-
tions were obtained through a partially automated edge-based
segmentation workflow (Hecht et al, 2017b). A thresholded
blur smooths contrast in the matrix surrounding particles before

*We used the medical image annotation system MITK (Nolden et al. 2013).

application of the Canny edge detector (CANNY 1987). The par-
ticle outlines are filled in, and spurious edges (e.g., at grain
boundaries) are removed by a 2 px median filter. The final parti-
cle segmentations are verified and retouched manually where the
contrast is insufficient for the Canny detector to identify particle
edges. Particles intersecting the edge of the image are removed
from the annotations to reduce bias in the estimated PSDs.

Performance Evaluation

Because our set of annotated images is small (24 annotated micro-
graphs total), we use cross-validation to estimate the generaliza-
tion performance of the PixelNet architecture on our two
microstructure segmentation tasks. We use a sixfold cross-
validation scheme (Hastie et al., 2001): each dataset is split into
six validation sets of four micrographs each, and six PixelNet
models are trained on each of the complementary training sets.
The quantitative performance metrics reported in Tables 1 and
4 are averages over each validation image in the six validation
sets; uncertainties are standard errors computed over the six val-
idation images (Hastie et al., 2001).

We report several standard evaluation metrics for semantic
segmentation tasks: pixel accuracy (AC), precision, recall, and
region intersection over union (IU) for individual microconstitu-
ents. For each of these metrics, a higher score indicates better per-
formance. Precision is the fraction of instances predicted to have
class ¢ that are correct:

Y iJi=candy =c
Y iJi=c

where J; indicates the predicted class label for each pixel 7, and y;
indicates the corresponding ground truth class label. Equivalently,
precision is the ratio of true positives to total (true and false) pos-
itives, which decreases when the model overpredicts the number
of member pixels in a class.

Recall is the fraction of instances with ground truth class ¢ that
are predicted to have class c:

(@)

Precision(c) =

Y iy;=candy=c
Y yi=c

Equivalently, recall is the ratio of true positives to the total
number of pixels in a class, which decreases when the method
underpredicts the member pixels in a class. Since the overall accu-
racy is defined as the number of true positives divided by the total

Recall(c) = ((4))
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Table 1. Focal Model Semantic Segmentation Performance Averaged Over
Validation Images.

U Precision Recall
Matrix 49.1+3.4 60.3+4.4 72.3+3.7
Network 729+53 85.5+4.0 80.7+5.9
Spheroidite 85.7+1.8 95.1+£1.2 89.8+1.7
Widmanstatten 42.7+2.9 50.2+3.6 73.5+3.9
Overall 62.6+2.5 86.5+1.6 86.5+1.6

Uncertainties are standard errors calculated across validation images.

number of pixels, it is straightforward to show that the classwise
average recall or precision equals the overall accuracy.

The intersection over union metric IU(c) for class ¢ (also
referred to as the Jaccard metric) is the ratio of correctly predicted
pixels of class ¢ (true positives) to the union of pixels with either
ground truth or predicted class ¢ (true and false positives plus
false negatives):

>j, = candy =c
Yyi=coryi=c

IU(c) = (5)

Fig. 2. a-d: Validation set micrographs, (e-h) microconstituent annotations, (i-l) PixelNet predictions using the focal loss segmentation model, and (m-p) PixelNet
predictions using the standard crossentropy classification loss. Microstructural constituents include proeutectoid grain boundary cementite (light blue), ferritic
matrix (dark blue), spheroidite particles (yellow), and Widmanstatten cementite (green). Scale bars indicate 10 pm.

For the spheroidite particle segmentation task, we also report
performance metrics comparing PSDs obtained from the model
predictions with those obtained from the ground truth annota-
tions [as reported in Hecht et al. (2017b)]. We use the two-sample
Kolmogorov-Smirnov (KS) test (Massey, 1951) to compare each
pair of predicted and ground truth PSDs. The KS score reported
in Table 4 is the fraction of micrographs where the KS test indi-
cates that the predicted PSD is consistent with the ground truth
PSD (i.e., the fraction of micrographs where we fail to reject (at
the 95% confidence level) the null hypothesis that the distribu-
tions are equivalent).

Computing Denuded Zone Widths

Given a microconstituent prediction map, we quantify the width
of the denuded zone by computing the minimum distance to the
network phase for each pixel on the matrix—particle interface. In
practice, we compute a map of Euclidean distance to the network
phase, and select the measurements at the denuded zone interface.

To obtain the denuded zone interface, we apply a series of
image processing techniques to clean up the microconstituent
prediction map, so that only the matrix predictions associated
with the diffusion-limited denuded zone adjacent to the proeutec-
toid cementite network remain. A morphological filling operation
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removes any matrix pixels within the network. Matrix regions that
are not connected to the network are identified by application of a
morphological closing to matrix phase: any matrix segments that
do not intersect the network phase after the morphological oper-
ation are removed. Finally, we remove any matrix predictions that
are closer to a Widmanstdtten region than to a network region,
and subsequently remove the Widmanstatten regions. The region
boundaries on the cleaned up label image (shown in Fig. 5)
include only the interface of the proeutectoid cementite network
phase (indicated in blue) and the diffuse interface of the denuded
zone (indicated in yellow).

Results and Discussion
Semantic Microconstituent Segmentation

Figure 2 shows microconstituent annotations (e-h) and predic-
tions (i-p) for the four validation set micrographs (a-d) in one
cross-validation iteration; results for all six validation sets are in-
cluded in the online Supplementary materials. Microconstituent
predictions using the focal loss function and the cross-entropy
loss function are compared in Figures 2i-1 and 2m-p, respectively.
The predictions show reasonable correspondence with the anno-
tations, despite nontrivial differences in features, such as particle
size and appearance that arise from differences in heat treatment
and magnification. Intensity variations and polishing damage evi-
dent in the input images have little impact on the predictive capa-
bility of the models. One notable exception is the cluster of
spurious network predictions associated with the damaged areas
in the lower left of Figure 2c. Both models do a good job respect-
ing the edges of the network carbide phase, with a few exceptions
where the network is very fine or the contrast between network
carbide and metal matrix is poor (see Supplementary Figs.
S1.1d and S1.5d). Predicted boundaries between spheroidite par-
ticles and the denuded zone have little noise and tend to be
smoother than in the annotations. The Widmanstitten predic-
tions show the highest amount of noise, especially where the
Widmanstitten lath are fine or are beginning to break up. The
focal loss also tends to surround Widmanstitten cementite with
wider swaths of the metallic matrix compared to the annotations.
In addition to the low area fraction of Widmanstétten cementite,
one potential contributing factor for these failure modes is label-
ing bias where the microstructure is ambiguous even to the
human expert. For example, some areas with a low density of
spheroidite particles are labeled by the model as metallic matrix
where the annotation has made no such distinction. This phe-
nomenon is evident in the lower half of Figure 2i, where the
model correctly identifies large patches of bare metal in the neigh-
borhood of some large grain boundary cementite particles (refer
to Supplementary Fig. S1.13a for more details).

The cross-entropy model segmentation maps (Fig. 2m-p) tend
to be more consistent with the annotations for the majority
microconstituents. However, each model errs from the annota-
tions in distinct ways. In general, the focal loss model seems to
emphasize constituent contiguity, while the cross-entropy model
tries to resolve fine features. For example, compared with the
annotations in Figure 2f, the focal loss model (Fig. 2j) more
liberally identifies the very fine lath structures in the bottom
right corner of the frame, consolidating them into a single
patch, while the cross-entropy model (Fig. 2n) produces a noisier
map that attempts to track finer-grained details of the lath struc-
ture but loses some area fraction. One conclusion from these
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Table 2. Crossentropy Model Semantic Segmentation Performance Averaged
Over Validation Images.

U Precision Recall
Matrix 67.3+6.2 81.8+8.0 79.4+4.0
Network 89.4+3.6 96.1+0.6 92.8+3.5
Spheroidite 91.9+3.5 94.9+2.6 96.6+ 1.7
Widmanstatten 529+6.4 722+7.1 66.8+8.1
Overall 75.4+3.7 92.6+2.5 92.6£2.5

Uncertainties are standard errors calculated across validation images.

results is that while both models give acceptable results, neither
is necessarily the best that can be achieved. For a given segmenta-
tion problem, the user must select model parameters and loss
functions to achieve the desired quantitative and qualitative
performance.

Table 1 shows the average validation set performance with
standard errors for the focal loss model. The model obtains
86.5 £ 1.6% overall accuracy (AC, equivalent to the average of
the classwise recall or precision) in reproducing the pixel-level
annotations. The model is consistently good at identifying spher-
oidite and network regions. The less prevalent microconstituents
(matrix and Widmanstitten) are not as well captured, and show
higher variation between images. For these microconstituents,
the recall score is better than the precision score, meaning that
the CNN tends to mistake other classes for matrix and
Widmanstitten more than it tends to miss genuine matrix and
Widmanstitten pixels. This effect is demonstrated on the fine
Widmanstitten lath in the lower right portion of Figure 2j,
where the model fills in the fine spacing between
Widmanstétten lath in its prediction. The low proportion of
Widmanstitten pixels in the dataset enhances this effect. In the
case of the matrix class, the difference in recall and precision
scores is partly due to the overprediction of metallic matrix in
areas containing a low density of spheroidite particles, as dis-
cussed in reference to Figure 2i.

In contrast, the spheroidite and network classes have slightly
higher precision compared with their recall scores. The standard
error for the network scores is large, and is therefore likely
accounted for by the small number of gross errors discussed in
Supplementary Figures S1.1d and S1.5d. Finally, the small differ-
ence in precision and recall score for the spheroidite class is likely
also due to the overprediction of the metal matrix in regions with
low particle density.

Table 2 shows the same performance metrics for the cross-
entropy model trained with revised training hyperparameters.
The crossentropy shows clearly superior overall numerical perfor-
mance, including a nearly ten point bump in overall IU score.
While most of the per-microconstituent scores are higher for
the crossentropy model, the recall score for Widmanstitten
cementite is consistently depressed due to underprediction. We
also briefly experimented with the popular U-Net (Ronneberger
et al,, 2015) architecture, but found that this architecture slightly
underperformed compared with PixelNet. These results indicate
that various CNN architectures and training schemes can achieve
reasonable results, so the user can select an approach based on
desired outcomes. Because of its excellent performance in the
spheroidite segmentation task (reported in the next section), we
present results only from the PixelNet model trained with the
focal loss function throughout the rest of this paper.
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Fig. 3. a-d: Validation set predictions for the spheroidite particle segmentation task, along with (e-h) corresponding derived PSDs for the particle predictions

(blue) and annotations (green). Scale bars indicate 5 um.

These quantitative metrics are useful for interpreting the
strengths and weaknesses of a particular CNN model, but they
do not necessarily directly quantify the quality of the predicted
segmentation maps due to inherent subjectivity and bias in the
labeling process. Even a single human annotator will not be able
to consistently label an entire dataset, especially for ambiguous
higher-level microconstituents such as the spheroidite class. For
example, the annotator must decide how closely to track cementite
particles when tracing out the edge of the denuded zone. In some
cases, it is unclear whether a carbide should be labeled as grain
boundary cementite or as a piece of Widmanstitten lath.

Furthermore, the low resolution of the input images relative to
some of the finer features of interest also places a practical upper
bound on these numerical performance scores, especially for
microconstituents with large interfacial areas like the
Widmanstitten lath. Many of the Widmanstitten lath in this
dataset are just a few pixels wide, which can lead large shifts in
numerical scores for what a human might consider a minor dif-
ference in labeling (e.g., dilating or eroding the Widmanstitten
lath by one pixel).

Spheroidite Particle Segmentation

Figure 3 shows some validation results for the individual particle
segmentation task, with numerical performance reported in
Tables 3 and 4; additional examples are included in the online
Supplementary materials. Particle predictions are overlaid in red
on the input micrographs (a-d). The second row (e-h) shows
the empirical PSDs for both particle predictions and annotations,
as well as the results of the two-sample KS hypothesis test for dis-
tribution equivalence. Predictions for larger particles relative to
the image frame (Figs. 3b and 3c) are consistently good, even
where contrast gradients across particles and non-trivial back-
ground structure challenge thresholding and edge-based segmen-
tation methods. The primary failure mode of the particle
segmentation model is underprediction of very small particles,
particularly in Figures 3a and 3d. The vast majority of the fine
particles in Figure 3 are missing entirely, and many are only par-
tially labeled by the CNN with just one or two foreground pixels.
These particles are typically one to five pixels in size, suggesting
that higher- or multi-resolution inputs are necessary for general
microstructure segmentation CNNs. However, the CNN does

Table 3. Particle Segmentation Performance Averaged Over Validation Images.

1] Precision Recall
Matrix 90.0+£1.0 95.0+0.6 945+1.1
Spheroidite 54.8+3.4 746128 70.3+4.3
Overall 72.4+3.1 91.1+0.9 91.1+0.9

Uncertainties are standard errors calculated across validation images.

avoid spuriously labeling the small segments of Widmanstitten
in Figure 3 as particles.

The PixelNet model performs slightly better than Otsu’s
thresholding method (Otsu, 1979) on all metrics. One source of
bias in these performance measurements are missing particles
in the annotations, either from the removal of particles intersect-
ing the image border, or from failure of the semi-automated
annotation method itself. An additional source of bias stems
from the application of the watershed algorithm (Vincent &
Soille, 1991) to split conjoined particles in the annotations; water-
shed segmentation is not presently applied to the particle predic-
tions, increasing the relative rate of larger particles.

Despite good numerical performance on the particle segmen-
tation task, the KS test suggests we reject the null hypothesis that
the predicted and ground truth PSDs are equivalent for all but
one of the 24 validation micrographs (shown in Figure 3b). The
difficulty in detecting small particles explains the discrepancies
between empirical PSDs that contribute to the KS score. For the
two validation micrographs in Figure 3 containing fine particles,
the particle size histograms and prediction maps show that the
model often entirely misses particles with radii smaller than
5 px. Many of these missing ~5 px particles are partially labeled
in the CNN predictions, leading to a severe overrepresentation
of single-pixel particles, especially in Figure 3h.

Quantitative Analysis of Higher-Order Features

High-quality automated segmentation techniques for complex
microstructure constituents expand the scope of conventional
quantitative microstructure analysis by reducing the manual
labor required to obtain statistically meaningful amounts of
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Table 4. Particle Segmentation Performance Metrics.
Model IUmatrix IUspheroidite IUavg AC PSD KS
Otsu 86.2+7.2 53.7+12.1 69.9+9.3 88.1£6.1 -
Pixelnet 90.0+1.0 54.8+3.4 724+3.1 91.1+0.9 0.042

Uncertainties are standard errors calculated across validation images.
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Fig. 4. a-d: Micrographs with (e-h) validation set microconstituent predictions and (i-l) derived PSDs obtained by applying the particle segmentation CNN to the

semantic microstructure segmentation dataset. Scale bars indicate 10 um.
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Fig. 5. a-d: Validation set microconstituent predictions with (e-h) corresponding denuded zone width distributions. The network interface is shown in blue and the

particle matrix interface is shown in yellow. Scale bars indicate 10 pm.

data. In our UHCS case study, the CNN segmentation model
allows us to collect volume and shape statistics for the proeutec-
toid carbide network, spheroidite particles, and Widmanstéitten
lath directly from scanning electron microscopy (SEM)
micrographs with no manual intervention. Additionally, the

microconstituent prediction maps enable automated acquisition
of interesting microstructural statistics that were previously intrac-
table, such as PSDs conditioned on spatial relationships with
other microstructure features, or denuded zone widths (Hecht
et al., 2017b).
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Combining the two microstructure segmentation models
allows us to filter out irrelevant microstructure features in order
to estimate PSDs. Figure 4 shows combined microstructure pre-
dictions from both the abstract microstructure model and the par-
ticle model, using the same color scheme as Figures 2 and 3. We
run the input image through separately trained particle segmenta-
tion CNN and microconstituent CNN, suppressing particle pre-
dictions (red) outside of the predicted spheroidite regions
(yellow). With an appropriate number of images, one could also
compute PSDs spatially conditioned on other microstructure fea-
tures (e.g., distance from the network phase), which could help
lead to insights into operative microstructure evolution mecha-
nisms (particle coarsening versus precipitation). The resolution
of these input micrographs is insufficient to yield quantitatively
accurate PSDs, especially with the underprediction of small parti-
cles discussed in the “Spheroidite Particle Segmentation” section,
as evident in Figures 4b and 4c. However, higher quality input
and training micrographs will mitigate this effect.

Figure 5 shows the predicted network and denuded zone
boundaries for four validation images with corresponding com-
puted denuded zone width distributions. The denuded zone
width distributions are calculated by aggregating the minimum
distance to the network interface for each pixel on the denuded
zone boundary, as described in detail in the “Computing
Denuded Zone Widths” section. Generally, these empirical
denuded zone widths are reasonable, but some care is required
to interpret them. Specifically, the denuded zone width distribu-
tions in Figures 5b and 5d have high frequencies at small spacings
that result from spurious cementite network predictions. Figures
5a and 5d also exhibit some overprediction of the denuded
zone width where the particles are very fine, particularly in the
upper portion of Figure 5a.

The initial investment of micrograph annotation and training
a CNN makes sense where a statistical number of samples must
be characterized in the context of alloy and processing optimiza-
tion studies, and in the context of microstructure and process
validation or verification. Microconstituent annotation
accounted for a substantial portion of the time we spent on
this project. After an initial learning curve, a typical micrograph
in our dataset cost between 20 and 30 min to annotate. In con-
trast, a commodity GPU performs PixelNet-based segmentation
at a rate of approximately one micrograph per second, after an
initial training period of 2-4 h depending on training hyper-
parameters. Success in a practical microstructure science setting
will depend on establishing higher-quality training data and
deeper understanding of the biases and variance of the labeling
process.

The CNN predictions provide some useful feedback on these
subjective labeling decisions: consider the micrograph, annota-
tion, and predictions in Supplementary Figure S1.6a, e, and
i. In the bottom half of this micrograph (and in the other micro-
graphs in this validation set), the annotator neglected to label the
metal matrix surrounding the Widmanstitten lath as such, while
the CNN consistently includes some matrix predictions associated
with Widmanstitten predictions. This subjective labeling decision
can be mitigated with higher-fidelity labeling of individual car-
bide particles—at much greater labeling expense. A high quality
dataset might be obtained via crowd-sourcing (e.g., students in
a microstructure analytics course), generation of realistic synthetic
datasets through e.g., phase field modeling, or through the sub-
stantial expense of high-resolution elemental mapping with
SEM + energy dispersive spectrometry. A large dataset might

Brian L. DeCost et al.

also be collected in a semi-supervised fashion through the devel-
opment of smart microscopes with integrated microstructure rec-
ognition features.

Furthermore, it is critical to benchmark microstructure-
specific tasks against other popular CNN architectures for seman-
tic segmentation. Our approach of directly transferring the parti-
cle prediction CNN is tenuous, especially due to the disparity in
magnification between the general UHCS and specific particle
segmentation datasets. Rather than training two separate CNNs,
it may be more appropriate train a single CNN in a multi-task set-
ting, so that microstructures are mapped to a common numerical
representation before the respective microconstituent and particle
classification tasks.

Finally, microstructure data science is extremely data-limited
in comparison to most general computer vision tasks. Though
outside the scope of the present report, a detailed follow-on
study to fully characterize the training data requirements of
deep learning based microstructure segmentation models would
be a valuable tool to enable experimental planning before signifi-
cant investment for industrial application. In parallel, collabora-
tion with computer scientists working on low-data deep
learning, semi-supervised, and unsupervised techniques could
also open the door to applicability in many more microstructure
systems, especially where pixel-level annotations are expensive or
difficult to consistently obtain.

Conclusions

We demonstrate microstructural segmentation and quantitative
analysis at a high level of abstraction by applying an off-the-shelf
deep neural network architecture for pixel-wise prediction tasks.
We also present two new open microstructure segmentation
benchmark datasets featuring the microstructures in UHCS
steel at different length scales. This data-driven approach to
microstructure segmentation expands the reach of traditional
quantitative microstructure characterization to more complex
industrially relevant microstructure features that have, until
now been, difficult to treat in an automated fashion.
Combined with emerging automated microscopy capabilities,
data-driven microstructure segmentation systems will enable
future applications in high-throughput microstructure studies,
including investigations of structure/processing relationships,
microstructure design and optimization, and microstructure-
based material qualification.
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