

NIHMS PDF Receipt

Journal title: Animal cognition
Manuscript title: Dissociation of memory signals for metamemory in rhesus monkeys (Macaca mulatta)
Submitter: Springer Publishing
NIHMSID: 1521709

Manuscript Files

Type	Label	File Name	Upload Date
Manuscript		10071_2019_1246_ReferencePDF.pdf	2019-02-14 12:34:40

This PDF receipt will be used only as the basis for generating PubMed Central (PMC) documents and will not appear on PMC. The PMC-ready documents will be made available for review after conversion. Any necessary corrections can be made at that time. No materials will be released to PMC without the Reviewer's approval.

1 Running Head: Monkeys monitor multiple signals

2

3 Dissociation of memory signals for metamemory in rhesus monkeys (*Macaca mulatta*)

4

5 Emily Kathryn Brown¹, Benjamin M. Basile², Victoria L. Templer³, and Robert R.
6 Hampton¹

7 ¹ Department of Psychology and Yerkes National Primate Research Center, Emory
8 University

9 ² Laboratory of Neuropsychology, NIMH, NIH

10 ³ Department of Psychology, Providence College

11

12 Conflict of Interest: All authors declare no conflict of interest.

13

14 Acknowledgements: We thank Steven L. Sherrin, Jessica A. Joiner, and Tara A. Dove-
15 VanWormer for assistance with testing animals.

16

17 Correspondence concerning this article should be addressed to Emily Brown,
18 Department of Psychology, 36 Eagle Row, Atlanta, GA, 30322. Phone: 404.727.9619.
19 Email: emily.brown@emory.edu
20 Keywords: metacognition, information-seeking, monitoring, working memory,
21 familiarity

22 Abstract

23 Some nonhuman species demonstrate metamemory, the ability to monitor and control
24 memory. Here, we identify memory signals that control metamemory judgments in
25 rhesus monkeys by directly comparing performance in two metamemory paradigms
26 while holding the availability of one memory signal constant and manipulating another.
27 Monkeys performed a four-choice match-to-sample memory task. In Experiment 1,
28 monkeys could decline memory tests on some trials for a small, guaranteed reward. In
29 Experiment 2, monkeys could re-view the sample on some trials. In both experiments,
30 monkeys improved accuracy by selectively declining tests or re-viewing samples when
31 memory was poor. To assess the degree to which different memory signals made
32 independent contributions to the metamemory judgement, we made the *decline-test* or
33 *review-sample* response available either prospectively, before the test, or concurrently
34 with test stimuli. Prospective metamemory judgements are likely controlled by the
35 current contents of working memory, whereas concurrent metamemory judgements
36 may also be controlled by additional relative familiarity signals evoked by the sight of
37 the test stimuli. In both paradigms, metacognitive responding enhanced accuracy more
38 on concurrent than on prospective tests, suggesting additive contributions of working
39 memory and stimulus-evoked familiarity. Consistent with the hypothesis that working
40 memory and stimulus-evoked familiarity both control metamemory judgments when
41 available, metacognitive choice latencies were longer in the concurrent condition, when
42 both were available. Together, these data demonstrate that multiple memory signals can
43 additively control metacognitive judgements in monkeys and provide a framework for
44 mapping the interaction of explicit memory signals in primate memory.
45

46

47

48

49

50

51

52

53

54

55

56 Introduction

57 Performance on memory tasks is supported by a variety of memory systems, each
58 characterized by distinct functional properties and underlying neural substrates (Sherry
59 and Schacter 1987; Squire and Zola-Morgan 1991; Yonelinas 2002). For example, a
60 contestant on a trivia show may answer based on a combination of retrieval of the
61 correct answer and a vague sense of which choice feels most familiar. The memory
62 systems giving rise to these signals differ in flexibility, robustness against interference,
63 and the conditions under which they are available for introspective monitoring.

64 Monitorable memory signals have gained particular attention because they afford
65 subjects the opportunity to control their cognition, such as by seeking additional
66 information or altering response strategy. The way in which subjects monitor and
67 control different memory signals can be assessed using metamemory paradigms.

68 Metamemory is the ability to monitor memory processes and adapt behavior or
69 cognition in accord with monitored memory signals. Metamemory is exemplified by the
70 game show “Who wants to be a millionaire?” wherein contestants must answer trivia
71 questions and make judgments about whether they have answered correctly.

72 Contestants are given the opportunity to reconsider their answers after reflection, or to
73 collect additional information by contacting a friend. The metamemory judgments
74 contestants make can be controlled by whether a memory was successfully retrieved,
75 has been successfully held in working memory, or evokes strong relative familiarity
76 compared to other test options (Flavell 1979; Kornell 2013; Nelson 1996). Just as
77 memory performance often reflects a combination of memory signals, so too do
78 metamemory judgements.

79 A substantial body of work with nonhuman primate species indicates that they
80 can monitor memory, as indicated by their ability to selectively decline difficult tests, re-
81 view previously studied but forgotten information, seek information when ignorant, or
82 adaptively wager rewards based on recent test choices (Basile et al. 2015; Brown et al.
83 2017; Hampton 2001; Kornell et al. 2007; Templer and Hampton 2012; Washburn et al.
84 2010). Only recently has experimental work been directed at determining which specific
85 memory systems are subject to memory monitoring and how different memory signals
86 interact to control metamemory judgments in nonhumans (e.g., Coutinho et al. 2015;
87 Smith et al. 2013; Takagi and Fujita 2018).

88 Because memory systems provide different types of information, and multiple
89 systems contribute to performance on memory tasks, metamemory is likely controlled
90 by a combination of memory signals. The way that these signals are weighted in
91 metamemory decisions in monkeys is unknown. One possibility is that in the presence of
92 multiple memory signals, metacognitive choice may be guided by only one, such as the
93 strongest signal. A second possibility is that multiple memory signals contribute
94 additively to metamemory judgments, such that congruent positive signals strengthen
95 the likelihood of a high-confidence metamemory judgment.

96 To evaluate the degree to which monkey metamemory is controlled by multiple
97 memory signals, we compared metamemory judgments under conditions that always
98 allowed for the use of one memory signal but systematically manipulated the availability
99 of a second memory signal. In nonhuman primates, there is strong evidence that
100 recognition memory performance is supported by at least two types of memory: working
101 memory and relative familiarity (Basile and Hampton 2013; Wittig et al. 2016; Wittig

102 and Richmond 2014). Working memory is a limited-capacity system that allows the
103 active, relatively short-term maintenance and manipulation of information (Baddeley
104 2000; Baddeley 2003). Familiarity is a passive signal evoked by the re-presentation of a
105 stimulus that has been seen previously (Yonelinas 2002; Yonelinas et al. 2010). In
106 matching to sample memory tests, the image seen as a sample on the current trial can
107 potentially be held in working memory during the delay. The sample image is also
108 expected to be relatively more familiar than the distractors presented with it at test,
109 because the sample is the image that has been seen most recently.

110 The degree to which working memory and familiarity are available for
111 metamemory judgments can be experimentally manipulated. Prospective metamemory
112 judgments are made before the test options have been seen and thus favor monitoring of
113 working memory because information about the relative familiarity of the test options is
114 not yet available. Concurrent metamemory judgments are made in the presence of the
115 memory test. Monkeys can still monitor working memory in concurrent metamemory
116 judgments, and additional information about the relative familiarity of the sample and
117 distractors is also available.

118 Here, we assessed both prospective and concurrent metamemory judgments. In
119 Experiment 1 we used a decline-test paradigm, in which monkeys chose to avoid some
120 tests for a small, but guaranteed, reward (Fujita 2009; Hampton 2001; Suda-King
121 2008; Suda-King et al. 2013; Templer and Hampton 2012; Templer et al. 2017;
122 Washburn et al. 2010). In Experiment 2, we used an information-seeking paradigm, in
123 which monkeys chose to re-view the sample on some trials (Basile et al. 2009; Basile et
124 al. 2015; Beran and Smith 2011; Call and Carpenter 2001; Castro and Wasserman 2013;

125 Iwasaki et al. 2013; Kirk et al. 2014; Kornell et al. 2007; Marsh 2014; Marsh and
126 MacDonald 2012; McMahon et al. 2010; Vining and Marsh 2015; Watanabe and Clayton
127 2016). Using these two paradigms to assess metacognition, presented both prospectively
128 and concurrently, provides a powerful test of the generalizability of our findings.

129

130 To compare the contributions of working memory and familiarity in both decline-
131 test and information-seeking paradigms, we required a common metric. In prior work
132 with the decline-test paradigm, monkeys showed a performance advantage on chosen
133 tests compared to performance on forced tests when there was no option to decline the
134 memory test (Brown et al. 2017; Hampton 2001; Templer and Hampton 2012). When
135 monkeys monitored memory to choose when to use the *decline-test* response, they
136 disproportionately chose to take trials when memory was strong and selectively avoided
137 tests on which memory was weak, resulting in higher accuracy on tests they chose to
138 take. Forced trials included both trials on which memory was strong, which would have
139 been chosen had that option been available, and trials on which memory was weak,
140 which may have been declined, had the option been available. This accuracy benefit can
141 be applied equivalently to both decline-test and information-seeking paradigms. On
142 choice trials in the information-seeking paradigm, subjects can either choose to take the
143 test immediately, if memory is strong, or first re-view the sample, if memory is weak.
144 Forced trials, when the option to re-view the sample is omitted, will include some tests
145 that would have been taken immediately and some tests when subjects would have first
146 re-reviewed the sample, had the option been available. Thus, adaptive use of the *re-view*
147 *sample* response in the information-seeking paradigm should result in a performance

148 advantage on chosen trials over forced trials. If both working memory and familiarity
149 signals are monitorable, we should see the performance advantage for chosen over
150 forced trials in both prospective and concurrent choice conditions of the decline-test
151 and information-seeking paradigms.

152

153 If both working memory and familiarity contribute to metamemory performance,
154 then the benefit resulting from use of both the *decline-test* and *review-sample* options
155 will be larger in the concurrent than the prospective condition. This is because both
156 working memory and the familiarity evoked by the test stimuli may jointly guide
157 concurrent metacognitive choices, but only working memory can guide prospective
158 choices.

159

160

161

162 EXPERIMENT 1 – DECLINE-TEST PARADIGM

163 Methods

164 Subjects

165 Subjects were 8 pair-housed male rhesus macaque monkeys (*Macaca mulatta*),
166 with a mean age of 7 years at the beginning of these studies. Three subjects had previous
167 experience with a manual metacognition task (Templer and Hampton 2012). All
168 subjects had prior training with the concurrent metamemory version of the information-
169 seeking paradigm (Basile et al. 2015). All subjects also had prior training and

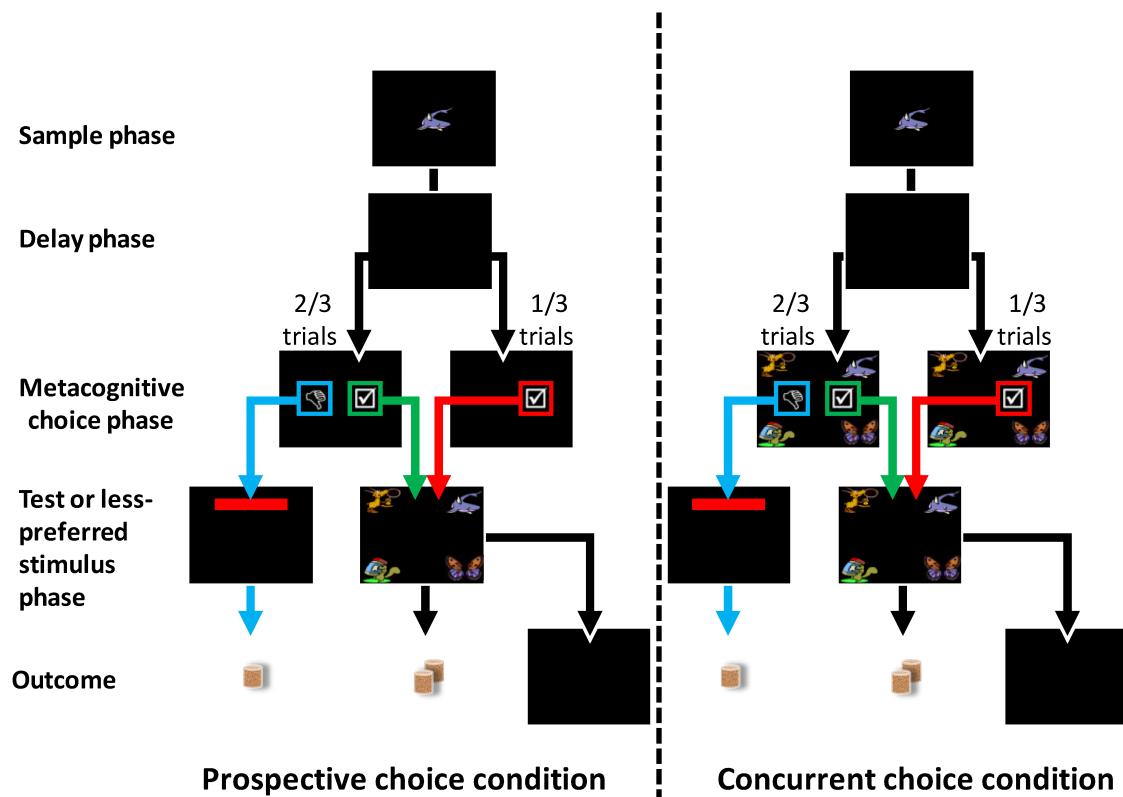
170 generalization tests with the decline-test paradigm across a variety of perceptual
171 discriminations, as well as memory tests conducted across a range of retention intervals
172 (Brown et al. 2017).

173

174 Apparatus

175 We tested monkeys in their home cages, using portable touch-screen computer
176 rigs consisting of a laptop computer (Dell, Round Rock, TX) with generic speakers, a 15"
177 color LCD touchscreen (ELO, Menlo Park, CA), and two automated food dispensers
178 (Med Associates Inc., St. Albans, VT) that dispensed into food cups beneath the screen.
179 Food reinforcement consisted of 94 or 97 mg nutritionally complete primate pellets
180 (Bio-Serv, Frenchtown, NJ and Purina TestDiet, Richmond, IN). Calories from pellets
181 earned during testing were subtracted from monkeys' daily primate biscuit chow
182 rations, such that monkeys consumed the same number of calories daily, regardless of
183 testing performance. Daily calorie budgets were established by veterinary staff based on
184 weight trajectories and clinical assessments. Monkeys had *ad libitum* access to water.
185 We presented stimuli and collected responses using programs written in Presentation
186 (Neurobehavioral Systems, Albany, CA).

187


188 Procedure

189 Monkey housing and testing conditions

190 During testing, paired monkeys were separated by dividers that allowed visual
191 and physical contact through large slots, but prevented access to adjacent testing

192 equipment. Monkeys had *ad libitum* access to their testing rigs up to seven hours per
 193 day.

194 Monkeys completed trials of a four-choice delayed-matching-to-sample (DMTS)
 195 task with a metacognitive choice phase (Figure 1). Four clipart images were used across
 196 all sessions, such that every image was seen at test on every trial. All responses required
 197 two touches (FR2) to prevent recording undirected contacts with the touchscreen as
 198 responses. To start a trial, monkeys touched a green ready square at the bottom center
 199 of the screen. A sample image then appeared in the center of the screen. Touches to the
 200 image resulted in a blank screen for a retention interval ranging from 4 to 28 seconds,
 201 depending on the individual monkey.

202
 203 **Fig. 1 Trial progression in the decline-test task.** Monkeys touched a green ready
 204 square to initiate each trial (not shown). A sample clipart image then appeared on

205 screen. Monkeys touched the sample image to advance the trial and initiate the delay
206 interval. At the end of the delay, metacognitive choice images appeared. On *prospective*
207 *choice* sessions (left), metacognitive choice stimuli appeared before presentation of the
208 test images. On *concurrent choice* sessions (right), metacognitive choice images
209 appeared at the same time as the test stimuli. In concurrent choices, test stimuli were
210 unresponsive to touches until after the metacognitive choice was made. On 2/3 of trials,
211 the *accept-test* and *decline-test* choice stimuli appear together. On 1/3 of trials, the
212 *decline-test* choice did not appear. Selection of the *accept-test* stimulus extinguished
213 choice stimuli and activated test stimuli. Correct choices resulted in food reinforcement
214 of two pellets; incorrect choices resulted in a black time out screen. Selection of the
215 *decline-test* response caused the *guaranteed small reward* stimulus screen to appear.
216 Touches to this stimulus resulted in guaranteed food reinforcement of one pellet.

217

218 Metacognitive choice stimuli appeared after the delay, which allowed monkeys to
219 take the DMTS test for a large reward if correct or avoid the test for a small but
220 guaranteed reward. The metacognitive choice phase consisted of two black and white
221 clipart choice stimuli, which could appear concurrently, at the same time as the test
222 stimuli, or prospectively, before the test stimuli (Figure 1). The *accept-test* stimulus, a
223 check-marked square, was vertically centered on the right side of the screen. Touches to
224 the *accept-test* stimulus extinguished metacognitive choice stimuli and made the test
225 stimuli responsive to touch. Selection of the target image seen at study resulted in a
226 distinctive auditory signal and two food pellets. Selection of a distracter resulted in
227 auditory feedback and black screen for a brief timeout period. The *decline-test* stimulus,
228 a thumbs-down, was vertically centered on the left side of the screen. Selection of the

229 *decline-test* stimulus resulted in the immediate presentation of a red bar at the top
230 center of the screen. Touches to this *guaranteed small reward* stimulus resulted in a
231 distinctive auditory signal and one food pellet.

232 To ensure that monkeys declined some, but not all trials, we titrated the number
233 of touches required to obtain the guaranteed small reward after each session. The
234 number of touches was increased or decreased by two if the overall decline rate was
235 greater than 70% or less than 30%, respectively, with the minimum possible touches
236 being two. Our titration of the number of responses required for the guaranteed small
237 reward took place between sessions and thus affected the overall rate of use of the
238 *decline-test* response within a session but did not differ on a trial-by-trial basis. Thus,
239 titrating this response kept behavior in a range that permitted detection of differences in
240 the use of the *decline-test* response, but could not create such differences.

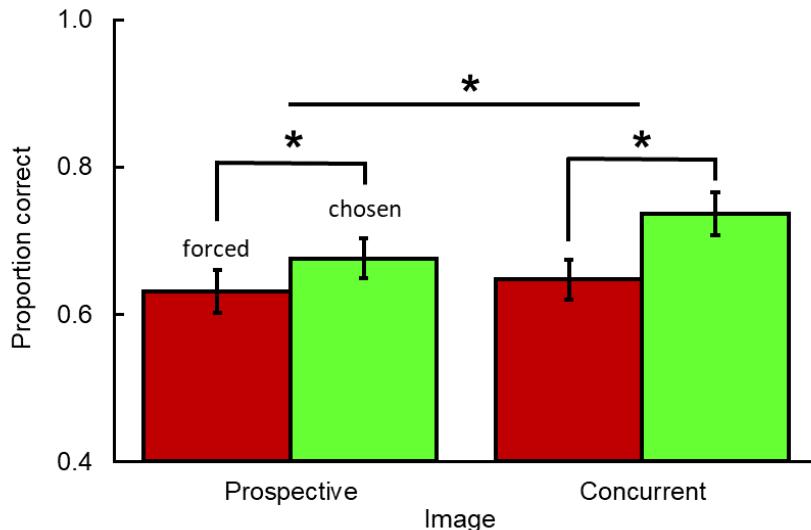
241

242 On 2/3 of trials, monkeys were presented with both metacognitive choice stimuli.
243 On the other 1/3 of trials, only the *accept-test* stimulus was presented, forcing subjects
244 to take the test. Each session consisted of 120 trials, with trial types pseudorandomly
245 intermixed, such that each session contained 80 choice trials and 40 forced trials.

246 Prospective choice sessions, in which the metacognitive choice stimuli were
247 presented before the test options, were alternated with concurrent choice sessions, in
248 which the metacognitive choice stimuli were presented at the same time as the test
249 options. Prospective and concurrent choice trials were not intermixed within a single
250 session. Monkeys completed 10 sessions of each trial type.

251

252 Data analysis


253 All proportions were arcsine transformed before statistical analysis to better
254 approximate the normality assumption underlying parametric statistics (Keppel and
255 Wickens 2004, p. 155). Geisser–Greenhouse correction was used, and appropriately
256 adjusted degrees of freedom reported, whenever the sphericity assumption was violated
257 (Keppel and Wickens 2004, p. 378).

258 For all experiments, we assessed accuracy by calculating the proportion correct
259 on forced trials and on trials that monkeys chose to take, without declining or re-viewing
260 the sample, when they had the option. We assessed the interaction between trial type
261 (forced, chosen) and timing of the metacognitive judgement (prospective, concurrent)
262 using a repeated measures ANOVA. We used follow-up planned paired t-tests to
263 compare accuracy on forced and chosen trials.

264

265 Results and discussion

266

267

268 **Fig. 2 Monkeys were more accurate on chosen tests than forced tests and**
 269 **this benefit was larger when the metamemory judgment was made**
 270 **concurrently rather than prospectively.** Displayed are mean group accuracy (\pm
 271 SEM) as a function of whether the monkeys were forced to take the test (dark red) or
 272 chose to take the test (light green) and whether the metamemory judgment was made
 273 prospective to the test (left) or concurrently with the test (right). * = $p < .05$ for ANOVA
 274 interaction and follow-up t-tests that compared forced and chosen performance in the
 275 prospective and concurrent conditions, respectively.

276

277 Monkeys improved accuracy when the *decline-test* option was available, and did
 278 so to a greater extent in concurrent compared to prospective judgements. Monkeys were
 279 more accurate on chosen tests than they were on forced tests (Figure 2; main effect of
 280 forced or chosen: $F_{(1,7)} = 39.915, P < .001$, partial $\eta^2 = .851$). This benefit was significant
 281 on both concurrent and prospective tests when each comparison was analyzed
 282 separately (prospective: $t_{(7)} = -4.468, P = .003, d = 1.580$; concurrent: $t_{(7)} = -6.458, P < .001$,

283 $d = 2.283$). Further, there was a significant interaction between trial type (forced or
284 chosen) and the time of the metacognitive choice (prospective or concurrent), such that
285 the benefit for chosen test accuracy was greater in the concurrent than the prospective
286 condition ($F_{(1,7)} = 17.025, P = .004$, partial $\eta^2 = .709$). The difference in forced test
287 accuracy across conditions was not significant ($t_{(7)} = .868, P = .414$). The greater benefit of
288 choosing to take the test on concurrent choices than prospective choices is consistent
289 with the hypothesis that additional information controlled metamemory judgments in
290 the concurrent condition, and that this information was provided by the sight of the test
291 items. It is likely that prospective metamemory judgments are controlled by monitoring
292 of working memory, whereas the concurrent metamemory judgements are controlled
293 both by monitoring working memory and familiarity evoked by presentation of the test
294 images.

295

296 EXPERIMENT 2 – INFORMATION-SEEKING PARADIGM

297 Test accuracy on chosen and forced trials in Experiment 1 provided evidence that
298 more or better information is available for metacognitive judgments made concurrently
299 with memory tests than is available when judgments are made prospectively, before
300 presentation of the tests. This benefit is consistent with the hypothesis that multiple
301 memory signals control metamemory judgments in a manner that is independent and
302 additive. In Experiment 2, we used a second established metamemory paradigm,
303 information-seeking, to further test whether multiple memory systems control
304 metamemory judgments and to evaluate the generalizability of our finding. In
305 Experiment 2, adaptive metacognitive responding would result in the choice to take

306 tests immediately when memory is relatively strong, and re-view the sample prior to
307 taking the test on trials when memory is relatively weak. We hypothesized that if the
308 *decline-test* and *review-sample* responses are controlled by similar underlying
309 mechanisms, monkeys will show a benefit on trials they choose to take immediately over
310 forced trials. Additionally, if working memory and familiarity signals contribute to
311 performance on these tasks, then we expect that the accuracy benefit of choosing which
312 tests to complete immediately will be larger on concurrent choices, in which familiarity
313 signals resulting from the appearance of test stimuli can additionally guide
314 metacognitive choices, as compared with prospective choices, which are completed
315 before familiarity signals are available.

316

317 Methods

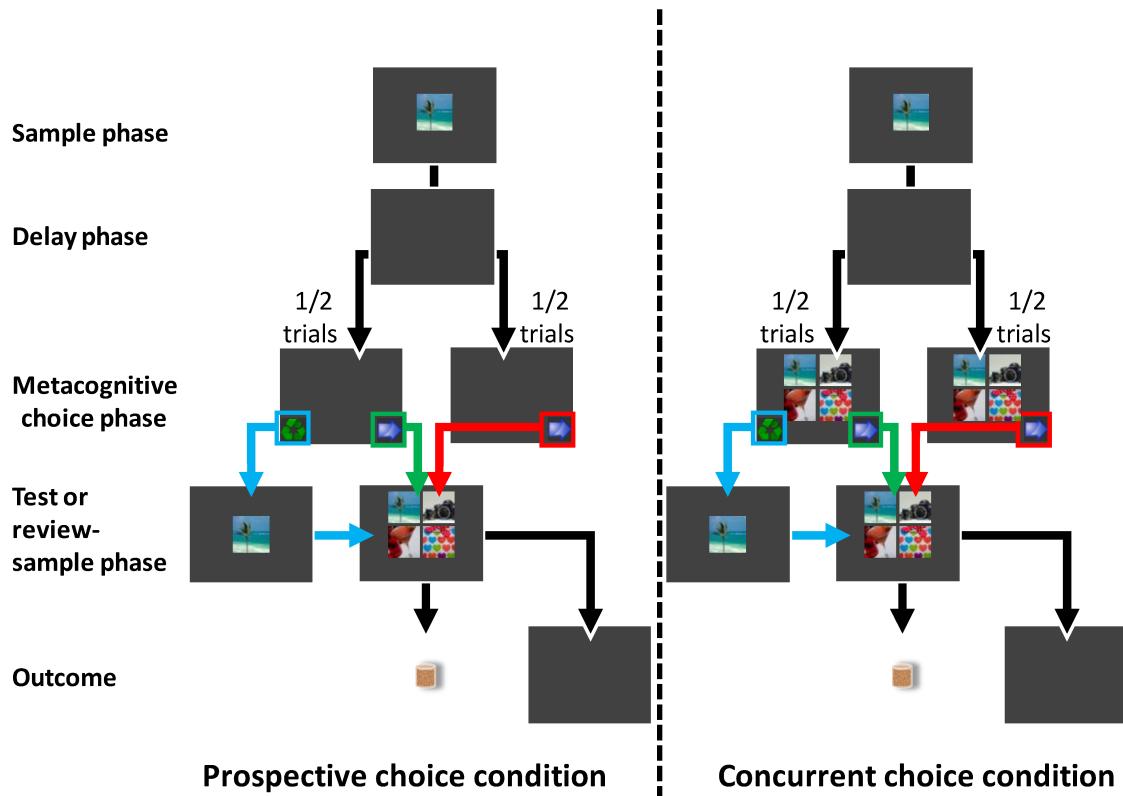
318 Subjects and apparatus

319 Experiment 2 used all monkeys from Experiment 1 and three additional monkeys
320 (male, full group mean age = 6) that had undergone the training described in Basile et
321 al., (2015). Monkeys were housed in the same conditions, and tested on the same
322 apparatus, as described in Experiment 1.

323

324

325 Procedure


326 Specifics of the information-seeking paradigm have been published in detail
327 (Basile et al., 2015). Briefly, monkeys studied either a spatial location that could occupy
328 any one of the four corners of the screen (Basile et al., 2015, Experiments 1 and 5) or a
329 color photograph (Basile et al., 2015, Experiment 6; see also Figure 3), and had the

330 option to either proceed directly to the memory test or re-view the sample. In the image
331 condition, the same four photographs were used across all sessions, such that every
332 image was seen at test on every trial. In spatial tests, the same four locations were
333 similarly used on all trials. We included the spatial condition because the “tubes task”
334 that this information-seeking paradigm is based on was originally a spatial task and so
335 including the spatial condition fulfills the secondary objective of this study: to evaluate
336 the degree to which the different common metamemory paradigms produce similar
337 results when compared directly. As in Experiment 1, we tested monkeys with a
338 concurrent metacognitive choice, in which the test options were visible while choosing
339 whether to re-view the sample, and with a prospective metacognitive choice, in which
340 the test options were not presented until after the monkey chose whether to re-view the
341 sample (Figure 3).

342

343

344

345

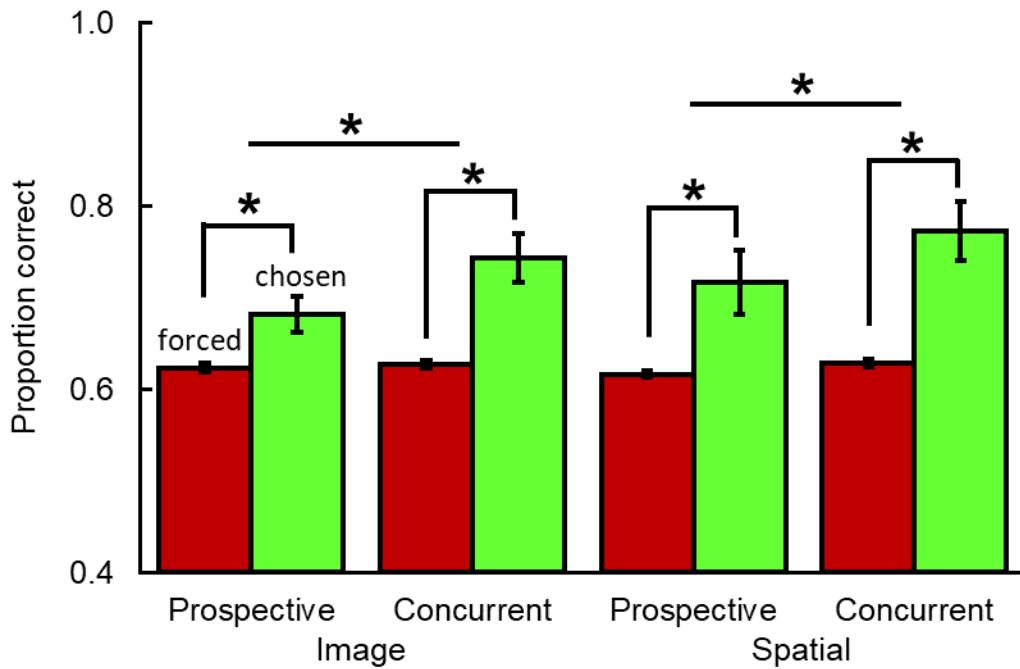
346 **Fig. 3 Progression of trials of the information-seeking task.** Monkeys touched
 347 the green ready square to initiate trials (not shown). A sample (image condition
 348 pictured) then appeared on screen for 200ms and then disappeared. At the end of the
 349 programmed delay, metacognitive choice images appeared. On *prospective choice*
 350 sessions (left), the metacognitive choice stimuli appeared before the test options. On
 351 *concurrent choice* sessions (right), the metacognitive choice images appeared
 352 concurrently with test stimuli. On 1/2 of trials, the *accept-test* and *review-sample*
 353 choice stimuli appear together. On 1/2 of trials, the *review-sample* response did not
 354 appear. Choice of the *accept-test* stimulus caused the metacognitive choice stimuli to
 355 disappear and the test stimuli to become responsive to touch. Tests resulted in food
 356 reinforcement of one pellet (correct) or a blank time out screen (incorrect). Selection of
 357 the *review-sample* response caused the sample phase to be shown again. After monkeys

358 had the opportunity to review the sample, the test was presented, with the outcome
359 contingencies described above. The location memory version was identical except that
360 all stimuli were identical red dots and the monkeys had to remember the screen location
361 of the sample dot.

362

363 To ensure that accuracy and metacognitive bias were stable and at appropriate
364 levels to detect metacognition, we titrated the retention interval and the number of
365 touches required to select each monkeys' preferred metacognitive option. Sessions were
366 80 trials, half choice trials (Figure 3, left) and half forced test trials (Figure 3, right),
367 intermixed and pseudorandomized such that no trial type appeared more than four
368 times in a row. The retention interval was increased by four seconds or decreased by two
369 seconds at the end of each session if accuracy on forced-test trials was above 67.5% or
370 below 57.5%, respectively. Requiring accuracy to be midway between ceiling and chance
371 ensured that monkeys were performing the task correctly and that we could detect any
372 accuracy benefit of chosen trials relative to forced trials. As done previously (Basile et al.
373 2015), we also required monkeys to use both the *review-sample* and *accept-test* options
374 regularly, with titration as described previously (Basile et al. 2015). Briefly, the number
375 of touches required to select the preferred metacognitive option was increased or
376 decreased by two following every session in which the monkey chose that option on
377 greater than 75% or fewer than 25%, respectively, of all choice trials. For each of the four
378 tasks, when accuracy and metacognitive bias were within those parameters for two
379 consecutive sessions, we considered those stable data to use for analysis. Monkeys were
380 tested until at least 100 chosen trials were available for analysis from stable

381 performance sessions for each task. The total number of trials completed before
382 reaching this criterion depended on how frequently each monkey chose to take tests.
383 Monkeys progressed through the tasks in the following order: spatial prospective,
384 spatial concurrent, image prospective, and image concurrent.


385

386 Results and discussion

387 Final titrated retention intervals ranged from 2 to 32 seconds. All monkeys
388 preferred the *review-sample* over the *accept-test* metacognitive option. Consequently,
389 the *review-sample* metacognitive option required between 6 and 52 touches to select,
390 depending on the strength of the monkey's preference.

391 As a result of titrating performance, accuracy did not vary as a function of sample
392 type (Figure 4; spatial or image; $F_{(1,10)} = 3.04, P = .11$). Additionally, sample type did not
393 interact with any other factor (all P s $> .098$). Monkeys were more accurate on chosen
394 tests than they were on forced tests regardless of sample type ($F_{(1,10)} = 14.63, P = .003$,
395 partial $\eta^2 = .594$). Further, as with the decline-test paradigm, there was a significant
396 interaction between trial type (forced or chosen) and the time of the metacognitive
397 choice (concurrent or prospective), such that the benefit to chosen test accuracy was
398 greater in the concurrent than the prospective condition ($F_{(1,10)} = 7.11, P = .024$, partial
399 $\eta^2 = .416$). The difference in monkeys' forced test accuracy across all conditions was not
400 significant ($F_{(3,30)} = 1.83, P = .16$). This reproduces the main finding from Experiment 1
401 using *review-sample* in the place of the *decline-test* response. The larger memory
402 benefit of choosing to take the test on concurrent choices than prospective choices with
403 both paradigms provides converging evidence that information from multiple memory
404 systems act additively to control metamemory choices. Because the most obvious

405 difference between the concurrent and prospective choices is the presence of the test
 406 options, the improved accuracy likely results from the additional information available
 407 from comparing the relative familiarity of the test stimuli, which is available only on
 408 concurrent tests.

409
 410 **Fig. 4** Monkeys were more accurate on chosen tests than forced tests and
 411 this benefit was larger for concurrent than prospective tests. Mean group
 412 accuracy (\pm SEM) as a function of sample type (spatial or image), timing of the
 413 metacognitive choice (prospective or concurrent), and whether the monkeys chose to
 414 take the test without reviewing the answer or were forced to take the test.

415

416

417 Analysis of Latency Data

418

419 We hypothesized that the results we obtained in Experiments 1 and 2 were due to
420 monitoring working memory in the both conditions, supplemented by additional
421 stimulus-evoked familiarity in the concurrent condition. The analyses of accuracy in the
422 decline-test and information-seeking paradigms were consistent with the hypothesis
423 that metacognitive decisions are additively controlled by multiple memory signals. To
424 further evaluate whether an additional familiarity signal contributed to concurrent
425 metacognitive choices, but did not contribute to prospective judgements, we conducted
426 additional analyses of decision latency. If monkeys do indeed evaluate the additional
427 information from the familiarity evoked by the sight of the test items in concurrent tests,
428 then this should be evident as an increased decision time during the metacognitive
429 choice epoch on concurrent judgments as compared to prospective judgments. Although
430 familiarity is a passive automatic process, monkeys would need the additional time to
431 scan the available test responses and compare the relative familiarity signals. In
432 contrast, if both prospective and concurrent metamemory judgments are controlled
433 solely by working memory, monkeys should be equally quick during the metacognitive
434 choice epoch in both concurrent and prospective tests because working memory is
435 equally available in both conditions.

436

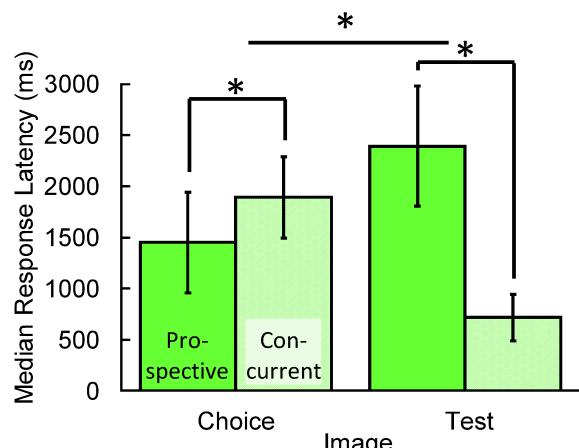
437 Data Analysis

438 We evaluated the median latency to complete the metacognitive choice and the
439 latency to complete the memory test for all chosen trials, regardless of whether the
440 monkeys selected the correct response at test. Latencies were calculated based on the
441 first touch in the information-seeking paradigm and the required number of touches to
442 make the primary metacognitive choice in the decline-test paradigm was the same

443 across trials. Therefore, titration of metacognitive responding could not have
 444 differentially affected latency in the concurrent condition.

445

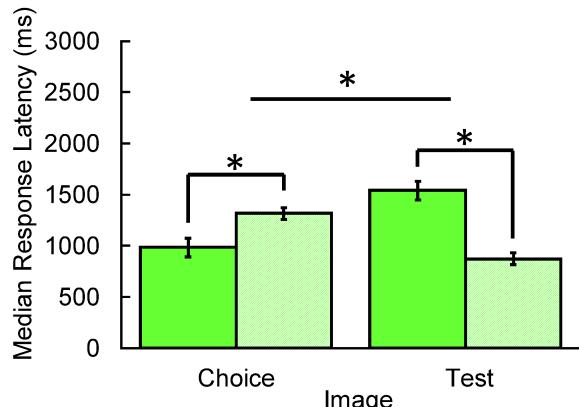
446


447

448 Latency Results and Discussion

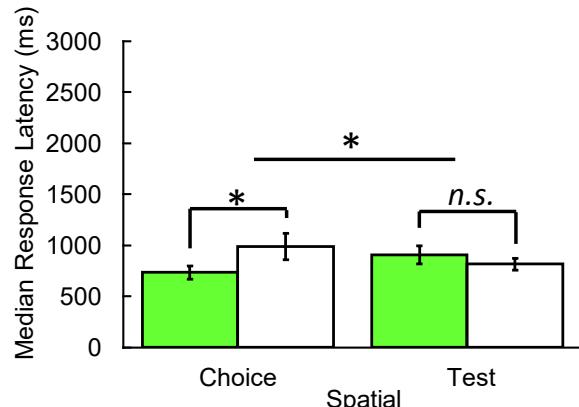
449

450


A) Decline-test, image

451

452


B) Information-seeking, image

453

454

C) Information-seeking, spatial

455
 456
 457 **Fig. 5 Monkeys allocated more time to the metacognitive choice in**
 458 **concurrent judgments than in prospective judgments.** Panel A depicts decline-
 459 test paradigm with image stimuli, panel B depicts information-seeking paradigm with
 460 image stimuli, panel C depicts information-seeking paradigm with spatial stimuli.
 461 Median response latency in milliseconds (\pm SEM) as a function of metacognitive choice
 462 placement and latency epoch. Metacognitive choice was prospective (solid) or
 463 concurrent (striped) with the presentation of the test. Latency epoch was divided into
 464 time spent making the metacognitive choice (left) and the test choice (right).

465
 466 In both paradigms, processing time differed by epoch, as indicated by significant
 467 interactions of metacognitive choice placement (prospective or concurrent) with trial
 468 epoch (metacognitive choice or memory choice; Figure 5; decline-test paradigm: $F_{(1,7)} =$
 469 $113.227, P < .001$, partial $\eta^2 = .942$; information-seeking, images: $F_{(1,10)} = 99.007, P <$
 470 $.001$, partial $\eta^2 = .908$; information-seeking, spatial: $F_{(1,10)} = 5.696, P = .038$, partial $\eta^2 =$
 471 $.363$). When making the metacognitive choice to *decline-test* or *review-sample*,
 472 monkeys devoted significantly more time to selecting a metacognitive response in the

473 concurrent condition compared with the prospective condition (Figure 5; decline-test
474 paradigm: $t_{(7)} = 10.382, P < .001, d = 3.671$; information-seeking, images: $t_{(10)} = 6.899, P$
475 $< .001, d = 2.080$; information-seeking, spatial: $t_{(10)} = 2.425, P = .036, d = .73$). When
476 making a memory choice at test, monkeys showed the opposite pattern for both image-
477 memory tests, devoting significantly more time in the prospective condition compared
478 with the concurrent condition (Figure 5; decline-test paradigm: $t_{(7)} = -9.357, P < .001, d$
479 $= 3.308$; information-seeking, images: $t_{(10)} = 7.924, P < .001, d = 2.389$), but this
480 difference was not significant for the spatial memory tests of the information-seeking
481 paradigm ($t_{(10)} = 1.793, P = .103, d = .54$). Longer time spent on the metacognitive choice
482 epoch is consistent with our hypothesis that information from both working memory
483 and stimulus-evoked familiarity additively control concurrent metacognitive judgments.
484 This is because it should take longer to evaluate two sources of metamemory control
485 than it does to evaluate just a single source of control.

486

487 General Discussion

488 Across the decline-test and information-seeking metamemory paradigms,
489 monkeys were more accurate on trials they chose to take than those they were forced to
490 take, replicating the basic metamemory findings associated with these paradigms. The
491 accuracy benefit on chosen trials was consistently greater, across paradigms, when
492 monkeys made metacognitive judgments in the concurrent condition than it was in the
493 prospective condition. Monkeys also took longer to make concurrent metamemory
494 judgments, when more information was available, than they did to make prospective
495 metamemory judgments. In the prospective condition, the monkeys must make
496 decisions based on the contents of working memory alone; however, in the concurrent

497 condition, monkeys must take additional time to scan the test responses, compare
498 relative familiarity signals, and conceivably check whether the most familiar item is
499 consistent with the item held in working memory. These findings support the hypothesis
500 that there is more mnemonic information available to cue metacognitive judgments in
501 the concurrent condition than the prospective condition.

502 The most plausible memory signals controlling monkeys' metacognitive choices
503 in this study are working memory and stimulus-evoked familiarity. In both the
504 concurrent and prospective conditions, working memory for the sample is potentially
505 available through the retention interval, and is a signal likely to control metamemory
506 judgments. It is likely that monkeys actively kept the sample image in working memory
507 because we used task parameters (e.g., small image sets and relatively short retention
508 intervals) that have been shown in previous research to promote active working memory
509 (Basile and Hampton 2013). In addition, we manipulated the availability of stimulus-
510 evoked familiarity by manipulating the timing of the metacognitive choice. In the
511 prospective condition, the metacognitive choice took place prior to the appearance of
512 the test. Requiring monkeys to make the metacognitive choice prior to the appearance of
513 the test should encourage reliance primarily on working memory because the test
514 stimuli were not present to evoke familiarity. In the concurrent condition, the
515 metacognitive choice appeared simultaneously with the test, such that monkeys could
516 base metacognitive choices on the relative familiarity of the sample and distractors, in
517 addition to monitoring working memory. Familiarity is most often characterized as a
518 signal automatically evoked by the sight of previously-seen stimuli (Jacoby 1991). Thus,
519 it is reasonable that in the concurrent condition, heightened familiarity for the recently-

520 viewed sample, taken additively with working memory strength, would increase the
521 accuracy of metamemory judgments. We do note that the familiarity of the most
522 recently seen sample image is probably only slightly greater than the familiarity of the
523 distractor images because all of the images have been seen recently in preceding trials.
524 The extent to which familiarity would control test choice, as well as metacognitive
525 choice, would presumably be much greater if memoranda were trial unique images. It is
526 also possible that other memory signals, as well as other non-mnemonic cues contribute
527 to metamemory performance. Identifying these signals and how they interact to support
528 behavior will be an interesting problem for future research.

529 The longer metacognitive decision times in concurrent tests is consistent with the
530 hypothesis that when multiple memory signals are present, they control metamemory
531 judgements additively. Monkeys spent more time making the metacognitive choices and
532 used that option to greater benefit when the relative familiarity of the test stimuli was
533 available for evaluation compared to when only working memory was available. This
534 increased decision time likely results from additional evaluation of the relative
535 familiarity signals evoked by the sight of the test items. These signals might reinforce or
536 countermand the contents of the monkey's working memory. A slightly different, but
537 not incompatible explanation is that monkeys already have a planned test response in
538 mind, and allocation of response time represents a visual search for that planned test
539 response. This visual search would take place prior to the metacognitive choice in the
540 concurrent test and after the metacognitive choice in the prospective choice. An
541 alternative explanation for the effect of concurrent vs. prospective condition on accuracy
542 is that the choice latency in the prospective condition imposes a longer retention

543 interval than monkeys experienced in the concurrent condition. Because prospective
544 choice latencies were so brief relative to the total retention interval, this explanation is
545 unlikely to be correct.

546 Although monkeys showed a similar pattern of cognitive processing time in the
547 spatial test, the longer metacognitive choice epoch latency for concurrent trials was
548 greatly attenuated and the longer test epoch latency for prospective trials was absent.
549 One explanation for the difference between image and spatial tests is that monkeys
550 devote less processing time to search for the remembered location in spatial tests
551 compared to tests with images. Although the red dots that mark potential response sites
552 are absent in the prospective test, the remembered screen location is likely encoded
553 relative to landmarks on the screen that are always present because the screen itself is
554 present. This means that monkeys can make a decision about where to respond without
555 scanning the whole screen. In contrast, on tests with images, the location of the correct
556 response must be identified before a selection can be made. Although it is less clear
557 what familiarity means in the case of spatial memory, because space is essentially always
558 present in these tests, the intriguing similarities in performance across paradigm and
559 stimulus type warrant further study. The addition of eye-tracking data to this task would
560 provide more evidence to use in identifying the specific search strategy that monkeys
561 employ. For example, monkeys might engage in an exhaustive search prior to
562 metacognitive choice in the concurrent condition with images, but saccade immediately
563 to the intended response in tests of spatial memory.

564 As in all studies of metacognition, monkeys did not make perfect metamemory
565 judgments (Basile et al. 2015; Brown et al. 2017; Hampton 2001; Templer and Hampton

566 2012). Across conditions, monkeys never approached perfect accuracy on trials that they
567 chose to take. Although it is tempting to characterize this as unusually poor performance
568 relative to what we feel we might do as humans, humans have not been tested under
569 these conditions on these paradigms. Even in humans, cognition is not always accurate
570 and metacognition is also subject to errors (Maniscalco and Lau 2012; Nelson 1996). It
571 is likely that the cues controlling metamemory responding are subtle and noisy in both
572 species. Metacognitive sensitivity may represent a continuum across taxa, with some
573 species more attuned to the often-subtle cues that control metacognitive judgments. It is
574 likely that metacognitive responding is less precise in macaques than in humans, and
575 that metacognitive signals are less robust in monkeys than in humans. However,
576 humans usually have years of explicit metacognitive training in school and in other
577 settings, so direct comparisons are problematic. There is some evidence that monkey
578 improve metacognitive responding over the course of multiple generalizations (e.g.,
579 Brown et al. 2017). It may be worthwhile to explore the degree to which training on
580 metacognition tasks enhances metacognitive sensitivity. We cannot speak to whether
581 monkeys, like humans, have subjective experiences of certainty or uncertainty when
582 making metamemory responses. However, we have here manipulated the information
583 available to control metamemory decisions in our best attempt to understand which
584 memory signals are accessible to monitoring.

585 Strictly associative accounts have been proposed to explain the results obtained
586 from some nonhuman metacognition paradigms (Carruthers 2008; Jozefowicz et al.
587 2009; Le Pelley 2012). In response to these criticisms, some researchers have made
588 attempts to obscure the relation between the metacognitive response and primary

589 reinforcement (e.g., Couchman et al. 2010; Smith et al. 2006). Here, we fully
590 acknowledge that the monkeys likely pair specific responses to specific mental states via
591 well-understood associative mechanisms. Manipulating the available information and
592 measuring the change in responding, which is presumably driven by maximization of
593 reinforcement, is what allows us to infer changes in mental state. Thus, to the degree
594 that associative accounts posit that different mental states are the discriminative cues
595 controlling behavior, we agree.

596 The increased benefit to metamemory judgments under the concurrent condition
597 over the prospective condition is likely the result of additive information from multiple
598 memory signals rather than a shift to basing judgments on different systems in the
599 different conditions. Because the same four stimuli were seen on every trial, all stimuli
600 likely evoked high familiarity at tests. Though it appears that the relative familiarity of
601 the sample still provided a useful memory signal for making accurate metamemory
602 judgments, this signal is likely weak and noisy. The addition of information from
603 familiarity to the information from working memory would provide a modest but
604 reliable benefit to accuracy, as obtained here. It has sometimes been suggested that
605 monkeys use the additional information provided in concurrent test conditions to make
606 metamemory judgments (e.g., Hampton 2009); however, this is the first study to use a
607 direct comparison between prospective and concurrent judgments to provide strong
608 evidence that this is the case. Future studies might utilize more direct manipulation of
609 working memory and familiarity signals, for example, through the manipulation of
610 image set size. A more graded accuracy difference obtained across a range of familiarity

611 strengths would support the hypothesis that the additive effects of multiple memory
612 signals control metamemory judgments.

613 In humans, a distinction is made between the monitoring and control aspects of
614 metamemory. For example, a student can monitor their memory to report on whether
615 they remember the answer to a test question, and they can control their memory by
616 studying information that they do not remember. Because nonhumans cannot provide
617 verbal response, they necessarily “self-report” the status of memory by engaging in
618 control, re-viewing answers or avoiding tests. The paradigms currently used to test
619 metamemory in nonhumans blur the monitoring-control distinction, though the
620 separability of monitoring and control in nonhumans would be an interesting topic of
621 future research.

622 In conclusion, monkeys show similar patterns of accuracy and latency across
623 decline-test and information-seeking paradigms, two metamemory tasks commonly
624 used with nonhumans. A similar pattern of performance in both paradigms provides
625 converging evidence that multiple memory signals can additively control metacognitive
626 judgements in monkeys and provides a framework for mapping the interaction of
627 explicit memory signals in primate memory.

628

629

630

631

632

633

634

635

636

637

638 Compliance with ethical standards

639

640 Ethical approval:

641 All applicable international, national, and/or institutional guidelines for the care and
642 use of animals were followed.

643

644 Conflict of interest:

645 All authors declare no conflict of interest.

646

647 Funding:

648 This work was supported by the National Science Foundation (grants IOS-1146316;
649 BCS-0745573; BCS-1632477) and the National Institutes of Health (grants
650 RO1MH082819; T32HD071845). This project was supported in part by ORIP/OD
651 P51OD011132.

652

References

653

654

655 Baddeley A (2000) The episodic buffer: a new component of working memory? *Trends Cogn Sci* 4:417-423

656

657 Baddeley A (2003) Working memory: looking back and looking forward *Nature reviews neuroscience* 4:829

658

659 Basile BM, Hampton RR (2013) Dissociation of active working memory and passive

660 recognition in rhesus monkeys *Cognition* 126:391-396

661 Basile BM, Hampton RR, Suomi SJ, Murray EA (2009) An assessment of memory

662 awareness in tufted capuchin monkeys (*Cebus apella*) *Anim Cogn* 12:169-180

663 Basile BM, Schroeder GR, Brown EK, Templer VL, Hampton RR (2015) Evaluation of

664 seven hypotheses for metamemory performance in rhesus monkeys *Journal of*

665 *Experimental Psychology: General* 144:85

666 Beran MJ, Smith JD (2011) Information seeking by rhesus monkeys (*Macaca mulatta*)

667 and capuchin monkeys (*Cebus apella*) *Cognition* 120:90-105

668 doi:10.1016/j.cognition.2011.02.016

669 Brown EK, Templer VL, Hampton RR (2017) An assessment of domain-general

670 metacognitive responding in rhesus monkeys *Behavioural processes* 135:132-144

671 Call J, Carpenter M (2001) Do apes and children know what they have seen? *Anim Cogn*

672 4:207-220

673 Carruthers P (2008) Meta- cognition in animals: a skeptical look *Mind & Language*

674 23:58-89

675 Castro L, Wasserman EA (2013) Information-seeking behavior: exploring metacognitive

676 control in pigeons *Anim Cogn* 16:241-254 doi:10.1007/s10071-012-0569-8

677 Couchman JJ, Coutinho MV, Beran MJ, Smith JD (2010) Beyond stimulus cues and
678 reinforcement signals: a new approach to animal metacognition *J Comp Psychol*
679 124:356

680 Coutinho MV, Redford JS, Church BA, Zakrzewski AC, Couchman JJ, Smith JD (2015)
681 The interplay between uncertainty monitoring and working memory: Can
682 metacognition become automatic? *Mem Cogn* 43:990-1006

683 Flavell JH (1979) Meta-cognition and cognitive monitoring - new area of cognitive-
684 developmental inquiry *American Psychologist* 34:906-911

685 Fujita K (2009) Metamemory in tufted capuchin monkeys (*Cebus apella*) *Anim Cogn*
686 12:575

687 Hampton RR (2001) Rhesus monkeys know when they remember *Proceedings of the*
688 *National Academy of Sciences of the United States of America* 98:5359-5362
689 doi:10.1073/pnas.071600998

690 Hampton RR (2009) Multiple demonstrations of metacognition in nonhumans:
691 Converging evidence or multiple mechanisms? *Comparative cognition & behavior*
692 *reviews* 4:17

693 Iwasaki S, Watanabe S, Fujita K (2013) Do pigeons (*Columba livia*) seek information
694 when they have insufficient knowledge? *Anim Cogn* 16:211-221

695 Jozefowicz J, Staddon J, Cerutti D (2009) Metacognition in animals: how do we know
696 that they know? *Comparative Cognition & Behavior Reviews* 4

697 Keppel G, Wickens TD (2004) *Design and Analysis: A Researcher's Handbook*. Prentice
698 Hall,

699 Kirk CR, McMillan N, Roberts WA (2014) Rats respond for information: Metacognition
700 in a rodent? *Journal of Experimental Psychology: Animal Learning and Cognition*
701 40:249

702 Kornell N (2013) Where is the "meta" in animal metacognition? *J Comp Psychol*
703 Kornell N, Son LK, Terrace HS (2007) Transfer of metacognitive skills and hint seeking
704 in monkeys *Psychol Sci* 18:64-71 doi:10.1111/j.1467-9280.2007.01850.x

705 Le Pelley M (2012) Metacognitive monkeys or associative animals? Simple
706 reinforcement learning explains uncertainty in nonhuman animals *Journal of*
707 *Experimental Psychology: Learning, Memory, and Cognition* 38:686

708 Maniscalco B, Lau H (2012) A signal detection theoretic approach for estimating
709 metacognitive sensitivity from confidence ratings *Conscious Cogn* 21:422-430

710 Marsh HL (2014) Metacognitive-like information seeking in lion-tailed macaques: a
711 generalized search response after all? *Anim Cogn* 17:1313-1328

712 Marsh HL, MacDonald SE (2012) Information seeking by orangutans: a generalized
713 search strategy? *Anim Cogn* 15:293-304

714 McMahon S, Macpherson K, Roberts WA (2010) Dogs choose a human informant:
715 Metacognition in canines *Behav Processes* 85:293-298
716 doi:10.1016/j.beproc.2010.07.014

717 Nelson TO (1996) Consciousness and metacognition *Am Psychol* 51:102-116

718 Sherry DF, Schacter DL (1987) The Evolution of Multiple Memory-Systems
719 *Psychological Review* 94:439-454

720 Smith JD, Beran MJ, Redford JS, Washburn DA (2006) Dissociating uncertainty
721 responses and reinforcement signals in the comparative study of uncertainty
722 monitoring *Journal of Experimental Psychology: General* 135:282

723 Smith JD, Coutinho MV, Church BA, Beran MJ (2013) Executive-attentional uncertainty
724 responses by rhesus macaques (*Macaca mulatta*) *Journal of Experimental*
725 *Psychology: General* 142:458

726 Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system *Science*
727 253:1380-1386

728 Suda-King C (2008) Do orangutans (*Pongo pygmaeus*) know when they do not
729 remember? *Anim Cogn* 11:21-42 doi:10.1007/s10071-007-0082-7

730 Suda-King C, Bania AE, Stromberg EE, Subiaul F (2013) Gorillas' use of the escape
731 response in object choice memory tests *Anim Cogn* 16:65-84 doi:10.1007/s10071-
732 012-0551-5

733 Takagi S, Fujita K (2018) Do capuchin monkeys (*Sapajus apella*) know the contents of
734 memory traces?: A study of metamemory for compound stimuli *J Comp Psychol*
735 132:88

736 Templer VL, Hampton RR (2012) Rhesus monkeys (*Macaca mulatta*) show robust
737 evidence for memory awareness across multiple generalization tests *Anim Cogn*
738 15:409-419 doi:10.1007/s10071-011-0468-4

739 Templer VL, Lee KA, Preston AJ (2017) Rats know when they remember: transfer of
740 metacognitive responding across odor-based delayed match-to-sample tests
741 *Anim Cogn* 20:891-906 doi:10.1007/s10071-017-1109-3

742 Vining AQ, Marsh HL (2015) Information seeking in capuchins (*Cebus apella*): A
743 rudimentary form of metacognition? *Anim Cogn* 18:667-681

744 Washburn DA, Gulleedge JP, Beran MJ, Smith JD (2010) With his memory magnetically
745 erased, a monkey knows he is uncertain *Biol Lett* 6:160-162
746 doi:10.1098/rsbl.2009.0737

747 Watanabe A, Clayton NS (2016) Hint-seeking behaviour of western scrub-jays in a
748 metacognition task *Anim Cogn* 19:53-64

749 Wittig JH, Morgan B, Masseau E, Richmond BJ (2016) Humans and monkeys use
750 different strategies to solve the same short-term memory tasks *Learning &*
751 *Memory* 23:644-647

752 Wittig JH, Richmond BJ (2014) Monkeys rely on recency of stimulus repetition when
753 solving short-term memory tasks *Learning & Memory* 21:325-333

754 Yonelinas AP (2002) The nature of recollection and familiarity: A review of 30 years of
755 research *J Mem Lang* 46:441-517

756 Yonelinas AP, Aly M, Wang WC, Koen JD (2010) Recollection and familiarity:
757 Examining controversial assumptions and new directions *Hippocampus* 20:1178-
758 1194

759