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A Formal Safety Net for

Waypoint Following in Ground Robots

Brandon Bohrer1,2, Yong Kiam Tan1, Stefan Mitsch1, Andrew Sogokon1, and André Platzer1,2

Abstract—We present a reusable formally verified safety net
that provides end-to-end safety and liveness guarantees for 2D
waypoint-following of Dubins-type ground robots with tolerances
and acceleration. We: i) Model a robot in differential dynamic
logic (dL), and specify assumptions on the controller and robot
kinematics, ii) Prove formal safety and liveness properties for
waypoint-following with speed limits, iii) Synthesize a monitor,
which is automatically proven to enforce model compliance at
runtime, and iv) Our use of the VeriPhy toolchain makes these
guarantees carry over down to the level of machine code with
untrusted controllers, environments, and plans. The guarantees
for the safety net apply to any robot as long as the waypoints
are chosen safely and the physical assumptions in its model hold.
Experiments show these assumptions hold in practice, with an
inherent trade-off between compliance and performance.

Index Terms—Formal Methods in Robotics and Automation,
Robot Safety, Hybrid Logical/Dynamical Planning and Verifica-
tion, Motion Control, Kinematics

I. INTRODUCTION

MANY autonomous ground robots are safety-critical

because they operate near or in concert with humans.

Formally verifying these systems is important: logic allows

rigorous correctness arguments that apply in all system states,

providing a powerful complement to system testing. Yet for

robotics, even choosing a property to formally verify is chal-

lenging: many modeling abstractions and safety properties are

available, with competing trade-offs. Discrete techniques can

be applied to control software, but robots are cyber-physical

systems: their verification must account for discrete controllers,

continuous mechanics, and interactions between them.
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Hybrid systems [1] emerged as mathematical models for

robots because they integrate discrete with continuous dy-

namics, but they raise new questions about what it means

to verify a robot. Robot kinematics are endlessly nuanced,

so any model is always an approximation of reality. Even

control software is rarely modeled exactly: simplifications are

necessary in practice to limit verification complexity. More-

over, control software evolves throughout its development,

and since verification of arbitrary programs cannot be fully

automated, re-verifying control code after every change would

be impractical.

How then ought a robot be verified? Online monitoring,

per the Simplex method [2], offers a solution: run the con-

trol software, but treat its control decision as an untrusted

suggestion which is supervised against a trusted monitor con-

dition φ describing all “known-safe” decisions. Whenever the

suggestion is known-safe the supervising monitor allows it to

proceed, but otherwise invokes a trusted fallback decision, like

emergency braking, to regain safety before returning control

to the untrusted controller. Online monitoring is appealing

because it enables treating the controller as a black box:

only the monitor condition and fallback are safety-critical,

both of which are simpler and can often be re-used as the

control software evolves, or even across hardware platforms.

To promote reusability, we target a waypoint-following notion

of safety: other notions of safety such as collision-avoidance

often come with restrictive assumptions, e.g., on the quantity

and dynamics of obstacles, whereas waypoint-following ab-

stracts away such problems under the choice of safe waypoints.

The monitor conditions and fallback are both best kept

simple. While steering enables active safety and may re-

duce the required braking power, we simply brake at the

maximum rate. Regardless which fallback is used, however,

what is essential is that the monitor conditions and fallback

provide safety. The ModelPlex [3] synthesizer and VeriPhy [4]

compilation toolchain ensures safety at implementation level

by: i) synthesizing correct-by-construction monitor conditions

φ from a proven-safe hybrid systems model containing a

proven-safe fallback (ModelPlex) ii) soundly compiling high-

level monitor conditions and high-level fallback programs to

machine-code monitor implementations with sound machine

arithmetic (VeriPhy). ModelPlex and VeriPhy expand upon the

reusability inherent to the black-box approach: hybrid systems

models and proofs can treat many system parameters (e.g.,

tolerances and system delay) generically, once and for all, for

all choices of the parameters. The hybrid system model can be

used as a template: new monitors can often be generated for

new systems without doing new proofs, so long as choosing
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system parameters suffices to faithfully model the new system.

The VeriPhy approach is also end-to-end in that VeriPhy

outputs a chain of formal proofs, in theorem provers, that

the actions taken by the machine-level (monitored) program

fall under the original model and are thus formally safe. Even

then, some guarantees are lost when sensors and actuators are

buggy, when monitor conditions for the physical dynamics are

violated, or when an unsafe plan is provided: we discuss these

limitations in related work (Sect. II).

The VeriPhy approach has until now only been tested on an

overly simplistic low-speed robot implementing a model of

straight-line motion with direct velocity control. In this paper,

we show for the first time that this approach scales to realistic

models and simulations:

• We model as a hybrid program [5] a 2D accelerating

vehicle that follows bloated Dubins paths.

• We prove safety and liveness properties for the model

with the KeYmaera X theorem prover [6] for differential

dynamic logic (dL) [5].

• We use VeriPhy [4] to synthesize a monitor and to

automatically prove its correctness down to the machine

code implementation, which gives an end-to-end proof.

Waypoint-following has the advantage of a clean interface

to other robot software with its dual purposes of both safety

(avoiding unsafe regions) and liveness (reaching its goal). We

call waypoint-following safe iff the robot always follows the

given path to its waypoint within a given tolerance and obeys

given speed limits. Collision freedom then reduces to checking

that correct waypoints and speed limits were given. The system

is live if at all points it is possible to drive the rest of the way

to the waypoint.

Obstacle avoidance [7], in contrast, directly verifies collision

freedom, but liveness is challenging to even state let alone

prove. The mix of safety and liveness is essential because

a motionless robot is technically safe, but neither live nor

useful because it never reaches its goal. By studying safety and

liveness of waypoint-following, we provide a clean separation

of concerns compared to the orthogonal question of verifying

a discrete planner [8].

Bloating the 2D Dubins dynamics adds an additional toler-

ance margin to the ideal dynamics which accounts for the

gap between the approximate dynamical model and reality

(Sect. IV). Our evaluation shows that: i) a variety of classical

control choices such as bang-bang and PD control fit within

the bloated ideal path ii) the model assumptions hold in

practice because AirSim’s non-holonomic dynamics fall within

bloated ideal holonomic Dubins dynamics, and iii) there is a

trade-off between meeting model assumptions and operational

performance: more aggressive controllers break assumptions

more often. This paper also serves as a case study on safety

and liveness verification: once the safety property is proved,

much of the effort can be reused to prove liveness. The safety

and liveness proof were performed interactively, but crucially

need only be performed once per dL model, which describes

an entire class of systems. Thanks to the automated proofs

provided by VeriPhy, runtime monitors can be applied to new

controls and even new hardware or simulation platforms with

no additional manual proofs, so long as the controls and

dynamics stay within a tolerance around the ideal holonomic

dynamics, so that the same dL model applies. Because the

model treats system parameters (such as system delays and

tolerances) generically, a wide variety of Dubins-like systems

are already supported simply by changing the parameters. That

is how we developed a formal safety net for ground robots and

evaluated it on a realistic simulation. Because the monitor is

reusable, we hope our safety net can assist future implementers

in developing new systems.

II. RELATED WORK

Related work in formal methods and robotics applied syn-

thesis and verification techniques to safe robotic control. This

paper is the first to use a verified-safe monitor to enforce

waypoint-following correctness of a realistic simulation.

A. Synthesis for Verified Planning and Control

Much of the existing related work considers high-level plan

synthesis in isolation, with informal proofs of correctness.

Our work is complementary: we address correctness of low-

level control, provide formal guarantees, and check rather than

assume that runtime physics matches the model:

• The tools LTLMoP [9] and TuLiP [10] synthesize robot

controls that satisfy a temporal logic specification. They

excel at providing an intuitive user interface for specify-

ing discrete planning problems, though discretization [11,

12] can be used to support continuous dynamics. We fo-

cus instead on providing the highest degree of confidence

by proving safety in a theorem prover, including proofs

of the dynamics and down to machine-code level.

• Controllers have been synthesized: i) from temporal logic

specifications for linear systems [13], ii) for adaptive

cruise control [14], tested in simulation and on hardware,

and iii) from safety proofs [15] for switched systems

using templates. These all assume model compliance and

cannot ensure feedback controller correctness.

B. Offline Verification for Planning and Control

In contrast to online synthesis, offline verification can show

safety in all uncountably many states. High-level models

of the system under consideration can already be verified

during the design phase of a project when changes are cheap.

Much robotics verification work focuses on hybrid systems

models; common approaches are reachability analysis [16]

and theorem proving [6]. Both have been applied in case

studies [7, 17] and experience shows that reachability typically

provides more automation while theorem proving supports a

powerful combination of rigorous foundations and establishes

guarantees for unbounded time and space. Both approaches

can be combined with monitoring:

• 1D straight-line motion was addressed both in dL [4]

and with reachability analysis [18], but 1D uses simpler

verification technology and is not suitable for real robots.

• Unbounded-time 2D obstacle avoidance and 1D liveness

have also been proved in dL [7], and liveness has been
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proved on paper [19]. Their controllers, like ours, are re-

lated to the Dynamic-Window [20] algorithm. Our novel

results include 2D liveness, waypoint-following, and end-

to-end correctness. While collision avoidance is simpler

in prior work, their approach precludes liveness, which

we proved. Prior dL efforts treat sensor errors explicitly,

for which synthesis is subject of ongoing work [21].

In contrast, we integrate synthesized monitors with a

simulation while keeping guarantees. To this end, we

use a single tolerance for sensing/actuation error and

deviation of real dynamics from the model. The limitation

of this approach is that our guarantees do not explicitly

incorporate sensor errors.

• A planner for ground vehicles was verified [8] in Isabelle.

Their physics are close to ours, but feedback control and

implementation correctness are not addressed.

C. Online Verification

Online/runtime verification provides a runtime safety net,

but the correctness of the safety net itself is then critical

to system safety. In contrast to offline verification, online

verification cannot predict safety for infinitely many states.

• The basis of online verification is the Simplex [2] method,

which uses a trusted monitor to decide between an

untrusted controller and trusted fallback.

• The VeriPhy [4] toolchain for dL, which we use, com-

bines offline and online verification to extend Simplex by

ensuring the monitor is correct-by-construction, formally

proving its safety, and maintaining those guarantees down

to machine code implementations.

• Runtime monitoring has been combined with nonexhaus-

tive model checking and evaluated in simulation [22].

Their relative strengths are in correctness of high-level

event-handling logic and experimentally learning toler-

ances for the dynamics. Our relative strengths are use

of a theorem-prover to show safety in all states, richer

physical dynamics, and correct-by-construction monitors.

• Runtime reachability analysis has been used for Dubins-

like car control [23], but runtime model compliance is

not enforced and the reachability checker is trusted.

D. Simulation

Simulation is an essential part of evaluating models and de-

signs. We used the AirSim [24] simulator for autonomous cars

(originally for UAVs), because it comes with accurate physical

and visual models out-of-the-box. Using these existing models

provides a degree of independence in our evaluation.

In short, while verification of robotics receives frequent

attention, few works have addressed rigorous end-to-end guar-

antees. We develop the first realistic system with formal end-

to-end safety and liveness guarantees for 2D waypoint follow-

ing, by generating a runtime monitor from a verified model.

Crucially, we expect this runtime safety net can be applied to

other Dubins-like system without redoing any proofs.

III. BACKGROUND: DIFFERENTIAL DYNAMIC LOGIC

We write our model as a hybrid program and use differential

dynamic logic (dL) [5] to verify it. Hybrid programs express

hybrid systems as programs containing differential equations

(ODEs). They are particularly useful for verified robotics

because they concisely describe both the control laws and

kinematics of the system. Table I gives the syntax of hybrid

programs and informally describes their semantics, wherein

running a program α results in zero, one, or many different

states. Detailed formal semantics are provided elsewhere [5].

Typical controllers use assignments x := θ to store the value of

TABLE I: Hybrid programs

Program Means

?φ Results in current state if φ is true, no states if false.
x := θ Store value of expression θ in variable x.
x := ∗ Store arbitrary (real) number in variable x.
x′ = θ&ψ Evolve ODE x′ = θ for any duration t≥0,

with constraint formula ψ true throughout.
α;β Run α, then β in any resulting state(s).
α ∪ β Choose between running α or β.
α∗ Repeats α n times, for any n ∈ N.

(polynomial) expression θ in variable x, or assign an arbitrary

value (x := ∗) and then test (?φ) that the value satisifies some

condition φ. Choice (α ∪ β) allows choosing between control

laws, each of which may have (overlapping) tests (?φ) saying

when each law applies. Semicolons separate statements, so

sequencing (α;β) runs β after α, while loop α∗ repeats α any

arbitrary number of times. Many models follow the control-

plant loop idiom (e.g., α1D ≡ (1Dctrl; 1Dplant)
∗

), where a

discrete program 1Dctrl is followed by a continuous 1Dplant

modeling physics, repeated in a loop (*). The 1Dplant is an

ODE x′ = θ&ψ, which evolves according to x′ = θ for any

duration such that ψ holds throughout. Before we develop a

realistic 2D model in Sect. IV, we recall, in Example 1, a toy

example, α1D, of 1D motion with perfect speed control [4].

The controller can either go forward with some v such that

0≤v≤V if we are far enough (d ≥ TV ) from the destination

d, else it must stop by setting v to 0. The differential equation

d′ = −v, t′ = 1 says the distance d continuously decreases

proportional to velocity v, while time continuously elapses at

rate 1. The constraint t ≤ T after & is a time trigger, saying

that at most T seconds may elapse between control cycles.

Note that we will show safety for any number of control

cycles, and thus for unbounded time.

Example 1 (Simple 1D Idealized Driving).

1Dctrl ≡ go ∪ stop go ≡ ?d≥TV ; v := ∗; ?0≤v≤V

stop ≡ v := 0 1Dplant ≡ t := 0; {d′ = −v, t
′

= 1& t ≤ T}

Formulas of dL are used to formalize program properties:

Definition 1 (dL formulas). Formulas φ, ψ of dL consist of

the following connectives:

φ, ψ ::= φ ∧ ψ | φ ∨ ψ | φ→ ψ | ¬φ | θ1 ∼ θ2

| ∀x φ | ∃x φ | [α]φ | 〈α〉φ

where φ ∧ ψ holds when φ and ψ both hold, φ ∨ ψ holds

when either φ or ψ holds, φ → ψ holds if ψ holds assuming
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tool to synthesize an automatically-verified monitor containing

both controller and plant monitor conditions. The controller

monitor condition corresponds to Feas and Go in Sect. IV:

any control decision satisfying these conditions is allowed and

is guaranteed safe by Theorem 1, else the verified fallback is

invoked. VeriPhy guarantees that the monitor is safe down to

its machine code implementation, regardless what decisions

are made by the external controller, so long as the plant mon-

itor conditions are satisfied, which is the case so long as the

differential invariant of Sect. V-A (the premiss of auto) holds

for the sensed values. When the plant monitor conditions fail,

safe braking is employed, albeit without the strong guarantee

available in the other cases except with extra assumptions [3].

a) High-Level Plans: Our plan data structure is a graph

(Fig. 5a) where waypoints are connected by lines and arcs,

as in the dL model. The evaluation uses fixed plans (up to

≈80 segments), but our data structure also supports, e.g.,

nondeterministic plans (Fig. 5a, nodes B and F) and cyclic

graphs for repeating missions, for the sake of flexibility.

b) Feedback Control: The high-level plan gives an ideal

path to follow; the job of the low-level controller is to follow

it within some tolerance. We give two classical feedback

controllers: the bang-bang controller switches between hard-

left and hard-right steering, while the PD scales to the discrep-

ancy between current position and orientation vs. their target

values. We compare the low-level controllers in AirSim, using

a human operating AirSim as a baseline.

c) AirSim Simulation: We implemented our own plan

representation and controllers in AirSim, ≈1100 lines of C++.

We built the test environments (Fig. 5c,5d,5e) in Unreal Editor.

Fig. 5b shows the AirSim car driving autonomously.

d) Sensing and Actuation: AirSim does not explicitly

simulate sensing and actuation error, but some implementation

details of the kinematics are unknown, so actuation error

must be accounted for in practice. The tolerance ε does not

include sensing error, but does account for deviation of the

AirSim kinematics from ideal Dubins. Thanks to the proofs

and sensors, errors do not accumulate: if actuation is imperfect,

the deviation is detected by the sensors and feedback control

counters the deviation as usual. If our monitor conditions are

applied in systems where sensors accumulate drift over time,

it would not obviate the need to account for those drifts.

e) Results: We assess monitor compliance and safety

of each controller. We assess liveness indirectly by checking

how quickly the goal is reached. We assess compliance and

safety directly: a successful simulation should comply with

the monitor conditions (especially the safety-critical plant

monitor conditions) a large majority of the time and have no

safety violations. Our three AirSim environments are shown

in Fig. 5. These environments cover medium turns at medium

speed (Fig. 5c), tight turns at low speed (Fig. 5d), and wide

curves at high speed (Fig. 5e). We simulated bang-bang and

PD controllers of different speeds driving each environment

(Table II), with amateur human pilots as a baseline.

The car completes every environment, except “Clover”

where bang-bang control fails to track long curves. As

promised, there were no safety violations. The controller mon-

itor condition has few failures. The plant monitor condition

fails more often, but rarely enough that the car completes the

drive. The plant monitor failed more since our bloated ideal

dynamics are simpler than the AirSim physics. In general, the

failure rate increases the more physics differs from Dubins.

We ran the tests with ε = 1m, which was small enough to

stress-test the controllers. For our purposes, the exact value

of ε is less important than the fact that safety is guaranteed

for all values of ε. The bang-bang controller exhibits tracking

error at speed and so did not complete the Clover track. The

slower PD controller (PD1, in bold) had the best (lowest)

overall error rate. The human and the remaining controllers

had high plant failure rate on the “Clover” level due to tracking

error. PD control (particularly PD3) had speed and monitor

failure rates competitive with the human baseline. The bang-

bang controller’s rough steering increased its plant failure rate.

While complete model compliance is a challenge, well-

tuned controllers came close in all environments, even though

the model is simple. The crucial insight is that the bloated

model allows realistic imperfections in actuation, and that the

untrusted controller makes steering and acceleration choices

that satisfy its monitor condition. Most of the time, formal

guarantees apply because both monitor conditions are satisfied.

The plant’s monitor condition detects the few cases where

guarantees do not apply, engages the fallback action, and then

returns to normal control without any actual safety violation.

The monitor furthermore helps us or any other developer

identify and reduce the remaining non-compliant cases.

VII. CONCLUSIONS AND LESSONS

We cast a formally verified safety net that provides end-to-

end verification guarantees for 2D Dubins waypoint-following.

We developed a dL model, proved it safe and live in KeY-

maera X, then synthesized a verified monitor with ModelPlex,

and synthesized verified machine code with VeriPhy. The

resulting safety net ensures safety even with unverified robot

software so long as plant assumptions hold and collision-

free plans are provided. We simulate the system in AirSim

with several controllers; our aim was not to innovate in

controller design, but to show that monitors generated from

dL proofs can be applied in realistic scenarios, thanks largely

to the use of verified tolerances in the model and proof. The

evaluation showed that our simple tolerance-based model did

not hinder applicability, because even realistic simulations look

like Dubins at a distance. Our simple model greatly eased

formal verification. Just as we improved on prior models [4],

future work can verify more sophisticated models to improve

compliance or reduce the tolerance ε.

The second major direction for future work is to apply

VeriPhy on real robot hardware, and as a development aid for

novel robots. Because the KeYmaera X proofs are significantly

more complex than the sketches presented here (see Sect. V-C),

VeriPhy’s reusability is essential to make it practical as a

development tool. We are presently in the process of reusing

our current monitors as-is on a hardware platform that follows

Dubins paths without changing the proofs, and subsequently

intend to pursue more challenging motion scenarios that

violate our model’s assumption.
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(a) Example mission (b) Simulator (c) Rectangle (d) Tight turns (e) Large clover

Fig. 5: Implementation and environments built in AirSim

TABLE II: Average speed, Monitor failure rates, for AirSim and human driver in each environment

Avg. Speed (m/s) Ctrl Fail. Plant Fail.
World BB PD1 PD2 PD3 Human BB PD1 PD2 PD3 Human BB PD1 PD2 PD3 Human

Rect 4.3 6.32 7.16 12.6 9.92 0.5% 0.1% 0.1% 0.19% 1.14% 36.8% 8.23% 8.5% 14% 41.3%
Turns 3.78 3.95 4.43 4.69 9.66 1.0% 1.0% 1.1% 4.7% 3.61% 18.6% 3.95% 6.8% 11% 21.1%
Clover X 29.5 29.5 29.5 28.9 X 0.2% 0.2% 0.19% 0.29% X 66% 66% 66% 48%
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O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler,

“SpaceEx: Scalable verification of hybrid systems,” in

CAV, ser. LNCS, vol. 6806. Springer, 2011.

[17] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification

of conflict resolution manoeuvres,” IEEE Trans. Int.

Trans. Sys., 2001.

[18] X. Chen, S. Schupp, I. B. Makhlouf, E. Ábrahám,
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