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A fundamental problem arises in feedback control when the system is subject to fast disturbances but can only get
slowly updated sensor feedback. The problem is particularly challenging when the disturbances have frequency
components near or beyond the sensor’s Nyquist sampling frequency. Such difficulties occur to selective laser
sintering, an additive manufacturing process that employs galvo scanners to steer high-power laser beams and
relies on non-contact, slow sensing such as visual feedback to enhance the product quality. In pursuit of addressing
the fundamental challenge in quality control under slow sensor feedback, this paper introduces a multi-rate
control scheme to compensate beyond-Nyquist disturbances with application to selective laser sintering. This
is achieved by designing a special bandpass filter with tailored frequency response beyond the slow Nyquist
frequency of the sensor, along with integrating model-based predictor that reconstructs signals from limited sensor
data. Verification of the algorithm is conducted by both simulation and experimentation on a galvo scanner that
directs the energy beam in the additive manufacturing process.

1. Introduction

Selective laser sintering (SLS) is a powder-bed based additive manu-
facturing technique that builds 3-dimensional (3D) parts by layer-wise
processing of powder materials. It has attracted great research and com-
mercial attention with its ability of fast prototyping and great flexibility
of processing a wide range of materials. However, one main challenge in
SLS is ensuring product quality and reproducibility [1], which demands
high precision machine control that is robust to noise and disturbances.
To be more specific, an illustration of SLS is sketched in Fig. 1. During
the processing of each layer, a galvo scanner [2] directs a high-energy
moving laser beam to form a cross-section layer of the part (Fig. 2). Each
axis of the scanner head consists of a motor with an optical mirror at-
tached to the shaft and a high-speed closed-loop servo that ensures fast
and accurate scanning. After finishing processing one layer, the building
surface is lowered by the thickness of a new layer, and new powders are
spread on top of the built layer. The procedure is repeated until the en-
tire 3D part is completed. The fundamental beam scanning mechanism
is subject to disturbances that limit the quality of the final 3D printed
part. On the one hand, a small error of mirror angle will lead to large
projection error at the scanning surface due to the long focal length (i.e.
the focusing distance between the scanner mirror and the scanning sur-
face in Figs. 1 and 2). On the other hand, internal disturbances arise
in the complex system consisting of multiple sub-modules (i.e., a “sys-

tem of system” architecture). For example, the rotation of one scanner
mirror can cause vibrations that transmit to the second mirror; periodic
scanning of the energy beam creates oscillatory temperature variations
that hinder uniform part quality [3]; vibrations induced from periodic
movement of the powder roller or from the ground also obstruct high-
speed high-precision additive manufacturing.

Recent research has considered disturbance suppression in galvo
scanner systems by using angular positions of the mirrors (measured
from internal sensors such as encoders) as feedback. Tested control algo-
rithms include adaptive control based on recursive least-squares [4,5] or
frequency-weighted minimum-variance control [6], extended PID con-
trol [7,8], predictive control [9], linear quadratic Gaussian control [10],
and iterative learning control [11]. However, when the scanner sub-
system is integrated into the overall SLS process, the aforementioned
disturbances at the system scale are invisible to the scanner subsystem
(except for the cross-coupling disturbances between two mirrors). Addi-
tional feedback is thus needed for a robust and accurate manufacturing
process. Indeed, recent trends of imaging-based sensing focus precisely
on providing such information for quality monitoring purposes [1,12—
171.

If precision control of SLS can be achieved by using the additional
imaging feedback, a world of new possibilities would open: machines
could know the true status of the laser-material interaction in real time;
challenging geometric features such as thin walls, lattices, and over-
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hang can be precisely made as desired; and ultimately, registration and
recovery from operation failures could happen autonomously to drasti-
cally save production cost and time. While imaging-based sensing is be-
coming popular for manufacturing applications, precision SLS control
based on such measurement feedback remains a major challenge be-
cause data-intensive sensors (e.g., CCD and infrared cameras) refresh the
data frames slowly compared to the speed of material processing. Once
the mechanical motion or disturbance frequency is close to or beyond
the Nyquist frequency of the slow sensors, unobserved performance loss
occurs, and classic controls become incapable to guarantee a precise and
reliable SLS. Such fundamental challenge of control design considering
beyond-Nyquist performance occurs also to other application domains,
such as vision-based servo [18], optical coherence tomography (OCT)
[19,20] and confocal microscopy [21]. Although we focus on additive
manufacturing in this study, we will abstract our algorithm to allow for
easy adaptation to these broad application domains.

From the viewpoint of control design, reconstruction of intersam-
pling information is key when considering beyond-Nyquist disturbance
rejection. Certainly, recovering an arbitrary random signal is impossible.
Celebrated results by Shannon and its extensions [22,23] attest to the
fact that a continuous signal can be recovered from periodically sampled
data only if it is band-limited below Nyquist frequency. Many recon-
struction methods exist to approximate the original information-rich sig-
nal based on different assumptions [23]. For example, Yamamoto et al.
[24] formulates the problem to a maximum error minimization problem
and utilizes sampled-data H control theory to find the best approxima-
tion under the H,, norm. Assuming a fast system model is given and the
integrative sensor dynamics are available, Tani et al. [25] estimates in-
tersample state of motion from slow and blurred images. Most literature
focuses on signal reconstruction under a feedforward design scheme. In
a feedback closed-loop scenario, however, a greater challenge arises, as
approximation errors may be amplified after going through the closed-
loop dynamics, and major feedforward techniques are not applicable
here. This paper provides a novel feedback framework that remedies
these significant barriers when the beyond-Nyquist signals consist of
narrow bands in frequency spectrum. Our main theoretical contribu-
tion is to provide a mixed-rate feedback control scheme for compen-
sating beyond-Nyquist disturbance by introducing a forward-model dis-
turbance observer and a model-based intersample data predictor. From
the viewpoint of application, this paper provides a first-instance system-
atic study of the control problem in galvo-scanning enabled additive
manufacturing systems and the like. Building on top of the scanner’s
baseline control loop, the forward-model disturbance observer ensures
closed-loop stability and separates the slow-sampled disturbance signal
from the output signal. Based on the frequency distribution of the dis-
turbance, the proposed model-based predictor then reconstructs the dis-
turbance signal into a fast sampled one, enabling the possibility of exact
disturbance rejection at a higher sampling rate. The proposed algorithm
builds upon our recent work [26] to address general band-limited dis-
turbances at multiple frequency locations, and drastically expands the
design freedom by leveraging an infinite-impulse-response (IIR) struc-
ture in contrast to the previous finite-impulse-response (FIR) design.

The remainder of this paper is organized as follows. Section 2 formu-
lates the disturbance rejection problem. The proposed multi-rate servo
scheme for disturbance rejection of beyond-Nyquist frequency is pre-
sented in Section 3. Section 4 discusses the design of model-based pre-
dictor that uses the disturbance structure to reconstruct fast-sampled
signals. Section 5 shows simulation as well as experimental results on
a dual-axis galvo scanner system, and finally, Section 6 concludes this
paper. A preliminary version of the paper is presented in [27]. This pa-
per is a substantially extended study that includes the full mathematical
proofs and new theoretical and experimental results.

Notations: Z*denotes the set of positive integers. P (s) and P4(2) de-
note the continuous and discrete transfer functions of a controlled plant,
respectively. P(e/®) is the frequency response of P(z) at frequency w, with
its real part and imaginary part denoted as R P(e/®) and FP(e/®). We

167

Mechatronics 56 (2018) 166-174

Image processing }—~ Control algorithm

Camera |
o Control Command I
F——————— — — — —— = J
|
Galvo Scanner
Dy e——
el — Laser source

Laser material processing

C(z)

Fig. 3. Block diagram of a galvo control system.

use J# to represents a zero order hold (ZOH) whose transfer function is
H(s) = (1 — e~*Ts)/s, if the sampling period is T;. [x] denotes the nearest
integer greater than or equal to x.

2. Problem formulation

Recall Fig. 1. The galvo scanner is placed before an optical focusing
system (e.g. an F-theta lens) so that the laser beam maintains uniform
energy density as much as possible across the entire material surface.
Fig. 3 shows the block diagram of the scanner control system. The main
elements here include the continuous-time plant P.(s), the discrete-time
controller C(z), and the signal holder .J#. The scanner mirror’s angular
position y, is measured by an encoder at a fast sampling rate f,, = 1/T,.
The system output of interest to this paper is the actual position of the
laser spot y. G stands for the coordinate transformation of the optical
path from y, to y, which is defined by the optical system’s forward kine-
matics.

For a more concise description, we classify the system disturbances
into two parts. Disturbance that influences the angular position of the
galvo mirror is denoted as d, (such as the vibration of the mirror sup-
port, or torque disturbance of the motor); disturbance d is caused by the



H. Xiao et al.
+3“[”] F— ————— — — —
Y upln] | + _eln]
3 ‘* = HC@)| A
! ‘ Yolnl
- -

LT
O

eI
|
: C["J{ Q(Z) ]4751_[21] :

Fig. 4. Multi-rate control scheme for beyond Nyquist disturbance rejection.
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vibration of the optical system, or the atmospheric turbulence that can
impact the beam path. In order to reject d,,, one can choose a high-speed
encoder and design a suitable PID controller, H, controller, or observer-
based controller, etc. The focus of this paper is on the more challenging
rejection of d, to which the internal controller does not have direct ac-
cess.

Because of the highly repetitive laser scanning process [3], it is fun-
damentally important to understand how to address disturbances in the
structure of

A = Y AsinQrfit+ ), 1

i=1

where m denotes the number of frequency components of the distur-
bance. Such a model encompasses the aforementioned disturbances in
the first paragraph of the introduction. The frequencies f;’s are assumed
known (can be derived or identified, see, e.g., [28-30]), but the ampli-
tude 4;’s and phase ¢;’s are unknown. In order to reject disturbance d,
a slow external sensor such as a camera is used to measure the beam
position y (Fig. 1). The processed data comes from the external sen-
sor has a much slower sampling rate f(compared to fy), that is, the
measurements are incapable to capture all frequency components of the
disturbance (i.e. there exist f; such that f; > f;/2). Under such a problem
configuration, the goal is to design a control system to fully reject the
disturbance d at a fast sampling rate of f.

3. Multi-rate control scheme for beyond-Nyquist disturbance
rejection

The proposed multi-rate control scheme is presented in Fig. 4. The
sampled signals are divided into two groups, each with a different sam-
pling rate: one group is fast sampled at f—indicated by the dotted
lines, and the other slowly sampled at f, = f,,/L (L € Z*), as indi-
cated by the dashed lines. Solid lines represent continuous-time signals.
The block with a down arrow and L denotes a decimator that downsam-
ples the signal by an integer factor L. The inner galvo scanner control
loop is updated at a high-speed fi, and it is assumed that f/2> fi,.y,
where f,,., is the highest frequency of the system disturbances.

We refer to the structure in the dashed box in Fig. 4 as the base-
line control loop, with its discrete transfer function denoted as Pi(2).
The baseline control loop can be as simple as a pre-tuned PID controller
with direct negative feedback, as is shown in the figure, or some more
complex feedback/feedforward control scheme. f’;(z) in Fig. 4 is the
identified plant model of the baseline control loop. The external sensor
measures y(t), i.e., the position of laser beam on the scanning surface, at
a slower sampling rate — L times slower than fi in this study. G~! stands
for the inverse coordinate transformation that is defined by the inverse
kinematics of the optical system. Q(2) and the multirate model-based
predictor (MMP) are two key elements of the proposed servo scheme.
They will be discussed in the following subsections and Section 4, re-
spectively.
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Fig. 5. Forward-model disturbance observer.

3.1. Forward model disturbance observer

To illustrate the design concept, we consider controlling behavior of
the closed loop at a common sampling rate first. To that end, we model
the galvo scanner subsystem (dashed block in Fig. 4) as Pj(z), assume
Pj(z) = Pj(z), omit the MMP block and cancel out G with G~!. Then the
structure of the disturbance compensation algorithm reduces to Fig. 5,
a special case of the all-stabilizing Youla—Kucera parametrization [31].
The transfer function of the system output y[n] (denoted as Y(2)) can be
derived as

Y(2) = Pj(2)U(2) + (1 - Pj(2)Q(2)D(2). (@)

The relationship between the command signal u[n] and the system out-
put y[n] is thus independent from the feedback loop. In addition, the
feedback loop introduces additional dynamics between disturbance d[n]
and y[n]. Such disturbance observer structure (as shown in Fig. 5) en-
ables the possibility and convenience of flexible, high-performance dis-
turbance rejection. More specifically, if we design the filter Q(2) such
that

1= Pj@")0(") =0, 3

where w; is the disturbance frequency in radians per second, then the
last term of Eq. (2) will be canceled out at z = e/, leading to full distur-
bance rejection at that frequency. Moreover, the closed-loop dynamics
dictate that the system remains stable if PJ(z) is stable (automatically
satisfied since it is the closed-loop transfer function of the baseline sys-
tem) and if the filter Q(2) is designed to be stable.

3.2. Design of filter Q(z)

The trivial solution to Eq. (3) (i.e. O(z) = P;’l(z)) is not always fea-
sible because Pd*‘l(z) may not be a proper transfer function, or have
unstable poles that will challenge system stability. However, an exact
full inversion of P;‘l(z) is unnecessary since Eq. (3) only needs to be
satisfied at w;. Our previous work [26] introduced a stable Q(z) design
that satisfies Eq. (3) at a single frequency w. In addition, the design also
maintains a small gain to |1 — P;(ef’”)Q(ef“’)l when o # ), which is im-
portant for avoiding amplifying noise and other frequency components
in d[n]. In this subsection, we extend the point-wise stable inversion
design to the case with multiple disturbance frequencies.

Theorem 1. Let T be the sampling time in Fig. 5 and {w; = 27 f,T};=10.. .m
be a set of frequencies in rad/sec at which disturbance rejection is desired.
Let P;(ef“’f) be the frequency response of Pi(2) at and assume that
|Pr(e@)] #£0,i=1,2,...,m" Let p=2m— 1, and

(C)}

0(2) = Qy(2)gp + 12" + ... + 4,27P),

1 Otherwise the plant will not respond to input at the target frequencies. That
is, input disturbance at w; will not impact the plant output (inherently rejected),
and output disturbance at w; will be immune to feedback controls because the
plant does not pass through any signal components at the target frequency.
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Then Eq. (3) holds for each w;, and the amplification at w # w; is controllable
by choosing Q;, the 3-dB disturbance-rejection bandwidth of Q,(2) centered
around w;.

Proof. For each w;, Eq. (3) has the solution

. Py (e/®)
0@y = b = ©
Pi(elv)  |Pj(ele)|?
ie.
. R P* (/i
RO(e/?i) = —\p*(d:rim;
T?P*(e/“’i) i=1,2,...,m. (10)
[ Joiy = _d~ -
‘\SQ(e ) |P;(eja),-)|2
Define first
'@ =q+qz" +q,z7" (1)
such that P;(ejwi)Q*(e/“’i) =1, then by Eq. (10), we must have, for i =
1,2,...,m,
»tP;<e/wz>
qo + q,COSw; + +-+ + quOSpa)i = m,
& prraio; (12)
. L sPEn
qSinw; + -+ + qpsmpwi = _|P;(e/—“’!)|2

There are m such equation sets, or 2m linear equations. Since w; € (0, ),
and o; # ; if Vi#j, those linear equations are independent from each
other. Then we have 2m linearly independent equations and p + 1 = 2m
unknowns, and g;’s can be uniquely solved from Eq. (5).

The first element in the Q filter in Eq. (4), or Qy(2) in Eq. (6), is a
multi-band bandpass filter that has m narrow passbands centered at w;.
It is produced by 1 — Q,(z), where Q, (2) is constructed by m cascaded
lattice-based band-stop filters [32,33] whose bandwidths are related to
ko, s defined by Eq. (8). One can show that Q,(e//) = 1 at each center
frequency w;. Combining Eq. (6) and Eq. (11) then results in the pro-
posed structure of Q(z) in Eq. (3).

Because Q,(e/®) = 1 and P;(ef‘”f)Q*(e/“’i) = 1, the disturbance rejec-
tion requirement (Eq. (3)) is satisfied. In addition, when w # w;, |Qq(e/®)|
can be made arbitrarily small by reducing the bandwidth B,, ;. Thus
|1 - P;(e/*)Q(e/?)| can be controlled to be approximately 1 if w #w;,
avoiding large noise amplification. []

Remark 1. If the identified model of the baseline closed-loop P;(z) con-
tains uncertainties such that ﬁ;(z) # Pj(2), based on block diagram al-
gebra, Eq. (2) becomes

_ PI@U@) + (1 - PH(2)0(2)D(2)
1-0@)(PH(2) - Pi(z)

Y(z) (13)
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By using the identified mode f’j(z) to design Q(2) based on Theorem 1,
the disturbance term in Eq. (13) can still be fully rejected since Eq. (3) is
satisfied. Also, by maintaining a small magnitude of Q filter at frequen-
cies where Pi(2) differs from P;(z) (that is, by designing the magnitude
of Q(z)(Pd"‘(z) - Pj(2)) in Eq. (13) to be small), the transfer function from
U(2) to Y(z) will remain close to Eq. (2).

4. Model-based predictor design

Recall that in Fig. 4, the forward model disturbance observer works
at a fast sampling rate of f,;, but the sampling rate of the system output
is limited to f,, = f,,/L. Consequently, a slowly sampled disturbance
estimate d, [n] is generated by the disturbance observer loop, whereas a
fast sampled signal d[n] is needed to enable disturbance compensation
at fy. In this section, we introduce a multirate model-based predictor to
reconstruct the intersample disturbance information that is lost in the
slow sampling.

Before we start discussing the model-based predictor, it is necessary
to clarify some special cases where the slowly sampled disturbance is
not recoverable, which are referred to as the singular frequency set o.

Definition 1 (Singular frequency set). For disturbance that has m fre-
quency components, a frequency distribution f = (fy, f3, ..., f,,) can be
considered as a point in an m-dimension space R™. If the slow sampling
rate is f;,, then the singular set consists of a group of frequency config-
urations defined as

14

c={fe®" 3f.f; st.fi=nfs/2, or fi+ [, =nfgs},

wherene Z,i# jandi,j € {1,2,...,m}.

For example, let the slow sampling rate be f,, =2 kHz. Then a
frequency distribution f = (0.6 kHz, 2kHz) belongs to the singular fre-
quency set because it has a frequency component (i.e f, = 2 kHz) at an
integer multiple of f,/2. A frequency distribution f = (0.3kHz, 1.7kHz)
also belongs to the singular frequency set because f; + f, = f,,. In gen-
eral, two scenarios contribute to a singular frequency case. The first case
arises when the disturbance has one or more frequency components
at the Nyquist frequency of the slow sensor (i.e., fi,/2), or its integer
multiplications. In this case, there is a DC component in the frequency
domain, and the intersample signal is not recoverable without its am-
plitude information. The second case arises when f contains pairs of
frequency components in which one frequency is the alias of the other
when sampled at the slow sensor speed. Thus their time-domain signals
are fused together, and amplitude information of individual components
is also needed to decouple them.

If system disturbances are out of the singular frequency set (this is
the more common case in practice, and the external sensor speed f,; may
be chosen to avoid the singularity), then based on the intrinsic signal
model of d[n], a fast disturbance estimate can be reconstructed by the
slowly sampled d; [n] using model-based filtering, as is discussed next.

4.1. Narrow-band signal recovery with model-based predictor

Assume a multi-band signal d.(t) defined by Eq. (1) has m fre-
quency components f = (f}, fa. -, f) & 6 dy[n] = d (nLTy) is the slow-
sampled signal with sampling time LT,, L € Z*. This subsection pro-
vides the proposed approach to recover a fast-sampled signal d[n] =
d.(nT) with sampling time T.

Because the fast sampling time divides the slow sampling time, every

Lth sample of d[n] can be obtained from d; [n] directly, i.e.
d[nL] = d;[n]. (15)

We show that the kth intersample signal (k = 1,2,..., L — 1) between
d[nL] and d[(n + 1)L] (denoted as y;[n] £ d[nL + k]) can be recovered by

velnl = w! - @ln] = b" - @, [n]. (16)
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where @4[n] and @y [n] are data vectors defined as

@qlnl 2 [dp[n),dy[n— 1], dy[n— 2m - 1)]]T, an
@, In] & [yeln = 10, yeln =21, -, yy[n = 2m]] " (18)
wy and b are predictor parameter vectors

T
w, £ [wk,o’wk,l’"'vwk,(Zm—l)] s 19)
b2 [by by, by (20)

The parameter vector b is composed of the coefficients of polynomial
B(z") =1+byz7' +... + by, z7>", which is computed from expanding
the product

m
B(z™hH = H(l —2acosr f,LT)z"" + a?z72),

i=1

2N

where a €(0, 1) is a design parameter and z~! is the one step delay
operator.

The prediction formula (Eq. (16)) computes the kth intersample y;
by a linear combination of 2m consecutive samples from d; [n], as well
as by a linear combination of 2m previous predictions about y;. The
parameters b can be calculated by Eq. (21). The algorithm of obtaining
vector wy is provided in the following theorem.

Theorem 2. Given the above definitions, d[n] can be fully recovered from
d; [n] by Egs. (15) and (16), if f¢ o and wy is from the solution of

a
h]f’l a
h : N
Al P P @
k,0 0
Wi om-1 O
A -
M, =[M; e ey eerm-nLl; 23)

where My is a square matrix with a dimension of 2mL X 2mL; e; is the el-
emental column vector whose entries are all zero except for the jth entry,
which equals 1; and

1 0 0
a; k :
: 0
M, = ayy 1 (24)
0 a;
| 0 w0 A b,

Parameters [ay, a,, ..., a,,| inEqs. (22) and (24) come from the disturbance
model A(z"")=1+a;z7' +a,z72 + ... + ay,z 2", which is computed by
expanding

m
Az hH = H(l —2¢cosQrfT)z™" +z72).

i=1

(25)
The column vector b in the rightmost of Eq. (22) contains dll zeros, except
for the L,2L, ... ,2mL-th entries, which equal by, by, -+, by,,.

Proof. In order to establish and validate Eq. (16), we construct a poly-
nomial equation

H (zHYAz Y+ z*w zhH-B' @ hH =1, (26)
where A(z™!) is defined by Eq. (25), and

Hi(z™) =14y 27+ o+ gz 2D, @7
w(z b= wy o+ wk,lz‘L +...+ wklm,lz—(zm_l)L, (28)
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Fig. 6. Prediction error of IIR (a = 0.95) and FIR (a = 0) predictor, under the
same configuration as Fig. 7, and the data vectors @, and ¢, are initialed as zero
vectors. In plot (a), the input has a random noise with maximum amplitude of
0.05. The IIR predictor shows better robustness to noise. In plot (b), the input
is noise-free, both the IIR and FIR predictors can make accurate predictions in
steady state.
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The coefficients of B*(z~L) are the same as those in B(z~!') (computed
by Eq. (21)).

Based on the internal signal model [34] of d[n], A(z"!)d[n] = 0 at the
steady state. Combining this with Eq. (26) yields

(1 =z z™5) + B*(z71))d[n] = H(z7H Az )d[n] = 0, (30)
which gives
d[n] = z7*W,(z~1)d[n] — B*(z"L)d[n]
=wyodln—kl+wy dln—k— L]+ wyop1dln—k—=2m—-1L] (31)
—byd[n— L] = byd[n —2L] — -+ — by, d[n — 2mL].

Replacing n with nL + k, we have

dnL + k] = wyod[nL] + -+ + Wy 5,_1d[(n — 2m — 1)) L] 32

—byd[(n — 1)L + k] — - — by, d[(n — 2m)L + kI.
Recalling d;[n] =d[nL] and y.[n]2d[nL+k], it follows that

Eq. (32) can be written as Eq. (16).

Now consider solving Eq. (26). Expanding the equation and collect-
ing the coefficients of z7’s (i = 1,2, ...,2mL), one can get 2mL linear
equations with 2mL unknowns, which can be written in matrix form as
Eq. (22). O

Note that the intersample signals y; [n] are computed from not only
the weighted sum of d[n], but also the historical prediction values. In
Eq. (21), a determines the weighting of input signals (sensor measure-
ments) and historical prediction signals. As a gets closer to 1, the pre-
dictor will be more dependent on the historical predictions rather than
input signals, thus less sensitive to the input noise (see Fig. 6a). As a
trade-off, a predictor with larger « has a slower converging speed (see
Fig. 6b).
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To get more insights in choosing «, one can derive the transfer func-
tion from d; [n] to y; [n] based on Eq. (16):

-1 ~@2m-1
Wio+ Wi 127 + .o+ W om-1)2 @m=1)

L+biz7l + ..+ by, z727

Wi(z) = , (33)
where the denominator is computed by Eq. (21), and the numerator can
be solved by Eq. (22). Fig. 7 shows the bode plot of Wi(z) with respect
to different a’s. Here, the disturbances consist of three frequency compo-
nents, f1, f, and f3, where f; is below and the other two are beyond the
Nyquist frequency. As shown, a smaller « leads to a larger magnitude
response. In the extreme case, if « = 0, then the denominator of trans-
fer function W’ (z) becomes 1. Consequently, the predictor reduces to an
FIR structure with a magnitude response above 0 dB, and the predictions
are purely dependent on input signals. Therefore, an IIR predictor with a
larger « is more robust to input noise; an FIR predictor is most sensitive
to input noise. In practice, in order to reduce the influence of measure-
ment noise and increase the prediction accuracy, « is recommended to
be chosen closer to 1, e.g., starting with « = 0.9. The value can be fur-
ther increased when dealing with noisy applications. However, a must
be less than 1, because the roots of polynomial B(z~!) (hence the poles
of W(2)) in Eq. (21) are at z = aeti27/ilT; and must fall inside the unit
circle to yield a stable filtering process. Note that all predictors have the
same frequency response at f = f;, i = 1,2,3, which is expected because
all designs target to recover signals at those frequencies. Note also that
the transfer functions have a sampling of T; and the beyond-Nyquist fre-
quency response is symmetric in magnitude to that below the Nyquist
frequency.

4.2. Decoupled solution form and computation reduction

In Theorem 2, the dimension of M is scaled by the number of fre-
quency components m and downsampling ratio L. When m and L are
large, solving high-dimension linear system equations could be com-
putationally expensive. However, it turns out that instead of solving
Eq. (22), the predictor parameters can be solved from an equivalent
form with reduced computation cost.

Let the augmented matrix? of system Eq. (22) be M =[M «| bl
where b is the summation of vectors on the right side of Eq. (22). Ob-

2 Given a linear system equation Ax = b, the augmented matrix is defined as
A=[A]b]
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serving the sparse structure of the elemental vectors {ey, -+, €xyom-1)r}
in My in Eq. (23), we can swap rows of M to yield, without changing
the solutions to the associated linear system,

b,

b,
where I is an identity matrix, 0 is a zero matrix, b; and b,
are column vectors with length 2m and length 2m(L —1). Let h, =

[hy 1 Py pmr—y)T> wy = [wyeg Wi am-117, then an equiv-
alent form of Eq. (22) is

I 2mx2m
02m( L-1)x2m

Asmsam(L-1)

(34)
By —1yx2m(L-1)

|

A I|[h] _[b

5ol -2 @
or,

Bhy = b,, (36)
w, = —Ah; +b,. 37

This suggests that one can solve system Eq. (36) first, then the predictor
parameters w can be computed by a direct matrix-vector multiplication
and a vector addition in Eq. (37).

For a better understanding of procedures of designing the IIR predic-
tor, we give an illustrative example below.

Example 1. Consider the case where the disturbance contains one fre-
quency component (i.e. m =1) at f = 1.2 kHz, and the position sen-
sor of the galvo scanner has a fast sampling rate f,, =3 kHz. With-
out loss of generality, let the external sensor’s sampling rate be f,,,. =
1.2 kHz, which is not fast enough because the disturbance occurs beyond
the Nyquist frequency fn = fyuux/2 = 0.6 kHz. For vision cameras, the
achievable frame update rate depends on the size of field of view, and
fsmax is reached by using the minimum view window. The proposed pro-
cedure for designing the predictor is as follows:

Choose L. This relates to f, the sampling rate of the slow sensor,
by the relationship L = f,,/f,,. Also, f;; must be smaller than f,,. The
minimum L is then given by L,,;, = [f,;/fumax| = 3. Here, we choose
L=L,;, =3 as an example.

Define predictor structure. The predictor is defined as (cf.
Section 4.1)

d[3n] =d[n], (38)

d[3n+ 1] = w gdy[n] 4+ wy 1dp[n— 1] = byy[n— 11 = byy[n - 2], (39
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d[3n+2] = w,od;[n] +wy dp[n—1] = byyy[n — 1] = byy,[n —2]. 40)

where y,[n] = d[3n + 1] and y,[n] = d[3n +2].

Compute parameters. Use Eq. (25) and Eq. (21) to obtain g;’s and
b;’s: a; = —2cos2z fTy), ay = 1, b; = —2acos(6z fT,), b, = a>.

Obtain [wy, 9> w1, 1]. From Egs. (22)—(24), construct

1 0 0 0 1 0] [h, a
a; 1 0 0 0 hi, a,
ay, a 1 0 0 Of A~y by

2= . 41
0 a a 10 1 [|hy, 0 “D
0 0 a a 0 Of wy 0
0 0 0 a 0 0f [w, b,

Parameters w; o and w; ; come from the unique solution of Eq. (41).
Reorganizing the rows of corresponding augmented matrix yields

1 0 0 0|1 0| g
0 a aq 110 1 0
v 1 0 010 0] a
M= a a; 1 0|0 0] b “2)
0 0 a a |0 O 0
0 0 0 a |0 0] b
Then wy ¢, wy ; are given by
hy,
w o 1 0 0 0]|h, a;
O = — ’ 4
[wl,l] [0 a ap 1ffh; Tlof @
h1,4_
where
—ir
hyy a; 1 0 0 a
hial_a a 1 0 by
hsl o 0 a4 a of “4)
hyg4 0 0 0 a b,

Obtain [w, o, wy 1]. Following the same procedure as the last step,

we have

hy
wyol _ e 10 0 1] A2 4|2 @5)
w; 0 0 a af|hy; 0l

hyy
where

-1

hy, 1 0o o ofa
hyp| a2 a 1 0 by
hs| |0 a 4o 1 of (46)
hyl 10 0 0 af |b

5. Simulation and experiment results

In this section, we present the simulation and experiment results of
beyond-Nyquist disturbance compensation on a galvo scanner testbed.
The dual-axis 6215H galvo scanner from Cambridge Technology Inc is
used. Each axis has +20° of scan angles and 8 urad of repeatability.
It also comes with a driver board that has a built-in motor driver cir-
cuit and pre-tuned PID-type control algorithms. The baseline closed-loop
model Pj(z) is obtained by system identification techniques [35] at a
fast sampling rate of 10 kHz, and the result is

0.551z~! +0.356z72 — 0.0496z73 + 0.00673z~*
1 —0.164z71 4+ 0.0278z=2 — 0.001662=3 + 0.000152z~4
To show that the disturbance rejection algorithm is robust to model un-
certainties (recall Remark 1), two inaccurate models, P;l(z) and P;z(z),
are also tested in simulation. The inaccurate models are obtained by
adding parameter uncertainties to the true model. Their differences with
f’d*(z) in the frequency domain are shown in Fig. 8.

B (2=
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Table 1

Disturbance reduction percentage under dif-
ferent noise levels and with different identi-
fied baseline models.

Noise level f’;(z) 13;1 (z) 13;2(2)
0% 99.80 99.88 99.45
7% 99.44 99.25 99.43
14% 98.72 98.62 98.85
28% 96.89 96.60 97.70

We first build the control scheme in Fig. 4 in MATLAB. The mini-
mum sampling time of the vision sensor is limited to 0.3ms. For narrow-
band disturbances, one can use the regular disturbance observer [36] to
achieve perfect disturbance rejection. However, if the disturbance has
frequency components greater than f = 1667 Hz (the Nyquist fre-
quency of the vision sensor), the actual plant output will be significantly
amplified [26]. In simulation, the disturbance d has three frequency
components at 0.8fy, 1.6fy and 2.3fy, respectively. The fast and slow
sampling rates are f,, = 10 kHz and f,; = 10/3 kHz, respectively. Fol-
lowing the example procedure in Section 4, we obtain parameter b in
(21):

b= -0.1668 07440 07068 06715 —0.1359 07351 |'.
and parameters w; and wy:

w;=| -0.0365 —00877 01119 —0.1501 —0.0110 0.1043 |,
wy=| -0.0688 —00045 0152 —0.1023 00903 —0.0051 | .

Fig. 9 shows the system output sampled at 10 kHz. The dotted and solid
lines are the system outputs when the proposed compensation scheme is
turned off and on, respectively. The results indicate that the proposed al-
gorithm has the ability of full disturbance rejection, as the fast-sampled
outputs converge to zero when the proposed algorithm is turned on. We
also tested the control scheme under different noise levels and model
uncertainties. Disturbance reduction performance is compared by mea-
suring the reduction percentage of the highest system output amplitude
at steady state. The test results are shown in Table 1. Here, the noise is
a uniformly distributed random signal, and the noise level is the ratio
between the maximum noise amplitude and the maximum disturbance
amplitude. The test results show that the disturbance reduction perfor-
mance remains high even when the noise level is increased from 0 to
28% and the proposed algorithm is highly robust to model uncertainty.

Fig. 10 shows the time-domain disturbance reconstruction results by
the IIR predictor. The dotted line represents the real-time disturbance
signal. The slowly measured disturbance samples are marked with cross
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Fig. 11. Galvo scanner outputs sampled at 10 kHz.

marks, and the reconstructed disturbance samples are marked with cir-
cle marks. In the simulation, we added a white noise with a noise level
of 4% to the input of IIR predictor. The predictor successfully recovered
the intersample data from the noisy and slow-sampled signal.

In the experiment on the galvo scanner testbed, we feed a 2000 Hz
beyond-Nyquist disturbance into the system. Fig. 11 shows the sampled
time-domain system outputs sampled at 10 kHz. After the disturbance
compensation loop is enabled at ¢ = 2.5 s, the outputs drop dramatically,
yielding a 90% reduction of the regulation errors (Compared to the sim-
ulation results, there was measurement noise in the scanner outputs).
The disturbance rejection result is also observed in the frequency do-
main (Fig. 12). When the compensation loop is disabled, the outputs
have a large spike at 2000 Hz, which disappears after turning on the
proposed algorithm.

6. Conclusion

In this paper, the problem of beyond-Nyquist disturbance rejection
is addressed with application to beam steering in selective laser sin-
tering. Based on frequency information about the disturbance, we de-
signed a multi-rate model-based predictor that can accurately recover
the intersample disturbance information from slowly sampled measure-
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Fig. 12. FFT of the galvo scanner outputs sampled at 10 kHz.

ments. Combined with a forward model disturbance estimation struc-
ture, the proposed algorithm enables the possibility of fully rejecting
beyond Nyquist narrow-band disturbances. Both the simulated and ex-
perimental results show the effectiveness of the proposed algorithm.

Other than the focused SLS process, the proposed control scheme
is expected to apply to systems where beyond-Nyquist disturbances ex-
ist, and the sensor sampling rate is limited. Future work includes the
extension to other disturbance structures (e.g., general periodic signals
and signal with a moving-average model, etc.) and other application
domains.
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