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Abstract—Regression testing is increasingly important with
the wide use of continuous integration. A desirable requirement
for regression testing is that a test failure reliably indicates a
problem in the code under test and not a false alarm from
the test code or the testing infrastructure. However, some test
failures are unreliable, stemming from flaky tests that can non-
deterministically pass or fail for the same code under test. There
are many types of flaky tests, with order-dependent tests being
a prominent type.

To help advance research on flaky tests, we present (1) a
framework, iDFlakies, to detect and partially classify flaky tests;
(2) a dataset of flaky tests in open-source projects; and (3) a study
with our dataset. iDFlakies automates experimentation with our
tool for Maven-based Java projects. Using iDFlakies, we build a
dataset of 422 flaky tests, with 50.5% order-dependent and 49.5%
not. Our study of these flaky tests finds the prevalence of two
types of flaky tests, probability of a test-suite run to have at least
one failure due to flaky tests, and how different test reorderings
affect the number of detected flaky tests. We envision that our
work can spur research to alleviate the problem of flaky tests.

I. INTRODUCTION

Regression testing is becoming increasingly important and
popular as both industry and the open-source community
widely adopt continuous integration (CI) [30], [49]. When
developers make changes to code, CI runs tests on the code
version with the changes to check whether the changes intro-
duce regressions. In an ideal world, failures from regression
tests would reliably signal faults in the developer’s latest
changes, be they in the code under test or the test code, and
every test failure would warrant investigation.

Unfortunately, some test failures may not be due to the latest
changes but due to so-called flaky tests. Previous work [20],
[38] defines flaky tests as tests that may non-deterministically
pass or fail even on the same version of the code under test.
Both practitioners and researchers are increasingly reporting
problems with flaky tests [5], [11], [12], [14], [20], [22], [34],
[36], [38], [40]-[43], [46], [53], [56], [57], including from
large organizations such as Facebook [25], Google [18], [19],
Huawei [32], Microsoft [26]-[28], and Mozilla [16]. A key
problem is that flaky tests lead to unreliable signals from CI
and can erode the trust of developers in their regression testing.

Flaky-test failures stem from a variety of causes, including
faults in the code under test, faults in the test code [38], or
unreliable testing infrastructure [32], [34]. Despite the false
alarms that flaky tests can raise, these tests can sometimes
detect real faults in the code under test and are therefore kept in
regression test suites. Frequent causes of non-determinism that

lead to flaky tests include concurrency, test-order dependency,
resource leaks, real time, network/IO issues, etc. [38].
Previous work [38], [46], [56] on flaky tests points out that
one substantial cause of flaky tests is the presence of test-
order dependencies. Such dependencies can make the same
tests (say, t; and t2) pass when run in one order (say, t;
before t5) but fail when run in another order (say, ¢ before
t1) because of some resource shared between the tests (e.g.,
the state in the main memory or on the file system). Following
prior work [56], we refer to flaky tests whose only source
of non-determinism is order dependencies as order-dependent
(OD) tests. Unlike other types of flaky tests whose causes
of non-determinism may be hard to control, OD tests can
deterministically pass or fail depending on the order in which
the tests are run [35]. We refer to all other types of flaky tests,
which are not OD tests, as non-order-dependent (NOD) tests.
One important obstacle to performing research on flaky
tests is obtaining a dataset of current flaky tests in real-
world projects, similar to datasets such as SIR [17] and
Defects4] [33] that enabled research studies on regression
testing, automated debugging, and program repair. Some prior
work studies only flaky tests from older code versions [14] or
focuses on only flaky tests that had been fixed [38]. Other work
does not classify flaky tests into OD or NOD tests, or performs
studies on only a relatively small number of projects [46], [56].
To offer a dataset of current flaky tests in real-world
projects, we develop a framework, called iDFlakies, for col-
lecting flaky tests from a large number of open-source projects,
and create a dataset of such flaky tests. The core of our
framework is our tool that can (1) detect flaky tests by
reordering and rerunning tests in a project and (2) partially
classify flaky tests as likely OD or NOD tests by checking
various test orders. Our current tool does not further classify
the causes of the flaky tests. We implement our tool as a Maven
plugin for Java projects that use JUnit tests. The tool offers
five configurations to run the tests and detect flaky ones. The
base configuration simply reruns the original order of the tests
many times to check whether the result of any test changes;
any test that passes and fails for the same code version in
the same test order is by definition a flaky, NOD test. The
other configurations reorder the test methods and classes to
focus on detecting OD tests, but these configurations can also
detect NOD tests along the way. Following Zhang et al. [56],
our tool reorders tests using random orderings or reversing
the original order of the tests. However, our tool differs from
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Zhang et al’s tool in that our tool’s random orderings do
not interleave test methods from different test classes. An
ordering that interleaves tests from test classes would not be
produced by popular testing frameworks, such as JUnit. Our
study (Section VI) shows that first randomizing the test classes
and then the test methods within each test class can detect the
most flaky tests overall.

In addition to our core tool, our framework offers automated
experimentation using our tool. In particular, our framework
takes a list of URLs of open-source Java projects and a commit
for each project, builds a Docker image for running each
project, and then runs our tool with a given set of config-
urations to detect flaky tests for each project. We wrap the
experimental runs into Docker images to increase the repro-
ducibility of our results. Furthermore, we make our framework
publicly available [7], allowing researchers to easier use our
tool in their research experiments on flaky tests.

We apply our framework on 683 projects, and limit the
cost of exploring different reordering configurations on them
by setting a time limit of up to 56 hours per project. Our
experiments find 82 projects with at least one flaky test and a
total of 422 flaky tests, of which 50.5% are classified as OD
and 49.5% as NOD, based on the observed runs. Moreover, a
developer running regression tests often cares not just whether
individual tests pass or fail but whether the entire test suite has
any test failure. We compute the probability that one run of
the test suite leads to flaky-test failures as the percentage of
our tool’s runs with at least one (flaky) test failure; we find the
probability to be as high as 50.0%. We also find that running
tests under random orders detects the most overall flaky tests,
and it has about the same probability to detect NOD tests as
running the tests in the same original order many times.

This paper makes the following main contributions:

Tool. We develop and make publicly available a tool to detect
flaky tests; our tool can be easily integrated into Maven
projects that use JUnit.

Framework. We present an end-to-end framework, iDFlakies,
that researchers can use to easily extend and apply our tool to
detect flaky tests and classify them into two types.

Dataset. We describe a collection of artifacts, including
Docker images and test-run logs, that we use to create the
dataset and detect flaky tests. iDFlakies and our artifacts are
publicly available [7].

Study. We present a study of flaky tests in open-source Java
projects. Our findings include the prevalence of OD and NOD
types of flaky tests and how to automatically detect these tests.

II. EXAMPLES OF FLAKY TESTS

We show two example flaky tests—one order-dependent
(OD) and one non-order-dependent (NOD)—that can non-
deterministically pass or fail when run on the same code.

A. Order-dependent (OD) test

OD tests are flaky tests that can pass or fail depending on
only the order in which the tests are run [56], i.e., OD tests
can be made to deterministically pass or fail by fixing the

—_

public void assertIsShutdownAlready () {
2 shutdownListenerManager .new
InstanceShutdownStatusJobListener () .dataChanged ("/

test_job/instances/127.0.0.1@-@0", Type.
NODE_REMOVED, "");
3 verify (schedulerFacade, times (0)) .shutdownInstance();
4}

Fig. 1. An OD test from the Elastic-Job [3] project.

1 @Test (timeout=2000

2 public void testIssue() throws Exception {

3 final int port = SocketUtil.getAvailablePort();

4 WebSocketServer server = new WebSocketServer ( new
InetSocketAddress( port ) ) { ...}

6

Fig. 2. An NOD test from the Java WebSockets [8] project.

order of tests [21]. Detecting OD tests is important in general,
because test frameworks can change the test order, even when
running all the tests, thereby causing the failures of OD tests
to affect developers. Moreover, techniques that shorten time
of regression testing—including test-suite reduction [48], [50],
[51], [54], test selection [15], [23], [37], [44], [45], [47], [52],
[55], and test parallelization [4]—select only a subset of tests
to run and could additionally expose failures of OD tests.
Figure 1 shows an example OD test that our tool
found in a project from our study. Elastic-Job [3] is
a popular Java project with over 4500 stars on GitHub
as of January 2019. The project contains an OD test
in its ShutdownListenerManagerTest class. The test,
assertIsShutdownAlready, is OD because its passing de-
pends on some tests not to run before it. This dependence
exists because Line 3 of assertIsShutdownAlready checks
whether an instance of a class variable is shut down, and the
instance is started by some other tests. The test passes by itself
or in orders where the tests that start the instance are run after
the OD test. However, the test fails when the tests that start
the instance, but do not shut it down, are run directly before
assertIsShutdownAlready.

B. Non-order-dependent (NOD) test

NOD tests are flaky tests that can pass or fail depending on
any reason other than solely on the order in which the tests are
run. Tests of this type are flaky due to concurrency, timeouts,
network/IO, etc. [38].

Figure 2 shows an example NOD test that our tool found in
a project from our study. Java WebSockets [8] is a popular Java
project with over 4800 stars on GitHub as of January 2019.
The project contains an NOD test in its Issue713Test class.
The test, testIssue, is NOD because it is given a timeout
on Line 1, and on some executions of the test, the setup of the
WebSocket server and the broadcasting of some messages take
so long that the test times out. However, in some executions,
even on the same machine, the test is able to finish, due to
differences in the load of the machine.

A test could be flaky depending on both the order of the tests
and some other non-deterministic cause(s). For example, a
flaky test may pass or fail only in a certain order, while always
passing or always failing in all other orders. We aim to classify



such tests as NOD, because unlike pure OD tests, the execution
results for these tests cannot be deterministically reproduced
in some order. However, our tool classifies tests based on the
observed runs, and if it does not encounter a relevant run, it
may mis-classify a test as OD when it depends on both the
test order and some other non-deterministic cause(s).

III. OUR TOOL

We develop a tool that detects flaky tests and classifies each
as either OD or NOD; our tool does not further classify the
NOD tests into more precise causes of flaky tests [38]. As
inputs, our tool conceptually takes a test suite, a configuration
for ordering the tests, and the number of times to run the test
suite based on the configuration. The available configurations
are described in Section III-A. As output, our tool produces the
detected flaky tests, the type of each flaky test (OD or NOD),
and the exact order in which each flaky test fails. To detect
flaky tests, our tool repeatedly runs the test suite based on the
configuration specified by the user. We refer to a single run
of the test suite as a round. The default configuration orders
the tests using random-class-method with 20 rounds. In our
evaluation, we find that the random-class-method configuration
detects the most flaky tests.

We implement our tool as a Maven plugin that can be
integrated into any project that builds using Maven and runs
tests using JUnit. A Maven project is organized into one or
more modules, and each module contains its own code and
tests. Like most Maven plugins, our tool runs separately on
each module. Our tool uses our own custom test runner to
control the order of running JUnit test methods, hence, our
tool can work on only Maven projects whose tests are written
using JUnit. There are three main steps in our tool. The setup
step checks whether all tests of a module pass; if not, our tool
stops further exploration for that module. If all tests pass, the
module proceeds to the next step. The running step runs the
module’s test suite based on the user-specified configuration
and the number of rounds. For each round that contains some
test failure(s), our tool performs the classification step. The
classification step reruns failing and passing orders of a test
to classify it as OD or NOD.

During the setup step, our tool checks whether all tests
pass in the original order. To determine this order, our tool
runs Maven’s unit-test plugin, Surefire [10], and collects the
test logs (that Surefire stores in .xml files). From these logs,
our tool extracts the original order in which Surefire ran
test classes and test methods within the classes. Even if the
tests pass with Surefire, they could fail with our plugin that
uses our custom test runner. Thus, our tool runs the tests
in the original order using our custom runner, and checks
if the result of every test is PASS or SKIP. SKIP indicates
that a developer intentionally ignores the test. A test could
fail in the original order due to being flaky but also due to
several other factors, including our testing environment being
wrong, our tool having limitations, or the code under test being
actually broken. We cannot easily distinguish these factors. In
an attempt to get all tests to pass, even in the presence of

some NOD tests, our tool runs the original order up to a user-
specified number of times (by default three). If every run has
some failing test(s), our tool currently discards the module. In
the future, we plan to improve how our tool handles failing
tests, e.g., it could remove failing tests from the test suite
and proceed with the remaining tests. In our evaluation, the
original order does pass for the majority of the modules (945
modules pass, 476 modules do not pass).

Figure 3 shows an example run of our tool, using the
random-class-method configuration and 8 rounds. In the setup
step, the tool runs the original order and all four tests pass. In
the running step, the tool runs these tests 8 times based on the
specified configuration. In the end, it detects two flaky tests:
an OD test t1 from ATest (ATest#t1) and an NOD test t3
from BTest (BTest#t3).

To classify each failed test, the classification step can rerun
two test orders: (1) the truncated failing order with all tests
from the failing order up to and including the failing test; and
(2) the truncated original order with all tests from the original
order up to and including the failing test. If the test fails in
the truncated failing order and passes in the truncated original
order, our tool classifies the test as OD. If the test passes in the
truncated failing order or fails in the truncated original order,
our tool classifies the test as NOD. The classification reruns
of the truncated failing order are critical to classify each test
as OD or NOD; when a test fails in an order different from
the original order (in which the test passed), the tool could
not immediately determine whether the test fails due to the
change in the order or due to some other flakiness. The reruns
of the truncated original order are not cost-beneficial, and in
our evaluation failed in only 3 of 7441 classification runs, so
we recommend that only truncated failing orders be run.

In our example, BTest#t3 fails in round 3. In the clas-
sification step, when rerunning the truncated failing order,
BTest#t3 passes. Therefore, the tool classifies BTest #t 3 as
an NOD test, because it failed and passed in the same order. In
contrast, ATest#t 1 fails in rounds 7 and 8. In round 7, when
rerunning the truncated failing order, ATest#t1 fails again,
and when rerunning the truncated original order, ATest#t1
passes. Therefore, the tool classifies ATest#t1 as an OD test.

Even if a test fails twice in the same order, it is no guarantee
that the test is really OD, because other factors could have
made an NOD test to fail twice. For example, the test shown
in Figure 2 could time out twice in a row due to the machine
load, independent of the test order. Our tool can recheck a
test failure again even if it previously classified the test. A
test classified as OD can be later reclassified as NOD in a
future round. However, a test classified as NOD can never be
reclassified as OD. In our example, the same test ATest#t1
fails in round 8 and is classified again as an OD test.

A. Configurations

Our tool has five configurations for ordering tests:
(1) original-order repeatedly runs the tests in the original
order and classifies any failing test as NOD. The configuration
cannot detect OD tests, because the order is always the same.
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Fig. 3. A sample run of our tool using the random-class-method configuration with 8 rounds, detecting an OD test and an NOD test.

(2) random-class (RandomC) repeatedly runs test classes in a
random order but keeps methods in each class in the same
order as in the original order (e.g., orders 2 and 5 from
Figure 3). Maven Surefire can already randomize the order
of test classes, but it neither runs the test suite repeatedly nor
classifies flaky tests as OD or NOD.

(3) random-class-method (RandomC+M) repeatedly runs test
methods in a random order, hierarchically randomizing first
the order of the test classes and then the methods within test
classes but not interleaving methods from different classes.
Figure 3 illustrates this configuration.

(4) reverse-class (ReverseC) reverses the order of all test
classes from the original order but keeps the test methods
in the same order as the original order (e.g., order 5 from
Figure 3); our tool runs this configuration only once to limit
the time for experiments (although repeated runs could detect
some more NOD tests but no new OD tests).

(5) reverse-class-method (ReverseC+M) reverses the order of
all test classes and methods from the original order (e.g., order
8 from Figure 3); similar to reverse-class, this configuration
runs only once.

All configurations, except the original-order, reorder some
tests from the original order and can detect OD tests. For
these configurations, if the tool finds a failing test, it proceeds
to the classification step (Section III-B). The original-order
configuration skips the classification step because all failing
tests from this configuration are classified as NOD tests.

B. Classification

When our tool finds a test failure in an order (called failing
order) different from the original order (in which the test
passed), it needs to classify whether the test is OD or NOD.
For this classification, our tool can run the test again in the
failing order and in the original order. If the test both fails
again in the failing order and passes again in the original order,
our tool classifies the test as an OD test. Otherwise, our tool
classifies it as an NOD test.

The test classification can happen at two stages. When
a test fails for the first time, its classification is unknown,
so the classification step must be run. If the same test fails

later, its prior classification is known (OD or NOD), so one
need not run the classification step again. However, we allow
a certain percentage of failures to be rechecked, i.e., the
classification step is rerun although the prior classification is
known. If this percentage is 100%, the classification step runs
for every failing test, with a potential high runtime cost. If this
percentage is 0%, no test is rechecked, increasing the chance
to mis-classify some NOD tests as OD. If this percentage
is in between, then each failing test is selected with that
percentage to be rechecked. In our experimentation, we use
20% to control the runtime cost but still have some benefit
of increased accuracy. We find that 29 tests are first mis-
classified as OD tests and later re-classified as NOD tests. For
greater accuracy in classification, we recommend setting this
percentage to 100% when using our tool with spare machine
time available (e.g., overnight or over the weekend).

If our tool ever classifies a test as NOD, including during
rechecking, it overall classifies the test as NOD, even if some
classifications were OD. In other words, the tool classifies as
NOD all tests that fail non-deterministically for some order,
even if they fail largely deterministically in other orders and
thus have characteristics of both types of flaky tests. Many
NOD tests fail in more than one round (in our evaluation, 125
out of 209 NOD tests fail more than once), so even if the test
is incorrectly classified as OD in one round, later rechecking
can likely correctly re-classify the test as NOD.

C. Rounds and timeouts

Our tool can be set to run for a specified number of rounds
(Rounds) for each module of a project, a specified amount
of time (Timeout) for an entire project, or the minimum of
the two (Both). We expect that developers would use Rounds,
because they know how long their test suite runs, but we
used Both in our large-scale experiments, because we did
not know a priori how long various test suites run. Rounds:
Given a number of rounds, the tool runs each module for
that number of rounds before proceeding to the next module.
Section VI-D discusses the trade-off between running mod-
ules “depth-first” vs. “breadth-first”. Timeout: Given a total
amount of time, the tool computes the number of rounds to
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run as | Ttimeout/ Toriginal |, Where Toriginal 1S the time the original
order took to run the entire project. Both: Given both a number
of rounds and a timeout, our tool first calculates the number
of rounds as for Timeout, and then chooses the minimum of
that calculated number and the given number of rounds.

IV. IDFLAKIES FRAMEWORK

In addition to our core tool, we also develop a framework,
iDFlakies, for using the tool on various projects. At a high
level, the framework takes as input a list of project URLs
and commits, and outputs a database with various information
including how long a module’s test suite takes to run, in which
configurations a module’s test suite is run, and the OD and
NOD tests detected for each configuration. Figure 4 shows an
overview of the framework. It has three main steps: (1) setup
of the projects, (2) running our tool on the projects to detect
flaky tests, and (3) summarizing the results for the user. The
code for all three steps is publicly available [7].

A. Setup step

Given a list of project URLs and Git SHAs corresponding
to a commit for each project, our framework first constructs
a Docker image [2] for each project and commit pair. Each
image provides an isolated environment for each project and
eases the reproduction of our experimentation. Our Docker
images are also publicly available [7].

Our framework first builds a base Docker image on top of
Ubuntu 16.04 by installing the basic necessary software such
as Git, Java, and Maven. In particular, our framework currently
uses Java 8 and Maven 3.5.4. On top of this base Docker
image, the framework builds a Docker image for each project
by cloning the version of the project’s repository specified by
the commit SHA. The framework then builds the commit SHA
and runs its tests, specifically with mvn clean install
-DskipTests —-fn -B followed by mvn test —-fn -B. Our
framework aims to run as many modules as possible, and the
—-fn option instructs Maven to not stop at the first failing
module but still execute the other modules. Modules that fail
mvn test do not proceed to the running step.

B. Running step

The running step runs our tool for each project in its own
Docker container. The framework starts up a Docker con-

tainer for each Docker image and first modifies the project’s
pom.xml files (the build configuration files for a Maven
project) to include our Maven plugin. Next, the framework
determines the number of rounds to run our tool; in the
Timeout or Both modes (Section III-C), the framework finds
the time that Maven took to run all the tests in the setup
step and uses that time to compute the number of rounds.
The framework then proceeds to run our tool for each tool
configuration that the user specified.

C. Summarizing step

While the running step logs various information from the
projects into log files, the summarizing step parses these logs
to create a SQL database. The database contains several tables
that allow easily querying the details for each module, for all
modules of a project, or even across projects. The user can
obtain information such as the time a module’s test suite takes
to run, the various configurations the module was run with, the
number of rounds that our tool runs for each configuration, the
rounds that contain at least one failing test and the names of
those failing tests, the results of the classification steps, which
round detected which flaky test, and whether each test was
classified as OD or NOD. All of the logs used to create the
database are also saved, including test orders, test results, stack
traces of failed tests, output from tests, and build output. More
details about the database and logs are on our website [7].

V. STUDY SETUP

All projects in our study are Java projects that build with
Maven [9] and use JUnit. We check whether a project builds
with Maven by looking for a pom.xml file at the root of
the project’s repository. We collected the projects from three
sources: (1) 44 projects from recent related work [14], [46],
(2) 150 most popular Java projects from GitHub [6] up until
October 2018, and (3) 500 most popular Java projects from
GitHub that were updated within the month of November
2018. We determine the popularity of GitHub projects using
the number of stars.

The projects from related work [14], [46] are prominent Java
projects that have flaky tests. Instead of using the same, mostly
old, versions of the projects used in the prior work [14], [46],
we use a more recent version, because we may report the flaky



tests that we detect to the project developers, and researchers
may want to study not-yet-fixed flaky tests, e.g., such that
tools for automated fixing do not overfit to the history. In total,
we use 44 projects from the two papers [14], [46]. When we
union those projects with the top 150 most popular projects
from GitHub, we obtain 183 projects that contain a total of
2921 modules and 1880362 tests.

We break our projects into two sets, comprehensive and ex-
tended. The comprehensive set includes all 183 projects from
sources (1) and (2), and we evaluate all five configurations of
our tool on these 183 projects. We find random-class-method
to be the most effective configuration for detecting flaky tests.
The extended set includes all of the projects from source (3),
and to limit the cost of our experimentation, we evaluate only
the random-class-method configuration on these projects. The
extended set consists of 500 projects disjoint from the projects
from the comprehensive set. These 500 projects contain a total
of 2250 modules and 93722 tests. The extended set has fewer
tests than the comprehensive set although the extended set has
more projects, because it has relatively smaller projects.

Of all 5171 modules from the 683 projects, iDFlakies is
able to explore 945 modules for flaky tests. iDFlakies cannot
explore the other 4226 modules (from 597 projects) because
462 modules could not be built by Maven, 2830 modules
do not declare JUnit as a dependency in its pom.xml file or
have no tests, 476 modules’ tests do not pass in any of three
rounds in the original order, and 458 modules encounter some
limitations of our tool. We plan to improve the tool to handle
more modules in the future.

In summary, among the 945 modules that iDFlakies can
explore, it detects 38 modules (from 31 projects) with at least
one OD test and 82 modules (from 63 projects) with at least
one NOD test, for a union of 111 modules (from 82 projects)
with at least one OD or NOD test (and some modules have
both OD and NOD tests). Our project website [7] provides
more details for all projects used in our study.

VI. STUDY RESULTS

The main goal of our study is to detect flaky tests in open-
source projects and to compare the configurations that one
could use to detect these tests. More specifically, our study
addresses the following main research questions:

RQ1: What is the breakdown of OD and NOD tests in open-
source projects?

RQ2: What is the probability of a round (test-suite run)
containing at least one flaky-test failure?

RQ3: What ordering configurations detect the most flaky tests?

The reason for RQ1 is to understand which types of flaky
tests are more prevalent among those detected in open-source
projects. The reason for RQ2 is to understand how often flaky
tests impact developers’ development cycle and to illustrate
the need for better solutions to detect flaky tests. The reason
for RQ3 is to help developers understand the potential trade-
offs of different ordering configurations and better utilize their
resources (e.g., developers’ time and machine resources) in
detecting flaky tests.
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As described in Section V, our dataset contains two sets:
for comprehensive, we run all five configurations on the 183
projects; for extended, we run only the random-class-method
configuration on the 500 projects. RQ1 (Section VI-A) uses
both sets of our dataset, while RQ2 and RQ3 (Sections VI-B
and VI-C, respectively) use only the comprehensive set, be-
cause they compare the configurations.

A. RQI. Breakdown of flaky-test types

Our evaluation detects a total of 422 flaky tests from 111
modules in 82 projects. Of 422 flaky tests, 213 (50.5%)
are classified as OD tests and 209 (49.5%) as NOD tests,
based on the observed runs. While the overall percentage
of OD tests is slightly higher than the percentage of NOD
tests, the two are rather close. Note that our study heavily
focuses on randomizing test orders to detect OD tests, because
automatically distinguishing/classifying OD tests from NOD
tests can be done fairly well. Section VI-C describes the
breakdown of the flaky tests detected for each test reordering
configuration. The projects in our study likely have many more
NOD tests that could be detected by changing some aspects of
our experiments. For example, running multiple test suites in
the same machine (not each in its own machine) would allow
competing for machine resources to more likely cause failures
of NOD tests.

B. RQ2. Probability of a round containing a flaky-test failure

The probability that an individual flaky test fails—measured
as the ratio of the number of rounds in which a test fails over
the number of rounds in which the test was run—varies a lot,
from under 1% to over 50% in our experiments. In practice, a
developer running tests usually cares not about individual tests



but the status of the entire test suite, i.e., whether all the tests
pass or some fail. Given this concern, we study the probability
of a round failing, i.e., containing at least one flaky-test failure.
Figure 5 shows for each configuration the percentage of failing
rounds further broken down into the percentages for rounds
that contain at least one OD or NOD test.

The percentage of failing rounds can be calculated assuming
the test failures to be either (1) correlated with one another or
(2) independent of one another. If failures are correlated, then
rounds with multiple failures affect the percentage as much
as rounds with one failure. If failures are independent, then
one round with multiple failures could have been multiple
rounds with fewer failures per round. Due to the difficulty
of precisely determining whether failures are independent, we
compute percentages for round failures simply based on the
observed rounds. Namely, we compute the percentages as the
ratio of the number of rounds where one or more flaky tests
fail over the total number of rounds for each configuration
(but only for modules that have flaky tests). If a failing round
contains both OD and NOD tests, then that round counts as
one for both types of flaky tests as well as for “Any”.

Figure 5 visualizes the results. We see that the reverse-class-
method configuration has the highest probability of producing
a failing round, 50.0% overall probability of detecting one or
more flaky tests just from running one round. More precisely,
reverse-class-method has a 46.8% probability of producing
a failing round due to OD tests and a 5.3% probability of
producing a failing round due to NOD tests. For quickly
determining whether a test suite may contain flaky tests, our
results suggest that the developers should run the reverse-class-
method configuration. We also find that developers who run
their tests only in the Maven-specified, original order have a
low overall probability of producing a failing round, 2.7%.

Of particular interest are the percentages of rounds that fail
due to OD tests for random-class and random-class-method.
Intuitively, an OD test can fail because either a “bad” test is
run before it or a “good” test is not run before it. Consider the
case where an OD test fails due to some “bad” test(s) running
before the OD test and “polluting” the shared state, causing
the OD test to start running in an undesirable state [12], [13],
[24]. Assume that there is one such polluting test and one OD
test. Given a uniformly random ordering of the tests, there is
a 50% probability of the polluting test to be ordered before
the OD test. If there are more polluting tests, the probability is
even higher that at least one polluting test runs before the OD
test. However, with the exception of the reverse-class-method
configuration having a 46.8% probability of a failing round,
our reordering configurations have the percentages much lower
than 50%. These low percentages suggest that the test suite
has some ‘“cleaner” tests, which clean the polluted state such
that the OD test can then run successfully, and these cleaner
tests are frequently ordered to run between the polluting test(s)
and the OD test.

The other case is a missing “good” test: if an OD test needs
another test to run before it to set up a desirable state for that
OD test, then not having that set up test run before the OD test

causes the OD test to fail. The probability of failure should
be again 50% unless there are many tests that can set up the
OD test. We plan to further explore the notions of “bad” and
“good” tests in the future.

C. RQ3. Configurations detecting most flaky tests

Table I shows the breakdown of the number of flaky tests

detected by the different configurations for each project from
our comprehensive set. The table shows the breakdown for
both OD and NOD tests, except for the original order that
can detect only NOD tests. The table also shows the number
of rounds run for the original-order and random-class-method
configurations; the number of rounds for random-class is
similar to the number for random-class-method. While these
numbers would be ideally the same, there are various reasons
for different numbers, including timeouts, tool crashes, and
repeated experiments. The numbers of rounds for reverse-
class-method and reverse-class are much lower; in fact, our
tool runs each of those two configurations for only one round
in one experiment, but we performed multiple experiments
while developing our tool and kept most of the logs to provide
the largest dataset for analysis of flaky tests.
OD tests: As shown in Table I, among all configurations, the
random-class-method detects the greatest number of unique
OD tests, 162 (i.e., 88.0% of all OD tests detected across
all configurations). This result matches our expectations: ran-
domly reordering test methods provides the most reordering
flexibility among configurations, giving more opportunities for
different reorderings to expose OD tests. In general, Table I
shows that reordering test methods rather than just test classes
helps with detecting flaky tests; both random-class-method
and reverse-class-method detect more flaky tests than random-
class and reverse-class, respectively (while the corresponding
configurations explore a similar number of rounds).

Considering that the random-class-method configuration
runs many more rounds than the reverse-class-method config-
uration, it is expected that random-class-method detects more
(OD and NOD) flaky tests. Indeed, the reverse-class-method
configuration detects only 47 OD tests (25.5% of all OD tests
detected across all configurations). Interestingly, the reverse-
class-method configuration detects 4 tests not detected by
the random-class-method configuration. However, the random-
class-method configuration detects 119 tests not detected
by the reverse-class-method configuration. As a result, we
strongly recommend developers to first run the reverse-class-
method configuration once to quickly detect a portion of the
OD tests and then use the random-class-method configuration
to detect more OD tests.

Overall, we find that the random-class-method configuration
performs the best, although the other configurations also
sometimes detect flaky tests not detected by random-class-
method. Our findings suggest that it is desirable to research
new approaches that can help quickly find the test orders that
would detect the most OD tests. Such new approaches could
be substantially better than randomly selecting test orders, and
we plan to explore them in the future.



TABLE I
THE NUMBER OF FLAKY TESTS THAT EACH CONFIGURATION DETECTS IN THE COMPREHENSIVE SET. “ALL” IS THE NUMBER OF UNIQUE TESTS.

Original RandomC RandomC+M ReverseC ReverseC+M All
Project Slug - Module Round | NOD | OD | NOD | Round | OD | NOD | OD | NOD | OD NOD || OD | NOD | Al
activiti/activiti 88 0 0 0 66 20 0 0 0 0 0 20 0 20
alibaba/fastjson 67 0 12 0 158 13 2 3 0 4 0 13 2 15
apache/hadoop - ml 14 0 0 0 14 2 0 18 10 0 0 20 10 30
-m2 14 0 22 1 7 22 1 0 0 0 0 22 1 23
-m3 15 0 1 0 10 1 0 1 0 1 0 1 0 1
- mé4 15 1 0 0 14 2 0 0 0 4 7 6 8 14
apache/hbase 14 1 0 0 13 0 1 0 0 0 1 0 1 1
apache/incubator-dubbo - m1 32 0 0 1 53 0 0 0 0 0 0 0 1 1
-m2 33 0 2 7 76 4 2 0 0 1 0 4 9 13
- m3 39 0 0 0 37 1 0 0 0 1 0 1 0 1
- m4 42 0 1 0 91 4 0 0 0 2 0 4 0 4
- m5 47 0 0 0 38 3 0 0 0 0 0 3 0 3
- m6 131 2 0 0 49 0 0 0 0 0 0 0 2 2
apache/jackrabbit-oak 16 0 0 0 14 2 0 0 0 2 0 2 0 2
apache/struts 114 0 0 0 342 4 0 0 0 0 0 4 0 4
crawlscript/webcollector 4140 1 0 1 16503 0 1 0 0 0 0 0 1 1
doanduyhai/achilles 356 0 0 0 278 0 1 0 0 0 0 0 1 1
dropwizard/dropwizard 76 0 0 1 248 1 1 0 0 0 0 1 1 2
elasticjob/elastic-job-lite - ml 288 2 0 0 839 0 0 0 0 0 0 0 2 2
-m2 307 3 0 0 826 0 1 0 0 0 0 0 3 3
- m3 335 0 2 0 815 7 1 0 0 2 0 7 1 8
google/jimfs 42 1 0 0 108 0 0 0 0 0 0 0 1 1
jfree/jfreechart 166 0 0 0 290 1 0 0 0 0 0 1 0 1
jodaorg/joda-time 206 1 0 0 146 0 0 0 0 0 0 0 1 1
kevinsawicki/http-request 2317 0 0 0 2013 28 0 0 0 28 0 28 0 28
knightliao/disconf 344 0 0 0 1359 0 1 0 0 0 0 0 1 1
looly/hutool 842 0 0 0 650 0 1 0 0 0 0 0 1 1
orbit/orbit 35 0 0 1 123 0 0 0 0 0 0 0 1 1
oryxproject/oryx 60 1 0 0 131 0 1 0 0 0 0 0 1 1
querydsl/querydsl 14 3 0 0 0 0 0 0 0 0 0 0 3 3
spotify/helios 25 1 0 1 71 0 1 0 0 0 0 0 1 1
spring-projects/spring-boot - m1 8 1 0 0 12 0 0 0 0 0 0 0 1 1
- m2 12 0 0 0 13 2 0 0 0 2 0 2 0 2
square/otto 815 1 0 0 3243 0 0 0 0 0 0 0 1 1
square/retrofit - m1 87 0 0 2 331 0 2 0 0 0 0 0 2 2
- m2 87 0 0 4 331 0 5 0 0 0 0 0 7 7
tootallnate/java-websocket 666 21 0 30 1653 0 47 0 0 0 1 0 52 52
undertow-io/undertow 15 0 0 4 65 1 3 0 0 0 0 1 4 5
wildfly/wildfly 10 0 0 0 35 44 0 0 0 0 0 44 0 44
wrodj/wrodj 34 0 0 0 116 0 2 0 0 0 0 0 2 2
Total 11968 40 40 53 31181 | 162 74 22 10 47 9 || 184 122 | 306

NOD tests: Table I and Figure 5 show that most configurations
have similar probability to detect NOD tests. The percentages
for the two reverse configurations differ from the other config-
urations, but these two configuration have much fewer rounds
and thus by chance could have much higher or lower prob-
abilities. Even if some configuration has a higher probability
to detect at least one failure in a round, it may be repeatedly
detecting the same NOD tests. A benefit of rerunning original-
order is that every failure is immediately known to be an NOD
test. In contrast, failures from randomized orders need to be
classified using the classification step of our tool.

Detection of many NOD tests from randomized orders
(and the reverse-class-method classification) shows that the
classification step is important for properly classifying a flaky
test as an OD test or an NOD test. Of the 122 NOD tests
in our comprehensive set, we find that our tool classifies 91
as NOD tests using the classification step; the remaining 31
unique NOD tests need no classification step because our tool
classifies them as NOD using the original-order configuration.

For NOD tests detected by both original-order and random-
class-method, we compare the probability of a round detecting
the test but find no generalizable differences. Specifically, a
Wilcoxon signed-rank test shows that the probabilities are
statistically different, with p < 0.05, for the (26) tests in the
comprehensive set but not statistically different from the (33)
tests including both comprehensive and extended sets. We plan
to explore in the future whether running the tests in different
reorderings leads to differences that can more easily expose
flakiness in the NOD tests due to various causes.

Our results suggest that simply rerunning tests in the
original order where they pass is not a good configuration
for detecting flaky tests—it cannot detect any OD test, and it
does not have a much higher probability to detect even NOD
tests. It is better to reorder the tests to increase the probability
of detecting any type of flaky tests, not just OD tests. In
our experiments, the randomizing configurations, along with
the classification step, detect more NOD tests than rerunning
the tests many times in the same original passing order (but




with the caveat that randomizing configurations had more
rounds). Our tool currently cannot further analyze or classify
the cause of flakiness for these NOD tests; we leave that topic
as important future work.

D. Discussion

Running iDFlakies: Currently, our tool runs tests in a multi-
module Maven project in a depth-first manner: given a user-
specified number of rounds (or a user-specified timeout from
which the tool calculates the number of rounds), our tool first
runs that number of rounds for one module before proceeding
to the next module. An alternative would be breadth-first:
our framework would first run our tool on every module
once before running our tool on every module again for the
second round, and so on. However, breadth-first would invoke
our tool, and consequently Maven, each time it needs to run
through all modules for one round. Invoking our tool and
Maven adds extra overhead in checking what modules exist,
what needs to be rebuilt, what the tests are, etc. Comparing
advantages and disadvantages of depth-first and breadth-first,
depth-first avoids the extra overhead of invoking Maven multi-
ple times and more closely matches the usual Maven approach
to plugins, with a plugin finishing work on a module before
proceeding to the next module. The disadvantage is that depth-
first requires knowing the number of rounds, so our tool can
finish running tests for one module before proceeding to the
next one. The advantage of breadth-first is that it allows for the
usage scenario where a developer runs the framework with no
a priori timeout, running overnight or whenever a machine
has idle time. The developer can then stop the framework
at any time and receive all the flaky tests detected. The
disadvantage of breadth-first is the extra overhead needed for
Maven. Currently, we do not know which way of running
modules is faster and provides more benefits in terms of
detecting more flaky tests; we plan to implement breadth-first
and compare empirically with depth-first in the future.
Regression testing: Our tool runs tests in many different or-
ders aiming to detect the most flaky tests. However, rerunning
tests takes a long time and is worth doing only if a developer
is purposefully trying to detect a substantial number of flaky
tests and has the resources for this task. Another way to use
the findings from our study (e.g., that changing the order of
the tests increases the chances of detecting flaky tests) is to
incorporate the reorderings with continuous integration and
regression testing. The developer can run the tests in different
orders after every change when tests are naturally rerun as part
of the development process, and flaky-test detection from our
tool would effectively come “for free”. In fact, we find that
8 of the 683 projects from our study already configure their
Surefire (setting the option runOrder to random) to run test
classes (but not test methods) in random order.

First failure: Our framework counts all tests that fail during
a failing round as flaky tests. However, multiple flaky tests
that fail in the same failing round can all be failing due to the
same root cause. As such, multiple flaky tests can all be fixed
in the same way, and the number of fixes may be smaller than

the number of flaky tests. For example, in a run with multiple
failing tests, all failing tests may be classified as OD, but the
tests after the first failure simply depend on the first failing
test. When that first failing test is fixed, these later OD tests
may also all be fixed. We plan to explore automated debugging
of OD tests in the future.

Ratio of types of flaky tests: Our results show that the
percentages of flaky tests classified as OD and NOD are
quite close (50.5% and 49.5%, respectively). However, prior
work [38] classifying fixed flaky tests found a much lower
percentage of flaky tests being OD, 12%. Our tool uses random
orderings to focus on detecting OD tests. Our tool likely
misses many NOD tests and can be improved by adding more
variations to test runs in order to detect more NOD tests.
FixMethodOrder: We find that 23 of the OD tests detected by
our tool are in test classes annotated with @FixMethodOrder.
This annotation indicates that the test methods in a test class
must run in a certain order, e.g., in the ascending order
based on the test-method names. Our tool still detects and
reports such OD tests although running them through JUnit
would not reorder the tests. However, it is still beneficial to
explore different orderings of test methods in such annotated
test classes. First, it could be that there are actually no
dependencies among the tests, so the annotation is no longer
needed and can be removed. Second, it is important to still
detect OD tests to help developers know which exact ones
are OD. For example, we observe that while our tool detected
several OD tests in @FixMethodOrder-annotated test classes
from the Activiti/Activiti project [1] at commit SHA
bl1£f757a, the developers introduced a patch that removed
the ordering of such dependencies and the @FixMethodOrder
annotation in a later commit SHA, 5alcb8ae.

VII. THREATS TO VALIDITY

Our tool and framework may contain faults that could have
affected our results. To mitigate such threat, we implement
extensive logging for our framework and manually investigate
a sample of logs generated on a variety of projects. We are
more confident in our core tool but less confident in the
summarizing step of the framework due to its complexity.

The exact results of our study, namely the flaky tests de-
tected and their rate of failures, may not be easily reproducible
due to the nature of our experimentation using random orders
and the nature of flaky tests non-deterministically passing and
failing. We attempt to mitigate this threat by logging the
(random) orders in which our tool runs the tests so that others
can reproduce the flaky-test behavior by running the same
orders. The logs for all rounds are publicly available [7].

Our classifications of flaky tests into OD or NOD tests may
occasionally be incorrect. For example, an NOD test could
fail due to a timeout or network issue, and rerunning in the
classification step could lead to it failing again in the same
order, misleading our tool to classify the test as an OD test.
We attempt to mitigate this threat by having the framework
recheck a substantial number of flaky tests’ classifications.



Moreover, the actual number of flaky tests in the projects
we study may be (much) higher than what we report. We
likely miss some NOD flaky tests. Also, we currently run only
unit tests from mvn test and not integration tests from mvn
verify because the latter can take much longer.

Our findings that random-class-method detects the most
flaky tests among all configurations that we study may not
generalize to projects other than those we study. We attempt
to mitigate this threat by obtaining a sizable number of popular
Java projects from GitHub and prior studies. Nevertheless,
projects written in other languages, or even Java projects not
using Maven or JUnit, may not yield similar results. We use
the number of stars on GitHub to obtain popular Java projects,
but they may not be representative of the test suites in all Java
projects.

VIII. RELATED WORK

Luo et al. [38] performed an extensive study of flaky tests
by looking through historical commits with fixed flaky tests
and classified these tests into several types, including OD
tests. OD tests were among the top three causes of flaky tests,
with 12% of the fixed flaky tests being OD. Labuschagne et
al. [34] studied regression testing in continuous integration
and encountered many flaky tests as well, reporting that 13%
of the historical failed builds rerun on Travis CI are due to
flaky-test failures. Gao et al. [22] studied system tests and
found that 96% of test failures can be due to flaky tests and
that the same tests can have as much as 184 lines of code-
coverage difference between runs. Others [29], [39] also report
non-deterministic code coverage.

There is a growing body of work on detecting flaky tests.
Our work follows Zhang et al. [56] who detected OD tests
through random ordering of all test methods in the test suites,
with follow-up work [35] that also reported NOD tests through
rerunning the same order of tests many times. We also rely
on random ordering to detect flaky tests and on reruns to
classify them into OD and NOD tests. However, unlike Zhang
et al. [56], we build our dataset across a much larger number
of projects (683 projects vs. 4 projects). Furthermore, our
random-class-method configuration does not interleave the test
methods across different test classes, respecting how JUnit
actually runs tests. Our results still confirm Zhang et al.’s
finding that running a high number of randomized orders can
detect more OD tests than running once the reverse order.

Gyori et al. [24] proposed the PolDet technique for detecting
tests that “pollute” the state such that tests that run after
polluters may have different outcomes. PolDet can proac-
tively report potential test-order dependencies before they
even occur, because no other test in the current test suite
may actually depend on the polluted state. Dually, Huo and
Clause [31] studied tests with brittle assertions that depend
on the values derived from inputs not controlled by the tests
themselves. Such tests can be order-dependent on other tests
that conceptually pollute the state that affects the test with
the brittle assertions. Bell et al. [13] proposed to monitor
test executions to dynamically detect test dependencies, but

these dependencies may not necessarily lead to different test
outcomes if tests run in different orders. Building on that work,
Gambi et al. [21] developed a technique to more precisely
detect test dependencies and used it to find different test orders
to manifest OD tests. They reported 27 previously unknown
OD tests; we report 213 OD tests and also 209 NOD tests. In
future work, we can leverage the ideas from Gambi et al. [21]
to detect OD tests faster.

Palomba and Zaidman [46] considered the relationship
between code smells and flaky tests, reporting that fixing
certain types of code smells can also fix certain flaky tests.
They reported finding flaky tests through reruns and classifying
them into the types introduced by Luo et al. [38]. Palomba
and Zaidman reported 11% of flaky tests to be OD and a
large number of flaky tests from a small number of projects.
However, they did not provide us the logs of test runs from
their experiments, and thus we cannot directly compare their
results against ours or investigate the differences.

Bell et al. [14] leveraged code evolution and code coverage
to determine whether new test failures between two commits
are due to flaky tests; they automatically detected flaky tests
that cover no changed parts of the code but have a different
outcome from the last time the tests run. In contrast, we detect
flaky tests through reruns on the same commit, but instead of
just running the tests in the Maven-specified order, we apply
various configurations to reorder the tests. Both Palomba and
Zaidman [46] and Bell et al. [14] released datasets of flaky
tests but for older code versions; our dataset [7] is for the most
recent code versions, includes classification of flaky tests into
OD and NOD, and contains a collection to artifacts to help
others reproduce these flaky tests.

IX. CONCLUSION

We have presented our iDFlakies framework, which auto-
mates experimentation to detect and partially classify flaky
tests using our tool for Maven-based Java projects with JUnit
tests. We have applied our framework on 683 projects. We
provide a dataset of 422 flaky tests that we then use for our
study on flaky tests. From our dataset, 50.5% of flaky tests are
OD, while 49.5% are NOD, based on the observed runs. We
also find that running the random-class-method configuration
can detect the most flaky tests overall. Both our framework
and dataset are publicly available [7], and we hope that they
can help involve more researchers in the topic of flaky tests,
e.g., to develop better techniques to detect flaky tests, reduce
non-determinism or even fix it altogether, label test failures as
flaky or not, or prevent future flaky tests.
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