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Abstract

The fields of machining learning and artificial intelligence are rapidly expanding, impacting nearly every technological
aspect of society. Many thousands of published manuscripts report advances over the last 5 years or less. Yet materials
and structures engineering practitioners are slow to engage with these advancements. Perhaps the recent advances that are
driving other technical fields are not sufficiently distinguished from long-known informatics methods for materials, thereby
masking their likely impact to the materials, processes, and structures engineering (MPSE). Alternatively, the diverse nature
and limited availability of relevant materials data pose obstacles to machine-learning implementation. The glimpse captured
in this overview is intended to draw focus to selected distinguishing advances, and to show that there are opportunities for
these new technologies to have transformational impacts on MPSE. Further, there are opportunities for the MPSE fields to
contribute understanding to the emerging machine-learning tools from a physics basis. We suggest that there is an immediate
need to expand the use of these new tools throughout MPSE, and to begin the transformation of engineering education that
is necessary for ongoing adoption of the methods.

Keywords ICME - MGI - Machine learning - Deep learning - Artificial intelligence - Multiscale modeling -
Digital engineering

Introduction and Motivation

Since 2012, society has seen drastic improvements in the
fields of automated/autonomous data analysis, informatics,
and deep learning (defined later). The advancements stem
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from gains in widespread digital data, computing power,
and algorithms applied to machine-learning (ML) and
artificial intelligence (AI) systems. Here, we distinguish
the term ML as obtaining a computed model of complex
non-linear relationships or complex patterns within data
(usually beyond human capability or established physics
to define), and Al as the framework for making machine-
based decisions and actions using ML tools and analyses.
Both of these are necessary but not sufficient steps for
attaining autonomous systems. Autonomy requires at least
three concurrently operating technologies: (i) perception or
sensing a field of information and making analyses (i.e.,
ML); (if) predicting or forecasting how the sensed field will
evolve or change over time; and (iii) establishing a policy
or decision basis for a machine (robot) to take unsupervised
action based on (i) and (if). We note that item (i) in the
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aforementioned list is not often discussed with respect to
ML since the technical essence of item (ii) resides within
the realm of control theory/control system engineering.
Nonetheless, these control systems are increasingly using
both models and ML/AI for learning the trajectories of the
sensed field evolution and generating the navigation policy,
going beyond ML for interpretation of the sensed field [1-
3] In this context, we also note that making predictions or
forecasts about engineered systems is a core strength of
the materials, processes, and structures engineering (MPSE)
fields of practice. As we discuss later, that core strength will
be essential to leverage for both bringing some aspects of
ML/AI tools into MPSE and for aiding with understanding
the tools themselves. Thus, a natural basis exists for a
marriage between ML or data science and MPSE for
attaining autonomous materials discovery systems.

From another perspective, in engineering and materials,
“Big Data” often refers to data itself and repositories for it.
However, more vexing issues are tied to myriad sources of
data and the often sparse nature of materials data. Within
current MPSE practices, the scale and velocity of acquiring
data, the veracity of data, and even the volatility of the
data are additional challenges for practitioners. These raise
the question of how to analyze and use MPSE data in
a practical manner that supports decisions for developers
and designers. That challenge looms large since the data
sources and their attributes have defied development within
a structured overall ontology, thus leaving MPSE data
“semi-structured” at best. Here too ML/AI technologies
are likely transformational for advancing new solutions to
the long-standing data structure challenge. By embracing
ML/AI tools for dealing with data, one naturally evolves
data structures associated with the use of ML tools, related
both to the input form and the output. Further, when the
tools are employed, one gains insights in the sufficiency of
data for attaining a given level of analysis. Finally, since
the tools for ML and Al are primarily being developed to
treat unstructured data, there may be gains in understanding
the broad MPSE data ontology by employing them within
MPSE.

Materials data have wide-ranging scope and often
relatively little depth. In this context, depth can be
interpreted as the number of independent observations of
the state of a system. The lack of data depth stems from not
only the historically high costs and difficulty of acquiring
materials data, especially experimentally, but also from the
nature of the data itself (i.e., small numbers (<100) of
mechanical tests, micrographs or images, chemical spectra,
etc.). Yet utilizing data to its fullest is a key aspect of
advanced engineering design systems. Consequently, the
emerging ML/AI technologies that support mining and
extracting knowledge from data may form an important
aspect of future data, informatics, and visualization aspects
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of engineering design systems, provided that the ML/AI
tools can be evolved for use within more limited data sets.
That evolution must include modeling the means/systems
for acquiring data itself. That is, because the data are so
expensive and typically difficult to acquire, the data must
exist within model frameworks such that models permit
synthesizing data that is related to that which is actually
acquired, or fills gaps in the data to facilitate further analysis
and modeling. Having such structures would permit ML/AI
tools to form rigorous relationships between these types
of data, measured and synthesized. Most likely, MPSE
practitioners will need to evolve methods such that they are
purposefully designed to provide the levels of data needed
for ML/AI within this data—model construct.

The role of ML/AI in the broader context of integrated
computational materials engineering (ICME) is still evolv-
ing. Although materials data has been a topic of interest in
MPSE for some time [4, 5] ML/AI was not called out in
earlier ICME reports and roadmaps [6, 7] or in the Materi-
als Genome Initiative (MGI) that incorporates ICME in the
MPSE workflow [8, 9]. However, it is an obvious compo-
nent of a holistic ICME approach, supporting MGI goals in
data analytics and experimental design as well as materi-
als discovery through integrated research and development
[9]. As detailed in the discussion below, ML/AI is rapidly
being integrated into ICME and MGI efforts, supporting
accelerated materials development, autonomous and high-
throughput experiments, novel simulation methodologies,
advanced data analytics, among others.

ML and AI technologies already impact our every-day
lives. However, as practitioners of the physical sciences, we
may ask what has changed, or why should a scientist be
concerned now with ML and AI technologies for MPSE?
Aren’t these technologies simply sophisticated curve fits
or “black box” tools? Is there any physics there? Less
skeptically and more objectively, one might also ask what
are the important achievements from these tools, and how
are those achievements related to familiar physics? Or,
how can one best apply the newest advances in ML and
Al to improve MPSE results? Speculating still further,
why are there no emerging Al-based engineering design
systems that recognize component features, attributes, or
intended performance to make recommendations about
directions for final design, manufacturing processes, and
materials selections or developments? Such systems are
possible over the next 20 years. Indeed, Jordon and Mitchell
suggest that “. .. machine learning is likely to be one of the
most transformative technologies of the 21st century...”
[10] and therefore cannot be neglected in any long-range
development of engineering practices.

The present overview is intended to serve as a selective
introduction to ML and AI methods and applications, as
well as to give perspective on their use in the MPSE fields,
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especially for modeling and simulation. The computer
science and related research communities are producing
in excess of 2000 papers per year over the last 3 years
(more than 15,000 in the last decade) on new algorithms
and applications of ML technologies.! One cannot hope
to offer a comprehensive review and discussion of these
in a readable introductory review. As such, we examined
perhaps 10% of recent literature and chose to highlight
a small fraction of the papers examined. These reveal
selected aspects of the field (perhaps some of which are
lesser known) that we believe should capture the attention
of MPSE practitioners, knowing that the review will be
outdated upon publication.

Selected Context from Outside of MPSE

Readers may already be familiar with applications of
ML- and Al-based commercial technologies, e.g., music
identification via real-time signal processing on commodity
smartphone hardware; cameras having automatic facial
recognition; and recommendation systems for consumers
that inform users about movies, news stories, or products
[11, 12]. Further, Al technologies are used to monitor
agricultural fields for insect types and populations, to
manage power usage in computer server centers exceeding
human performance, and are now being deployed in driver-
assisted and driverless vehicles [13-16].

Just since 2016, a data-driven, real-time, computer vision
and AI system has been deployed to identify weeds
individually in agricultural fields and to locally apply
herbicides, as a substitute for broadcast spraying [17].
Google switched its old “rules-based” language translation
system to a deep-learning neural network-based system,
realizing step-function improvements in the quality of
translations, and they continue to grow that effort and
many others around deep learning, abandoning rules-
based systems [18, 19]. The games of “Go,” “Chess,’
and “Poker” have been mastered by machines to a level
that exceeds the play of the best human players [20—
23]. Perhaps more important to MPSE, the new power of
deep-learning networks was vividly shown in 2012, when
researchers not only made step-function improvements in
image recognition and classification but also surprisingly
discovered that deep networks could teach themselves in
an unsupervised fashion [24, 25]. Most recently, a self-
taught unsupervised gaming machine exceeded the playing
capability of the prior “Go” champion, also a machine
that was developed with human supervised learning [26].
For selected instances, the machines can now even self-
teach tasks better than the best-skilled human experts! The

!'As gleaned from Google Scholar Internet searches by year.

powers and applications of ML/AI tools are expanding so
rapidly that it is hard to envisage any aspect of MPSE or
multiscale modeling and simulation, or engineering overall,
that will not be impacted over the next decade. Our primary
challenge is to discern how such capabilities can be best
integrated into MPSE practices as standard methods, and for
implementing them in appropriate ways as soon as possible.

Background and Selected Terms

To better understand aspects of the current ML/AI
revolution, it is useful to consider selected background
and terms from literature about the field. Al as a field of
study has been around since the middle 1950s; however,
it is the recent growth in data availability, algorithms, and
computing power that have brought a resurgence to the field,
especially for ML based on deep-learning neural networks
(DLNN) [25, 27]. In practice, it has become important
to distinguish the term “Al,” that is now most commonly
associated with having machines achieve specific tasks
within a narrow domain or discipline, from the term
“artificial general intelligence” (AGI) that embodies the
original and futuristic goal of having machines behave as
humans do. The former is in the present while the latter is
likely beyond foreseeable horizons.

ML has long been used for non-linear regression, to find
patterns in data, and served as one approach for achieving
Al goals [28, 29]. Three types of learning are commonly
recognized as “supervised” where the system learns from
known data; “unsupervised” where the unassisted system
finds patterns in data; and, “reinforcement” learning where
the system is programmed to make guesses at solutions
and is “rewarded” in some way for correct answers, but
is offered no guidance about incorrect answers. All three
modes are used at today’s frontiers.

For the purposes of this overview, “data science” is
a general term that implies systematic acquisition and
analysis, hypothesis testing, and prediction around data.
The field thereby encompasses wide-ranging aspects of
the information technologies employed in data acquisition,
fusion, mining, forecasting, and decision-making [30]. For
example, all aspects of data science would be employed for
autonomous systems. Alternatively, materials “informatics”
is focused on analysis of materials data to modify its form
and to find the most effective use of the information; i.e.
materials informatics is a subset of materials data science.
Aspects of these concepts are shown schematically in Fig. 1.
Data sciences, informatics, and some ML technologies are
related to each other, and selectively were used in research
and engineering for over half a century. However, until
the last decade, their impact was minimal on materials
and processes development, structures engineering, or
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Data Science — systematic hypothesis
testing and prediction

[1 ‘ Acquisition H Sensing ‘ )
’Storage H Retrieval H Communication ‘ )

/2 ‘ Processing H Integration H Fusion ‘ A

‘ Mining H Analysis H Statistics ‘

/3 ‘ Assimilation H Model Building ‘ )
‘ Prediction H Forecasting H Modeling ‘

S J

4 ’ Interpretation H Policy H Decisions ‘
.
(5 ’ Presentation H Visualization ‘ ]

Fig. 1 Data science may be considered as the technologies associated
with acquiring data, forming and testing hypotheses about it, and
making predictions by learning from the data. Five domains of activity
are evident: (1) data acquisition technologies; (2) processing the data
and making analyses of it; (3) building models and making forecasts
from the data; (4) decision-making and policies driven from the data;
and (5) visualizing and presenting the data and results. “Informatics”
has primarily been involved with items 2 and 3 and has expanded
slightly into items 1 and 5. ML principally encompasses items 1-3
and 5. Al usually encompasses items 1-4, while placing emphasis on
item 4

the experimental methods used for parameterizing and
verifying models. The challenges in MPSE are simply
too complex and data was too limited and expensive to
obtain. Now, studies do show that the ML technologies can
find relationships, occasionally discover physical laws, and
suggest functional forms that may otherwise be hidden to
ordinary scientific study, but these are few [29, 31].
Historical efforts in ML attempted uses of “artificial
neural networks” (ANN or NN) to mimic the neural
connections and information processing understood to take
place in human brains (biological neural networks or
BNN). In a fashion that loosely mimics the human brain,
these networks consist of mathematical frameworks that
define complex, non-linear relationships between input
information and outputs. Generally, for all network learning
methods, the ANN contains layers of nodes (matrices) that
hold processed data that was transformed by the functional
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relationship that connects the nodes. A given node receives
weighted inputs from a previous layer, performs an
operation to adjust a net weight, and passes the result to
the next layer. This is done by forming large matrices
of repeatedly applied mathematical functions/transforms
connecting nodes, and expansion of features at each node.
To use the network, one employs “training data” of known
relationship to the desired outputs, to “teach” the networks
about the relationships between known inputs and favorable
outputs (the weights). By iteration of the training data, the
networks “learn” to assign appropriate weighting factors
to the mathematical operations (linear, sigmoidal, etc.) that
make the connections, and to find both strong and weak
relationships within data.

Importantly, the early networks typically had only
one-to-three hidden layers between the input and output
layers, and a limited number of connections between
“neurons;” thus, they were not so useful for Al-based
decision-making. Until recently, computers did not have
the capacity and algorithms were underdeveloped to permit
any deeper networks or significant progress on large-
scale challenges [28, 32-34]. The techniques fell short
of today’s deep-learning tools connected to Al decision-
making. Consequently, with few exceptions, the historical
technical approaches for achieving Al, even within specific
applications, have been arduously tied to “rules,” requiring
human experts to delineate and update the rules for ever-
expanding use cases and learned instances—that is until
now.

Generally speaking, today’s ANN have changed com-
pletely. The availability of vast amounts of digital data for
training; improvements to algorithms that permit new net-
work architectures, ready training, and even self-teaching;
and parallel processing and growth in computing power
including graphics processor unit (GPU) and tensor process-
ing unit (TPU) architectures have all led to deep-learning
neural networks DLNN or “deep learning” (DL). Such
DLNN often contain fens-fo-thousands of hidden layers,
rather than the historical one-to-three layers (thus the term
“deep learning”). These advanced networks can contain a
billion nodes or more, and many more connections between
nodes [19, 25]. Placing this into perspective, the human
brain is estimated to contain on the order of 100-to-1000
trillion connections (synapses) between less than 100 bil-
lion neurons. By comparison, today’s best deep networks
are still 4-5 orders of magnitude smaller than a human
brain. However, BNN still serve as models for the architec-
tures being explored, and being only 4-5 orders of magni-
tude smaller than a human BNN still provides tremendous,
unprecedented capabilities.

Within DL technologies, there are several use-case-
dependent architectures and implementations that provide
powerful approaches to different AI domains. Those
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based on DLNN typically require extensive data sets
for training (tens of thousands to millions of annotated
instances for training). As mentioned previously, this
presents a major challenge for their use in MPSE that
most likely will have to be mitigated using simulated
data in symbiosis with experimentally acquired data.
“Convolutional and de-convolutional or more appropriately
transposed convolutional neural networks” (CNN and
TCNN, respectively) and their variations have three
important network architecture attributes including 3D
volumes of node arrays and deep layers of these arrays, local
connectivity such that only a few 10s of nodes communicate
with each other at a time, and shared weights for each
unit of connected nodes. These attributes radically speed up
training, permitting the all-important greater depths. During
use, the mathematical convolution (transposed convolution)
operation allows concurrent learning and use of information
from all of the locally narrow but deep array elements.
Architecturally, the networks roughly mimic the BNN of the
human eye, and have proven their effectiveness in image
recognition and classification tasks, now routinely beating
human performance in several tasks [34-37].

Several even more advanced DLNN architectures
emerged recently including “Recurrent” (RNN) that have
taken on renewed utility in their use for unsupervised lan-
guage translation [38], “Regional” (R-CNN) used for image
object detection, [39] and “Generative Adversarial Net-
works” (GAN) [40] for unsupervised learning and training-
data reduction, to name but a few (for overviews and
reviews, see work by Li and by Schmidhuber [41-43]). Each
of these architectures adapts DL to different task domains.
For example, language translation and speech recognition
benefit by adding a form of memory for time series analysis
(RNN). GAN include simulated-plus-unsupervised training,
or § + U learning, for which simulated data is “corrected”
using unlabeled real data, as shown in Fig. 2. Reinforce-
ment learning technology, of which GAN are a subset, was
used for the self-taught machine that mastered “Go” and has
been used for the most recent language translation methods
[26, 44]. Further, in a task that has similarities to aspects
of MPSE, S + U training was used to correct facial recog-
nition systems for the effects of pose changes, purely from
simulated data [45, 46]. Given the widely expanding appli-
cations of DL, there is a high likelihood that architectures,
algorithms, and methods for training will continue to evolve
rapidly over the next 3-5 years.

Perhaps the most challenging goal for ML/AI methods
is to continue the expansion of autonomous systems, espe-
cially for MPSE research and development [47-52]. Slowly,
these systems are making their way into life sciences, drug
discovery, and the search for new functional materials [47,
52, 53]. ML enabled progress in materials composition
discovery does not of-and-to-itself imply mastery of the
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Fig. 2 One may envisage producing materials microstructure models
using S + U learning. In the schematic, numerous unlabeled real
images are fed into a “discriminator” CNN that learns from both
real and refined synthetic images, and classifies images from the
refiner as real or fake. The ‘“refiner” is a CNN that operates on
simulated microstructure images, enhancing them toward the realism
of measured micrographs. The simulations may be used to sample
more microstructure spaces, or nuances of microstructure, that are
difficult or expensive to measure experimentally, while the measured
micrographs enhance the simulated images adding realism. Adapted
from [45]

processing and microstructure design space. For these lat-
ter design challenges, new autonomous tools are needed,
largely based on imaging sciences being better coupled to
high-throughput experimentation. Most recently, Zhang et.
al. took steps toward autonomy for materials characteriza-
tion by using ML for dynamic sampling of microstructure,
while Kraus et. al. demonstrated the power of automatic
classifiers for biological images [54, 55]. Further, given
the advances in deep learning and crowd sourcing used for
annotating image and video data [56-58], perhaps the seeds
have been sewn for long-range development of systems
to autonomously map ontologies for materials data, while
keeping them continuously updated. One may envisage
that when combined with DL for computer vision, long-
range developments should permit autonomous materials
characterization, and ultimately to the mastery of mate-
rials hierarchical microstructure for new materials design
through autonomous microstructure search.

Selected Applications and Achievements
in Materials and Structures

For the case of multiscale materials and structures, we
consider applications of ML/AI techniques in two main
areas. First, selected examples illuminate accomplishments
for materials discovery and design. While not necessarily
noted in the works, these tie directly to MGI and IMCE
goals. These are followed by some examples applying
ML/AI methods in structures analysis. Here again, the MGI
goal of accelerating materials development, deployment,
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and life-cycle sustainment directly ties to the structures
analysis aspect of ML/AL

Materials Discovery

For about the last two decades, ML for materials structure-
property relationships has used comparatively mature
informatics methods. For example, principal component
analysis (PCA) operating upon human-based materials
descriptors can lend insights into data. For PCA, the
descriptor space is transformed using mathematics to
maximize data variance in the descriptor dependencies,
yielding a new representation for finding relationships.
The new representation usually involves a dimensionality
reduction to the data resulting in a loss of more nuanced
aspects of the data. Past efforts used microstructure
descriptors (in a mean-field sense), such as average grain
size, constituent phase fractions or dimensions, or material
texture, and sought to relate these to mean-field properties,
such as elastic modulus or yield stress [59, 60]. In
the absence of high-throughput computational tools for
obtaining materials kinetics information, structure-property
relationships, and extreme-value microstructure influences,
other studies resorted to experimental data to establish or to
narrow the search domains for new materials [61-70].

Our expectation is that these approaches will also become
more efficient, reliable, and prevalent in the coming decade
or more, particularly since open data, open-source com-
puting methods, and technology businesses are becoming
available to support the methods and approaches [71-74].
Further, advancements in materials characterization capabil-
ities, process monitoring and sensing methods, and software
tools that have taken place over the previous 20 years
[75] are giving unprecedented access to 3- and 4D mate-
rials microstructure data, and huge data sets pertaining to
factory-floor materials processing. Such advancements sug-
gest that the time is ripe for bringing ML/DL/AI tools into
the materials and processes domain.

Mechanics, Mechanical Properties, and Structures
Analysis

Historically, multiscale modeling, structures analysis, and
structures engineering have all benefited from ML/AI tools.
Largely because of their general ability to represent non-
linear behaviors, different forms of ANN architectures have
been used since the 1990s to model materials constitutive
equations of various types [76, 77], optimize composites
architectures [78], and to represent hysteresis curves or non-
linear behavior in various applications (such as fatigue) [79—
81]. The closely related field of non-destructive evaluation
also benefited from standard ANN techniques [82], though
this field is not treated herein. Further, these methods were
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used for more than two decades in applications such as
active structures control [83—-85], and even for present-day
flight control of drones [86]. Today, DL is bringing entirely
new capabilities to structures and mechanics analysis.

In more recent work, ML methods are being used
to address challenging problems in non-linear materials
and dynamical systems and to evolve established ANN
and informatics methods [87-90]. Further, newer deep
learning and other powerful data methods are beginning
to be employed. For example, Versino et. al. showed
that symbolic regression ML is effective for constructing
constitutive flow models that span over 16 orders of
magnitude in strain rate [91]. Symbolic regression methods
involve fitting arbitrarily complex functional forms to data,
but doing so under constraints that penalize total function
complexity, thus resulting in the simplest sufficient function
to adequately fit the data [92]. Integrated frameworks are
also beginning to appear [93]. These suggest a promising
future that we consider more fully in what follows.

A Perspective on the Unfolding Future

Looking forward, it is appropriate to consider the question,
what has changed in ML/AI technologies, and what has
fostered the explosive growth of this field? Also, how might
these advancements impact MPSE? This section considers
these questions and provides selected insights into the
prospects for ML/DL/AI and their associated technologies.
The perspective focuses on examples of using these tools
for materials characterization, model development, and
materials discovery, rather than a complete assessment of
ML, DL, Al, and data science or informatics. Further, the
emphasis is on achievements from 2015 to the present, with
many examples from the last year or so.

Imaging and Quantitative Understanding

Most recently, computer vision tools, specifically CNN/DL
methods, were applied to microstructure classification, thus
forming initial building blocks for objective microstruc-
ture methods and opening a pathway to advanced Al-based
materials discovery [63, 94-98]. By adopting CNN tools
developed for other ML applications outside of engineering,
these researchers were able to objectively define microstruc-
ture classes and automate micrograph classification [95,
97, 98]. Figure 3 shows an example of the methods being
applied to correlate visual appearance to processing condi-
tions for ultrahigh carbon steel microstructures. Today, even
while they remain in their infancy, such methods are demon-
strated to have about a 94% accuracy in classifying types of
microstructure, and they rival human capabilities for these
challenges [94, 97].
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Fig. 3 A t-SNE map (see L. van der Maaten and G. Hinton, Visual-
izing data using t-SNE, Jrnl. Mach. Learn. Res., 9 (2008), p. 2579.)
of 900 ultrahigh carbon steel microstructures in the database by Hecht
[99] showing a reduced-dimensionality representation of multi-scale
CNN representation of these microstructures [94]. Images are grouped
by visual similarity. The inset at the bottom right shows the annealing
conditions for each image: annealing temperature is indicated by the
color map and annealing time is indicated by the relative marker size.
The map is computed in an unsupervised fashion from the structural

These early materials image classifiers are also showing
promise for improved monitoring of manufacturing pro-
cesses, such as powder feed material selection for additive
manufacturing processes [100, 101]. Over the next 20 years,
autonomous image classification will be common, with the
classifiers themselves being trained in an unsupervised fash-
ion, choosing the image classes without human intervention,
thereby opening entire new dimensions to the MGI/ICME
paradigms [34]. This means that materials and process
engineers are likely to have machine companions monitor-
ing all visual- and image-based aspects of their discipline,
in order to provide guidance to their decision-making,
if not making the decisions autonomously. In the com-
ing decades, machine-based methods may have aggregated
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information obtained from the CNN; microstructures having similar
structural features tend to have similar processing conditions. This is
especially evident tracing the high-temperature micrographs from the
bottom of the figure to the top right: as the annealing time increases,
the pearlite particles also tend to coarsen. Note—the Widmanstatten
structures at the left resulting from similar annealing conditions were
formed during a slow in-furnace cooling process, as opposed to the
quench cooling for most of the other samples

sufficient knowledge to autonomously inform engineers
without having any prior knowledge of the image data col-
lection context. They will likely operate autonomously to
identify outliers in production systems or other data. Thus,
one should expect radical changes to materials engineering
practices, especially those based upon image data.

Further, current work by DeCost, Holm, and others
is beginning to address the challenge of materials image
segmentation. While the use of DL and CNN methods has
recently made great strides for segmenting and classifying
pathologies in biological and medical imaging [35, 102,
103], the methods are completely new in their application
to materials and structures analysis. Figure 4 shows an
example metal alloy microstructure image segmentation

@ Springer
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Fig. 4 CNN (PixelNet architecture, A. Bansal et. al., Pixelnet: Rep-
resentation of the Pixels, By the Pixels, and for the Pixels, CoRR
(2017). arXiv:1702.06506 [cs.CV]). trained to segment ultrahigh car-
bon steel micrographs. This schematic diagram shows the interme-
diate representations of an ultrahigh carbon steel micrograph [99]
being segmented by the CNN into high-level regions: carbide net-
work (cyan), particle matrix (yellow), denuded zone (blue), and
Widmansttten cementite (green). Such a CNN can support novel auto-
mated workflows in microstructure analysis, such as high-throughput

using a CNN tool. Note how the CNN learns features
with increasing depth (layers) of the network, going from
left-to-right in the image. Given that image segmentation
and quantification (materials analytics) is among the
major obstacles to bringing 3D (and 4D) materials
science tools into materials engineering, the ML methods
represent nascent capabilities that will result in dramatic
advances in 5 years and beyond. Further, current computer
science and methods research is focusing on understanding
the transference capabilities of CNN/DL tools [104].
Transference refers to understanding and building network
architectures that are trained for one type of image class or
data set, and then using the same trained network to classify
completely different types of images/features on separate
data, without re-training.

As the methods mature, there is a high likelihood that the
definitional descriptors for materials hierarchical structure
(microstructure) will also evolve and be defined by the
computational machines, more so than by humans. Those
in turn will need to be integrated with modeling and
simulation methodologies to have the most meaningful
outcomes. That is, since the ML/AI methods are devised
to operate on high-dimensional, multi-modal data, they also
bring new, unfamiliar parameter sets to the MPSE modeling
and simulation communities that define the output from
the analyses. These may bring challenges for engineering
design systems as they seek to establish meaningful data
and informatics frameworks for futuristic designs. For
addressing this nascent challenge, ICME paradigms must
evolve to be better coupled to engineering design.

The DL-based image analysis tools are already being
made available to users via web-based application environ-
ments and open-source repositories that help to lower the
barrier to entry into this new and dynamic field [105, 106].
Recently, at least one company, Citrine Informatics [71],
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Conv5

Conv4

Upsample & Concatenate MLP

Output

quantitative measurements of the denuded zone width distribution.
The PixelNet architecture uses the standard convolution and pool-
ing architecture to compute multiscale image features (Convl-5),
which are up-sampled and concatenated to obtain multiscale high-
dimensional features for each pixel in the input image. A multilayer
perceptron (MLP) classifier operating on these features produces the
final predicted label for each pixel; the entire architecture is trained
end-to-end with no post processing of the prediction maps. Source for
figure: [107]

has formed with the intended purpose of using informatics
and data science tools, together with modern ML tools, to
enhance materials discovery. One may also expect that the
high driving force for having such tools available for med-
ical imaging analysis, and their use for other aspects of
computer vision, will keep these types of tools emerging
at a rapid pace. This implies that materials and structures
practitioners might be well advised to keep abreast of the
advancements taking place outside of the materials and
structures community, and to assure that the progress is
transferred into the MPSE domain.

Materials and Processes Discovery

Computational materials discovery and design, as well as
high-throughput experimental search and data mining, have
been a visible domain of MGlI-related research and develop-
ment. These practices too are seeing significant benefit from
current ML/AI tools. Some of these advancements were
recently summarized [108-117]. However, the possibili-
ties for materials compositions, microstructure, and archi-
tectures are vast—beyond human capacity alone to com-
prehensively search, discover, or design. Thus, machine-
assisted and autonomous capabilities are needed to perform
comprehensive search. More recently, much attention has
been given to ML for discovering functional compounds
[49, 53, 108, 118-121]. Some research efforts computed
ground states, selected ground-state phase diagrams, and
physical properties for comparatively simple (up to quater-
nary) classes of inorganic compounds, while other efforts
computed chemical reactivity and functional response for
organic materials [108, 118, 122-124]. Notable studies
demonstrate that machine learning applied to appropriate
experimental data is more reliable or convenient than DFT-
based simulations [125-128]. Nevertheless, exploring the
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complexity of materials and processes for finite temper-
atures, extending into kinetics-driven materials states or
realizing hierarchical materials structures and responses,
requires so far unachieved search capability over many more
spatiotemporal parameters. One needs to be able to effi-
ciently acquire information and then to perform search and
classification, over vast portions of multiscale materials
chemistry and kinetics (transport), structure (crystallogra-
phy and morphology), response (properties) space. The next
essential building block for widespread materials discovery
is linking the tools for composition search to synthesis, pro-
cessing, and materials response [50]. In these respects, the
MGTI is only in its infancy.

What is needed for achieving those linkages in an objec-
tive fashion is to build them upon spatiotemporal hierar-
chical microstructure (from electrons and atoms to mate-
rial zones/features and engineering designs). Most likely,
ML/DL/AI tools will play a pivotal role in establishing
these complex relationships. However, the MPSE commu-
nity remains limited by the relatively small databases of
microstructure (spatiotemporal) information in comparison
to the requirements that appear to be necessary for an
ML/Al-driven approach. One clear pathway for circum-
venting that formidable barrier is to take advantage of the
considerable capabilities for materials modeling and simu-
lation that are now well established within MPSE. Methods
such as the S 4+ U GAN technique discussed previously and
shown in Fig. 2 must be generalized to make full use of
both simulation and experimental data, beyond microstruc-
ture data. This implies that a long-range theme in MPSE
practices (also within the MGI) needs to be centered around
building models for the methods by which data are pro-
duced, thus allowing for the symbiosis between real and
synthetic data that is so powerful in an ML/AI environment.
Having these tools will be a major advantage for complet-
ing the reciprocity relationships between microstructure—
properties—models that are a foundation for MPSE design.
Further, there is a high likelihood that over the next 20 years,
the growth in computer vision and decision-making systems
will make great strides in achieving larger amounts of data
through computational, high-throughput, and autonomous
Al-based systems [51, 53, 129, 130].

As more curated and public databases for materials
information lead to increasing data availability, the methods
and benefits of ML/AI are likely to grow rapidly [131-
138]. Notable are two recent actions that make relevant
materials data more openly available. First is a private
sector entry into the domain of publicly accessible large-
scale materials databases, including an effort to simplify use
of informatics/ML tools. Citrine Informatics has adopted a
business model that supports open-access use of the ML
tools they have deployed, provided that the user data being
analyzed is contributed to the Citrine database. (Citrine’s

tools are also available for proprietary use on a fee basis.)
Second, the Air Force Research Laboratory has posted data
pertaining to additive manufacturing, along with a data-use
challenge, analogous to the Kaggle competitions established
more than a decade ago for data science practitioners [139,
140].

Recent progress using large-scale accessible databases
also shows success in searching for new functional mate-
rials [130, 141-143]. These searches involve computing
compound or molecular structures and screening them for
selected functional properties. Given these successes, it is
hard to imagine functional material development continuing
to be performed in a heuristic manner after the passing of
the next decade.

Far more challenging are searches for (i) synthesis and
process conditions; (if) materials transformation kinetics;
and (iii) microstructures with responses that satisfy design
requirements. In these areas too, progress is rapid using
data-driven methods and ML techniques. Machine-learning
tools are being applied today to guide chemical synthe-
sis/processing tasks (see next section). However, analogous
frameworks for metals or composites processing are barely
emerging. Ling et. al. demonstrated that process pathways
can be optimally sought using real-time ML methods to
guide experiments [144]. The models not only indicate
what experiment is the next-most-useful one but they also
permit bounding error on the model to indicate how use-
ful an experiment will be. Similar methods were already
developed for optimally sampling microstructure when col-
lecting time-consuming and expensive data, such as electron
backscatter diffraction (EBSD) scans in 3D [54, 145, 146].
From these and other developments, it is neither too difficult
to imagine ways to implement such tools for enhanced high-
throughput data acquisition and learning nor too difficult
to conjecture that the ML-based, high-throughput methods
will markedly expand over the next 10 years. One may
expect that the advancements will lead to both new materi-
als and materials concepts and to more robust bounding of
manufacturing processes for existing materials.

One additional area that is ripe for development is the
connection of ML/DL/AI tools to applications in ICME
and the larger MGI that involve “inverse design.” A cen-
tral theme in ICME is the replacement of expensive (both
in terms of time and resources) experimentation with sim-
ulation, especially for materials development. In effect,
ICME seeks to replace the composition and process search,
or statistical confidence obtained through repeated physi-
cal testing, with those developed through simulation. This
requires that (7) model calibration, (if) model verification
and validation, and (iif) model uncertainty quantification
(UQ) be carried out in a more complete and systematic
manner than is common within the materials community.
Additionally, ICME applications extend into inverse design
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problems in that the objective is to establish a material
and processing route that optimize a set of properties and
performance criteria (including cost), while most mate-
rial models are material— properties. The design problem
of interest requires inverting the model typically through
numerical optimization. The additional uncertainty quan-
tification requirements and design optimization mean that
the models will be exercised for a large number of times.
For even simple models, this can be very expensive in
terms of computational resources and rapidly becomes com-
putationally intractable for 3D spatio/temporally resolved
simulations. ML can relieve this computational bottleneck
by serving as “reduced order” or “fast acting” models. Once
trained, ML models can be exercised very quickly and mul-
tiple instantiations can be exercised in parallel on typical
computer systems. More importantly, the inverse model
properties— materials can be trained in parallel with the
forward model speeding up the design process. The crit-
ical open-research question for the community becomes
“How do we train ML models for ICME applications
with limited experimental data and how do we ensure
proper UQ?”

Computational Chemistry Methods

The early impacts of ML/DL/AI methods are being
realized today in the fields of computational chemistry,
chemical synthesis, and drug discovery [147-150]. One
compelling demonstration is the power of using machine-
based pre-planning for chemical synthesis [149, 151]. These
applications use ML in a data-mining-like mode to learn the
complex relationships involved in molecular synthesis from
known past experience. Analogous applications are well
underway to search for inorganic materials using computed
large-scale databases and applying ML/AI for learning
complex non-linear relationships between variables [152,
153].

In yet a different mode, the ML methods are also having
an impact on computational quantum chemistry calculations
themselves that are used to predict molecular stability,
reactivity, and other properties. Historically, both quantum
chemistry and density functional theory (DFT) codes are
widely known to be limited by poor computational scaling
(O(N®) and O(N?), respectively) that constrains accessible
system sizes [154]. However, recent work is revealing that
ML/AI methods can learn the many-body wave functions
and force fields, thereby mitigating the need for some
computationally intensive investigations [155-160]. These
methods have just been demonstrated in the past year, and
are some of the many promising frontiers in ML. Clearly,
as these methods are brought in to widespread practice, the
landscape for multiscale materials and structures simulation
will be drastically improved.
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Multiscale Mechanics and Properties of Materials
and Structures

Recently, Geers and Yvonnet offered perspectives on the
future of multiscale materials and structures modeling
[161], and McDowell and LeSar did the same for materials
informatics for microstructure-property relationships [162].
Both perspectives pointed out the considerable challenges
remaining in the field. Note however that these authors
did not address the possible role of ML/AI in pushing
the frontier forward, in part because there appears to be
much slower progress in applying ML/AI in these fields.
At the smallest scales, one major emerging application is
the invention of “machine-learning potentials” for atomistic
simulations [163, 164]. These have good prospects for
speeding the development of interatomic potential functions
while improving their reliability and accuracy, especially for
systems that include covalent and ionic bonding.

At coarser scales, there are limited advances emerging
for developing constitutive models [87, 88, 91], modeling
hysteretic response [89], improving reduced order models
[165, 166], and even for optimizing numerical methods
[167]. At still coarser scales, there is research to understand
and model complex dynamical systems and to use ML
methods for dimensionality reduction [168, 169].

Multiscale materials and structures modeling also
includes advanced experimental methods that will benefit
from ML/AI implementations, but the field is in its infancy.
For example, the digital image correlation (DIC) method
has been developed over the last decade to the point that
it is now successfully used to learn constitutive parame-
ters for materials [91, 170, 171]. However, using discrete
dislocations dynamics simulations as a test bed, Papaniko-
laou et. al. recently demonstrated that ML tools can extract
much more information from DIC measurements, suggest-
ing new ways for using the experimental DIC data, espe-
cially in lock-step with simulation [172, 173]. As the ML/AI
methods are better understood by the MPSE community,
one may expect across-the-board advances in experimental
methods, especially for model development, validation, and
uncertainty quantification.

Noteworthy Limitations: Relationships
to Physics, Software, and Education

As this overview suggests, the prospects for ML/AI methods
to bring significant advances to the domain of materials and
structures modeling and simulation are exceptionally high.
Indeed, the field is advancing so rapidly that it is difficult
to estimate how radical the advances may be, and over what
time-frame. More generally, some even suggest that the
prospect of true AGI is on the horizon within the next 10
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years [174], implying that the technology space for MPSE
will simply be unrecognizable by today’s measures more
quickly than anticipated. Another assessment was provided
by Grace et. al. suggesting a longer time horizon for AGI
but nonetheless predicting significant general impacts over
the coming few decades [175] .

In the face of such a radical change and technical
revolution, it is prudent to maintain caution and to be wary
of shortcomings. For example, there remains considerable
debate in the Al community regarding interpretability of
the DL methods and models [176—179]. To many, the DL
methods appear as “black boxes” and in some respects
function as such. While black boxes may be valid solutions
for some applications (e.g., performing repetitive tasks),
they may be unacceptable for others, particularly where the
cost of a wrong answer is high (e.g., flight qualifying an
aerospace component).

Other work points to the questions of reproducibility,
reusability, and robustness of ML/DL/AI methods, espe-
cially in the broad domain of reinforcement learning [180-
182]. Fortunately, having these important issues raised is
beginning to lead to recommendations of best practices
for ML, and to software platforms to facilitate those prac-
tices [183—186]. Knowing the existence of such issues again
suggests a need for caution when deploying ML/DL/AI
methods in MPSE practices.

For high consequence applications, engineers must insist
upon ML/DL/AI methods that make decisions based on
underlying scientific principles. One research frontier in
computer sciences is exactly this pursuit of an understand-
ing of how such technologies work and their relationships
to physical science [176-179, 187-189]. For this chal-
lenge, the MPSE community may be uniquely positioned
in several respects. First, the complexity of the MPSE
fields together with the high-value-added products and sys-
tems to which they lead provides strong driving forces
and widespread application domains for advancements via
ML/DL/AI tools. Second and perhaps more important,
the physical sciences have long been engaged with not
only retrospective modeling for explanation of the phys-
ical world but also “forward” or “system” modeling to
provide a manifold for efficient data collection and con-
straints on predictive tools. Most recently, the methods are
adding powerful capabilities in materials characterization,
for example [54, 190]. The power of these modeling frame-
works relative to the ML/DL/AI understanding challenges
is that the models can provide an ever-expanding source
of “phantom instances” for materials and processes that
are completely known virtual test beds to use within the
ML/DL/AI tools.

Finally, while there are laudable efforts to introduce the
ML/DL/AI tools into widely accessible and somewhat user-
friendly software libraries and codes [106, 191-194], it is

not clear that the educational systems, both formal and
informal, are keeping pace with the developments or provid-
ing ML/DL/AI models and systems to MPSE practice. This
suggests real risks of models and systems being developed,
perhaps from outside of MPSE, without enough under-
standing of their limits, or consequences of their failures.
Naturally, a strategy for educating MPSE practitioners in the
use of these advanced tools is needed in the very near term.
Perhaps much of this could be achieved through appropri-
ately structured teaming around ML/DL/AI development
for specific MPSE challenges.

Summary and Conclusions

The fields of machining learning, deep learning, and
artificial intelligence are rapidly expanding and are likely to
continue to do so for the foreseeable future. There are many
driving forces for this, as briefly captured in this overview.
In some cases, the progress has been obviously dramatic,
opening new approaches to long-standing technology
challenges, such as advances in computer vision and
image analysis. Those capabilities alone are opening new
pathways and applications in the ICME/MGI domain. In
other instances, the tools have only provided evolutionary
progress so far, such as in most aspects of computational
mechanics and mechanical behavior of materials. Generally
speaking, the fields of materials and processes science and
engineering, as well as structural mechanics and design, are
lagging other technical disciplines in embracing ML/DL/AI
tools and exploring how they may benefit from them.
Nor are these fields using their formidable foundations in
physics and deep understanding of their data to contribute to
the ML/DL/ALI fields. Nonetheless, technology leaders and
those associated with MPSE should expect unforeseeable
and revolutionary impacts across nearly the entire domain of
materials and structures, processes, and multiscale modeling
and simulation over the next two decades. In this respect,
the future is now, and it is appropriate to make immediate
investments in bringing these tools into the MPSE fields and
their educational processes.
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