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A Formal Safety Net for
Waypoint Following in Ground Robots

Brandon Bohrer'2, Yong Kiam Tan', Stefan Mitsch!, Andrew Sogokon!, and André Platzer!-?

Abstract—We present a reusable formally verified safety net
that provides end-to-end safety and liveness guarantees for 2D
waypoint-following of Dubins-type ground robots with tolerances
and acceleration. We: i) Model a robot in differential dynamic
logic (dL), and specify assumptions on the controller and robot
kinematics, ii) Prove formal safety and liveness properties for
waypoint-following with speed limits, iii) Synthesize a monitor,
which is automatically proven to enforce model compliance at
runtime, and iv) Our use of the VeriPhy toolchain makes these
guarantees carry over down to the level of machine code with
untrusted controllers, environments, and plans. The guarantees
for the safety net apply to any robot as long as the waypoints
are chosen safely and the physical assumptions in its model hold.
Experiments show these assumptions hold in practice, with an
inherent trade-off between compliance and performance.

Index Terms—Formal Methods in Robotics and Automation,
Robot Safety, Hybrid Logical/Dynamical Planning and Verifica-
tion, Motion Control, Kinematics

I. INTRODUCTION

ANY autonomous ground robots are safety-critical

because they operate near or in concert with humans.
Formally verifying these systems is important: logic allows
rigorous correctness arguments that apply in all system states,
providing a powerful complement to system testing. Yet for
robotics, even choosing a property to formally verify is chal-
lenging: many modeling abstractions and safety properties are
available, with competing trade-offs. Discrete techniques can
be applied to control software, but robots are cyber-physical
systems: their verification must account for discrete controllers,
continuous mechanics, and interactions between them.
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Hybrid systems [1] emerged as mathematical models for
robots because they integrate discrete with continuous dy-
namics, but they raise new questions about what it means
to verify a robot. Robot kinematics are endlessly nuanced,
so any model is always an approximation of reality. Even
control software is rarely modeled exactly: simplifications are
necessary in practice to limit verification complexity. More-
over, control software evolves throughout its development,
and since verification of arbitrary programs cannot be fully
automated, re-verifying control code after every change would
be impractical.

How then ought a robot be verified? Online monitoring,
per the Simplex method [2], offers a solution: run the con-
trol software, but treat its control decision as an untrusted
suggestion which is supervised against a trusted monitor con-
dition ¢ describing all “known-safe” decisions. Whenever the
suggestion is known-safe the supervising monitor allows it to
proceed, but otherwise invokes a trusted fallback decision, like
emergency braking, to regain safety before returning control
to the untrusted controller. Online monitoring is appealing
because it enables treating the controller as a black box:
only the monitor condition and fallback are safety-critical,
both of which are simpler and can often be re-used as the
control software evolves, or even across hardware platforms.
To promote reusability, we target a waypoint-following notion
of safety: other notions of safety such as collision-avoidance
often come with restrictive assumptions, e.g., on the quantity
and dynamics of obstacles, whereas waypoint-following ab-
stracts away such problems under the choice of safe waypoints.

The monitor conditions and fallback are both best kept
simple. While steering enables active safety and may re-
duce the required braking power, we simply brake at the
maximum rate. Regardless which fallback is used, however,
what is essential is that the monitor conditions and fallback
provide safety. The ModelPlex [3] synthesizer and VeriPhy [4]
compilation toolchain ensures safety at implementation level
by: i) synthesizing correct-by-construction monitor conditions
¢ from a proven-safe hybrid systems model containing a
proven-safe fallback (ModelPlex) ii) soundly compiling high-
level monitor conditions and high-level fallback programs to
machine-code monitor implementations with sound machine
arithmetic (VeriPhy). ModelPlex and VeriPhy expand upon the
reusability inherent to the black-box approach: hybrid systems
models and proofs can treat many system parameters (e.g.,
tolerances and system delay) generically, once and for all, for
all choices of the parameters. The hybrid system model can be
used as a template: new monitors can often be generated for
new systems without doing new proofs, so long as choosing
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system parameters suffices to faithfully model the new system.
The VeriPhy approach is also end-fo-end in that VeriPhy
outputs a chain of formal proofs, in theorem provers, that
the actions taken by the machine-level (monitored) program
fall under the original model and are thus formally safe. Even
then, some guarantees are lost when sensors and actuators are
buggy, when monitor conditions for the physical dynamics are
violated, or when an unsafe plan is provided: we discuss these
limitations in related work (Sect. II).

The VeriPhy approach has until now only been tested on an
overly simplistic low-speed robot implementing a model of
straight-line motion with direct velocity control. In this paper,
we show for the first time that this approach scales to realistic
models and simulations:

« We model as a hybrid program [5] a 2D accelerating

vehicle that follows bloated Dubins paths.

« We prove safety and liveness properties for the model
with the KeYmaera X theorem prover [6] for differential
dynamic logic (dL) [5].

e We use VeriPhy [4] to synthesize a monitor and to
automatically prove its correctness down to the machine
code implementation, which gives an end-to-end proof.

Waypoint-following has the advantage of a clean interface
to other robot software with its dual purposes of both safety
(avoiding unsafe regions) and liveness (reaching its goal). We
call waypoint-following safe iff the robot always follows the
given path to its waypoint within a given tolerance and obeys
given speed limits. Collision freedom then reduces to checking
that correct waypoints and speed limits were given. The system
is live if at all points it is possible to drive the rest of the way
to the waypoint.

Obstacle avoidance [7], in contrast, directly verifies collision
freedom, but liveness is challenging to even state let alone
prove. The mix of safety and liveness is essential because
a motionless robot is technically safe, but neither live nor
useful because it never reaches its goal. By studying safety and
liveness of waypoint-following, we provide a clean separation
of concerns compared to the orthogonal question of verifying
a discrete planner [8].

Bloating the 2D Dubins dynamics adds an additional toler-
ance margin to the ideal dynamics which accounts for the
gap between the approximate dynamical model and reality
(Sect.IV). Our evaluation shows that: i) a variety of classical
control choices such as bang-bang and PD control fit within
the bloated ideal path ii) the model assumptions hold in
practice because AirSim’s non-holonomic dynamics fall within
bloated ideal holonomic Dubins dynamics, and iii) there is a
trade-off between meeting model assumptions and operational
performance: more aggressive controllers break assumptions
more often. This paper also serves as a case study on safety
and liveness verification: once the safety property is proved,
much of the effort can be reused to prove liveness. The safety
and liveness proof were performed interactively, but crucially
need only be performed once per dL model, which describes
an entire class of systems. Thanks to the automated proofs
provided by VeriPhy, runtime monitors can be applied to new
controls and even new hardware or simulation platforms with
no additional manual proofs, so long as the controls and

dynamics stay within a tolerance around the ideal holonomic
dynamics, so that the same dL model applies. Because the
model treats system parameters (such as system delays and
tolerances) generically, a wide variety of Dubins-like systems
are already supported simply by changing the parameters. That
is how we developed a formal safety net for ground robots and
evaluated it on a realistic simulation. Because the monitor is
reusable, we hope our safety net can assist future implementers
in developing new systems.

II. RELATED WORK

Related work in formal methods and robotics applied syn-
thesis and verification techniques to safe robotic control. This
paper is the first to use a verified-safe monitor to enforce
waypoint-following correctness of a realistic simulation.

A. Synthesis for Verified Planning and Control

Much of the existing related work considers high-level plan
synthesis in isolation, with informal proofs of correctness.
Our work is complementary: we address correctness of low-
level control, provide formal guarantees, and check rather than
assume that runtime physics matches the model:

o The tools LTLMoP [9] and TuLiP [10] synthesize robot
controls that satisfy a temporal logic specification. They
excel at providing an intuitive user interface for specify-
ing discrete planning problems, though discretization [11,
12] can be used to support continuous dynamics. We fo-
cus instead on providing the highest degree of confidence
by proving safety in a theorem prover, including proofs
of the dynamics and down to machine-code level.

« Controllers have been synthesized: i) from temporal logic
specifications for linear systems [13], ii) for adaptive
cruise control [14], tested in simulation and on hardware,
and iii) from safety proofs [15] for switched systems
using templates. These all assume model compliance and
cannot ensure feedback controller correctness.

B. Offline Verification for Planning and Control

In contrast to online synthesis, offline verification can show
safety in all uncountably many states. High-level models
of the system under consideration can already be verified
during the design phase of a project when changes are cheap.
Much robotics verification work focuses on hybrid systems
models; common approaches are reachability analysis [16]
and theorem proving [6]. Both have been applied in case
studies [7, 17] and experience shows that reachability typically
provides more automation while theorem proving supports a
powerful combination of rigorous foundations and establishes
guarantees for unbounded time and space. Both approaches
can be combined with monitoring:

o 1D straight-line motion was addressed both in dL [4]
and with reachability analysis [18], but 1D uses simpler
verification technology and is not suitable for real robots.

« Unbounded-time 2D obstacle avoidance and 1D liveness
have also been proved in dL [7], and liveness has been
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proved on paper [19]. Their controllers, like ours, are re-
lated to the Dynamic-Window [20] algorithm. Our novel
results include 2D liveness, waypoint-following, and end-
to-end correctness. While collision avoidance is simpler
in prior work, their approach precludes liveness, which
we proved. Prior dL efforts treat sensor errors explicitly,
for which synthesis is subject of ongoing work [21].
In contrast, we integrate synthesized monitors with a
simulation while keeping guarantees. To this end, we
use a single tolerance for sensing/actuation error and
deviation of real dynamics from the model. The limitation
of this approach is that our guarantees do not explicitly
incorporate Sensor errors.

« A planner for ground vehicles was verified [8] in Isabelle.
Their physics are close to ours, but feedback control and
implementation correctness are not addressed.

C. Online Verification

Online/runtime verification provides a runtime safety net,
but the correctness of the safety net itself is then critical
to system safety. In contrast to offline verification, online
verification cannot predict safety for infinitely many states.

o The basis of online verification is the Simplex [2] method,
which uses a trusted monitor to decide between an
untrusted controller and trusted fallback.

o The VeriPhy [4] toolchain for dL, which we use, com-
bines offline and online verification to extend Simplex by
ensuring the monitor is correct-by-construction, formally
proving its safety, and maintaining those guarantees down
to machine code implementations.

« Runtime monitoring has been combined with nonexhaus-
tive model checking and evaluated in simulation [22].
Their relative strengths are in correctness of high-level
event-handling logic and experimentally learning toler-
ances for the dynamics. Our relative strengths are use
of a theorem-prover to show safety in all states, richer
physical dynamics, and correct-by-construction monitors.

« Runtime reachability analysis has been used for Dubins-
like car control [23], but runtime model compliance is
not enforced and the reachability checker is trusted.

D. Simulation

Simulation is an essential part of evaluating models and de-
signs. We used the AirSim [24] simulator for autonomous cars
(originally for UAVs), because it comes with accurate physical
and visual models out-of-the-box. Using these existing models
provides a degree of independence in our evaluation.

In short, while verification of robotics receives frequent
attention, few works have addressed rigorous end-to-end guar-
antees. We develop the first realistic system with formal end-
to-end safety and liveness guarantees for 2D waypoint follow-
ing, by generating a runtime monitor from a verified model.
Crucially, we expect this runtime safety net can be applied to
other Dubins-like system without redoing any proofs.

III. BACKGROUND: DIFFERENTIAL DYNAMIC LOGIC

We write our model as a hybrid program and use differential
dynamic logic (dL) [3] to verify it. Hybrid programs express
hybrid systems as programs containing differential equations
(ODEs). They are particularly useful for verified robotics
because they concisely describe both the control laws and
kinematics of the system. TableI gives the syntax of hybrid
programs and informally describes their semantics, wherein
running a program « results in zero, one, or many different
states. Detailed formal semantics are provided elsewhere [5].
Typical controllers use assignments x := @ to store the value of

TABLE I: Hybrid programs

Program Means
10 Results in current state if ¢ is true, no states if false.
z:=0 Store value of expression 6 in variable x.
€Ti=%* Store arbitrary (real) number in variable x.
2’ =0&1  Evolve ODE 2’ = 6 for any duration >0,
with constraint formula 1) true throughout.
«a; B Run «, then B in any resulting state(s).
auUp Choose between running o or 3.
a* Repeats e n times, for any n € N.

(polynomial) expression 6 in variable x, or assign an arbitrary
value (x :=x*) and then test (7¢) that the value satisifies some
condition ¢. Choice (aU ) allows choosing between control
laws, each of which may have (overlapping) tests (?¢) saying
when each law applies. Semicolons separate statements, so
sequencing («; ) runs S after o, while loop o* repeats « any
arbitrary number of times. Many models follow the control-
plant loop idiom (e.g., asp = (1Dctrl; 1Dplant)™), where a
discrete program 1Dctrl is followed by a continuous 1Dplant
modeling physics, repeated in a loop (*). The 1Dplant is an
ODE z’ = 6 & 1), which evolves according to =’ = 6 for any
duration such that ¢ holds throughout. Before we develop a
realistic 2D model in Sect.IV, we recall, in Example 1, a toy
example, ayp, of 1D motion with perfect speed control [4].
The controller can either go forward with some v such that
0<v<V if we are far enough (d > T'V) from the destination
d, else it must stop by setting v to 0. The differential equation
d" = —wu,t’ = 1 says the distance d continuously decreases
proportional to velocity v, while time continuously elapses at
rate 1. The constraint ¢ < T after & is a time trigger, saying
that at most 7' seconds may elapse between control cycles.
Note that we will show safety for any number of control
cycles, and thus for unbounded time.

Example 1 (Simple 1D Idealized Driving).
1Dctrl = go U stop go= 1d>TV; vi==x%; 70<oV
stop=v:=0 1Dplant= t:=0; {d' = —v,t' =1&t < T}
Formulas of dL are used to formalize program properties:

Definition 1 (dL formulas). Formulas ¢, of dL consist of
the following connectives:
O =AY [ OVY | o= | 2| b1 ~ s
| Vz ¢ | Jz ¢ | [a]d | {)o

where ¢ A 1 holds when ¢ and ¢ both hold, ¢ V ¢ holds
when either ¢ or 1) holds, ¢ — 1) holds if i) holds assuming
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¢ holds, —¢ holds if ¢ does not, and Vz ¢ and Jz ¢ hold
if ¢ holds for all or some value(s) of x, respectively. When
we prove a theorem ¢, all variables implicitly have a “for all”
quantifier so, e.g., the safety and liveness theorems hold for all
states and all values of system parameters. Formula 6; ~ 65 is
shorthand for any comparison ~ €{<, <,=,#,>,>} where
0; are real multivariate polynomials. The modalities [«]¢ and
()@ say ¢ holds in all or some state(s) reached by executing
hybrid program « respectively; they are used to express safety
and liveness properties for our models.

Eq. 1 is a safety formula for aqp: If the robot has not col-
lided initially (d > 0) then the verified model will never collide
no matter how many further control cycles are executed:

d>0AV >0AT >0 — [(1Dctrl; 1Dplant)*]d >0 (1)

This toy example, which was previously used to demonstrate
VeriPhy [4], misses out on many of the challenges essential to
robotics: curved motion, acceleration, actuation disturbance,
and goal-following all demand more sophisticated control
conditions and invariants, which demand more sophisticated
proof techniques. We take on these challenges in Sect.IV.

IV. GROUND ROBOT MODEL

This section introduces our 2D robot model in dL. This
model is the heart of our verification effort: it lays out
the definition of safety, assumptions on the controller, and
assumptions on the plant. It will enable us in Sect. V to prove
that these assumptions are strong enough to guarantee safety,
then in Sect. VI to synthesize a monitor which functions as
a runtime safety net, providing formal safety guarantees. The
liveness proof of Sect. V complements safety and increases
confidence in the model by showing our model is never so
restrictive that it would force the robot to get stuck.

We use waypoint-following because it covers a wide variety
of realistic scenarios, whereas collision avoidance is chal-
lenging to specify formally without making overly restrictive
assumptions [7]. The implementation trusts waypoints from
a planner. Feedback control is considered safe so long as
it follows the waypoints within a fixed desired tolerance.
The tolerance accounts for imperfect actuation and for dis-
crepancies between the ideal dynamics and real dynamics of
the implementation. The tolerance may also be increased to
account for bounded sensor error, but the formal guarantees
provided here are for perfect sensing.

Each waypoint is specified by coordinates (X, Y), a curvature
k, and a speed limit [vl,vh] for the robot’s velocity v. By
convention, positive X points forward, and positive y points
left. The curvature K yields circular arcs (when K # 0) and lines
(when K = 0) as primitives. The addition of speed limits allows
a plan to specify, for example, that the robot ought to slow
down for a sharp curve or stop. The speed limits need only be
met at the endpoint of the waypoints, which improves monitor
compliance (in Sect. VI). Because realistic robots never follow
a path perfectly, we bloat each arc to an annular section which
is more easily followed. Our hybrid program « is again a time-
triggered control-plant loop: o = (ctrl; plant)*.

We use relative coordinates: the robot’s position is always
the origin, from which perspective the waypoint “moves

toward” the vehicle. This simplifies proofs (fewer variables)
and implementation (real sensors and actuators are vehicle-
centric). Fig. 1 illustrates control scenarios for the system in
relative coordinates. The robot is represented by A where the
triangle points in the robot’s forward direction. The control
choice k = 0 drives waypoints that are straight ahead of the
robot straight towards the robot. For waypoints initially to the
left of the robot, a control choice kK > 0 yields clockwise
motion of the waypoint towards the robot. Conversely, for
waypoints initially to the right, control choices with k < 0
yield counter-clockwise motion.

k=0
25 —. —®
],

il k<0 \i/ k>0
0.5F
0,

-3 -2 -1 0 1 2 3 x

Fig. 1: Trajectories of dynamics for different choices of k.

The relative coordinate system and control choices for K are
modeled by the ODE plant:

plant=t:=0; {X =v (ky—1),y=-vkx, vV =a,
'=1&t<T A v>0}

Here, a is an input from the controller describing the acceler-
ation with which the robot is to follow the arc of curvature K
to waypoint (X,y). In the equations for X, y’: i) The v factor
models (X,y) moving at speed Vv, ii) The k, X, y factors model
circular motion with curvature K. iii) The additional —1 term
in the X’ equation shifts the center of rotation to (0, ¢ ). The
equations v/ = a and t' = 1 make acceleration the derivative
of velocity and t stand for current time. The domain constraint
t < TAv > 0 after & says that the duration of one control cycle
shall never exceed the timestep parameter T > 0 representing
the maximum delay between control cycles and that the robot
never drives in reverse.

Fig. 1 depicts curves that are exact solutions of plant where
the robot exactly meets the waypoint. Because realistic robots
cannot follow these curves exactly, the waypoint is bloated by
a fixed ball of radius € > 0, giving the robot some freedom in
curve-following. We refer to this bloated waypoint as the goal
for the robot. Fig. 2 illustrates a goal of size ¢ = 1 around the
origin and several trajectories which pass through the goal.

y

3,

251

o ’/'»T//E

it / k>0

oo - /; f o
-3 -2 -1 0 1 3 x

Fig. 2: Trajectories of plant for choices of k < 0 when ¢ = 1.

The controller’s task is to compute an acceleration @ which
slows down (or speeds up) soon enough that the speed limit
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v € |[vl,vh] is ensured by the time the robot reaches the
goal. We allow the controller to exceed vh temporarily as
long as there is time to achieve v < vh before reaching the
goal. This relaxation improves monitor compliance and lets
the robot speed up more quickly, e.g., when it is far from the
goal. The trade-off is that the proof becomes more challenging
than it would be for a model that always enforces limits. The
controller is written:

ctrl = (x,y):=x; [vl,vh] := x; k:=x; ?Feas; a:=x; 7Go
————
ctrl,
K (x2 2 2
AN = [Kle < 1| ( +2y ) —y| <e
Feas = Ann A x>0 A 0<vl<vh A AT<vh — vIA BT<vh — vl
Go = -B<a<AAv+aT >0

Alv<vhAv+aT <vhvVv

(v+aT)? — vh?

a
(14 Kje)? (v + 572+ B =T ) eyl )

AfvI<vAvi<v+4aTVv

a vI> — (v+aT)?
(4 ke (v + 22 Ty ey

where the nondeterministic assignment (X,Y) := % chooses

the next 2D waypoint, the assignment [vl,vh] := x chooses
the speed limit interval, and K := % chooses any curvature.
The subsequent feasibility test 7Feas checks whether or not
the chosen waypoint, speed limit, and curvature are physically
feasible in the current state under the plant dynamics (e.g., that
there is enough remaining distance to get within the speed limit
interval). We also simplify plans so that all waypoints satisfy
X > 0 by subdividing any violating paths automatically. This
simplifies the feedback controller and proofs.

In Feas, formula Ann says we are within the annular
section (Fig. 3) ending at the waypoint (X, y) with the specified
curvature K and width . A larger choice of ¢ yields more error
tolerance in the sensed position and followed curvature at the
cost of an enlarged goal region. Formula Ann also contains
a simplifying assumption that the radius of the annulus is at
least . Feas also says the speed limits are assumed distinct
and large enough to not be crossed in one control cycle.

Fig. 3: Annular section through the (blue) waypoint (2.5, —3).
Trajectories from the displaced green and red waypoints with
slightly different curvatures remain within the annulus.

The admissibility test 7Go checks that the chosen a will
take the robot to its goal with a safe speed limit, by predicting
future motion of the robot. We illustrate this with the upper
bound conditions. The bound will be satisfiable after one cycle

if either the chosen acceleration a already maintains speed
limit bounds (v < vh Av+aT < vh) or when there is enough
distance left to restore the limits before reaching the goal. For
straight line motion (kK = 0), the required distance can simply
be found by integrating acceleration and speed:

distance at T speed at T
T)? — vh?
a v+a —V
vT+§T2+—( o8 +e <Yl

where a € [—B, A]. The extra factor of (1 + |k|¢)? for curved
motion accounts for the fact that an arc along the inner side
of the annulus is shorter than one along the outside (Fig.3).

The abbreviation ctrl, names just the control code respon-
sible for deciding how the waypoint is followed rather than
which waypoint is followed. We show in Sect. VI that Feas
and Go are easily satisfied by the implementation. We verify
safety and liveness of the above model in Sect. V.

V. FORMAL SAFETY AND LIVENESS GUARANTEES

We now state the safety and liveness theorems in dL:

Theorem 1 (Safety). The following dL formula is valid:

ASONB>0ANT>0Ae>0NJ —
[(ctrl; plant)* ] (|(x, )| < & — v € [v], vh])

where validity means the formula holds in all states and, e.g.,
all admissible waypoints.

The first four assumptions (A>0A - - - Ae>0) are basic sign
conditions on the symbolic constants used in the model. The
final assumption, J, is the loop invariant. The full definition
of J is deferred to Sect.V-A, but captures the fact that
the robot never strays far from its path. We write |[(X,Y)]|
for the Euclidean norm +/X2 +y2 and consider the robot
“close enough” to the waypoint when ||(X,y)|| < e for our
chosen goal size €. The theorem states that no matter which
(admissible) control decisions are made, whenever the vehicle
is in the goal region of size &, it obeys the speed limit
v € [vl,vh]. While this provides a formal notion of safety,
it does not prove that the robot can actually reach the goal,
which is a liveness property:

Theorem 2 (Liveness). The following dL formula is valid:

A>0ANB>0ANT>0Ne>0NJT —
[(ctrl, plant)™] (v>0 A x>0 —

((ctry; plant)*) ([ (x, )| <& A ve [V, vh]))

Under the same assumptions as Theorem 1, this theorem
says that no matter how long the robot has been running
([(ctrl; plant)*]) already, if some simplifying assumptions still
hold (V>0 A x>0) the controller can be run ({(ctrl,; plant)*))
with admissible acceleration choices (ctrl,) to reach the
present goal (||(X,y)|| < &) within the desired speed limits
(v € [vl,vh]). The simplifying assumptions v>0 A X>0 say
the robot is still moving forward and the waypoint is still in
the upper half-plane, i.e., it has not driven past the waypoint.
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A. Proving Safety

We give the high-level insights here, such as invariants. We
first prove the program stays in the region where J is true,
then that J implies safety. To satisfy the safety condition, our
program must maintain an invariant J that: i) the robot follows
the plan closely and ii) it drives at speeds that let it achieve
the speed limits in the remaining distance to the goal.

Predicate Lim(v1, vo, a, X, Y, K) says acceleration a can close
velocity gap v; —vq before waypoint (X, y) reaches the origin:

v} —v3
2a
Lim(vi,v2,a,X,Y) = v1<v2 V OLim(v1, v2,a) + £<[[(X,Y)

SLim(v1,v2,a) = (1 + |K|e)?

oo

Here, 61im(v1,v2,a) bounds distance needed to change ve-
locity from v; to vy with a scaling factor (1 + |k|e)? for
the tolerance incurred from the width of the annular section
compared to an arc. This is not too conservative in practice: it
is tightest (near 1) for small € or small |k| and never exceeds
4. This suffices to define J, which says the speed limits can
be achieved with maximum braking (B) and acceleration (A):

J=Ann A0 <VvI<VvhAAT <vh—-VvIABT <vh —vl
A Lim(vl,v, A, X, y) A Lim(v,vh,B,X,y)

We proceed to prove Theorem 1 for waypoint-following safety.
Per standard notation, the formula on the bottom (conclusion)
is valid if all formulas on top (premisses) are valid:

P—J J—=Q J—la]J
P —[a*]@

The first two premisses, which prove automatically in KeY-
maera X, say the invariant .JJ holds initially and the postcondi-
tion follows from the invariant J, so staying inside J is safe.

The main task is the third premiss: loop body o = ctrl; plant
preserves the invariant J. The key conditions are Feas and
Go; standard (automatic) dL proof steps reduce this to show-
ing that J holds again after running the plant for time ¢ < 7"

(loop)

J, Feas, Go — [plant].J

(auto) J — [ctrl; plant]J

It remains to show the premiss of auto: Feas and Go imply
that Ann, Lim(vh,v,B,X,y), and Lim(vl,v,A X,y) continue
to hold throughout the plant, which can be proved in dL using
differential induction [5]. KeYmaera X helps prove invariants,
but identifying them takes human ingenuity. For example,
Lim(vh,v,B,Xx,y) is a natural choice, but because it is not
inductive, we generalize it by hand in the full proof.

This completes the safety proof, showing that requirements
Feas and Go guarantee that the robot obeys speed limits. We
describe liveness next, which will reuse loop invariant J.

B. Proving Liveness

We show Go also allows the robot to reach the goal
within speed limits [vl, vh] by choosing correct acceleration
a. The proof starts with the loop rule with invariant J as in
Theorem 1, after which it remains to show:

JAV=>0AX>0 — ((ctrly; plant)™) (v € [vl,vh] A ||(x,y)]| <€)

Aside from the invariants, the key insight for liveness is a
progress function which decreases as the waypoint approaches
the origin [25]. There are multiple strategies to arrive at the
goal within speed limit; for simplicity, we first enforce the
speed limit v € [vl,vh] with appropriate acceleration choices
and then maintain it until reaching the waypoint. This strategy
splits the proof into the following two questions:

JAV>0AX>0— ((ctrly; plant)*) (v € [vl,vh])  (2)

v>0AveE [vl,vh] AAnn —
{(ctrly; plant)*) (v € [V, vh] A ||(X,y)]| <€) (3)

To prove Eq.2, we pick the acceleration for ctrl, in each
of three situations: i) if the robot is too slow (v < vl), it
should speed up (pick a = A), ii) if the speed is in the limits
(v € [vl,vh]) it maintains speed (pick a = 0), or iii) if it is too
fast (v > vh), it slows down (pick a = —B). In all three cases,
the invariant v > 0AANN is proved to be preserved throughout
plant, so we soundly assume it in the proof of Eq.3. The
progress functions are case specific: e.g., in case i, the progress
function g = vl — v, for the gap to the speed limit, decreases
as the robot speeds up. Conversely, the progress function for
caseiii is g = Vv — vh.

Once the speed limit is achieved (caseii), the robot pro-
gresses toward the waypoint (Eq.3) at a constant velocity
(a = 0). The proof uses the progress function g = x24y? —¢2,
i.e., the (squared) Euclidean distance to the goal region. The
intuition for this progress function is shown in Fig.4. The
value of g is positive outside the goal region, strictly decreases
along the trajectory, and is negative in the goal region.

Fig. 4: Level sets of the progress function g (in red).

These are the crucial ingredients in the proof of liveness,
which we have formally proved in KeYmaera X.

C. Proof Effort and Automation

User interactions are usually required for significant dL
theorems like Theorem 1 (279 interactions) and Theorem 2
(589 interactions). User insight was mainly needed to choose
invariants and progress functions for loops and ODEs. Most
interactions are simplifications to help the automation. Au-
tomation handled most steps: 53,883 for safety, 225,607 for
liveness. The final KeYmaera X proof scripts run automatically
in 23s and 73s on a 2.4GHz i7 with 16GB memory.

VI. IMPLEMENTATION: SIMULATION

In this section, we fulfill the goal of extending verification
to the level of simulation in AirSim. We use the VeriPhy



BOHRER et al.: A FORMAL SAFETY NET FOR WAYPOINT FOLLOWING IN GROUND ROBOTS 7

tool to synthesize an automatically-verified monitor containing
both controller and plant monitor conditions. The controller
monitor condition corresponds to Feas and Go in Sect.IV:
any control decision satisfying these conditions is allowed and
is guaranteed safe by Theorem 1, else the verified fallback is
invoked. VeriPhy guarantees that the monitor is safe down to
its machine code implementation, regardless what decisions
are made by the external controller, so long as the plant mon-
itor conditions are satisfied, which is the case so long as the
differential invariant of Sect. V-A (the premiss of auto) holds
for the sensed values. When the plant monitor conditions fail,
safe braking is employed, albeit without the strong guarantee
available in the other cases except with extra assumptions [3].

a) High-Level Plans: Our plan data structure is a graph
(Fig.5a) where waypoints are connected by lines and arcs,
as in the dL model. The evaluation uses fixed plans (up to
~80 segments), but our data structure also supports, e.g.,
nondeterministic plans (Fig.5a, nodes B and F) and cyclic
graphs for repeating missions, for the sake of flexibility.

b) Feedback Control: The high-level plan gives an ideal
path to follow; the job of the low-level controller is to follow
it within some tolerance. We give two classical feedback
controllers: the bang-bang controller switches between hard-
left and hard-right steering, while the PD scales to the discrep-
ancy between current position and orientation vs. their target
values. We compare the low-level controllers in AirSim, using
a human operating AirSim as a baseline.

c) AirSim Simulation: We implemented our own plan
representation and controllers in AirSim, ~1100 lines of C++.
We built the test environments (Fig. 5¢,5d,5¢) in Unreal Editor.
Fig. 5b shows the AirSim car driving autonomously.

d) Sensing and Actuation: AirSim does not explicitly
simulate sensing and actuation error, but some implementation
details of the kinematics are unknown, so actuation error
must be accounted for in practice. The tolerance € does not
include sensing error, but does account for deviation of the
AirSim kinematics from ideal Dubins. Thanks to the proofs
and sensors, errors do not accumulate: if actuation is imperfect,
the deviation is detected by the sensors and feedback control
counters the deviation as usual. If our monitor conditions are
applied in systems where sensors accumulate drift over time,
it would not obviate the need to account for those drifts.

e) Results: We assess monitor compliance and safety
of each controller. We assess liveness indirectly by checking
how quickly the goal is reached. We assess compliance and
safety directly: a successful simulation should comply with
the monitor conditions (especially the safety-critical plant
monitor conditions) a large majority of the time and have no
safety violations. Our three AirSim environments are shown
in Fig. 5. These environments cover medium turns at medium
speed (Fig. 5c), tight turns at low speed (Fig.5d), and wide
curves at high speed (Fig.5e). We simulated bang-bang and
PD controllers of different speeds driving each environment
(Table IT), with amateur human pilots as a baseline.

The car completes every environment, except “Clover”
where bang-bang control fails to track long curves. As
promised, there were no safety violations. The controller mon-
itor condition has few failures. The plant monitor condition

fails more often, but rarely enough that the car completes the
drive. The plant monitor failed more since our bloated ideal
dynamics are simpler than the AirSim physics. In general, the
failure rate increases the more physics differs from Dubins.
We ran the tests with ¢ = 1m, which was small enough to
stress-test the controllers. For our purposes, the exact value
of € is less important than the fact that safety is guaranteed
for all values of €. The bang-bang controller exhibits tracking
error at speed and so did not complete the Clover track. The
slower PD controller (PD1, in bold) had the best (lowest)
overall error rate. The human and the remaining controllers
had high plant failure rate on the “Clover” level due to tracking
error. PD control (particularly PD3) had speed and monitor
failure rates competitive with the human baseline. The bang-
bang controller’s rough steering increased its plant failure rate.
While complete model compliance is a challenge, well-
tuned controllers came close in all environments, even though
the model is simple. The crucial insight is that the bloated
model allows realistic imperfections in actuation, and that the
untrusted controller makes steering and acceleration choices
that satisfy its monitor condition. Most of the time, formal
guarantees apply because both monitor conditions are satisfied.
The plant’s monitor condition detects the few cases where
guarantees do not apply, engages the fallback action, and then
returns to normal control without any actual safety violation.
The monitor furthermore helps us or any other developer
identify and reduce the remaining non-compliant cases.

VII. CONCLUSIONS AND LESSONS

We cast a formally verified safety net that provides end-to-
end verification guarantees for 2D Dubins waypoint-following.
We developed a dL model, proved it safe and live in KeY-
maera X, then synthesized a verified monitor with ModelPlex,
and synthesized verified machine code with VeriPhy. The
resulting safety net ensures safety even with unverified robot
software so long as plant assumptions hold and collision-
free plans are provided. We simulate the system in AirSim
with several controllers; our aim was not to innovate in
controller design, but to show that monitors generated from
dL proofs can be applied in realistic scenarios, thanks largely
to the use of verified tolerances in the model and proof. The
evaluation showed that our simple tolerance-based model did
not hinder applicability, because even realistic simulations look
like Dubins at a distance. Our simple model greatly eased
formal verification. Just as we improved on prior models [4],
future work can verify more sophisticated models to improve
compliance or reduce the tolerance €.

The second major direction for future work is to apply
VeriPhy on real robot hardware, and as a development aid for
novel robots. Because the KeYmaera X proofs are significantly
more complex than the sketches presented here (see Sect. V-C),
VeriPhy’s reusability is essential to make it practical as a
development tool. We are presently in the process of reusing
our current monitors as-is on a hardware platform that follows
Dubins paths without changing the proofs, and subsequently
intend to pursue more challenging motion scenarios that
violate our model’s assumption.
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(a) Example mission

(b) Simulator
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(c) Rectangle (d) Tight turns (e) Large clover

Fig. 5: Implementation and environments built in AirSim

TABLE II: Average speed, Monitor failure rates, for AirSim and human driver in each environment

Avg. Speed (m/s) Ctrl Fail. Plant Fail.
World | BB | PD1 | PD2 | PD3 | Human | BB | PD1 | PD2 | PD3 | Human | BB | PD1 | PD2 | PD3 | Human
Rect 43 | 632 | 7.16 | 126 | 9.92 05% | 01% | 0.1% | 0.19% | 1.14% | 36.8% | 823% | 8.5% | 14% | 41.3%
Turns | 3.78 | 3.95 | 443 | 4.69 | 9.66 1.0% | 1.0% | 1.1% | 47% | 3.61% | 18.6% | 3.95% | 68% | 11% | 21.1%
Clover | X 295 | 295 | 29.5 | 289 X 02% | 02% | 0.19% | 029% | X 66% 66% | 66% | 48%
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