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Abstract

Using the non-equilibrium Green’s function formalism, we study carrier transport through
imperfect two-dimensional (2D) topological insulator (TI) ribbons. In particular, we investigate the
effect of vacancy defects on the carrier transport in 2D TI ribbons with hexagonal lattice structure. To
account for the random distribution of the vacancy defects, we present a statistical study of varying
defect densities by stochastically sampling different defect configurations. We demonstrate that the
topological edge states of T ribbons are fairly robust against a high concentration (up to 2%) of
defects. At very high defect densities, we observe an increased inter-edge interaction, mediated by the
localisation of the edge states within the bulk region. This effect causes significant back-scattering

of the, otherwise protected, edge-states at very high defect concentrations (>2%), resultingina

loss of conduction through the TI ribbon. We discuss how this coherent vacancy scattering can be
used to our advantage for the development of TI-based transistors. We find that there is an optimal
concentration of vacancies yielding an ON-OFF current ratio of up to two orders of magnitude.
Finally, we investigate the importance of spin—orbit coupling on the robustness of the edge states in
the TI ribbon and show that increased spin—orbit coupling could further increase the ON-OFF ratio.

1. Introduction

Continued scaling has deteriorated the mobility
of electronic devices based on three-dimensional
(3D) materials [1, 2], resulting in an increasing
interest in two-dimensional (2D) materials [3, 4].
The intrinsic 2D structure of these materials offers a
great avenue for optimum electrostatic control with
sufficient mobility for carrier transport in scaled
electronic devices [1]. 2D materials research started
with graphene [5], and subsequently expanded to
Group IV-based 2D materials [6, 7], transition-
metal-dichalcogenides (TMDs) [8], as well as Group
V material-based 2D materials like phosphorene [6,
9]. The use of 2D materials in conventional field-
effect transistors (FETs) [10, 11], or novel FETs like
tunnel-FETs [12, 13] has been explored extensively.
Unfortunately success has been limited because
2D material based devices suffer significantly from
major growth and process-based limitations, e.g.

lattice imperfections and defects [14], mostly
vacancy defects [15].

One avenue of research focuses on improving
material growth and device fabrication techniques. An
alternative avenue, which we will pursue in this paper,
is to develop materials and device systems where car-
rier transport is robust against imperfections. Spe-
cifically, we want to exploit topological protection,
i.e. robustness against small perturbations, of certain
materials properties, while maintaining excellent 2D
material electrostatic control. Materials that offer such
prospects are 2D topological insulators (TIs) [16].

The 2D TIs we consider are Z, TIs that have time-
reversal symmetry [17]. Z, TIs have an energy band
gap in their bulk form, however, in their ribbon form,
the energy gap closes and they develop edge states with
linear dispersion within an energy window equalling
the bulk band-gap. As a result of the time-reversal sym-
metry, 2D TI ribbons with Z, topological order have
two counter propagating edge states with their spin

©2019 IOP Publishing Ltd


publisher-id
doi
https://orcid.org/0000-0002-2216-3893
https://orcid.org/0000-0001-9179-6443
https://orcid.org/0000-0002-4157-1956
https://orcid.org/0000-0002-6717-5046
mailto:william.vandenberghe@utdallas.edu
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/2053-1583/ab0058&domain=pdf&date_stamp=2019-02-05
https://doi.org/10.1088/2053-1583/ab0058

10P Publishing

2D Mater. 6 (2019) 025011

and momentum locked. As a consequence, spin-con-
serving perturbations, i.e. vacancy defects, phonons
etc, cannot backscatter the edge states.

2D TIs have been explored extensively in the past
decade [18, 19] not only because of their intriguing
intrinsic properties, but also because of their possible
application in a range of domains such as, charge-
based devices, like TI-FETs [16], spin-based devices
for, among others, memory applications, [20], and
quantum computing applications [21]. Additionally,
TIs have also been explored for their application in
optoelectronic devices [22,23].

The TI-FET operates on the principle of the mod-
ulation of scattering. In the ON-state of the TI-FET,
the Fermi level lies in the centre of the bulk bandgap,
resulting in high transmission. In the OFF-state, the
Fermi level lies in the bulk state, strongly suppressing
transmission. As the bulk state transmission is reduced
due to scattering on impurities or due to interaction
with other perturbations, the OFF-current of the
device is reduced. Therefore, a TI ribbon with a high
concentration of vacancy defects can, in principle, lead
to a better ON—OFF ratio for TI-FETs. A major advan-
tage of a charge-based device like the TI-FET is its inte-
grability with present-day technology.

2D TIs are ideal for a device like the TIFET because
the Fermi level of the TT is modulated using a gate. 3D
TIs are 3D materials and have topologically protected
surface states instead of edge states like 2D TIs. Gat-
ing of 3D TIs is thus very hard since the surfaces are
effectively metallic, screening any external electrical
field. In 2D materials, gating is comparatively easy and
even the edge states can be gated quite effectively due to
their low density of states.

At extremely high defect concentrations, how-
ever, back-scattering in 2D TIs will occur not only in
the bulk but also in the edge states due to inter-edge
interactions. Thanks to the localisation of edge states,
inter-edge interactions from a small number of non-
magnetic defects will be negligible, yielding high trans-
mission through the ribbon. However, in the limiting
case of an exceedingly large number of defects, the rib-
bon will be sundered, resulting in full back-scattering.

In this paper, we theoretically study the effect of
point vacancy defects on the carrier transport for a
TI ribbon with hexagonal lattice structure and zigzag
edge orientation. We quantify the transport of the TI
ribbons by calculating the transmission using the non-
equilibrium Green’s function formalism, presented
in section 2. In section 3, we first analyse the effect of
the position of a single defect on the transmission of
the edge states and bulk states in a TT ribbon. Then, we
analyse the effect of the presence of a random distri-
bution of defects, with varying concentration, on the
carrier transport in a TI ribbon. We show that the TI
edge states are robust for a high defect density (2%).
We further show thatin the presence of an applied bias,
edge stateslocalise around the defect centres within the
bulk of the TI ribbon. We demonstrate that a signifi-
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cant amount of inter-edge interaction occurs at defect
densities exceeding 4%. Further, we demonstrate that
an optimum concentration of vacancy defects gives
rise to an ON-OFF current TI-FET ratio of almost 2
orders of magnitude. Finally, we investigate the impor-
tance of spin—orbit coupling and a larger energy band
gap in ensuring the robustness of the TT edge states. In
section 4, we conclude.

2. Methodology

2.1. Electronic Structure of TTs

We model the electronic structure of the 2D Z, TI
using the tight-binding Kane—Mele Hamiltonian [17]
for a hexagonal lattice:

H=—t Z CZaCj,a + iAo Z v,-)jciaagﬂcj,g
(i) (i) )00
. ~ Z
+ike > dl (0 x dij), 466 (1)
<i’j>’a’6

where the first term, with coupling strength t, accounts
for the nearest neighbour hopping, (i,j), between
adjacent lattice sites i and j, with respective electron

creation and annihilation operators cja,

G- @ and
represent spin degrees of freedom, i.e. « € {1,]} and
B € {11} The second term, with coupling strength
given by the spin-orbit coupling magnitude A,
accounts for the next nearest neighbour hopping ({1, 7))
with Pauli matrix o,. The parameter v;; is 41 when the
shortest nearest neighbor path from i to j is clockwise,
and —1 if it is counterclockwise. The third, and final,
term, with coupling strength A, accounts for the
Rashba spin—orbit interaction, which accounts for the
out-of-plane symmetry breaking of the 2D TI lattice,
which can be induced by a perpendicular electric field
or the interaction with an underlying substrate.

Since we do not consider such out-of-plane sym-
metry breaking effects in the current work, we can
safely ignore the Rashba spin—orbit interaction, i.e.
Ar = 0. This Kane-Mele Hamiltonian preserves
time-reversal symmetry and can model both a trivial
(Aso = 0) oranon-trivial Z, (Ag, > 0) band ordering.

To obtain realistic parameters for the Kane—Mele
Hamiltonian, we fit the various coupling parameters
to model stanene, a hexagonal monolayer of tin, which
is a 2D topological insulator with a theoretically pre-
dicted band-gap of 0.1 eV [24, 25]. To obtain a refer-
ence bandstructure, we use density functional theory
(DFT), as implemented in the Vienna ab initio simula-
tion package (VASP) [26,27]. The DFT bandstructure
is obtained using a projector-augmented wave (PAW)
potential [27] with a generalised-gradient approx-
imation (GGA) exchange-correlation as proposed by
Perdew—Burke—Ernzerhof (PBE) [28]. A11 x 11 x 1
k-grid sampling is used and the energy cut-off is set
t0240 eV.

By fitting the stanene bulk bandstructure obtained
using DFT with the tight-binding bandstructure
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Figure 1. Illustration of the stanene bandstructure obtained using DFT (dots) and fitting with the tight-binding (solid line)
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Figure2. (a)Anillustration of a TI ribbon with hexagonal
lattice structure and zigzag edge orientation. The rectangle
indicates the unit cell of the lattice structure with N atoms.
aand bare the lattice constant and the bond length of the
lattice structure, respectively. (b) Bandstructure of the
TI-ribbon with N = 64.

obtained by diagonalizing the Kane—Mele Hamil-
tonian for a periodic unit cell, we obtain the nearest
neighbour coupling parameter t = 0.85 €V, as well
as the spin—orbit coupling term A, = 10 meV.
Figure 1 shows the bulk stanene bandstructure
obtained with DFT and the fitted Kane—Mele band

structure. Unless explicitly stated, all presented results
use the parameters obtained for stanene.

2.2. Ribbons

The Hamiltonian matrix for a TI ribbon is
constructed, atom by atom, from the tight-binding
Kane—Mele Hamiltonian (1). A pristine TI ribbon
with a zigzag edge consists of a repetition of a “unit
cell’, containing N atoms each. To construct a ribbon
with a given length, the unit cell is repeated Ny
times. An illustration of one such ribbon with its
unit cell is shown in figure 2(a). As the Kane—Mele
Hamiltonian accounts for two spin components
at each atom, the square Hamiltonian matrix is of
size 2 X N X N. However, since the Hamiltonian
only has the nearest neighbour and next-nearest
neighbour coupling, the resulting matrix is sparse,
containing only 10 nonzero elements per row. The
first (left) and last (right) unit cell of the ribbon,
containing N atoms, are treated as the left and the
right contact of the ribbon and represent an infinite
continuation of the ribbon.

Figure 2(b) shows the band structure of the hex-
agonal-zigzag TI ribbon calculated using the periodic
repetition of the unit cell shown in figure 2(a). We see
the edge state spectrum with a linear dispersion at the
zone boundaries (k = £7/a).

2.3. Modeling vacancy defects
To model a vacancy defect at site R, we change the local
Hamiltonian to that of a trivial insulator,

H, =V, Z c};)acR,a +t Z c;g,aci,a, )
Ra (R,i),x

where t, is the coupling strength between the vacancy
site and its nearest-neighbour lattice sites i and V, is
the on-site potential. The on-site potential (V) for
vacancies has been set to the work-function of stanene
(4.5 €V), which we extract from the DFT results of
a stanene sheet [29]. We set the vacancy coupling
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strength to correspond to the coupling of a free
electron in vacuum,

2

= ~ 0.51 eV, (3)
€

Iy
where A is the reduced Planck constant, m, is the
free electron mass and b = ccos(#) is the in-plane
projection of stanene’s buckled bond, where stanene’s
bond length is ¢ = 2.8 A and the buckling angle is
0 = 16.86°.

2.4. Random defect generation

To generate a given concentration of defects in a TI
ribbon, we generate the locations of the defects using
a uniform pseudorandom generator, excluding the
contact regions, which always represent semi-infinite
pristine leads. After removing the atoms at the defect
sites, we scan the lattice for atoms that have more
than one dangling bond. Since atoms with more than
one dangling bond are unphysical and will likely not
be structurally stable, we remove such occurrences.
Finally, for each removed atom, we change the ribbon
Hamiltonian from the topological Kane—Mele form to
the vacancy form given in (2).

2.5. Transport model

To study the transport of carriers in the TI ribbon, we
use the non-equilibrium Green’s function formalism
[30]. Within this formalism, we calculate the retarded
Green’s function, G, and the advanced Green’s
function, G?, as,

G/ (E) = [EI — H — Sw(E) - Su(B)] ", (4a)

G\(E) = [G'(E)]', (4b)

where H is the Hamiltonian of the TI ribbon, E is the
energy at which the Green’s functions are calculated,
I is an identity matrix and ¥y (E) and X (E) are the
respective left and right contact self-energies that
describe the open boundary conditions with infinite
leads.

We employ the quantum transmitting bound-
ary method (QTBM) [31] to calculate the contact
self-energies. To obtain the self-energy matrices
for an atomistic structure, we have to separate out
injected modes at the leads based on their direction of
motion. Therefore, we have to find the homogeneous
solutions in the left (L) and right (R) leads that obey
¢1/R = AL/r@L/R by solving the second order eigen-
value problem at an energy E,

(W_ /\L/R2 + HoArjr + Wy ) drr = EArér
5
which we obtain by the nearest neighbour expansi(or)l
of the tight-binding Hamiltonian in the leads. Here,
¢1/r has 2 X N components, two spin orientations
at each lattice site. W_, W are the left and the right
hopping matrices for the lead unit cell. The periodicity
of the wave-function is taken into account by the phase

S Tiwarietal

factor Ap g = exp(—ika) that sets the wave vector
k in the transport direction. Hy is the onsite matrix
block, determined as the first (left) or last (right)
2N x 2 N block of the ribbon Hamiltonian. To solve
the quadratic eigenvalue problem, we linearize it to a
generalized eigenvalue problem of double rank,

0 I LR - I 0 dr/R
~Wy EL—Ho| o]~ TR0 wo] Mg |

In the solutions of the above generalised
eigenvalue problem, we distinguish three cases,
|AL/r| = L|ALr| > Tand|Ap | < 1.Solutions where
|AL/r| > 1, correspond to modes that are divergent
in the leads. Solutions where |\ /| < 1, correspond
to evanescent modes that are non-divergent in the
leads. Solutions where |\ /g| = 1 represent travelling
modes that are either outgoing (group velocity > 0)
or incoming (group velocity < 0). We determine
the group velocity of a mode using the Hellmann—
Feynman method [32].

In figure 3, we show the band structure of the con-
tacts, obtained by plotting only the running waves of
the complex bandstructure, with an indication of
outgoing and incoming modes. As the contacts are
the infinite repetition of the leads, the obtained band-
structure is identical to the band structure of the TI
ribbon, shown in figure 2(b).

The self-energy matrices are constructed from the
evanescent and outgoing traveling modes. From the
eigenvalues (A /g ) and the eigenvectors (¢ /z) of the
modes corresponding to decaying and outgoing waves
in each lead, the self-energy matrices for an energy E
are calculated using,

Si/r(E) = Wo@pjrArr®p (7)

where ®p /g is a matrix whose columns comprise
the wave-functions ¢ /. Ay g is a diagonal matrix
comprising of the eigenvalues obtained as A /.

We calculate the transmission from the left contact
to the right within the Green’s function formalism
using,

T(E) = Tr(I‘LGTRGa), (8)

where the contact broadening matrices are calculated

asT1.(E) = i[Sg0(E) — 5, (B)]

Thelocal density of states (LDOS) at a given energy
E is determined by the diagonal of the spectral func-
tion,

AL/R(E) = GrFL/RGa. (9)

The energy-resolved local current, which we will call
the local spectral current, between lattice sites 7 and j,
andspina € {1, ] }isgivenas,

e
Lijo(E) = —ﬁlm(Gij,aHi,j,a - Hj,i,aGfi,a), (10)
where e is the electron charge and ij,a is the lesser
Green’s function,




10P Publishing

2D Mater. 6 (2019) 025011

STiwarietal

0.61

0.41

0.21

0.01

E(eV)

—0.21

—0.41

—0.61

Z

Figure 3. Illustration of the bandstructure obtained for a 12.7 nm wide TI ribbon with hexagonal lattice structure and zigzag edge,
obtained from QTBM. a is the lattice constant as shown in figure 2(a). Blue dots show electrons moving with positive velocity and

the red dots show electrons moving with negative velocity.

G=(E) = ALf(E — pu) + Arf(E — pr), (11)

where f(E)is the Fermi-Dirac distribution and yuy /g is
the electrochemical potential of the respective contact.
The local spectral current is calculated for a bias,
AV = pp — pg, applied between the two contacts of
the TI ribbon. Note that this bias is only applied to the
electrochemical potential and that the electrostatic
potential throughout the wire is assumed to be flat.
The calculated spin-resolved local spectral current
is projected into Cartesian coordinates by decompos-
ing the current, I;j, (E) from one lattice site i to the
other lattice site j, into its local Cartesian components,

Lo (E) = I;j o (E) cos(0;j), (12a)
Iy,a (E) == Ii,j,a (E) Sin(ei,j>, (12h)

where 0;; is the angle between lattice sites i and j. To
avoid double counting, the local spectral current
is only projected for I;j(E) > 0, between lattice
sites i and j. This current is then plotted on the mesh
corresponding to the atomic position of the atoms in
the ribbon. The total local spectral current, which we
will call the local spectral charge current, is obtained by
summing over the spin degrees of freedom « € {1, 1},

Lj(E) = Lijt (E) + Lij, (E). (13)
3. Resultsand discussion

3.1. Transportthrough pristineribbon

We first simulate the carrier transport in a pristine T1I
ribbon, as illustrated in figure 4(a). In all simulations
reported in this paper, the TI ribbon is12.83 nm wide
23.7 nm long. The calculated transmission for this
ribbon is shown in figure 4(b). For a pristine ribbon,
the transmission is simply equal to the number of
modes. The edge states, with energies in the bulk
bandgap, have a transmission equal to two, one for
each edge state or, equivalently, one for each spin-

channel. The bulk band gap, obtained from the low
energy approximation of the Kane—Mele Hamiltonian,
measures E; = 24, = 6v/3A4. With Ay, = 0.05 6V
for stanene, we find the edge states within an energy
window of 40.05eV. The energy states outside this
energy window are the bulk states.

In figure 5(a), the spectral function for a state with
E =~ 0 eV?, i.e. at the Dirac point is shown. The spec-
tral function reveals the edge states localised on both
edges of the TI ribbon. The local spectral charge cur-
rent, depicted in figure 5(b), shows that the flow of the
current through the edge states is unidirectional.

Figure 5(c) shows the comparison between the
LDOS of the edge states, injected at energies 2 meV
and 25 meV. We observe that the edge states injected at
an energy closer to the Dirac point are more localised.
The localisation of the wavefunctions of the edge state
is directly proportional to the spin—orbit coupling
strength A4, which will be discussed in the subsequent
sections. However, the localisation of the edge state
wavefunction decreases as the energy approaches the
bulk conduction or valence band. This is in line with
the previously reported, ‘evolution’ of the edge state
LDOS with increasing energy [33].

3.2. Effect of asingle point defect

Next, we investigate the impact of a single defect
in the TI ribbon, either in the centre or at the edge,
as illustrated in figure 6(a). Figure 6(b) shows a
comparison between the transmission of the pristine
ribbon with a ribbon with a single defect in the centre
(bulk defect) and at the edge (edge defect). We see that
the transmission for the edge states, in the —50 meV to
50 meV range remains unaffected, both for the edge
defect and the bulk defect case. However, the bulk state
transmission is affected by both defects, in particular

>For all E ~ 0 eV we used E =2 meV in our calculations.
Exactly at E = 0eV, a small gap opens due to the finite size of
the ribbon.
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Figure4. (a) Anillustration of a pristine TI ribbon. (b) The calculated transmission for the pristine ribbon shown in (a). Note that
the transmission equals the number of modes and the transmission for the edge states (between the black lines) is two, reflecting the

two spin channels.

for higher energy states. The bulk state behaviour is
in agreement with scattering theory since the states
extend across the entire ribbon width, their first-
order matrix element with the vacancy Hamiltonian
is significant. We also observe an asymmetry in the
transmission spectrum around the Dirac cone energy
(E=0), both for the edge and the bulk defect. This
behaviour is observed because the vacuum potential
used at the defect sites is positive, breaking the
symmetry of the Kane—Mele Hamiltonian with respect
to energy.

Figure 7 shows the up-spin component of the
spectral function for the edge-state calculated for the
ribbon with an edge defect. The up-spin component
is localised on the bottom edge, and we observe that
the edge state is not reflected, but flows around the
defect instead. This lack of back-scattering is a con-
sequence of spin and momentum locking combined
with the vacancy Hamiltonian. Inter-edge scatter-
ing on the other hand, requires a significant overlap
between the wavefunctions of states of the opposite
edge with the vacancy Hamiltonian. However, the
edge state wavefunctions decay exponentially in the
bulk, with a decay length of the order of one nanome-
ter, ensuring minimal back-scattering in the presence
of a single defect.

The interaction with a single defect increases the
extent of the edge state wavefunction and facilitates a
path for backscattering through multiple defects, as
discussed next.

3.3. Effect of therandom distribution of vacancy
defects

In a realistic material, the lattice has a significant
number of defects which we assume to be distributed
randomly. We have shown, in the previous section,
that a single point defect results in only negligible
inter-edge interaction. However, a cumulative effect
of multiple point defects, distributed randomly in the
lattice structure could lead to a significant amount of
inter-edge interaction. Therefore, to fully account for
the random nature of the defect locations, we perform
a statistical study of representative samples with the
same defect concentration.

For our study, we distribute random vacancy
defects in the 2D TI ribbon, removing 0.5%, 1%, 2%,
3%, 4%, 5%, 7%, 10% of the total number of atoms.
For each concentration, we simulate 50 different, ran-
domly sampled, configurations. Examples of two
configurations of a TI ribbon with a defect density
of 2% and 4% can be found in figures 9(a) and 10(a).
As before, we quantify the transport through these
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Figure5. (a) The spectral function for a pristine ribbon calculated for E ~ 0 revealing the edge states. (b) The local spectral charge
current for current injected from the left side with E & 0 eV. (c) A comparison of the spectral function, calculated at E &~ 0 meV

and E = 25 meV, accross the width of the ribbon at x = 10nm.

defective TI ribbons by calculating the transmission.
In figure 8, we collect the transmission results for each
density. The median value of the transmission of the
ensemble of configurations is shown as a solid line
while the shaded area covers the 25th to the 75th per-
centile of the obtained transmission coefficients. We
show the percentile instead of the standard deviation

because the transmission results are not normally dis-
tributed and have a well-defined upper and lower limit,
i.e. the edge state transmission ranges from zero to two.

Analyzing figure 8 more closely, we see that the
transmission of the edge states for energies close to zero,
remains almost unchanged compared to the pristine
TI ribbons for defect densities up to 1%. However, we
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Figure6. (a) Anillustration of a TI ribbon sample with an edge defect (blue dashed) and a bulk defect (red solid). (b) A comparison
of the transmission for an edge defect, a bulk defect and a pristine ribbon.
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Figure7. The spectral function for the ribbon with an edge defect, calculated for E ~ 0 eV, revealing the edge state with up-spin.
We observe inter-edge interaction due to the point defect at the edge.
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observe a sharp decrease in the edge state transmission
when the defect density reaches 4% and an almost com-
plete transmission suppression at 10%. In the interme-
diate regime, at around 2% defect density, we see that
the edge state transmission remains intact around the
Dirac point but quickly decreases for energies away
from the Dirac point. This decrease in transmission
is related to the inter-edge interaction which is most

strongly suppressed at the Dirac point, where the edge
state decay length is the shortest. Turning our attention
towards the bulk states, we see that their transmission
reduces significantly for even small defect densities.
This is in line with our findings for a single defect in the
previous section. Bulk state transmission suffers due
to the backscattering on defect centres along with the
localisation around them [34]. However, the same is
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Figure9. (a) Anillustration of a TI ribbon with a defect density of 2%. (b) The local spectral charge current calculated at E ~ 0 eV

not the case with the edge states and, hence, a significant
drop in the edge state transmission occurs only when
the defect density exceeds 4%.

To study the scattering mechanism of the edge
states in more detail, we compare a single random
defect configuration for a TI ribbon with 2% defect
density in figure 9 to a ribbon with a 4% defect density
in figure 10.

For the 2% defect density case, the local spectral
charge current is shown in figure 9(b). The current is
mainly localised at the edges of the ribbon, as in a pris-
tine ribbon, confirming the high transmission. How-
ever, figure 9(b) already shows that the edge state inter-
acts with the vacancies, where a small portion of the
current appears to be localised in the bulk region of the
ribbon, around the vacancies. The defects within the
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bulk of the ribbon act as an edge that can also sustain,
extremely localised, topological edge states. Since these
edge states form around a defect centre, they are local-
ised and form a current loop. When an injected edge
state interacts with such alocalisation centre, a current
vortex, with non-vanishing curl, appears around the
defect. The cyclic orientation (clockwise/anticlock-
wise) depends on the spin polarization (up/down) of
the edge state that interacts with it. A similar effect has
been found in the context of the BHZ Hamiltonian
[35] and for other models of topologically non-trivial
insulatorsin [36,37].

Next, we turn to the case of 4% defect density, as
shown in figure 10. In figure 10(b), we show the local
spectral current for the up-spin edge state at the Dirac
point. As expected from our discussion of the trans-
mission spectrum, we see a significant amount of
backscattering of the injected carriers. The carriers
injected at the bottom edge strongly interact with the
defects in the bulk region and get scattered to the top
edge, where they travel back into the originating con-
tact. It is clear that this back-scattering is mediated by
thelocalised edge states around the defect centres, pro-
viding ‘stepping stones’ for scattering from one edge
to the other. The proximity of defect centres to each
other thus significantly increases the amount of inter-

edge interaction. This augmented inter-edge interac-
tion, in turn, leads to a significant drop in the trans-
mission due to backscattering. We have verified that
this effect is prevalent in most TI ribbon samples with
greater than 4% defect density. This cumulative effect
of inter-edge interaction and bulk localisation explains
why, at high defect densities, T1 ribbons suffer from a
lower transmission compared to lower defect densi-
ties, where defects are generally far apart.

Finally, note that in all cases, localised vortices of
the edge states can appear around defects. In an equilib-
rium state, the injection of carriers from both the leads
is equal and each edge has equal but counter-propagat-
ing spin-polarized carriers. Therefore, no net current
flows, nor is there any non-vanishing current curl in the
ribbon. Carriers with up-spin and down-spin revolve
equally with opposing directions around a defect
centre. However, with an applied bias, the injection
from the contacts is not symmetric and one edge exhib-
its a net up-spin while the other edge has a net down-
spin. Since defects will couple more strongly with one
edge compared to the other, e.g. due to their location or
due to the interaction with other defects, a net curl of
the current will be present under the application of bias.
This non-vanishing curl will generate a small localised
magnetic field, in addition to the spin imbalance.

10
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3.4. Anapplication: the TI-FET

In figure 8, we see a sharp drop of the bulk state
transmission around E ~ £0.05 eV for defect
densities ranging from 0.5% to 5%. As introduced
before, Vandenberghe et al [16] previously presented
aTI-FET concept which uses T ribbons as the channel
material and relies on a reduced transmission of the
bulk states. The TI-FET operating principle relies on
the modulation of scattering through external gate
action. Where in the ON-state of the TI-FET, the Fermi
level lies in the centre of the bulk bandgap, resulting in
high transmission, in the OFF-state, the Fermi level lies
in the bulk state, strongly suppressing transmission.
As the bulk state transmission is reduced due to
scattering on impurities or due to interaction with
other perturbations, such as the electron—phonon
interaction, the OFF-current of the device is reduced.
The TI-FET’s performance will eventually depend on
the ratio of transmission through the edge states versus
the transmission through the bulk states.

To assess the promise of vacancy defects as (one
of) the scattering mechanisms of the TI-FET, we cal-
culate the ratio of the transmission for an edge state
(Ton) at the Dirac cone (E = 0 €V) and a bulk-state
(Torr) at E &~ —0.075 eV for defect densities ranging
from 0% to 10% for each integer percentage. These
energy values have been chosen, such that the switch-
ing voltage is around 3kgT at room temperature
(T = 300 K), where kg is the Boltzmann constant.
As before, we simulate 50 different configurations for
each defect density. Figure 11 shows the median, 25th
and 75th percentile of the Ton/Topr ratio plotted
against the corresponding defect density. We see that
the median of the ratio reaches the maximum value
~10? for a defect density of 3% and reduces to ~10°
for a defect density of 10%. As seen in figure 11, our
model predicts that a defect density of 3% is optimal
for observing a good Ton/Togr ratio for the selected
TI-ribbon configuration (width and parameters).

Since TI-FET current is directly proportional to the
transmission, we can estimate that for a small band-
gap 2D TI such as stanene (with Aso = 0.05 V),
coherent scattering on vacancies alone can be expected
to result in an ON-OFF current (Ion/Iogr) ratio of up
to two orders of magnitude for an average device, with
an optimized defect density.

From an application perspective, however, a major
problem lies in the large variability between Ton/ Torr
ratio of the TI-ribbons as it ranges from ~210' to ~10°,
in the 25th to 75th percentile alone. This variability
stems from the strong dependence of the relative posi-
tion of the defects with respect to the edge and with
respect to each other. We have shown that a random
configuration of defects can cause localisation of the
edge states in the bulk which can result in backscatter-
ing by enhancing the inter-edge interaction. However,
this is a finite size effect, and we can use statistics in our
favor to increase the uniformity of the characteristics
of individual ribbons by using wider ribbons. With
increasing width of the TI ribbon the variance in the
transmission of different samples decreases, as shown
in the supplementary figure 1.

Finally, materials with greater spin—orbit coupling,
i.e. a larger gap, feature a stronger localisation of the
edge states towards edges, which may alleviate this
issue. To get an idea how a different materials choice
will affect our results, we investigate a 2D TI ribbon
with alarger bulk bandgap in the next section.

3.5. Theimpact of the spin—orbit coupling strength
To investigate the effect of a 2D TI with stronger
spin—orbit coupling strength, or, equivalently a larger
bandgap, we calculate the transmission and the local
spectral charge current for a TI ribbon with a higher
spin—orbit coupling strength (A, = 15 meV). The
bulk bandgap for the ribbon with increased spin—orbit
coupling Ay, = 15 meV is E; = 0.16 eV, which is
close to the theoretically predicted bulk band-gap
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Figure12. (a) The comparison of transmission between two TI ribbons with Ay, = 10meV and Ay, = 15meV respectively. The
edge states energies are contained within the black lines for Ay, = 10 meV and the red lines for Ay, = 15meV. The solid line shows
the median and the shaded region shows the percentile ranging from 25% to 75%. (b) The local spectral charge current for a TT
ribbon with Ay, = 15meV, calculated for the TI ribbon shown in figure 8(a).

of the stanene grown on an InSb substrate [38] and
functionalized with I (iodine).

Figure 12(a) shows the comparison of transmis-
sion between the TI ribbons with spin—orbit coupling
strength A;, = 10 meV and Ay, = 15 meV for a ran-
dom defect density of 3%. As before, we simulate 50
different defect configurations for both cases, again
plotting the median and the 25th and 75th percentile.
We see that the ribbons with a higher spin—orbit cou-
pling, in general, show a higher edge state transmission
over a wider energy range, while the bulk state trans-
mission is very similar for both cases. Bulk state trans-
mission depends on the width confinement of the rib-
bon and hence remains almost the same for TI ribbons
of the same width but with different band gap.

Figure 12(b), further shows that the local spectral
charge current penetrates less into the bulk compared
to the ribbon with a lower spin—orbit coupling, as
shown in figure 9(b). The higher spin—orbit coupling
in 2D TI materials with a larger bandgap results in
more edge state localisation in their ribbons, leading to
reduced inter-edge interactions. This results in better

protection against backscattering by defects, which in
turn explains the increased transmission observed for
the edge states in figure 12(a).

The TI-FET operation relies on an initial drop in
transmission in a limited number of bulk modes near
the bulk band gap. A very large spin—orbit coupling
may instead lead to a scenario where more modes are
available in the bulk. In such a situation, we may not
be able to attain a transmission graph as shown in fig-
ure 12(a), which gives us a region with a small number
of bulk modes that are strongly suppressed. Therefore,
in the selection of an optimal 2D TI channel material
for a TI-FET with optimal Ton/Torr and low vari-
ability, there is a trade-off between the band gap (spin—
orbit coupling) of the 2D TI itself and the width and
defect density restrictions of the ribbon.

4. Conclusions
We have investigated electronic transport in 2D TI

ribbons with a hexagonal lattice structure and zigzag
edge orientation using the Kane—-Mele Hamiltonian.
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Our results were obtained for TI ribbons with realistic
parameters, obtained by fitting our model to the DFT
bandstructure of bulk stanene.

We have shown that vacancy defects in the chan-
nel modify the transmission probability significantly
for conventional bulk states while the transmission
of edge states is dependent on the density of defects
in the ribbon. For defect concentrations up to 2%, we
have shown that the 2D TT edge states are fairly robust.
However, for a random defect density exceeding 4%,
we have shown a significantly decreased edge state
transmission. The reduced edge state transmission has
been explained by an increased inter-edge interaction
mediated by localised edge states around the defect
centres in the bulk of the ribbon. At large defect density
concentrations, the relative proximity of these local-
ised states creates a path from one edge to the other,
facilitating backscattering.

We have shown that the inclusion of vacancy
defects shows a sharp decrease in the bulk state trans-
mission near the edge of the bulk conduction and
valence bands. The sharp drop in the transmission,
when sweeping from the edge states near the Dirac cone
to the bulk states of either band, can be exploited in the
realization of TI-FETs, which operate on the principle
of modulating scattering through external gating. We
have estimated that only considering the coherent scat-
tering on vacancies of a high defect distribution of 2%
can produce an Ion/Iogr ratio of up to two orders of
magnitude. Sufficiently wide ribbons should be used to
reduce the variability in the transmission coefficients,
and thus device characteristics of the TI-FET.

We have further demonstrated that the robustness
of the TI edge states depends on the spin—orbit cou-
pling, with a stronger spin—orbit coupling (such as
in functionalized stanene) leading to less inter-edge
interaction and bulk localisation for the edge states.
Thisleads to a more robust edge state transmission and
better device characteristics with reduced variability.
However, we found that the transmission of the ‘bulk
states’, for energies outside the bulk bandgap, is not
necessarily reduced for a 2D TI with very high spin—
orbit coupling. Because of this trade-off, we conclude
that a co-optimization of the defect density and the
selection of the 2D TI material (which determines the
band gap) is crucial in the realization of performant
TI-FETs. While defects in T1 ribbons show promise for
the realization of TI-FETS, reaching practical Ion/Iopr
ratios of three orders of magnitude may require an
additional (incoherent) scattering mechanisms to
reduce the transmission of the bulk states even further.

Finally, we would like to mention that our calcul-
ations were performed using a Hamiltonian valid
for general 2D TIs with hexagonal lattice structure
(which we parameterised using the parameters of bulk
stanene), experimental confirmation could be realized
in existing low-bandgap 2D TIs at low temperature, or
emerging high-bandgap 2D TIs at room temperature.
Progressive ion bombardment of the 2D TI can intro-

S Tiwarietal

duce an increasing defect concentration in the mat-
erial and could be used as a method to demonstrate the
effect mentioned in this paper, experimentally.
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