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a b s t r a c t

The simulation of charge transport in ultra-scaled electronic devices requires the knowledge of
the atomic configuration and the associated potential. Such ‘‘atomistic’’ device simulation is most
commonly handled using a tight-binding approach based on a basis-set of localized orbitals. Here,
in contrast to this widely-used tight-binding approach, we formulate the problem using a highly
accurate plane-wave representation of the atomic (pseudo)-potentials. We develop a new approach
that separately deals with the intrinsic Hamiltonian, containing the potential due to the atomic
configuration, and the extrinsic Hamiltonian, related to the external potential. We realize efficient
performance by implementing a finite-element like partition-of-unity approach combining linear shape
functions with Bloch-wave enhancement functions. We match the performance of previous tight-
binding approaches, while retaining the benefits of a plane wave based model. We present the details
of our model and its implementation in a full-fledged self-consistent ballistic quantum transport solver.
We demonstrate our implementation by simulating the electronic transport and device characteristics
of a graphene nanoribbon transistor containing more than 2000 atoms. We analyze the accuracy,
numerical efficiency and scalability of our approach. We are able to speed up calculations by a factor
of 100 compared to previous methods based on plane waves and envelope functions. Furthermore,
our reduced basis-set results in a significant reduction of the required memory budget, which enables
devices with thousands of atoms to be simulated on a personal computer.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The numerical study of electron transport in solid-state tran-
sistors provides an important contribution to the improvement of
future electronic devices. To keep ahead of technological progress,
the methods used to predict electron transport behavior have
shifted from simplified quasi-classical methods to advanced
quantum mechanical descriptions. Historically, this evolution has
been driven by the continual reduction of the length-scales to
dimensions at which the classical limit is no longer appropriate.
More recently, novel materials have been considered to improve
the performance of electronic devices. For example, atomically
thin monolayers, such as graphene, [1] phosphorene, [2] and
transition-metal dichalcogenides, [3,4] and their ribbons, [5–8]
are being actively investigated as possible replacements of silicon
as the channel material in field-effect transistors. These materials
have caused an additional shift from transport models based on
bulk-material properties towards the comprehensive modeling
of the atomic structure of the material. Whereas an atomistic
description of quantum electron transport is widely applicable
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to different materials and device structures, atomistic resolution
comes at a significant computational expense.

The atomistic calculation of the electronic structure starts
by selecting an appropriate set of basis functions to discretize
the problem. Two popular approaches, each at one end of the
spectrum, are the Linear Combination of Atomic Orbitals (LCAO),
which is closely related to the picture of chemical bonding, and
plane-wave based methods which form a natural basis for the
physics of periodic crystals. The most commonly used approxima-
tion of LCAO is the tight-binding (TB) approximation in which the
interaction of the localized orbitals is short range, often only near-
est neighbor (NN) orbitals being taken to overlap [9,10]. However,
as remarked by Slater [11], in the interstitial region, away from
the ionic cores, the wavefunction in a crystalline solid is plane-
wave like. Due to the lack of non-bound states (i.e., ‘‘scattering’’ or
‘‘traveling’’ wavefunctions) in the tight-binding basis, its accuracy
is limited when describing higher energy valence and conduction
states where electrons are located in the interstitial region. On
the other hand, the plane-wave basis is a complete set whose
accuracy can be carefully controlled by changing its truncation
through a cutoff of the kinetic energy. However, to describe the
core-states accurately, a high energy-cutoff is needed to obtain
a sufficiently fine spatial resolution in the region close to the
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ionic cores, a region that is more easily described by localized
orbitals. For this reason, all-electron calculations often feature
hybrid methods, using plane waves to describe the interstitial
regions, augmented with a localized basis to capture the core
states [12,13].

For the purposes of electron transport, we are interested in
an accurate representation of the highest valence and lowest
conduction states, which are, as discussed before, best captured
by a plane-wave basis. However, plane waves are, by definition,
not localized and interactions between all plane waves need to
be considered; resulting in dense linear algebra formulations that
have a high computational burden compared to the sparse linear
algebra that results from tight-binding methods. For this reason
the tight-binding approach is currently the most commonly used
method to study quantum electron transport; using either a pre-
defined set of orbitals with empirical parameters, e.g., the well
known sp3d5s∗ set, or using maximally localized Wannier func-
tions to calculate the local orbitals from first-principles [9,14–16].
Commercial tight-binding transport simulators have already been
developed to complement Technology Computer Aided Design
(TCAD) in the semiconductor industry [17]. More limited inves-
tigations of plane-wave based transport have been undertaken
academically, both based on ab-initio pseudopotentials [18,19]
and empirical pseudopotentials [6,7]. In addition to the high
accuracy of these plane-wave methods, they allow us to probe
locally or disturb the interstitial region with impurities and local
fields, for example. However, plane-wave methods have been
applied only to relatively small atomic structures (up to thou-
sands of atoms) due to their computational burden, and even
for these small systems they require expensive high-performance
computing infrastructure.

In this paper, we develop a method that combines the compu-
tational benefits of the tight-binding approach, while maintaining
the versatility and accuracy of plane-wave methods to represent
the real-space wavefunctions throughout the atomic structure. To
achieve this goal, we turn to the Bloch waves of the crystal as an
alternative basis to plane waves and tight-binding orbitals. Our
approach generalizes mode-space [20,21] approaches that use the
eigenmodes on cross-sections of the structure as a basis, instead
of Bloch waves. In a similar spirit Bloch waves have been used
in hybrid classical-quantum treatments of electronic transport
in carbon nanotubes [22]. On the other hand, the benefits of
using Bloch waves have been described for non-atomistic quan-
tum models in the context of the linear combination of bulk
bands (LCBB) method [23–26] and a recently developed empir-
ical pseudopotential method for confined nanostructures [27]. In
contrast to these methods, our method relies on an expansion
on the Bloch-waves of the atomic structure. This enables the
full quantum-mechanical treatment of atomistic nano-structures
that do not have a bulk crystal counterpart or whose electronic
structure is dissimilar to the bulk material, e.g., carbon nanotubes,
graphene nanoribbons, and extremely small silicon nanowires. In
addition, the atomistic nature of our method provides access to
the atomic positions which enables the study of lattice defects
and impurities in a straightforward way.

We focus on transport through nanostructures featuring one-
dimensional transport, i.e., where the carriers are sufficiently
confined such that they have only one degree of freedom. To de-
scribe the electronic structure of these nanostructures, we adopt
the atomistic empirical pseudopotential approximation [6–8,28,
29]. Note that we make the distinction between bulk and atom-
istic empirical pseudopotential methods. In the bulk empirical
pseudopotential method, it is sufficient to know the values of the
pseudopotential only at discrete reciprocal lattice vectors (form-
factors). In our method, which we call the atomistic empirical
pseudopotential method, the pseudopotential V (q) is given as a

function of a wave vector q in reciprocal space, yielding a more
general method. Care must still be taken when transferring the
pseudopotential from one system to another since one cannot
expect, a-priori, that different atomic configurations can be de-
scribed by a non self-consistent pseudopotential. However, there
are known cases, such as the set of pseudopotentials for carbon
nanostructures, introduced by Kurokawa [30], that show unex-
pected good performance for a wide range of atomic structures,
including the graphene nanoribbons, we study as an example of
a one-dimensional nanostructure in this work.

Our paper is structured as follows. In Section 2, we discuss the
models for the atomic and electronic structure and develop the
theory of our Bloch-wave basis. Section 3 details the calculation
of the electronic properties in an open system with contacts. In
Section 4, we explain the self-consistent procedure, coupling the
electrostatics with the electron density in the system. Section 5
shows the application of our method to an armchair graphene-
nanoribbon transistor, including verification of the accuracy and
computational efficiency of our approach. Finally, we conclude in
Section 6

2. Theoretical model

2.1. Model Hamiltonian

To model electron transport in nanoscaled devices, two length-
scales should be considered: (1) The atomic (∼ Å) scale, which
defines the electronic structure of the charge-carrying quasi-
particles (electrons and holes), intrinsic to the material; (2) the
device scale (∼ nm), determined by extrinsic factors such as
applied fields, contacts and doping. For our purposes, we assume
that the complex quasi-particle dynamics in a device is well-
described by an effective single-particle Schrödinger equation of
the form,

−
h̄2

2m
∇

2ψ(r) +
[
V c(r) + V e(r)

]
ψ(r) = Eψ(r) , (1)

where V c(r) describes the intrinsic crystal potential, and the
extrinsic potential V e(r) captures the variations of the potential at
the device length-scale. In our case, the crystal potential is given
by local atomistic empirical pseudopotentials of each atom α,

V c(r) =

∑
α

V α(|r − Rα|) , (2)

where V α(r) represents the radial empirical pseudopotential of
atom α, centered at location Rα . As will be highlighted later on,
our method is not limited to this specific form of the crystal
potential, and could be extended to non-local, and even ab-initio
pseudopotentials. However, in this paper, we will limit our dis-
cussion to local empirical pseudopotentials of the form specified
in Eq. (2).

Various existing computational models discretize Eq. (1) by in-
troducing an appropriate basis-set to capture the smallest atomic
scale. In tight-binding (TB) methods, a limited set of atomic or-
bitals is used to capture the atomic scale, while on-site potential
variations are used to capture the extrinsic potential [9,31,32].
In plane-wave based pseudopotential methods, the envelope-
function approach has been used to capture the extrinsic poten-
tial variations [7,33]. In both approaches, the total Hamiltonian
in Eq. (1), including the extrinsic potential that varies only at
the device scale, is solved on the basis set that is used to cap-
ture the small atomic scale (atomic orbitals or plane-waves).
This is acceptable for the TB method that scales linearly and
features a small basis set of Norbitals and O(NbandsNorbitals) com-
plexity, thanks to their nearest-neighbor interactions [9,32]. Plane
wave methods, on the other hand, are severely restricted by
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their large number of plane waves (NG) that scales with the
volume of the structure rather than the number of electron.
Efficient plane-wave methods, using the Fast Fourier Transform
(FFT) algorithm, reduce the complexity of plane-wave algorithms
to O(NbandsNG logNG), albeit with a rather large pre-factor [28,34].
However, the lack of periodic boundary conditions in the trans-
port direction (z), induced by the extrinsic potential, prohibits
the use of the FFT algorithm in the transport direction, increas-
ing the complexity to O(Nbands[N2

Gz + NG logNGxy ]). The large
basis set, combined with sub-optimal scaling, necessitates a dif-
ferent approach for transport calculations that use plane-wave
pseudopotentials.

Instead of treating the intrinsic crystal Hamiltonian and the
extrinsic potential with a single method, we propose an alterna-
tive approach, where the atomic and device scales are decoupled.
First, we determine the Bloch wave solutions of the intrinsic crys-
tal Hamiltonian, and in a second step, we solve the Hamiltonian
of the entire device. This approach allows us to simulate systems
that are currently inaccessible using plane-wave based atomistic
pseudopotentials [6,7].

Fig. 1 shows a typical target structure, featuring one-
dimensional electron transport, which is assumed to be in the
z-direction. The structure consists of a supercell that is peri-
odically repeated Nblock times in the transport direction. The
periodic supercell completely captures the atomic configuration
of the one-dimensional crystal. Extensions to inhomogeneous
systems, where the supercell changes throughout the structure
are possible, but left for future work.

2.2. Bloch-wave expansion

Our method is constructed around an expansion of the wave-
functions on a Bloch-wave basis. At a high level, our method
proceeds as follows: we separate the device in its supercells, we
calculate the Bloch waves in each supercell and ‘‘stitch’’ them
together using finite-elements. Fig. 2 shows the different ingre-
dients for the basis, which we detail in this section.

The first ingredient of our method is the Bloch-waves of the
atomic structure, as illustrated in the first panel of Fig. 2. For a
single repeated supercell, we compute the solution of the intrinsic
crystal Hamiltonian with periodic boundaries,[
−

h̄2

2m
∇

2
+ V c(r)

] [
unk(r)eikz

]
= ϵnk unk(r)eikz .

The solutions are the Bloch functions unk(r)eikz , with band index
n and wave vector k in the direction of transport. The Bloch-
wave solutions are obtained to high precision using the appropri-
ate plane-wave basis, where computational efficiency is realized
using FFTs [28].

The second ingredient is a one-dimensional finite element
(FE) discretization in the transport direction which will ‘‘stitch’’
together the supercells and allow for the capture of any extrinsic
fields. The finite element discretization uses the supercells as
elements, with nodes zi located on the interface between the
supercells along the transport direction, as shown in Fig. 1. The FE
shape functions fi(r), as shown in the second panel of Fig. 2, are
the standard linear FE ‘hat’ shape functions which obey fi(rj) = δij.

The last panel of Fig. 2 shows the product of the FE shape
functions fi(r) and the node-centered Bloch-waves, defined as:

φink(r) = unk(r)eik(z−zi) . (3)

The products fi(r)φink(r) form the Bloch-wave basis-functions on
which the wavefunction is expanded,

ψ(r) =

∑
ink

cink fi(r)φink(r) . (4)

The shape functions fi(r) capture the overall, global variation of
the wavefunction, much like the slowly varying envelope func-
tions commonly used. Note that the shape functions fi(r) also
serve to localize the basis functions within the two elements
around the node. The explicit inclusion of the wave vector k
in the node-centered Bloch-waves allows for the expansion on
more than one (high-symmetry) point of the reciprocal lattice.
Particularly, in Section 5.1, we demonstrate that a basis built
using Bloch waves at the zone-center (Γ ) and zone-edge (X)
yields an accurate description throughout the entire Brillouin
zone.

The expansion presented in Eq. (4) is a specific application of
the Partition-of-Unity Method (PUM) [35–37]. In the PUM, a set of
overlapping patches {Ωi} is defined which form an open cover of
the complete coordinate spaceΩ , covering the device. In our case,
a patch Ωi is defined as the union of the two supercells touching
the node zi. Adopting the PUM terminology, a shape function fi(r)
takes on the role of a patch function that is only supported on
the patch Ωi. The set of patch (shape) functions {fi(r)} satisfies
∀r ∈ Ω :

∑
i fi(r) = 1 and is therefore called a partition-

of-unity on the full domain Ω . The PUM allows for the further
enhancement of each patch with a set of functions {φink(r)} that
span an appropriate subspace of the solution space on the patch
{φink(r)|φink(r) ⊂ H1(Ωi)}. In other words, the linear combination
of φink(r) should be a good approximation of the solution on the
patch. In our case, the node-centered Bloch-waves φink(r) take on
the role of enhancement functions, capturing the solution on the
atomic scale within the supercell. The wavefunction function is
then well approximated in the solution space of the full domain
{ψ(r)|ψ(r) ⊂ H1(Ω)} by an expansion on the patches, as de-
fined in Eq. (4), where the expansion coefficients cink are to be
determined numerically. Note that the partition of unity formed
by fi(r) enforces continuity of the solution independent of the
enhancement functions (node-centered Bloch-waves) φink(r).

In general, the enhancement functions in the PUM expan-
sion can be patch-dependent and only have to capture the local
variations of the solution space. In this paper, we consider ho-
mogeneous structures (as shown in Fig. 1) with a single repeated
supercell and reuse a single set of Bloch waves for every patch.
However, in general, our method can be extended to use patch-
dependent Bloch waves that are able to capture variations in the
atomic structure.

2.3. Matrix equations

Inserting the expression for the wavefunction in Eq. (4), into
the Schödinger equation (1), we determine a linear system
of equations for the expansion coefficients cink. Following the
Galerkin method, we convert the Schödinger equation into a
weak form, multiplying it by a test function ψ̄(r) and integrating
it over the full domain Ω ,

−
h̄2

2m

∫
Ω

d3r ψ̄(r)H(c)ψ(r) +

∫
d3r ψ̄(r)[V e(r) − E]ψ(r) = 0 . (5)

This weak form is equivalent to the Schrödinger equation when
the test functions ψ̄(r) span the full solution space. The complex
conjugate of the wavefunctions forms a natural choice for the test
functions in Eq. (5). After expansion, Eq. (5) becomes∑
i k n
i′k′n′

c̄i′n′k′
[
Hc

i′n′k′,ink + Ve
i′n′k′,ink − E Mi′n′k′,ink

]
cink = 0 , (6)

where we have introduced the matrix elements

Mi′n′k′,ink =

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)fi(r)φink(r) ,

(overlap / ‘‘mass’’) (7)
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Fig. 1. A top-view of an armchair graphene nanoribbon, where carbon (black) and hydrogen (blue) atom positions are indicated with spheres and where black
lines represent chemical bonds. Electron transport proceeds in the z-direction, where node positions zi indicate the boundaries between repeated supercells. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. An illustration of the components of the basis set used to expand the wavefunction for the armchair graphene nanoribbon shown in Fig. 1. The Bloch wave
of the 32nd band (n = 31) at the Γ -point (k = 0) is shown along a cut-line through the middle of the ribbon. The triangular shape functions, forming a partition
of unity, are shown for all nodes. The local basis functions that are shown correspond to the Bloch wave in the first panel, i.e., n = 31 and k = 0, and are plotted
along the same cut-line. The Bloch-wave and basis-function units are arbitrary.

Hc
i′n′k′,ink =

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)Hc(r)fi(r)φink(r) ,

(crystal Hamiltonian) (8)

Ve
i′n′k′,ink =

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)Ve(r)fi(r)φink(r) .

(extrinsic potential) (9)

Note that using the complex conjugates of the Bloch basis as
the test functions preserves the Hermiticity of the discretized
Hamiltonian and overlap matrices.

The direct evaluation of the crystal Hamiltonian matrix ele-
ments in Eq. (8) requires the use of the crystal potential. While
this is fairly easy for the case of the local empirical pseudopoten-
tial approximation, the evaluation of the crystal Hamiltonian in,
e.g., ab-initio methods, can be more cumbersome or computation-
ally expensive. To make our model independent of the intricacies
to evaluate the crystal Hamiltonian, we avoid the direct use of the
crystal potential itself by substituting the eigenvalues of the crys-
tal Hamiltonian in Eq. (8) (the full details are given in Appendix),

Hc
i′n′k′,ink =

ϵink + ϵi′n′k′

2
Mi′n′k′,ink + Ti′n′k′,ink + Pi′n′k′,ink , (10)

where ϵink is the eigenvalue of the corresponding Bloch wave
φink(r) and two new matrix elements have been defined as:

Ti′n′k′,ink =
h̄2

4m

∫
Ω

d3r ∇
[
f ∗

i′ (r)fi(r)
]
· ∇

[
φ∗

i′n′k′ (r)φink(r)
]

(11)

+
h̄2

2m

∫
Ω

d3r
[
∇f ∗

i′ (r)
]
φ∗

i′n′k′ (r) ·
[
∇fi(r)

]
φink(r) ,

(kinetic energy) (12)

Pi′n′k′,ink = −
h̄2

m

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)
[
∇fi(r)

]
·
[
∇φink(r)

]
+ h.c. ,

(momentum coupling) (13)

where h.c. has been used to indicate the Hermitian conjugate of
the previous term, swapping indices ink and i′n′k′.

Since Eq. (6) has to hold for all test functions, i.e., all coeffi-
cients c∗

ink, we write,∑
ink

[
Ti′n′k′,ink + Vi′n′k′,ink +

(ϵink + ϵi′n′k′ )
2

Mi′n′k′,ink + Pi′n′k′,ink

]
cink

= E
∑
ink

Mi′n′k′,ink cink . (14)
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This generalized eigenvalue problem can be written in matrix
form as Hc = EMc. Note that, apart from the extrinsic potential,
all the matrix elements depend only on the properties of the
material, not on those of the device, and are independent of
changes of the extrinsic potential. Thanks to the shape functions,
only elements for which i and i′ are equal or refer to nearest-
neighbor nodes are non-zero. The matrices H and M have a block
tridiagonal form. For example, the Hamiltonian matrix is written
as:

H =

⎡⎢⎢⎢⎢⎢⎣
. . . . .

.

Hi−1,i−2 Hi−1,i−1 Hi−1,i 0 0
0 Hi,i−1 Hi,i Hi,i+1 0
0 0 Hi+1,i Hi+1,i+1 Hi+1,i+2

. .
. . . .

⎤⎥⎥⎥⎥⎥⎦
(15)

where each block Hii′ (and Mii′ for the overlap matrix) is a square
matrix with size equal to the number of basis functions used in a
supercell Nbasis. Correspondingly, the solution vector c combines
the column vectors ci that contain the expansion coefficients for
slice i.

3. Open system

Having obtained a suitable discretization of the atomic struc-
ture, we now turn to the calculation of the electronic transport
properties in devices. We consider an open system with injecting
and absorbing contacts on either side of the device, here referred
to as source (s) and drain (d). Both contacts are considered infinite
reservoirs which inject electrons in thermodynamic equilibrium
and absorb all incident waves. We employ the quantum trans-
mitting boundary condition method (QTBM) [38] to model the
contacts and calculate the extended states that are injected from
each contact.

3.1. Contact self-energies

The calculation of contact self-energies using iterative and
direct approaches (as used here) is already well established in
literature [32,39–41]. Nonetheless, we will detail the procedure
here. Our reasons for this are twofold; (1) our basis, being non-
orthogonal, introduces additional complexity that, to our knowl-
edge, has not been previously described for the direct approach,
and (2) our numerical approach avoids some numerical errors
in calculating the self-energies directly. We note that this proce-
dure can be applied to calculate the self-energies for other non-
orthogonal bases, for example in non-orthogonal Gaussian-type
tight-binding [31] and projector-augmented wave methods [13].

We calculate the self-energies Σs/d, associated with the trun-
cation of the block matrices in Eq. (15) at the open contacts using
a direct, non-iterative, method. For this purpose, we calculate the
so-called complex band structure at the source or drain node
i ∈ {s, d}, for a given energy E, as the solution of the non-linear
eigenvalue problem[
Hi(λ) − EMi(λ)

]
ci = 0 , (16)

where the eigenvalues λ = eik∆z are the phase difference be-
tween the edge node i and its nearest neighbor inside the contact
i+ 1 for the drain (i− 1 for the source), with ∆z = zi − zi+1. The
polynomial matrices are given by

Hi(λ) = λ−1Hi,i−1 + Hi,i + λHi,i+1 and

Mi(λ) = λ−1Mi,i−1 + Mi,i + λMi,i+1 . (17)

Eq. (16) represents a second-order, generalized eigenvalue equa-
tion. This can be solved readily by linearizing the second-order
eigenvalue problem to a first order problem of double the rank.
To avoid excessive numerical round-off errors in the calculation
of the eigenvalues λ, we linearize Eq. (16) using the symmetric
scheme from Ref. [42],[

Hi,i − EMi,i Hi,i−1 − EMi,i−1
Hi,i+1 − EMi,i+1 0

][
di
ci

]
= λ

[
−

(
Hi,i+1 − EMi,i+1

)
0

0 Hi,i+1 − EMi,i+1

][
di
ci

]
, (18)

where di = λci, and the left-hand-side is a Hermitian matrix,
since Hi,i+1 = H†

i,i−1 and Mi,i+1 = M†
i,i−1.

Eq. (18) is solved to machine precision using a direct linear
eigenvalue solver and admits 2Nbasis solution pairs (λν, cν). Based
on the phase factors λν , we sort them into two sets of size
Nbasis each, the in-flowing and out-flowing solutions. To deter-
mine flow-direction, we calculate the group velocity vν of each
eigenvector cν using a generalization of the Hellmann–Feynman
theorem [43],

vν =
1
h̄
∂Eν
∂k

=
1
h̄

⟨
cν

⏐⏐ ∂
∂kHi(λν)

⏐⏐cν ⟩ − Eν
⟨
cν

⏐⏐ ∂
∂kMi(λν)

⏐⏐cν ⟩
⟨cν |Mi(λν) |cν⟩

. (19)

The set of solutions with an out-flow (in-flow) condition is split
into purely traveling waves with |λν | = 1 and vν > 0 (vν < 0),
and evanescent modes where |λν | < 1 (|λν | > 1). In practical
implementations, a tolerance should be used to determine the
traveling waves, i.e., |λν | = 1 ± ε. Thanks to the increased
accuracy of the symmetric linearization of Eq. (16), we obtained
a drastic improvement in the accuracy of |λν | and all traveling
modes satisfy |λν | = 1 to machine precision in all our tests. In
the envelope-function approximation, a necessary additional step
is the removal of spurious solutions [7]. However, our method
does not admit spurious traveling solutions within (or below)
the energy range spanned by the Bloch waves in the basis set,
negating the need for additional filtering.

Before proceeding, care must be taken to correctly normalize
the traveling wavefunctions in each contact. In the infinitely long
contacts, the wavefunctions for different values of the
crystal momentum kz are orthonormal,

∫
Ωs/d

d3r ψ∗

kz (r)ψk′z (r) =

δ(kz−k′
z), where the domainΩs/d spans the entire infinite contact.

When the integration domain is reduced to a single supercellΩsc,
the normalization condition for the wavefunction becomes∫
Ωsc

d3r ψ∗

kz (r)ψkz (r) =
Lz
2π

, (20)

where Lz is the length of the supercell along the transport di-
rection. In terms of our wavefunction expansion, the condition
is straightforward:

⟨cν |Mi(λν) |cν⟩ =
Lz
2π

. (21)

This normalization condition is applied immediately upon identi-
fication of the running modes we obtain after solving the complex
band structure in Eq. (16).

For each contact node i ∈ {s, d}, we define a Bloch matrix,
Bi = [c1, . . . , cν, . . . , cN ], whose columns are the out-flow eigen-
vectors cν of the respective contact. The contact self-energy of the
contact-node i ∈ {s, d} is built by projecting the wavefunction in
the device on the out-flowing waves,

Σi =
[
H′

i − EM′

i

]
BiΛB−1

i , (22)

where Λi,out is a diagonal matrix with elements given by the out-
flow λi, while the Nbasis ×Nbasis matrices H′

i and M′

i correspond to
the truncated matrices just outside the simulation domain, e.g.,
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H′

i = Hi,i−1 for the source contact. The effect of the projection
can be understood as follows: B−1 converts the wavefunction
into the coefficients of each mode, Λ propagates the coefficients
to the next node by multiplying each mode with eikz∆z and B
converts the coefficients back into its wavefunction form. Finally,
we define Σ , a matrix of the size of the system (NbasisNblock ×

NbasisNblock) that contains the two contact self-energy matrices Σs
and Σd at their respective positions on the diagonal, and is zero
otherwise.

3.2. Extended states

Using the contact self-energies, we calculate the extended
states of the open system by solving directly for the coefficients
cink of the wavefunction,[
EM − H −Σ

]
c = B , (23)

where the right-hand-side matrix B has Nmode columns that each
represent the injection of a single eigenmode from one of the
contacts. For each in-flowing mode γ in each contact node i ∈

{s, d}, with coefficients ci,γ and phase λi,γ , we obtain

Bi,γ =
[
(H′

i − EM′

i)λi,γ −Σi
]
ci,γ , (24)

with B zero everywhere else. Having calculated the coefficients
for all injected modes γ from all contacts by solving Eq. (23) at
a certain energy, the expansion in Eq. (4) is used to express the
wavefunctions in the real-space basis:

ψγ (r) =

∑
ink

cγ ,inkfi(r)φink(r) . (25)

The label γ is used to identify both the originating contact (s/d)
and individual injected mode index.

Rather than following the procedure described above, we
could also use the popular nonequilibrium Green’s function
(NEGF) approach and solve for the Green’s function in our Bloch
wave basis G = [EM − H −Σ]−1. NEGF can be implemented
efficiently by using an appropriate recursive technique, calcu-
lating only the diagonals and off-diagonals of the Green’s func-
tion [44–46]. Such a recursive Green’s function approach would,
in our case, reduce the computational complexity from the in-
version of the entire Hamiltonian, O(N2

blocks × N2
basis), to the

inversion of the individual blocks of size Nbasis, i.e., O(Nblocks ×

N2
basis). However, in general, the number of traveling modes Nmode

using wavefunctions is much smaller than the number of basis
vectors Nbasis at a single node. Therefore the QTBM based on wave
functions, with a complexity of O(Nblocks×Nbasis×Nmodes), is more
efficient than solving for the Green’s function, as already noted by
Bruck et al. [14]. Both approaches are identical when considering
ballistic transport [47].

3.3. Density

The full electron density of the open system is formally given
by

n(r) =

∫
dE

∑
ν

gν(E)|ψEν(r)|2fFD(E − µν) , (26)

where gν(E) represents the density of states (including spin de-
generacy) of the injecting contact of mode ν, calculated from the
velocity determined from the generalized Hellmann–Feynman
theorem (Eq. (19)), and fFD(E−µν) is the Fermi–Dirac distribution,
where µν is the electrochemical potential in the contact of mode
ν. In the evaluation of the integral over energy E, singularities
of the type 1/

√
E − Esingularity are encountered in the density

of states at local band-extrema, i.e., where dE/dk = 0. Since

the location of these singularities is a-priori unknown and the
evaluation of the wavefunctions ψEν(r) is computationally ex-
pensive, we have adopted an adaptive Simpson technique for
the numerical evaluation of the integral to a specified numerical
tolerance. In our tests, the Simpson method provides an accurate
error estimate, which gives a reliable accuracy for our results.

In a naive implementation of Eq. (26), the wavefunctions
ψEν(r) are evaluated directly using the expansion defined in
Eq. (4). This step is computationally expensive, as the Bloch-
wave grid, with Nr points, is generally very fine. However, during
the adaptive Simpson integration, we can compute an estimated
average density on the Nnodes nodes, instead of on all Nnodes × Nr
points in space. We call this the node density,

⟨n⟩node[zi] =

∫
dE

∑
ν

⟨n⟩nodeE,ν [zi]fFD(E − µν) , (27)

where the local density of states of the nodes is simply given by

⟨n⟩nodeE,ν [zi] = gν(E)
∑
nk

|cink|2 . (28)

This evaluation of the node density comes at virtually no cost.
Note that to interpret ⟨n⟩node[zi] as an estimate of average of the
real density, the Bloch-waves need to be normalized in a specific
way,∫
Ωsc

d3r |unk|
2

= Vsc , (29)

where Ωsc covers the supercell and Vsc is its volume. With this
normalization, the coefficients cink have units [

√
m−2] and the

normalized Bloch-waves are dimensionless weights that average
to unity in a single cell. Since all coefficients cink are normalized
with respect to the mass matrix M upon injection (see Eq. (21)),
the wavefunctions remain properly normalized.

By storing all the integration energies E, weights wEν and
coefficients cEν,ink when computing the node density, we can ef-
ficiently reconstruct the complete real-space density in one step,
avoiding the costly naive evaluation of Eq. (26). To achieve this,
we compute the matrix elements of the density matrix, expressed
in the Bloch-basis:

ni′n′k′,ink =

∑
E,ν

wEνgEνc∗

Eν,i′n′k′cEν,inkfFD(E − µν) . (30)

Thanks to the locality of the shape functions in the Bloch-basis,
only the matrix-elements for i = i′ and nearest neighbors i, i′
need to be computed for the evaluation of the density

n(r) =

∑
i′n′k′,ink

ni′n′k′,ink(r)ψ∗

i′n′k′ (r)ψink(r) . (31)

Careful analysis of the operations involved in each procedure
shows that the matrix-based approach is faster if the number
of Bloch-waves used in the basis is lower than or equal to the
number of injected states, i.e., Nbasis < Nwaves.

Fig. 3 shows an example of the Simpson integration with a
fixed potential as shown in Fig. 3(a). The selected integration
energies are indicated in Fig. 3(a), showing adaptive refinements
near the band extrema of the contacts, as expected. The con-
verged y-averaged density in Fig. 3(b), clearly shows the sub-
atomic resolution of the reconstructed density. We also show that
the node density in Fig. 3(c) matches very well the xy-averaged
density inside the ribbon.

Since we use the node density in the Simpson integration, the
error estimate that is used for the refinement is based on the
node density. In theory, we cannot guarantee that a specified
tolerance for the node density, using the error estimate on the
node density, is an exact measure of the error of the complete
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Fig. 3. An illustration of the calculation of the density. (a) Band-diagram showing the variation of the bottom of the conduction band w.r.t. the z coordinate and
the chemical potentials of the source and drain contacts µs/d (50meV above their respective conduction band). Each horizontal (red) line is an energy of injection
(289 total), determined by the adaptive Simpson integrator for a tolerance of 1014 cm−3 . For reference, the band structure in the source and drain regions is shown
as dashed lines. (b) The resulting free electron density in the ribbon, averaged over the y-direction, shown as pseudo-color. (c) The same electron density, averaged
over the x–y plane of the full cell (⟨ρ⟩xy,cell), averaged over an x–y plane inside the ribbon only (⟨ρ⟩xy,ribbon), and the ‘node averaged’ density (⟨ρ⟩node) as explained
in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

density at every point. We verify that this is not an issue in
practice by determining the accuracy of the calculation of the
density in Fig. 3. We first request an absolute tolerance of the
integrated density of 1014 cm−3 and then perform a more ac-
curate calculation with a tolerance of 1011 cm−3 (three orders
of magnitude smaller). A comparison of the two results shows a
root-mean-squared error of 1.4×1013 cm−3 for the node density,
close to the requested value, and a difference of 33 × 1013 cm−3

for the complete real-space density. As expected, the error on
the density is underestimated by the error on the node density
due to the atomic variations. In practice, we account for this
discrepancy by selecting a node-density tolerance at least two
orders of magnitude smaller than the required charge density.

3.4. Transmission and ballistic current

The transmission probability of each state is calculated by tak-
ing the ratio of the injected and transmitted current density. For
a mode γ injected from the source contact (s), the transmission
probability to the drain contact (d) is calculated from the Bloch
matrices and group velocity as

Tsd =
Jd,out
Js,inj

=

∑
µ

⏐⏐⏐[B−1
d

]
µγ

cd,γ
⏐⏐⏐2vd,µ

vs,γ
, (32)

assuming the injected coefficients are properly normalized, i.e.,
|cinjs,γ | = 1. As a sanity check, we explicitly calculate the reflection
coefficient Tss with Eq. (32) after first removing the injected part
cinjs,γ from the coefficients cs,γ , Tsd + Tsd = 1.

The ballistic current from source (s) to drain (d) is calculated
from the transmission coefficients as

Isd =

∫
dE

∑
ν

gν(E) Tsd,Eν sgn(vEν)fFD(E − µν) , (33)

where sgn(vEν) gives the sign of the velocity of the injected state,
i.e., +1 (−1) for states ν originating from the source (drain). The
integral in Eq. (33) is evaluated using the same adaptive Simpson
method used to calculate the density. A separate integration of
the current, rather than using the states obtained in the density
simulation, is advised since the energies that are associated with
a high current do not necessarily align with those that are respon-
sible for the density. Furthermore, since the current integration is
free of singularities, the integration converges quickly, with fewer
evaluations than required in the density simulation for the same
relative accuracy.

4. Self-consistency

In realistic electronic devices, external potentials are applied
by gates and fixed charges are associated with ionized doping. To
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account for all these effects, as well as the mean-field interaction
of the electron charge, we adopt the Hartree approximation. The
extrinsic potential is found self-consistently with the electron
density by solving the non-linear Poisson equation,

∇ · [ϵ(r)∇V (r)] = ρ[r; V ] + ρdoping(r) ,= ρnet[r; V ] , (34)

where ρ[r; V ] = −en[r; V ] is the free-electron charge for a
given potential V (r), ρdoping(r) represents the fixed charge density
originating from the ionized dopants, and ρnet[r; V ] is the net
charge density.

To allow for the general application of boundary conditions
and shapes for the gates and doping profiles the density and
potential are discretized on a linear tetrahedral finite-elements
mesh, forming the Poisson domain ΩPoisson. At the edges of the
Poisson domain, i.e., for r ∈ ∂ΩPoisson, we impose Neumann
boundary conditions ∇V (r) · n̂(r) = 0, where n̂ is the normal
to the edge. The electrostatic control of the device by gates
is included by applying Dirichlet boundary conditions to their
domains. For a single gate at a fixed potential Vg with domain
Ωg the Dirichlet condition is V (r ∈ Ωg) = Vg. A high quality
tetrahedral mesh, covering the Poisson domain, and conforming
to the gates is automatically generated.

However, since the density, constructed using Eq. (26), is given
on a uniform grid corresponding to the Fourier transform of the
plane-wave components of the Bloch waves, the density needs to
be interpolated to the tetrahedral finite-elements mesh. To avoid
unnecessary approximation and the introduction of errors, the
finite-element mesh explicitly includes all points of the uniform
Bloch-wave mesh where the Bloch waves that comprise the basis
set have non-negligible values. Specifically, a point rl from the
uniform grid is included in the tetrahedral mesh if

|unk(rl)|2 > 10−3
× max

{n,k,r}
|unk(r)|2 , (35)

for any band n and wave-vector k in the basis-set. To cover
the entire Poisson domain, additional mesh points are generated
automatically using the TetGen library [48]. This procedure yields
a coarser global mesh with a gradual transition to the fine mesh
points determined by the Bloch waves. This way of constructing
the mesh is equivalent to an adaptively refined mesh in regions
of high (expected) density. Since the potential is calculated on
the tetrahedral mesh, the calculation of the matrix elements of
the extrinsic potential Ve

i′n′k′,ink requires an interpolation of the
tetrahedral mesh to the uniform Bloch-wave mesh. By sharing
points between the tetrahedral mesh and the uniform mesh,
we introduce a significant amount of additional bookkeeping.
However, doing so we combine the sub-atomic resolution of
Bloch-waves with the ability of the mesh to comply to general
boundary conditions.

In addition to the flexibility in applying boundary conditions, a
tetrahedral mesh provides a significant decrease in computational
burden compared to the uniform Bloch-wave mesh that could
otherwise be used, since the number of points in the tetrahe-
dral mesh is significantly lower than those of the Bloch waves,
Ntetra ≪ Nr ×Nblocks. The penalty we incur consists in the burden
of interpolation whenever we transition between the meshes. For
this purpose, we use a linear interpolation that matches the linear
shape functions used in the finite-element representation of the
linear Poisson equation. However, the interpolation burden is
limited because the values on the points that are shared between
the two meshes, which account for the majority of points in all
our test structures, do not require interpolation.

Using linear shape functions on the tetrahedra, we arrive at
the FE representation of the non-linear Poisson equation

DV = M
{
ρ[V] + ρdoping

}
= Mρnet[V] , (36)

Fig. 4. Convergence rate of self-consistent procedure for the device shown in
Fig. 6 in the off-state (Vg = −0.2 V and Vds = 0.2 V) from a uniform starting
potential. The l2-norm of the residual is shown for the semi-classical Newton
iteration, as well as the accelerated DIIS method. The convergence criterion is
set to 10−6 eV.

where M is the mass-matrix and D represents the ∇·[ϵ(r)∇] oper-
ator. The non-linear Poisson equation is solved using a Newton–
Raphson method, which, for iteration p + 1 reads:

Vp+1
= Vp

−
[
Jp
]−1

[
DVp

− Mρnet
[
Vp]] , (37)

where the Jacobian is given by Jp = D−MJpρ . We approximate the
Jacobian for the free charge density Jpρ with a semi-classical diag-
onal matrix, calculated by varying the local chemical potential. In
practice, we calculate it by evaluating the free-density in Eq. (26)
with the derivative of the Fermi–Dirac distribution instead of the
Fermi–Dirac distribution itself, i.e.,

J̃pρ(r, r
′) = δ(r, r′)

δρ[r, V p(r)]
δµ(r)

= δ(r, r′)
∫

dE
∑
ν

gν(E)
⏐⏐ψp

Eν(r)
⏐⏐2 ∂ fFD
∂E

(E − µν) . (38)

Inserting the semi-classical approximation of the Jacobian in
Eq. (37) and rearranging yields a linear Poisson equation for each
iteration p + 1 of the Newton–Raphson procedure:(
D − MJpρ

)
Vp+1

= M
(
ρnet

[
Vp]

− JpρV
p
)
. (39)

The linear Poisson equation is a simple elliptic partial differential
equation which is efficiently and accurately solved using the
algebraic multi-grid (AMG) method [49]. Fig. 4 shows the con-
vergence behavior of a self-consistent calculation starting from a
flat potential. After an initial period, our Newton method, with a
semi-classical approximation of the Jacobian, converges linearly.

To further accelerate the convergence of the self-consistent
procedure, we use the Direct Inversion of the Iterative Subspace
(DIIS) technique, commonly known as Pulay mixing in computa-
tional chemistry [50]. In the DIIS technique, the residual Rp+1

=

Vp+1
− Vp and the new solution Vp+1 are added to the previous

solutions and form the iterative subspace, which is used to predict
a new vector Ṽp+1. Following the analysis in Ref [51], we have
implemented the DIIS technique using a least-squares approach
based on the Singular-Value Decomposition (SVD) that improves
the resolution of components of the iterative subspace when the
residuals are almost linearly dependent. This linear dependence
occurs naturally when self-consistency is almost reached, and the
tolerance for convergence is set very low. However, to avoid a
spurious linear-dependence that could degrade the convergence
behavior, we limit the range of the iterative subspace. Typically,
only the last 5 iterations are kept. In practice, both the bare
Newton and the accelerated DIIS method exhibit a linear conver-
gence when solving the non-linear Poisson equation. However, as
demonstrated in Fig. 4, the DIIS method accelerates convergence
by a factor of two, which is well worth the additional complexity
of implementation.
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Fig. 5. Flowchart of the self-consistent procedure explained in the text. The inputs are an estimated initial potential and the Bloch-basis calculated using empirical
pseudopotentials. The loop responsible for the adaptive Simpson-integration is indicated with blue shading on the left side, while the self-consistent loop is indicated
with orange shading on the right hand side of the box. Note that the M, T, and P matrices are built a single time (1×). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5 gives an overview of the entire self-consistent procedure
for a typical simulation. Upon convergence, other quantities, such
as the electronic current, can be calculated using the converged
potential.

5. Results: Graphene nanoribbon

We demonstrate the Bloch wave method presented in Sec-
tion 2 using an armchair graphene nanoribbon (aGNR) field-effect
transistor (FET), as shown in Fig. 6. The aGNR is 25 carbon atoms
wide (3.8 nm) and is terminated by hydrogen at the armchair
edge. The complete device is 17 nm long, with a channel length
of 5 nm, and contains a total of 2160 atoms (2000 carbon and 160
hydrogen).

5.1. Electronic structure

We calculate the band structure of the 3.8 nm wide armchair
GNR shown in Fig. 6 and show the results in Fig. 7. We first
calculate the electronic structure using the plane-wave empirical
pseudopotential method. We use the local pseudopotentials from
Ref. [30] for both the carbon and hydrogen ions. Local pseudopo-
tentials have been used extensively for carbon compounds and
have been shown to accurately reproduce the band structure of
graphene as well as its nanoribbons [6,8,28,30,52,53]. The result-
ing Schrödinger equation is solved in a plane-wave basis, using
the fast Fourier transform for efficient evaluation, as described
in Ref. [28]. In particular, we calculate both the eigenenergies,
ϵnk, and wavefunctions, i.e., the Bloch waves φnk(r), for the lowest
N = 112 bands (102 valence bands and 10 conduction bands)
at 20 wave vectors, equally spaced from the first Brillouin zone
(BZ) center (Γ -point) to its edge (Z-point). The resulting band
structure is shown in Fig. 7(a) as dotted lines.

To verify if this basis is capable of describing the electronic
structure of the ribbon, we use the Bloch-wave expansion to
reconstruct the band structure throughout the entire first BZ. The
Bloch waves, φnk(r), at the Γ -point and Z-point (112 bands for
each point) are used as a basis in our Bloch wave expansion of the
wavefunction in Eq. (4). The procedure is a straightforward appli-
cation of Bloch’s theorem: For a given wave vector k′, we calculate
the expansion coefficients cink at a single node i by enforcing
periodicity to the neighboring nodes with a phase-difference
given by the wave vector k′,

cink = cjnkeik
′(zi−zj).

Exploiting this periodicity reduces the matrix equation, given in
Eq. (14), to a generalized eigenvalue problem of size (NBloch ×

NBloch),

Hi(k′)ci = Ek′Mi(k′)c , (40)

with:

Hi(k′) = Hi,i +
∑
⟨i,j⟩

Hi,j eik
′(zi−zj) and

Mi(k′) = Mi,i +
∑
⟨i,j⟩

Mi,j eik
′(zi−zj),

where the matrix Hi,j (Mi,j) corresponds to a block of the matrix in
Eq. (14), containing the elements coupling node i to node j. ⟨i, j⟩ is
a reminder that the coupling between nodes is nearest-neighbors
only. Note that for the band structure, no external potential is
applied and all external potential matrix elements vanish, i.e.,
Vink = 0, and thus all nodes i are equivalent.

Fig. 7(a) shows the Bloch waves selected as the basis-set, and
the band structure reconstructed using the Bloch wave method
as solid lines. In effect, we interpolate the band structure from
the Γ -point and Z-point to the full first BZ. Comparing the re-
constructed band structure to the plane-wave calculation shows
a good match. Fig. 7(b) quantifies the error in the reconstruction,
showing the absolute energy difference, ∆E, between the Bloch-
wave reconstructed band structure and the plane-wave values
at the wave vectors of the plane-wave calculation. As expected,
the error increases in the upper conduction bands, where it is
more likely that our selected Bloch-wave basis-functions do not
span the solution space for every wave vector. By selecting two
k-points, the eigenvalue problem in Eq. (40) admits NBloch = 2×N
solutions, where N is the number of bands included for each
k-point. Since the basis has been constructed using all of the
lowest energy Bloch-waves, the additional N spurious solutions at
each k-point have associated eigenenergies outside of our desired
spectrum. In particular, up to 1 eV above the Fermi level the
Bloch-wave reconstruction matches the plane-wave results very
well, showing a root mean squared error of 24meV. This energy
range is more than adequate for transport purposes. Moreover,
if more accuracy is needed at a higher energy, one can readily
increase the basis to cover those higher energies, albeit at an
increased computational cost.

Having verified the Bloch-wave method’s accuracy, we verify
our earlier computational claims. Fig. 8 shows the time required
to calculate the eigenvalues for a single wave vector using (a)
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Fig. 6. (a) Front, (b) top, and (c) side view of a depiction of the aGNR FET under study. The armchair graphene-nanoribbon (aGNR) is 3.8 nm wide (25 carbon atoms).
The simulated device is built from 40 repetitions of a single supercell, totaling 2160 atoms and a device length of approximately 17 nm. The gate (shaded region) is
centrally located in an all-around configuration, is 5 nm long, and has an oxide thickness equivalent to 1 nm of SiO2 . The source and drain terminals are assumed to
be infinite extensions of the aGNR. The ribbon is uniformly n-type doped, except for the channel under the gate which is assumed to be p-type. Carbon (dark gray)
and hydrogen (light blue) atom locations are indicated with spheres. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Reconstruction of the band structure using the Bloch-wave basis. (a) Band structure of the graphene nanoribbon shown in Fig. 6 near the Fermi level (0 eV),
calculated using the plane-wave empirical pseudopotential method (dashed) and reconstructed from the Bloch waves at the Γ -point and Z-point (dots) (solid lines).
(b) The absolute energy difference, ∆E, between the full plane-wave method and the Bloch wave reconstruction. The root mean squared value of the energy difference,
∆Erms , up to 1 eV is indicated on the graph.

the plane-wave method and (b) the Bloch-wave reconstruction
for different ribbon widths, as indicated by the number of carbon
atoms from one edge to the other. Fig. 8 also shows the size
of the basis set used for both methods. The basis size corre-
sponds to the number of plane-waves, NG, for the plane-wave
empirical pseudopotential method (a), and the number of Bloch
waves NBloch for the Bloch-wave method (b). In both methods,
the basis set increases linearly with the ribbon size, scaling with
the supercell length in (a) and scaling with the number of atoms
(valence electrons) in (b). However, for the range of GNR-widths
shown here, the Bloch-wave basis-set is 100 times smaller than
the plane-wave basis. The most immediate effect of this reduction
of basis-set size is a hundred-fold reduction in the required
memory to store the coefficients cink instead of all the plane-wave
components of the wavefunction. Therefore, we are able to avoid
the single most limiting factor for the scaling of the envelope
function approach to plane-wave based electron transport calcu-
lations [6,7]. Note that, using the expansion in Eq. (4), we can

obtain the real-space representation of the calculated coefficients
cink when needed, as we demonstrate in Section 5.2.

The reduction of the size of the basis set also translates directly
to a decrease of computing time. For example, the band-structure
calculations for the 2 nm-wide 25-aGNR band-structure, shown in
Fig. 7, take 25 seconds using the plane-wave method and only 5
ms using the Bloch wave method. While this speedup of a factor
of 5000 does not include the construction of the various overlap
matrices required by the Bloch-method, these are pre-calculated
only once. Therefore, we expect equivalent performance gains
for transport simulations. Finally, comparing the computation
time for different widths in Fig. 8, both methods show the scal-
ing behavior expected from their computational complexity. The
plane-wave method is bounded by the O(NG logNG) complexity
of the FFT algorithm, while the Bloch-wave method behaves in
line with the O(N≈2.376) complexity of the matrix products, as
implemented in the optimized Basic Linear Algebra Subprograms
(BLAS) [54].
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Fig. 8. Computational time for the calculation of the band structure for various ribbon widths. (a) Using the plane-wave empirical pseudopotential method, with a
basis of NG plane-waves. (b) Using our Bloch wave method, with N Bloch waves taken at the first Brillouin-zone center and its edge. Note the different scales used
in (a) and (b). The best computational time, out of seven runs, is indicated with a dot, while the range of the timing is shown with a bar. The ideal scaling behavior
for each case is indicated and a fit is shown as a continuous curve. The basis set for the plane-wave method in (a) is 100 times larger than the Bloch wave basis
used in (b). The timing shows an even greater speed-up than expected from the basis-set size alone.

5.2. Transport: aGNR FET

The electron transport through the aGNR FET, shown in Fig. 6,
is calculated using the self-consistent procedure described in
Section 2. For our purposes, we apply a 0.2 V bias between source
and drain, Vds. We then vary the gate potential, Vg, from −0.7 V
to 0.3 V, calculate the potential self-consistently, and obtain the
current through the device. The work-function of the gate is set
to the electron-affinity of the aGNR.

Fig. 9(a) shows the obtained transfer-characteristics of the
device. Fig. 9(b) shows the corresponding band-profiles for dif-
ferent gate biasses, obtained self-consistently. Under forward bias
(Vg > 0), the device operates as a conventional FET. The sub-
threshold and linear regimes are clearly visible in the figure. The
sub-threshold slope is about 160mV/dec. As already described
for smaller ribbons [6], this poor slope is caused by source-to-
drain tunneling through the barrier in the channel, induced by the
gate. These tunneling rates grow as the bandgap becomes smaller
as the width of the ribbon increases.

For the simulated ribbon, the bandgap is only 0.52 eV. This
small bandgap leads to interesting ambipolar behavior: the cur-
rent increases if the gate is operated in reverse bias (Vg < 0)
due to band-to-band tunneling. Looking at the band-alignment
for, e.g., Vg = −0.6 V, in Fig. 9(b), it is clear that band-to-band
tunneling is possible from the source to the channel region, and
once more towards the drain. Thanks to the blocking of carriers
from the high energy tail of the injected Fermi–Dirac distribution,
the tunneling current increases at a steeper slope than in the
forward regime. This operating principle leading to the steep
slope is the same as that of a Tunnel FET (TFET) [55,56].

Note that, in this device, the behavior of the normal mode of
operation as well as the reverse biased gate operation is based on
quantum mechanics. Our proposed method, offering an efficient
full-band quantum mechanical transport solver for general atom-
istic structures, is naturally capable of dealing with these effects
and provides an invaluable tool in the study of exotic materials
and devices.

6. Conclusions

We have presented a numerical method for the atomistic cal-
culation of quantum electron transport in nanoscaled structures

using empirical pseudopotentials. Our method is highly efficient;
we have shown a reduction of the size of the required computa-
tional basis by two orders of magnitude compared to the conven-
tional plane-wave methods. This efficiency is achieved by treating
differently the two length-scales in the system. A partition-of-
unity captures the large-scale behavior of the system and admits
only nearest-neighbor coupling, resulting in excellent scalabil-
ity. The atomic scale, meanwhile, is captured by an expansion
based on Bloch waves of the atomic structure at high symmetry
points. The Bloch-waves are computed to high accuracy using
a Fourier-based plane-wave approach before starting the trans-
port calculations. Our method approximates the computational
efficiency of tight-binding and mode-space approaches while re-
taining the advantages of the plane-wave method, which features
a natural real space representation with sub-atomic resolution.

We solve the electronic states in our open system using the
well known quantum-transmitting boundary method (QTBM) and
update self-consistently the Hartree potential from the three-
dimensional density. The density is obtained by adaptively in-
tegrating the individual wave-functions’ densities. Notably, we
systematically control and estimate the numerical error at each
stage in our method by using iterative solvers and adaptive in-
tegration methods. We are thus assured that the accuracy of our
results is limited by the physical approximations made, and not
by the numerical errors.

We have demonstrated the accuracy and efficiency of our
method by calculating the ballistic transport properties of a
graphene nanoribbon transistor. In this test case, the reconstruc-
tion of the band structure from our Bloch-wave basis is accurate
to 24meV when compared to the full-plane wave calculation,
while being three orders of magnitude faster more efficient. Com-
paring different widths of nanoribbon shows that our method
scales as expected, with a significantly improved performance
compared to previous plane-wave approaches. A hundred-fold
reduction in the size of the basis set results in a similar reduction
in the memory requirements, which severely limit the device-size
that can be handled by previous plane-wave envelope-function
approaches. As a demonstration, we have simulated transport in a
3 nm wide nanoribbon transistor. We have observed a significant
deterioration of the sub-threshold behavior due to source-to-
drain tunneling through the potential barrier induced by the
gate bias. In reverse bias, we observe significant ambipolar cur-
rent due to band-to-band tunneling through the small bandgap.
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Fig. 9. Simulation results for device in Fig. 6. (a) Transfer-characteristics, showing source–drain current Ids on a logarithmic (left) and linear (right) scale for different
gate potentials Vg . (b) Band-edge profile along z, through the middle of the ribbon, showing the approximate position of the conduction band minimum ECB and
valence band maximum EVB , for different gate potentials, as indicated.

This reaffirms the need for a quantum mechanical treatment
of the transport in nanostructured devices in the ‘intermediate’
nanoscale, between bulk crystalline behavior and few-atom de-
vices. Our presented method provides an efficient and flexible
basis for such studies.

Finally, while we have only illustrated our method using em-
pirical pseudopotentials, our approach is generally applicable to
any formulation that can provide the Bloch waves in a real-
space basis. Of particular interest might be the various ab-initio
methods based on plane-waves, for which electron transport
calculations are prohibitively expensive. Additional avenues of re-
search include: extending our approach to heterogeneous struc-
tures with variations of the atomic structure, optimizing the
selection of the included Bloch waves, and higher order finite-
element shape-functions.
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Appendix. Matrix element of the crystal Hamiltonian

We derive an expression for the matrix elements for the
crystal Hamiltonian that avoids explicit knowledge of the crystal
potential,

Hc
i′n′k′,ink =

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)
[
−

h̄2

2m
∇

2
+ V c

i (r)
] [

fi(r)φink(r)
]
.

(A.1)

To remove the crystal potential, we start from the known
Schrödinger equation for the Bloch waves in a supercell[
−

h̄2

2m
∇

2
+ V c

i (r)
]
φink(r) = ϵink φink(r) . (A.2)

We left-multiply by f ∗

i′ (r)φ
∗

i′n′k′ (r)fi(r) and integrate over all of
space, yielding∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)fi(r)
[
−

h̄2

2m
∇

2
+ V c

i (r)
]
φink(r)

= Mi′n′k′,ink ϵink , (A.3)

where we have defined the overlap matrix element as

Mi′n′k′,ink =

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)fi(r)φink(r) . (A.4)

Comparing Eq. (A.3) to the matrix element of the crystal
Hamiltonian in Eq. (A.1) we obtain

Hc
i′n′k′,ink = Mi′n′k′,ink ϵink + T(r)i′n′k′,ink + P(r)

i′n′k′,ink , (A.5)

where we have defined additional matrix elements representing
kinetic energy and momentum-coupling

T(r)i′n′k′,ink = −
h̄2

2m

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)
[
∇

2fi(r)
]
φink(r) , (A.6)

P(r)
i′n′k′,ink = −

h̄2

m

∫
Ω

d3r f ∗

i′ (r)φ
∗

i′n′k′ (r)
[
∇fi(r)

]
·
[
∇φink(r)

]
, (A.7)

where the subscript (r) is a reminder that the matrix elements
are non-Hermitian and the operators they contain act only to the
right. Similarly, we can define ‘‘left’’ matrix elements

T(l)i′n′k′,ink =

(
T(r)ink,i′n′k′

)∗

= −
h̄2

2m

∫
Ω

d3r
[
∇

2f ∗

i′ (r)
]
φ∗

i′n′k′ (r)fi(r)φink(r) , (A.8)

P(l)
i′n′k′,ink =

(
P(r)
ink,i′n′k′

)∗

= −
h̄2

m

∫
Ω

d3r
[
∇f ∗

i′ (r)
]
·
[
∇φ∗

i′n′k′ (r)
]
fi(r)φink(r) , (A.9)

that satisfy

Hc
i′n′k′,ink = ϵi′n′k′ Mi′n′k′,ink + T(l)i′n′k′,ink + P(l)

i′n′k′,ink , (A.10)

Combining the expressions of Eqs. (A.5) and (A.10) yields

Hc
i′n′k′,ink =

ϵink + ϵi′n′k′

2
Mi′n′k′,ink + Ti′n′k′,ink + Pi′n′k′,ink , (A.11)

in which Ti′n′k′,ink =

(
T(r)i′n′k′,ink + T(l)i′n′k′,ink

)
/2 and Pi′n′k′,ink =(

P(r)
i′n′k′,ink + P(l)

i′n′k′,ink

)
/2 are both Hermitian matrix elements.

For the correct preservation of probability current across
nodes, and in particular if we intend to use linear shape func-
tions for fi(r), we should further use integration by parts in the
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derivation of the kinetic matrix elements,

T(r)i′n′k′,ink =
h̄2

2m

∫
Ω

d3r
{[

∇f ∗

i′ (r)
]
φ∗

i′n′k′ (r) ·
[
∇fi(r)

]
φink(r)

+f ∗

i′ (r)
[
∇φ∗

i′n′k′ (r)
]
·
[
∇fi(r)

]
φink(r)

+f ∗

i′ (r)φ
∗

i′n′k′ (r)
[
∇fi(r)

]
·
[
∇φink(r)

]}
, (A.12)

where we have omitted the vanishing boundary term. Combining
this result with its Hermitian conjugate, and grouping appropriate
terms, yields a compact form for the Hermitian kinetic energy
matrix elements,

Ti′n′k′,ink =
h̄2

2m

∫
Ω

d3r
{ 1

2
∇

[
f ∗

i′ (r)fi(r)
]
· ∇

[
φ∗

i′n′k′ (r)φink(r)
]

+
[
∇f ∗

i′ (r)
]
φ∗

i′n′k′ (r) ·
[
∇fi(r)

]
φink(r)

}
. (A.13)
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