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a b s t r a c t 

A fundamental problem arises in feedback control when the system is subject to fast disturbances but can only get 

slowly updated sensor feedback. The problem is particularly challenging when the disturbances have frequency 

components near or beyond the sensor’s Nyquist sampling frequency. Such difficulties occur to selective laser 

sintering, an additive manufacturing process that employs galvo scanners to steer high-power laser beams and 

relies on non-contact, slow sensing such as visual feedback to enhance the product quality. In pursuit of addressing 

the fundamental challenge in quality control under slow sensor feedback, this paper introduces a multi-rate 

control scheme to compensate beyond-Nyquist disturbances with application to selective laser sintering. This 

is achieved by designing a special bandpass filter with tailored frequency response beyond the slow Nyquist 

frequency of the sensor, along with integrating model-based predictor that reconstructs signals from limited sensor 

data. Verification of the algorithm is conducted by both simulation and experimentation on a galvo scanner that 

directs the energy beam in the additive manufacturing process. 
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. Introduction 

Selective laser sintering (SLS) is a powder-bed based additive manu-
acturing technique that builds 3-dimensional (3D) parts by layer-wise
rocessing of powder materials. It has attracted great research and com-
ercial attention with its ability of fast prototyping and great flexibility
f processing a wide range of materials. However, one main challenge in
LS is ensuring product quality and reproducibility [1] , which demands
igh precision machine control that is robust to noise and disturbances.
o be more specific, an illustration of SLS is sketched in Fig. 1 . During
he processing of each layer, a galvo scanner [2] directs a high-energy
oving laser beam to form a cross-section layer of the part ( Fig. 2 ). Each
xis of the scanner head consists of a motor with an optical mirror at-
ached to the shaft and a high-speed closed-loop servo that ensures fast
nd accurate scanning. After finishing processing one layer, the building
urface is lowered by the thickness of a new layer, and new powders are
pread on top of the built layer. The procedure is repeated until the en-
ire 3D part is completed. The fundamental beam scanning mechanism
s subject to disturbances that limit the quality of the final 3D printed
art. On the one hand, a small error of mirror angle will lead to large
rojection error at the scanning surface due to the long focal length (i.e.
he focusing distance between the scanner mirror and the scanning sur-
ace in Figs. 1 and 2 ). On the other hand, internal disturbances arise
n the complex system consisting of multiple sub-modules (i.e., a “sys-
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em of system ” architecture). For example, the rotation of one scanner
irror can cause vibrations that transmit to the second mirror; periodic
canning of the energy beam creates oscillatory temperature variations
hat hinder uniform part quality [3] ; vibrations induced from periodic
ovement of the powder roller or from the ground also obstruct high-
peed high-precision additive manufacturing. 
Recent research has considered disturbance suppression in galvo

canner systems by using angular positions of the mirrors (measured
rom internal sensors such as encoders) as feedback. Tested control algo-
ithms include adaptive control based on recursive least-squares [4,5] or
requency-weighted minimum-variance control [6] , extended PID con-
rol [7,8] , predictive control [9] , linear quadratic Gaussian control [10] ,
nd iterative learning control [11] . However, when the scanner sub-
ystem is integrated into the overall SLS process, the aforementioned
isturbances at the system scale are invisible to the scanner subsystem
except for the cross-coupling disturbances between two mirrors). Addi-
ional feedback is thus needed for a robust and accurate manufacturing
rocess. Indeed, recent trends of imaging-based sensing focus precisely
n providing such information for quality monitoring purposes [1,12–
7] . 
If precision control of SLS can be achieved by using the additional

maging feedback, a world of new possibilities would open: machines
ould know the true status of the laser-material interaction in real time;
hallenging geometric features such as thin walls, lattices, and over-
ditor. 
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Fig. 1. Galvo scanner system in selective laser sintering process. 

Fig. 2. Galvo scanning illustration. 

Fig. 3. Block diagram of a galvo control system. 
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ang can be precisely made as desired; and ultimately, registration and
ecovery from operation failures could happen autonomously to drasti-
ally save production cost and time. While imaging-based sensing is be-
oming popular for manufacturing applications, precision SLS control
ased on such measurement feedback remains a major challenge be-
ause data-intensive sensors (e.g., CCD and infrared cameras) refresh the
ata frames slowly compared to the speed of material processing. Once
he mechanical motion or disturbance frequency is close to or beyond
he Nyquist frequency of the slow sensors, unobserved performance loss
ccurs, and classic controls become incapable to guarantee a precise and
eliable SLS. Such fundamental challenge of control design considering
eyond-Nyquist performance occurs also to other application domains,
uch as vision-based servo [18] , optical coherence tomography (OCT)
19,20] and confocal microscopy [21] . Although we focus on additive
anufacturing in this study, we will abstract our algorithm to allow for
asy adaptation to these broad application domains. 
From the viewpoint of control design, reconstruction of intersam-

ling information is key when considering beyond-Nyquist disturbance
ejection. Certainly, recovering an arbitrary random signal is impossible.
elebrated results by Shannon and its extensions [22,23] attest to the
act that a continuous signal can be recovered from periodically sampled
ata only if it is band-limited below Nyquist frequency. Many recon-
truction methods exist to approximate the original information-rich sig-
al based on different assumptions [23] . For example, Yamamoto et al.
24] formulates the problem to a maximum error minimization problem
nd utilizes sampled-data H ∞ control theory to find the best approxima-
ion under the H ∞ norm. Assuming a fast system model is given and the
ntegrative sensor dynamics are available, Tani et al. [25] estimates in-
ersample state of motion from slow and blurred images. Most literature
ocuses on signal reconstruction under a feedforward design scheme. In
 feedback closed-loop scenario, however, a greater challenge arises, as
pproximation errors may be amplified after going through the closed-
oop dynamics, and major feedforward techniques are not applicable
ere. This paper provides a novel feedback framework that remedies
hese significant barriers when the beyond-Nyquist signals consist of
arrow bands in frequency spectrum. Our main theoretical contribu-
ion is to provide a mixed-rate feedback control scheme for compen-
ating beyond-Nyquist disturbance by introducing a forward-model dis-
urbance observer and a model-based intersample data predictor. From
he viewpoint of application, this paper provides a first-instance system-
tic study of the control problem in galvo-scanning enabled additive
anufacturing systems and the like. Building on top of the scanner’s
aseline control loop, the forward-model disturbance observer ensures
losed-loop stability and separates the slow-sampled disturbance signal
rom the output signal. Based on the frequency distribution of the dis-
urbance, the proposed model-based predictor then reconstructs the dis-
urbance signal into a fast sampled one, enabling the possibility of exact
isturbance rejection at a higher sampling rate. The proposed algorithm
uilds upon our recent work [26] to address general band-limited dis-
urbances at multiple frequency locations, and drastically expands the
esign freedom by leveraging an infinite-impulse-response (IIR) struc-
ure in contrast to the previous finite-impulse-response (FIR) design. 
The remainder of this paper is organized as follows. Section 2 formu-

ates the disturbance rejection problem. The proposed multi-rate servo
cheme for disturbance rejection of beyond-Nyquist frequency is pre-
ented in Section 3 . Section 4 discusses the design of model-based pre-
ictor that uses the disturbance structure to reconstruct fast-sampled
ignals. Section 5 shows simulation as well as experimental results on
 dual-axis galvo scanner system, and finally, Section 6 concludes this
aper. A preliminary version of the paper is presented in [27] . This pa-
er is a substantially extended study that includes the full mathematical
roofs and new theoretical and experimental results. 
Notations: ℤ 

+ denotes the set of positive integers. P c ( s ) and P d ( z ) de-
ote the continuous and discrete transfer functions of a controlled plant,
espectively. P (e j 𝜔 ) is the frequency response of P ( z ) at frequency 𝜔 , with
ts real part and imaginary part denoted as ℜ 𝑃 ( e 𝑗𝜔 ) and ℑ 𝑃 ( e 𝑗𝜔 ) . We
167 
se H to represents a zero order hold (ZOH) whose transfer function is
( 𝑠 ) = (1 − e − 𝑠𝑇 𝑠 )∕ 𝑠, if the sampling period is T s . ⌈x ⌉ denotes the nearest
nteger greater than or equal to x . 

. Problem formulation 

Recall Fig. 1 . The galvo scanner is placed before an optical focusing
ystem (e.g. an F-theta lens) so that the laser beam maintains uniform
nergy density as much as possible across the entire material surface.
ig. 3 shows the block diagram of the scanner control system. The main
lements here include the continuous-time plant P c ( s ), the discrete-time
ontroller C ( z ), and the signal holder H . The scanner mirror’s angular
osition y 0 is measured by an encoder at a fast sampling rate 𝑓 𝑠𝑓 = 1∕ 𝑇 𝑠 .
he system output of interest to this paper is the actual position of the
aser spot y. G stands for the coordinate transformation of the optical
ath from y 0 to y , which is defined by the optical system’s forward kine-
atics. 
For a more concise description, we classify the system disturbances

nto two parts. Disturbance that influences the angular position of the
alvo mirror is denoted as d 0 (such as the vibration of the mirror sup-
ort, or torque disturbance of the motor); disturbance d is caused by the
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Fig. 4. Multi-rate control scheme for beyond Nyquist disturbance rejection. 
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Fig. 5. Forward-model disturbance observer. 
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1 Otherwise the plant will not respond to input at the target frequencies. That 

is, input disturbance at 𝜔 i will not impact the plant output (inherently rejected), 

and output disturbance at 𝜔 i will be immune to feedback controls because the 

plant does not pass through any signal components at the target frequency. 
ibration of the optical system, or the atmospheric turbulence that can
mpact the beam path. In order to reject d o , one can choose a high-speed
ncoder and design a suitable PID controller, H ∞ controller, or observer-
ased controller, etc. The focus of this paper is on the more challenging
ejection of d , to which the internal controller does not have direct ac-
ess. 
Because of the highly repetitive laser scanning process [3] , it is fun-

amentally important to understand how to address disturbances in the
tructure of 

( 𝑡 ) = 

𝑚 ∑
𝑖 =1 

𝜆𝑖 sin (2 𝜋𝑓 𝑖 𝑡 + 𝜙𝑖 ) , (1)

here m denotes the number of frequency components of the distur-
ance. Such a model encompasses the aforementioned disturbances in
he first paragraph of the introduction. The frequencies f i ’s are assumed
nown (can be derived or identified, see, e.g., [28–30] ), but the ampli-
ude 𝜆i ’s and phase 𝜙i ’s are unknown. In order to reject disturbance d ,
 slow external sensor such as a camera is used to measure the beam
osition y ( Fig. 1 ). The processed data comes from the external sen-
or has a much slower sampling rate f ss (compared to f sf ), that is, the
easurements are incapable to capture all frequency components of the
isturbance (i.e. there exist f i such that f i > f ss /2). Under such a problem
onfiguration, the goal is to design a control system to fully reject the
isturbance d at a fast sampling rate of f sf . 

. Multi-rate control scheme for beyond-Nyquist disturbance 

ejection 

The proposed multi-rate control scheme is presented in Fig. 4 . The
ampled signals are divided into two groups, each with a different sam-
ling rate: one group is fast sampled at f sf —indicated by the dotted
ines, and the other slowly sampled at 𝑓 𝑠𝑠 = 𝑓 𝑠𝑓 ∕ 𝐿 ( 𝐿 ∈ ℤ 

+ ), as indi-
ated by the dashed lines. Solid lines represent continuous-time signals.
he block with a down arrow and L denotes a decimator that downsam-
les the signal by an integer factor L . The inner galvo scanner control
oop is updated at a high-speed f sf , and it is assumed that f sf /2 > f max ,
here f max is the highest frequency of the system disturbances. 
We refer to the structure in the dashed box in Fig. 4 as the base-

ine control loop, with its discrete transfer function denoted as 𝑃 ∗ 
𝑑 
( 𝑧 ) .

he baseline control loop can be as simple as a pre-tuned PID controller
ith direct negative feedback, as is shown in the figure, or some more
omplex feedback/feedforward control scheme. 𝑃 ∗ 

𝑑 
( 𝑧 ) in Fig. 4 is the

dentified plant model of the baseline control loop. The external sensor
easures y ( t ), i.e., the position of laser beam on the scanning surface, at
 slower sampling rate — L times slower than f sf in this study. 𝐺 

−1 stands
or the inverse coordinate transformation that is defined by the inverse
inematics of the optical system. Q ( z ) and the multirate model-based
redictor (MMP) are two key elements of the proposed servo scheme.
hey will be discussed in the following subsections and Section 4 , re-
pectively. 
168 
.1. Forward model disturbance observer 

To illustrate the design concept, we consider controlling behavior of
he closed loop at a common sampling rate first. To that end, we model
he galvo scanner subsystem (dashed block in Fig. 4 ) as 𝑃 ∗ 

𝑑 
( 𝑧 ) , assume

̂
 
∗ 
𝑑 
( 𝑧 ) = 𝑃 ∗ 

𝑑 
( 𝑧 ) , omit the MMP block and cancel out G with 𝐺 

−1 . Then the
tructure of the disturbance compensation algorithm reduces to Fig. 5 ,
 special case of the all-stabilizing Youla–Kucera parametrization [31] .
he transfer function of the system output y [ n ] (denoted as Y ( z )) can be
erived as 

 ( 𝑧 ) = 𝑃 ∗ 
𝑑 
( 𝑧 ) 𝑈 ( 𝑧 ) + (1 − 𝑃 ∗ 

𝑑 
( 𝑧 ) 𝑄 ( 𝑧 )) 𝐷( 𝑧 ) . (2)

he relationship between the command signal u [ n ] and the system out-
ut y [ n ] is thus independent from the feedback loop. In addition, the
eedback loop introduces additional dynamics between disturbance d [ n ]
nd y [ n ]. Such disturbance observer structure (as shown in Fig. 5 ) en-
bles the possibility and convenience of flexible, high-performance dis-
urbance rejection. More specifically, if we design the filter Q ( z ) such
hat 

 − 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) 𝑄 ( e 𝑗𝜔 𝑖 ) = 0 , (3)

here 𝜔 i is the disturbance frequency in radians per second, then the
ast term of Eq. (2) will be canceled out at 𝑧 = e 𝑗𝜔 𝑖 , leading to full distur-
ance rejection at that frequency. Moreover, the closed-loop dynamics
ictate that the system remains stable if 𝑃 ∗ 

𝑑 
( 𝑧 ) is stable (automatically

atisfied since it is the closed-loop transfer function of the baseline sys-
em) and if the filter Q ( z ) is designed to be stable. 

.2. Design of filter Q ( z ) 

The trivial solution to Eq. (3) (i.e. 𝑄 ( 𝑧 ) = 𝑃 ∗−1 
𝑑 

( 𝑧 ) ) is not always fea-
ible because 𝑃 ∗−1 

𝑑 
( 𝑧 ) may not be a proper transfer function, or have

nstable poles that will challenge system stability. However, an exact
ull inversion of 𝑃 ∗−1 

𝑑 
( 𝑧 ) is unnecessary since Eq. (3) only needs to be

atisfied at 𝜔 i . Our previous work [26] introduced a stable Q ( z ) design
hat satisfies Eq. (3) at a single frequency 𝜔 0 . In addition, the design also
aintains a small gain to |1 − 𝑃 ∗ 

𝑑 
( e 𝑗𝜔 ) 𝑄 ( e 𝑗𝜔 ) | when 𝜔 ≠𝜔 0 , which is im-

ortant for avoiding amplifying noise and other frequency components
n d [ n ]. In this subsection, we extend the point-wise stable inversion
esign to the case with multiple disturbance frequencies. 

heorem 1. Let T s be the sampling time in Fig. 5 and { 𝜔 𝑖 = 2 𝜋𝑓 𝑖 𝑇 𝑠 } 𝑖 =1 , 2 , …,𝑚

e a set of frequencies in rad/sec at which disturbance rejection is desired.

et 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) be the frequency response of 𝑃 ∗ 

𝑑 
( 𝑧 ) at 𝜔 i , and assume that

𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) | ≠ 0 , 𝑖 = 1 , 2 , … , 𝑚 . 1 Let 𝑝 = 2 𝑚 − 1 , and 

 ( 𝑧 ) = 𝑄 0 ( 𝑧 )( 𝑞 0 + 𝑞 1 𝑧 
−1 + …+ 𝑞 𝑝 𝑧 

− 𝑝 ) , (4)
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𝑞 0 
⋮ 
𝑞 𝑝 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 cos 𝜔 1 ⋯ cos 𝑝𝜔 𝑝 

0 sin 𝜔 1 ⋯ sin 𝑝𝜔 𝑝 

⋮ ⋮ ⋱ ⋮ 
⋮ ⋮ ⋱ ⋮ 
1 cos 𝜔 𝑝 ⋯ cos 𝑝𝜔 𝑝 

0 sin 𝜔 𝑝 ⋯ sin 𝑝𝜔 𝑝 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ℜ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 1 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 1 ) |2 

ℑ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 1 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 1 ) |2 
⋮ 
⋮ 

ℜ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑝 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑝 ) |2 

ℑ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑝 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑝 ) |2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (5)

 0 ( 𝑧 ) = 1 − 

𝑚 ∏
𝑖 =1 

( 

1 
2 
1 + 2 𝑘 1 ,𝑖 (1 + 𝑘 2 ,𝑖 ) 𝑧 −1 + (1 + 𝑘 2 ,𝑖 ) 𝑧 −2 

1 + 𝑘 1 ,𝑖 (1 + 𝑘 2 ,𝑖 ) 𝑧 −1 + 𝑘 2 ,𝑖 𝑧 
−2 

) 

, (6)

here 

 1 ,𝑖 = − cos ( 𝜔 𝑖 ) , (7)

 2 ,𝑖 = 

1 − tan ( 𝜋Ω𝑖 𝑇 𝑠 ) 
1 + tan ( 𝜋Ω𝑖 𝑇 𝑠 ) 

. (8)

hen Eq. (3) holds for each 𝜔 i , and the amplification at 𝜔 ≠𝜔 i is controllable

y choosing Ωi , the 3-dB disturbance-rejection bandwidth of Q 0 ( z ) centered
round 𝜔 i . 

roof. For each 𝜔 i , Eq. (3) has the solution 

 ( e 𝑗𝜔 𝑖 ) = 

1 
𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) 

= 

𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) |2 , (9)

.e. 

 

 

 

 

 

ℜ 𝑄 ( e 𝑗𝜔 𝑖 ) = 

ℜ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) |2 

ℑ 𝑄 ( e 𝑗𝜔 𝑖 ) = − 

ℑ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) |2 

, 𝑖 = 1 , 2 , … , 𝑚. (10)

efine first 

 
∗ ( 𝑧 ) = 𝑞 0 + 𝑞 1 𝑧 

−1 + 𝑞 𝑝 𝑧 
− 𝑝 (11)

uch that 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) 𝑄 

∗ ( e 𝑗𝜔 𝑖 ) = 1 , then by Eq. (10) , we must have, for 𝑖 =
 , 2 , … , 𝑚, 

 

 

 

 

 

𝑞 0 + 𝑞 1 cos 𝜔 𝑖 + ⋯ + 𝑞 𝑝 cos 𝑝𝜔 𝑖 = 

ℜ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) |2 , 

𝑞 1 sin 𝜔 𝑖 + ⋯ + 𝑞 𝑝 sin 𝑝𝜔 𝑖 = − 

ℑ 𝑃 ∗ 
𝑑 
( e 𝑗𝜔 𝑖 ) |𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) |2 . 

(12) 

here are m such equation sets, or 2 m linear equations. Since 𝜔 i ∈ (0, 𝜋),
nd 𝜔 i ≠𝜔 j if ∀i ≠ j , those linear equations are independent from each
ther. Then we have 2 m linearly independent equations and 𝑝 + 1 = 2 𝑚
nknowns, and q i ’s can be uniquely solved from Eq. (5) . 
The first element in the Q filter in Eq. (4) , or Q 0 ( z ) in Eq. (6) , is a
ulti-band bandpass filter that has m narrow passbands centered at 𝜔 i .
t is produced by 1 − 𝑄 1 ( 𝑧 ) , where Q 1 ( z ) is constructed by m cascaded
attice-based band-stop filters [32,33] whose bandwidths are related to
 2, i ’s defined by Eq. (8) . One can show that 𝑄 0 ( e 𝑗𝜔 𝑖 ) = 1 at each center
requency 𝜔 i . Combining Eq. (6) and Eq. (11) then results in the pro-
osed structure of Q ( z ) in Eq. (3) . 
Because 𝑄 0 ( e 𝑗𝜔 𝑖 ) = 1 and 𝑃 ∗ 

𝑑 
( e 𝑗𝜔 𝑖 ) 𝑄 

∗ ( e 𝑗𝜔 𝑖 ) = 1 , the disturbance rejec-
ion requirement ( Eq. (3) ) is satisfied. In addition, when 𝜔 ≠𝜔 i , | Q 0 (e 

j 𝜔 )|
an be made arbitrarily small by reducing the bandwidth B w, i . Thus
1 − 𝑃 ∗ 

𝑑 
( e 𝑗𝜔 ) 𝑄 ( e 𝑗𝜔 ) | can be controlled to be approximately 1 if 𝜔 ≠𝜔 i ,

voiding large noise amplification. □

emark 1. If the identified model of the baseline closed-loop 𝑃 ∗ 
𝑑 
( 𝑧 ) con-

ains uncertainties such that 𝑃 ∗ 
𝑑 
( 𝑧 ) ≠ 𝑃 ∗ 

𝑑 
( 𝑧 ) , based on block diagram al-

ebra, Eq. (2) becomes 

 ( 𝑧 ) = 

𝑃 ∗ 
𝑑 
( 𝑧 ) 𝑈 ( 𝑧 ) + (1 − 𝑃 ∗ 

𝑑 
( 𝑧 ) 𝑄 ( 𝑧 )) 𝐷( 𝑧 ) 

1 − 𝑄 ( 𝑧 )( ̂𝑃 ∗ 
𝑑 
( 𝑧 ) − 𝑃 ∗ 

𝑑 
( 𝑧 )) 

. (13)
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y using the identified mode 𝑃 ∗ 
𝑑 
( 𝑧 ) to design Q ( z ) based on Theorem 1 ,

he disturbance term in Eq. (13) can still be fully rejected since Eq. (3) is
atisfied. Also, by maintaining a small magnitude of Q filter at frequen-
ies where 𝑃 ∗ 

𝑑 
( 𝑧 ) differs from 𝑃 ∗ 

𝑑 
( 𝑧 ) (that is, by designing the magnitude

f 𝑄 ( 𝑧 )( ̂𝑃 ∗ 
𝑑 
( 𝑧 ) − 𝑃 ∗ 

𝑑 
( 𝑧 )) in Eq. (13) to be small), the transfer function from

 ( z ) to Y ( z ) will remain close to Eq. (2) . 

. Model-based predictor design 

Recall that in Fig. 4 , the forward model disturbance observer works
t a fast sampling rate of f sf , but the sampling rate of the system output
s limited to 𝑓 𝑠𝑠 = 𝑓 𝑠𝑓 ∕ 𝐿 . Consequently, a slowly sampled disturbance
stimate 𝑑 𝐿 [ 𝑛 ] is generated by the disturbance observer loop, whereas a
ast sampled signal 𝑑 [ 𝑛 ] is needed to enable disturbance compensation
t f sf . In this section, we introduce a multirate model-based predictor to
econstruct the intersample disturbance information that is lost in the
low sampling. 
Before we start discussing the model-based predictor, it is necessary

o clarify some special cases where the slowly sampled disturbance is
ot recoverable, which are referred to as the singular frequency set 𝜎. 

efinition 1 (Singular frequency set) . For disturbance that has m fre-
uency components, a frequency distribution 𝑓 = 

(
𝑓 1 , 𝑓 2 , … , 𝑓 𝑚 

)
can be

onsidered as a point in an m -dimension space ℝ 
𝑚 . If the slow sampling

ate is f ss , then the singular set consists of a group of frequency config-
rations defined as 

= 

{
𝑓 ∈ ( ℝ ) 𝑚 ∃𝑓 𝑖 , 𝑓 𝑗 , s.t. 𝑓 𝑖 = 𝑛𝑓 ss ∕2 , or 𝑓 𝑖 ± 𝑓 𝑗 = 𝑛𝑓 ss 

}
, (14) 

here 𝑛 ∈ ℤ , 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1 , 2 , … , 𝑚 } . 

For example, let the slow sampling rate be 𝑓 𝑠𝑠 = 2 kHz. Then a
requency distribution 𝑓 = (0 . 6 kHz , 2 kHz ) belongs to the singular fre-
uency set because it has a frequency component (i.e 𝑓 2 = 2 kHz) at an
nteger multiple of f ss /2. A frequency distribution 𝑓 = (0 . 3 kHz , 1 . 7 kHz )
lso belongs to the singular frequency set because 𝑓 1 + 𝑓 2 = 𝑓 𝑠𝑠 . In gen-
ral, two scenarios contribute to a singular frequency case. The first case
rises when the disturbance has one or more frequency components
t the Nyquist frequency of the slow sensor (i.e., f ss /2), or its integer
ultiplications. In this case, there is a DC component in the frequency
omain, and the intersample signal is not recoverable without its am-
litude information. The second case arises when f contains pairs of
requency components in which one frequency is the alias of the other
hen sampled at the slow sensor speed. Thus their time-domain signals
re fused together, and amplitude information of individual components
s also needed to decouple them. 
If system disturbances are out of the singular frequency set (this is

he more common case in practice, and the external sensor speed f ss may
e chosen to avoid the singularity), then based on the intrinsic signal
odel of d [ n ], a fast disturbance estimate can be reconstructed by the
lowly sampled d L [ n ] using model-based filtering, as is discussed next. 

.1. Narrow-band signal recovery with model-based predictor 

Assume a multi-band signal d c ( t ) defined by Eq. (1) has m fre-
uency components 𝑓 = ( 𝑓 1 , 𝑓 2 , ⋯ , 𝑓 𝑚 ) ∉ 𝜎 𝑑 𝐿 [ 𝑛 ] = 𝑑 𝑐 ( 𝑛𝐿𝑇 𝑠 ) is the slow-
ampled signal with sampling time LT s , 𝐿 ∈ ℤ 

+ . This subsection pro-
ides the proposed approach to recover a fast-sampled signal 𝑑 [ 𝑛 ] =
 𝑐 ( 𝑛𝑇 𝑠 ) with sampling time T s . 
Because the fast sampling time divides the slow sampling time, every

 th sample of d [ n ] can be obtained from d L [ n ] directly, i.e. 

[ 𝑛𝐿 ] = 𝑑 𝐿 [ 𝑛 ] . (15)

We show that the k th intersample signal ( 𝑘 = 1 , 2 , … , 𝐿 − 1 ) between
 [ nL ] and 𝑑[( 𝑛 + 1) 𝐿 ] (denoted as 𝑦 𝑘 [ 𝑛 ] ≜ 𝑑[ 𝑛𝐿 + 𝑘 ]) can be recovered by

 𝑘 [ 𝑛 ] = 𝒘 
𝑇 
𝑘 
⋅ 𝝋 𝑑 [ 𝑛 ] − 𝒃 𝑇 ⋅ 𝝋 𝑦 [ 𝑛 ] . (16)
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Fig. 6. Prediction error of IIR ( 𝛼 = 0 . 95 ) and FIR ( 𝛼 = 0 ) predictor, under the 
same configuration as Fig. 7 , and the data vectors 𝝋 d and 𝝋 y are initialed as zero 

vectors. In plot (a), the input has a random noise with maximum amplitude of 

0.05. The IIR predictor shows better robustness to noise. In plot (b), the input 

is noise-free, both the IIR and FIR predictors can make accurate predictions in 

steady state. 
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here 𝝋 d [ n ] and 𝝋 y [ n ] are data vectors defined as 

 𝑑 [ 𝑛 ] ≜
[
𝑑 𝐿 [ 𝑛 ] , 𝑑 𝐿 [ 𝑛 − 1] , ⋯ , 𝑑 𝐿 [ 𝑛 − (2 𝑚 − 1)] 

]𝑇 
, (17)

 𝑦 [ 𝑛 ] ≜
[
𝑦 𝑘 [ 𝑛 − 1] , 𝑦 𝑘 [ 𝑛 − 2] , ⋯ , 𝑦 𝑘 [ 𝑛 − 2 𝑚 ] 

]𝑇 
. (18)

 k and b are predictor parameter vectors 

 𝑘 ≜
[
𝑤 𝑘, 0 , 𝑤 𝑘, 1 , ⋯ , 𝑤 𝑘, (2 𝑚 −1) 

]𝑇 
, (19)

 ≜
[
𝑏 1 , 𝑏 2 , … , 𝑏 2 𝑚 

]𝑇 
. (20)

he parameter vector b is composed of the coefficients of polynomial
( 𝑧 −1 ) = 1 + 𝑏 1 𝑧 

−1 + …+ 𝑏 2 𝑚 𝑧 
−2 𝑚 , which is computed from expanding

he product 

( 𝑧 −1 ) = 

𝑚 ∏
𝑖 =1 

(1 − 2 𝛼 cos (2 𝜋𝑓 𝑖 𝐿𝑇 𝑠 ) 𝑧 −1 + 𝛼2 𝑧 −2 ) , (21)

here 𝛼 ∈ (0, 1) is a design parameter and 𝑧 −1 is the one step delay
perator. 
The prediction formula ( Eq. (16) ) computes the k th intersample y k 

y a linear combination of 2 m consecutive samples from d L [ n ], as well
s by a linear combination of 2 m previous predictions about y k . The
arameters b can be calculated by Eq. (21) . The algorithm of obtaining
ector w k is provided in the following theorem. 

heorem 2. Given the above definitions, d [ n ] can be fully recovered from
 L [ n ] by Eqs. (15) and (16) , if f ∉ 𝜎 and w k is from the solution of 

 𝑘 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ℎ 𝑘, 1 
⋮ 

ℎ 𝑘, 2 𝑚 ( 𝐿 −1) 
𝑤 𝑘, 0 
⋮ 

𝑤 𝑘, 2 𝑚 −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= − 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 1 
𝑎 2 
⋮ 

𝑎 2 𝑚 
0 
⋮ 
0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
+ ̄𝐛 , (22)

 𝑘 

△
= [ ̃𝐌 𝑘 | 𝒆 𝑘 𝒆 𝑘 + 𝐿 ⋯ 𝒆 𝑘 +(2 𝑚 −1) 𝐿 ] , (23)

here M k is a square matrix with a dimension of 2 mL ×2 mL; e j is the el-
mental column vector whose entries are all zero except for the jth entry,

hich equals 1; and 

̃
 𝑘 

△
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 … 0 
𝑎 1 ⋱ ⋱ ⋮ 
⋮ ⋱ ⋱ 0 

𝑎 2 𝑚 ⋱ ⋱ 1 
0 ⋱ ⋱ 𝑎 1 
⋮ ⋱ ⋱ ⋮ 
0 … 0 𝑎 2 𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 2 𝑚𝐿 ×2 𝑚 ( 𝐿 −1) . 

(24)

arameters 
[
𝑎 1 , 𝑎 2 , … , 𝑎 2 𝑚 

]
in Eqs. (22) and (24) come from the disturbance

odel 𝐴 ( 𝑧 −1 ) = 1 + 𝑎 1 𝑧 
−1 + 𝑎 2 𝑧 

−2 + …+ 𝑎 2 𝑚 𝑧 
−2 𝑚 , which is computed by

xpanding 

 ( 𝑧 −1 ) = 

𝑚 ∏
𝑖 =1 

(1 − 2 𝑐 𝑜𝑠 (2 𝜋𝑓 𝑖 𝑇 𝑠 ) 𝑧 −1 + 𝑧 −2 ) . (25)

he column vector 𝒃̄ in the rightmost of Eq. (22) contains all zeros, except

or the 𝐿, 2 𝐿, … , 2 𝑚𝐿 -th entries, which equal b 1 , b 2 , ⋅⋅⋅, b 2 m . 

roof. In order to establish and validate Eq. (16) , we construct a poly-
omial equation 

 𝑘 ( 𝑧 −1 ) 𝐴 ( 𝑧 −1 ) + 𝑧 − 𝑘 𝑊 𝑘 ( 𝑧 − 𝐿 ) − 𝐵 
∗ ( 𝑧 − 𝐿 ) = 1 , (26)

here 𝐴 ( 𝑧 −1 ) is defined by Eq. (25) , and 

 𝑘 ( 𝑧 −1 ) = 1 + ℎ 𝑘, 1 𝑧 
−1 + …+ ℎ 𝑘, 2 𝑚 ( 𝐿 −1) 𝑧 

−2 𝑚 ( 𝐿 −1) , (27)

 𝑘 ( 𝑧 − 𝐿 ) = 𝑤 𝑘, 0 + 𝑤 𝑘, 1 𝑧 
− 𝐿 + …+ 𝑤 𝑘, 2 𝑚 −1 𝑧 

−(2 𝑚 −1) 𝐿 , (28)
170 
 
∗ ( 𝑧 − 𝐿 ) = 𝑏 1 𝑧 

− 𝐿 + 𝑏 2 𝑧 
−2 𝐿 + ⋯ + 𝑏 2 𝑚 𝑧 

−2 𝑚𝐿 . (29)

he coefficients of 𝐵 
∗ ( 𝑧 − 𝐿 ) are the same as those in 𝐵( 𝑧 −1 ) (computed

y Eq. (21) ). 
Based on the internal signal model [34] of d [ n ], 𝐴 ( 𝑧 −1 ) 𝑑[ 𝑛 ] = 0 at the

teady state. Combining this with Eq. (26) yields 

1 − 𝑧 − 𝑘 𝑊 𝑘 ( 𝑧 − 𝐿 ) + 𝐵 
∗ ( 𝑧 − 𝐿 ) 

)
𝑑[ 𝑛 ] = 𝐻 𝑘 ( 𝑧 −1 ) 𝐴 ( 𝑧 −1 ) 𝑑[ 𝑛 ] = 0 , (30)

hich gives 

𝑑[ 𝑛 ] = 𝑧 − 𝑘 𝑊 𝑘 ( 𝑧 − 𝐿 ) 𝑑[ 𝑛 ] − 𝐵 
∗ ( 𝑧 − 𝐿 ) 𝑑[ 𝑛 ] 

 𝑤 𝑘, 0 𝑑[ 𝑛 − 𝑘 ] + 𝑤 𝑘, 1 𝑑[ 𝑛 − 𝑘 − 𝐿 ] ⋯ + 𝑤 𝑘, 2 𝑚 −1 𝑑[ 𝑛 − 𝑘 − (2 𝑚 − 1) 𝐿 ] 
− 𝑏 1 𝑑[ 𝑛 − 𝐿 ] − 𝑏 2 𝑑[ 𝑛 − 2 𝐿 ] − ⋯ − 𝑏 2 𝑚 𝑑[ 𝑛 − 2 𝑚𝐿 ] . 

(31) 

eplacing n with 𝑛𝐿 + 𝑘, we have 

[ 𝑛𝐿 + 𝑘 ] = 𝑤 𝑘, 0 𝑑[ 𝑛𝐿 ] + ⋯ + 𝑤 𝑘, 2 𝑚 −1 𝑑[( 𝑛 − (2 𝑚 − 1)) 𝐿 ] 
− 𝑏 1 𝑑[( 𝑛 − 1) 𝐿 + 𝑘 ] − ⋯ − 𝑏 2 𝑚 𝑑[( 𝑛 − 2 𝑚 ) 𝐿 + 𝑘 ] . (32) 

ecalling 𝑑 𝐿 [ 𝑛 ] = 𝑑[ 𝑛𝐿 ] and 𝑦 𝑘 [ 𝑛 ] ≜ 𝑑[ 𝑛𝐿 + 𝑘 ] , it follows that
q. (32) can be written as Eq. (16) . 
Now consider solving Eq. (26) . Expanding the equation and collect-

ng the coefficients of 𝑧 − 𝑖 ’s ( 𝑖 = 1 , 2 , … , 2 𝑚𝐿 ) , one can get 2 mL linear
quations with 2 mL unknowns, which can be written in matrix form as
q. (22) . □

Note that the intersample signals y k [ n ] are computed from not only
he weighted sum of d [ n ], but also the historical prediction values. In
q. (21) , 𝛼 determines the weighting of input signals (sensor measure-
ents) and historical prediction signals. As 𝛼 gets closer to 1, the pre-
ictor will be more dependent on the historical predictions rather than
nput signals, thus less sensitive to the input noise (see Fig. 6 a). As a
rade-off, a predictor with larger 𝛼 has a slower converging speed (see
ig. 6 b). 



H. Xiao et al. Mechatronics 56 (2018) 166–174 

Fig. 7. Bode plot of the IIR and FIR predictor. The slow sensor sampling speed is limited to 𝑇 𝑠 = 0 . 8 ms, and 𝐿 = 3 . The disturbance has three bands at 𝑓 1 = 
187 . 5 Hz ,𝑓 2 = 812 . 5 Hz and 𝑓 3 = 1125 Hz, two of which (red dashed lines) are beyond the Nyquist frequency ( 𝑓 𝑁 = 625 Hz ) . 
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To get more insights in choosing 𝛼, one can derive the transfer func-
ion from d L [ n ] to y k [ n ] based on Eq. (16) : 

 
∗ 
𝑘 
( 𝑧 ) = 

𝑤 𝑘, 0 + 𝑤 𝑘, 1 𝑧 
−1 + …+ 𝑤 𝑘, (2 𝑚 −1) 𝑧 

−(2 𝑚 −1) 

1 + 𝑏 1 𝑧 
−1 + …+ 𝑏 2 𝑚 𝑧 

−2 𝑚 , (33)

here the denominator is computed by Eq. (21) , and the numerator can
e solved by Eq. (22) . Fig. 7 shows the bode plot of 𝑊 

∗ 
𝑘 
( 𝑧 ) with respect

o different 𝛼’s. Here, the disturbances consist of three frequency compo-
ents, f 1 , f 2 and f 3 , where f 1 is below and the other two are beyond the
yquist frequency. As shown, a smaller 𝛼 leads to a larger magnitude
esponse. In the extreme case, if 𝛼 = 0 , then the denominator of trans-
er function 𝑊 

∗ 
𝑘 
( 𝑧 ) becomes 1. Consequently, the predictor reduces to an

IR structure with a magnitude response above 0 dB, and the predictions
re purely dependent on input signals. Therefore, an IIR predictor with a
arger 𝛼 is more robust to input noise; an FIR predictor is most sensitive
o input noise. In practice, in order to reduce the influence of measure-
ent noise and increase the prediction accuracy, 𝛼 is recommended to
e chosen closer to 1, e.g., starting with 𝛼 = 0 . 9 . The value can be fur-
her increased when dealing with noisy applications. However, 𝛼 must
e less than 1, because the roots of polynomial 𝐵( 𝑧 −1 ) (hence the poles
f 𝑊 

∗ 
𝑘 
( 𝑧 ) ) in Eq. (21) are at 𝑧 = 𝛼e ± 𝑗2 𝜋𝑓 𝑖 𝐿𝑇 𝑠 and must fall inside the unit

ircle to yield a stable filtering process. Note that all predictors have the
ame frequency response at 𝑓 = 𝑓 𝑖 , 𝑖 = 1 , 2 , 3 , which is expected because
ll designs target to recover signals at those frequencies. Note also that
he transfer functions have a sampling of T s and the beyond-Nyquist fre-
uency response is symmetric in magnitude to that below the Nyquist
requency. 

.2. Decoupled solution form and computation reduction 

In Theorem 2 , the dimension of M k is scaled by the number of fre-
uency components m and downsampling ratio L . When m and L are
arge, solving high-dimension linear system equations could be com-
utationally expensive. However, it turns out that instead of solving
q. (22) , the predictor parameters can be solved from an equivalent
orm with reduced computation cost. 
Let the augmented matrix 2 of system Eq. (22) be 𝑴̄ = [ 𝑴 𝑘 | 𝒃 ] ,

here b is the summation of vectors on the right side of Eq. (22) . Ob-
2 Given a linear system equation 𝐀 𝐱 = 𝐛 , the augmented matrix is defined as 
̄
 = [ 𝑨 | 𝒃 ] . 

𝑑  

𝑑  

171 
erving the sparse structure of the elemental vectors { 𝒆 𝑘 , ⋯ , 𝒆 𝑘 +(2 𝑚 −1) 𝐿 }
n M k in Eq. (23) , we can swap rows of 𝑴̄ to yield, without changing
he solutions to the associated linear system, 

̄
 = 

[ 
𝑨 2 𝑚 ×2 𝑚 ( 𝐿 −1) 𝑰 2 𝑚 ×2 𝑚 𝒃 1 

𝑩 2 𝑚 ( 𝐿 −1)×2 𝑚 ( 𝐿 −1) 𝟎 2 𝑚 ( 𝐿 −1)×2 𝑚 𝒃 2 

] 
, (34) 

here I is an identity matrix, 0 is a zero matrix, b 1 and b 2 
re column vectors with length 2 m and length 2 𝑚 ( 𝐿 − 1) . Let 𝒉 𝑘 =
 ℎ 𝑘, 1 … ℎ 𝑘, 2 𝑚 ( 𝐿 −1) ] 𝑇 , 𝒘 𝑘 = [ 𝑤 𝑘, 0 … 𝑤 𝑘, 2 𝑚 −1 ] 𝑇 , then an equiv-
lent form of Eq. (22) is 
 

𝑨 𝑰 

𝑩 𝟎 

] [ 
𝒉 𝑘 
𝒘 𝑘 

] 
= 

[ 
𝒃 1 
𝒃 2 

] 
, (35) 

r, 

 𝒉 𝑘 = 𝒃 2 , (36) 

 𝑘 = − 𝑨 𝒉 𝑘 + 𝒃 1 . (37)

his suggests that one can solve system Eq. (36) first, then the predictor
arameters w k can be computed by a direct matrix-vector multiplication
nd a vector addition in Eq. (37) . 
For a better understanding of procedures of designing the IIR predic-

or, we give an illustrative example below. 

xample 1. Consider the case where the disturbance contains one fre-
uency component (i.e. 𝑚 = 1 ) at 𝑓 = 1 . 2 kHz, and the position sen-
or of the galvo scanner has a fast sampling rate 𝑓 𝑠𝑓 = 3 kHz. With-
ut loss of generality, let the external sensor’s sampling rate be 𝑓 𝑠𝑚𝑎𝑥 =
 . 2 kHz, which is not fast enough because the disturbance occurs beyond
he Nyquist frequency 𝑓 𝑁 

= 𝑓 𝑠𝑚𝑎𝑥 ∕2 = 0 . 6 kHz. For vision cameras, the
chievable frame update rate depends on the size of field of view, and
 smax is reached by using the minimum view window. The proposed pro-
edure for designing the predictor is as follows: 
Choose L . This relates to f ss , the sampling rate of the slow sensor,

y the relationship 𝐿 = 𝑓 𝑠𝑓 ∕ 𝑓 𝑠𝑠 . Also, f ss must be smaller than f smax . The
inimum L is then given by 𝐿 𝑚𝑖𝑛 = 

⌈
𝑓 𝑠𝑓 ∕ 𝑓 𝑠𝑚𝑎𝑥 

⌉
= 3 . Here, we choose

 = 𝐿 𝑚𝑖𝑛 = 3 as an example. 
Define predictor structure . The predictor is defined as (cf.

ection 4.1 ) 

[3 𝑛 ] = 𝑑 𝐿 [ 𝑛 ] , (38)

[3 𝑛 + 1] = 𝑤 1 , 0 𝑑 𝐿 [ 𝑛 ] + 𝑤 1 , 1 𝑑 𝐿 [ 𝑛 − 1] − 𝑏 1 𝑦 1 [ 𝑛 − 1] − 𝑏 2 𝑦 1 [ 𝑛 − 2] , (39)
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Fig. 8. Bode plot of 𝑃 ∗ 
𝑑 
( 𝑧 ) , 𝑃 ∗ 

𝑑1 ( 𝑧 ) and 𝑃 
∗ 
𝑑2 ( 𝑧 ) . 

Table 1 

Disturbance reduction percentage under dif- 

ferent noise levels and with different identi- 

fied baseline models. 

Noise level 𝑃 ∗ 
𝑑 
( 𝑧 ) 𝑃 ∗ 

𝑑1 ( 𝑧 ) 𝑃 ∗ 
𝑑2 ( 𝑧 ) 

0% 99.80 99.88 99.45 

7% 99.44 99.25 99.43 

14% 98.72 98.62 98.85 

28% 96.89 96.60 97.70 

 

m  

b  

a  

f  

q  

a  

c  
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l  

(

𝒃

a

𝒘
𝑇 
, 

𝒘
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. 
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g  
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a  

u  
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a  

a  

b  

a  

m  

2  

 

t  

s  
[3 𝑛 + 2] = 𝑤 2 , 0 𝑑 𝐿 [ 𝑛 ] + 𝑤 2 , 1 𝑑 𝐿 [ 𝑛 − 1] − 𝑏 1 𝑦 2 [ 𝑛 − 1] − 𝑏 2 𝑦 2 [ 𝑛 − 2] . (40)

here 𝑦 1 [ 𝑛 ] = 𝑑[3 𝑛 + 1] and 𝑦 2 [ 𝑛 ] = 𝑑[3 𝑛 + 2] . 
Compute parameters. Use Eq. (25) and Eq. (21) to obtain a i ’s and

 i ’s: 𝑎 1 = −2 cos (2 𝜋𝑓𝑇 𝑠 ) , 𝑎 2 = 1 , 𝑏 1 = −2 𝛼cos (6 𝜋𝑓𝑇 𝑠 ) , 𝑏 2 = 𝛼2 . 
Obtain [ w 1, 0 , w 1, 1 ]. From Eqs. (22) –(24) , construct 

 

 

 

 

 

 

 

 

1 0 0 0 1 0 
𝑎 1 1 0 0 0 0 
𝑎 2 𝑎 1 1 0 0 0 
0 𝑎 2 𝑎 1 1 0 1 
0 0 𝑎 2 𝑎 1 0 0 
0 0 0 𝑎 2 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ℎ 1 , 1 
ℎ 1 , 2 
ℎ 1 , 3 
ℎ 1 , 4 
𝑤 1 , 0 
𝑤 1 , 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 1 
𝑎 2 
𝑏 1 
0 
0 
𝑏 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (41)

arameters w 1, 0 and w 1, 1 come from the unique solution of Eq. (41) .
eorganizing the rows of corresponding augmented matrix yields 

̃
 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 1 0 𝑎 1 
0 𝑎 2 𝑎 1 1 0 1 0 
𝑎 1 1 0 0 0 0 𝑎 2 
𝑎 2 𝑎 1 1 0 0 0 𝑏 1 
0 0 𝑎 2 𝑎 1 0 0 0 
0 0 0 𝑎 2 0 0 𝑏 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (42)

hen w 1, 0 , w 1, 1 are given by 

 

𝑤 1 , 0 
𝑤 1 , 1 

] 
= − 

[ 
1 0 0 0 
0 𝑎 2 𝑎 1 1 

] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
ℎ 1 , 1 
ℎ 1 , 2 
ℎ 1 , 3 
ℎ 1 , 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
+ 

[ 
𝑎 1 
0 

] 
, (43)

here 

 

 

 

 

 

 

ℎ 1 , 1 
ℎ 1 , 2 
ℎ 1 , 3 
ℎ 1 , 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑎 1 1 0 0 
𝑎 2 𝑎 1 1 0 
0 0 𝑎 2 𝑎 1 
0 0 0 𝑎 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑎 2 
𝑏 1 
0 
𝑏 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (44)

Obtain [ w 2, 0 , w 2, 1 ]. Following the same procedure as the last step,
e have 

 

𝑤 2 , 0 
𝑤 2 , 1 

] 
= − 

[ 
𝑎 1 1 0 0 
0 0 𝑎 2 𝑎 1 

] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
ℎ 2 , 1 
ℎ 2 , 2 
ℎ 2 , 3 
ℎ 2 , 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
+ 

[ 
𝑎 2 
0 

] 
, (45)

here 

 

 

 

 

 

 

ℎ 2 , 1 
ℎ 2 , 2 
ℎ 2 , 3 
ℎ 2 , 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 0 0 0 
𝑎 2 𝑎 1 1 0 
0 𝑎 2 𝑎 1 1 
0 0 0 𝑎 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

−1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑎 1 
𝑏 1 
0 
𝑏 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (46)

. Simulation and experiment results 

In this section, we present the simulation and experiment results of
eyond-Nyquist disturbance compensation on a galvo scanner testbed.
he dual-axis 6215H galvo scanner from Cambridge Technology Inc is
sed. Each axis has ± 20° of scan angles and 8 μrad of repeatability.
t also comes with a driver board that has a built-in motor driver cir-
uit and pre-tuned PID-type control algorithms. The baseline closed-loop
odel 𝑃 ∗ 

𝑑 
( 𝑧 ) is obtained by system identification techniques [35] at a

ast sampling rate of 10 kHz, and the result is 

 ̂𝑑 

∗ ( 𝑧 ) = 

0 . 551 𝑧 −1 + 0 . 356 𝑧 −2 − 0 . 0496 𝑧 −3 + 0 . 00673 𝑧 −4 

1 − 0 . 164 𝑧 −1 + 0 . 0278 𝑧 −2 − 0 . 00166 𝑧 −3 + 0 . 000152 𝑧 −4 
. 

o show that the disturbance rejection algorithm is robust to model un-
ertainties (recall Remark 1 ), two inaccurate models, 𝑃 ∗ 

𝑑1 ( 𝑧 ) and 𝑃 
∗ 
𝑑2 ( 𝑧 ) ,

re also tested in simulation. The inaccurate models are obtained by
dding parameter uncertainties to the true model. Their differences with
̂
 
∗ 
𝑑 
( 𝑧 ) in the frequency domain are shown in Fig. 8 . 
172 
We first build the control scheme in Fig. 4 in MATLAB. The mini-
um sampling time of the vision sensor is limited to 0.3ms. For narrow-
and disturbances, one can use the regular disturbance observer [36] to
chieve perfect disturbance rejection. However, if the disturbance has
requency components greater than 𝑓 𝑁 

= 1667 Hz (the Nyquist fre-
uency of the vision sensor), the actual plant output will be significantly
mplified [26] . In simulation, the disturbance d has three frequency
omponents at 0.8 f N , 1.6 f N and 2.3 f N , respectively. The fast and slow
ampling rates are 𝑓 𝑠𝑓 = 10 kHz and 𝑓 𝑠𝑠 = 10∕3 kHz, respectively. Fol-
owing the example procedure in Section 4 , we obtain parameter b in
21) : 

 = 

[
−0 . 1668 0 . 7440 0 . 7068 0 . 6715 −0 . 1359 0 . 7351 

]𝑇 
. 

nd parameters w 1 and w 2 : 

 1 = 

[
−0 . 0365 −0 . 0877 0 . 1119 −0 . 1501 −0 . 0110 0 . 1043 

]
 2 = 

[
−0 . 0688 −0 . 0045 0 . 1522 −0 . 1023 0 . 0903 −0 . 0051 

]
ig. 9 shows the system output sampled at 10 kHz. The dotted and solid
ines are the system outputs when the proposed compensation scheme is
urned off and on, respectively. The results indicate that the proposed al-
orithm has the ability of full disturbance rejection, as the fast-sampled
utputs converge to zero when the proposed algorithm is turned on. We
lso tested the control scheme under different noise levels and model
ncertainties. Disturbance reduction performance is compared by mea-
uring the reduction percentage of the highest system output amplitude
t steady state. The test results are shown in Table 1 . Here, the noise is
 uniformly distributed random signal, and the noise level is the ratio
etween the maximum noise amplitude and the maximum disturbance
mplitude. The test results show that the disturbance reduction perfor-
ance remains high even when the noise level is increased from 0 to
8% and the proposed algorithm is highly robust to model uncertainty.
Fig. 10 shows the time-domain disturbance reconstruction results by

he IIR predictor. The dotted line represents the real-time disturbance
ignal. The slowly measured disturbance samples are marked with cross
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Fig. 9. System output sampled at 10 kHz. 

Fig. 10. Disturbance reconstruction results by IIR predictor with 𝛼 = 0 . 95 . 

Fig. 11. Galvo scanner outputs sampled at 10 kHz. 
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Fig. 12. FFT of the galvo scanner outputs sampled at 10 kHz. 
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arks, and the reconstructed disturbance samples are marked with cir-
le marks. In the simulation, we added a white noise with a noise level
f 4% to the input of IIR predictor. The predictor successfully recovered
he intersample data from the noisy and slow-sampled signal. 
In the experiment on the galvo scanner testbed, we feed a 2000 Hz

eyond-Nyquist disturbance into the system. Fig. 11 shows the sampled
ime-domain system outputs sampled at 10 kHz. After the disturbance
ompensation loop is enabled at 𝑡 = 2 . 5 s, the outputs drop dramatically,
ielding a 90% reduction of the regulation errors (Compared to the sim-
lation results, there was measurement noise in the scanner outputs).
he disturbance rejection result is also observed in the frequency do-
ain ( Fig. 12 ). When the compensation loop is disabled, the outputs
ave a large spike at 2000 Hz, which disappears after turning on the
roposed algorithm. 

. Conclusion 

In this paper, the problem of beyond-Nyquist disturbance rejection
s addressed with application to beam steering in selective laser sin-
ering. Based on frequency information about the disturbance, we de-
igned a multi-rate model-based predictor that can accurately recover
he intersample disturbance information from slowly sampled measure-
173 
ents. Combined with a forward model disturbance estimation struc-
ure, the proposed algorithm enables the possibility of fully rejecting
eyond Nyquist narrow-band disturbances. Both the simulated and ex-
erimental results show the effectiveness of the proposed algorithm. 
Other than the focused SLS process, the proposed control scheme

s expected to apply to systems where beyond-Nyquist disturbances ex-
st, and the sensor sampling rate is limited. Future work includes the
xtension to other disturbance structures (e.g., general periodic signals
nd signal with a moving-average model, etc.) and other application
omains. 
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