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In spite of the vast literature on the subject of first order electroweak phase transitions (EWPTs), which can
provide the necessary conditions for generating the baryon asymmetry in the Universe, fermion-induced
EWPTs still remain a rather uncharted territory. In this paper, we consider a simple fermionic extension of the
Standard Model involving one SUð2ÞL doublet and two SUð2ÞL singlet vectorlike leptons, strongly coupled
to the Higgs scalar and with masses close to the TeV scale. We show how such a simple scenario can give rise
to a nontrivial thermal history of the Universe, involving strongly first order multistep phase transitions
occurring at temperatures close to the electroweak scale. Finally, we investigate the distinct gravitational wave
(GW) signatures of these phase transitions at future space-based GW detectors, such as LISA, DECIGO, and
BBO, and briefly discuss the possible LHC signatures of the vectorlike leptons.
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I. INTRODUCTION

The origin of the baryon asymmetry in the Universe
(BAU), which is also known as the matter-antimatter
asymmetry, is one of the most outstanding problems in
modern cosmology. Baryogenesis is an appealing scenario
of generating the matter-antimatter asymmetry dynami-
cally. In 1967, Sakharov enunciated three conditions for
successful baryogenesis: baryon number violation, C and
CP violation, and a departure from thermal equilibrium [1].
Of particular interest for this work is the third condition,

departure from thermal equilibrium, which can only be met
if the Universe underwent a strongly first order phase
transition (SFOPT) in its early stages. While there is no
indication about the energy scale at which it happened, an
attractive possibility would be that such a phase transition
(PT) occurred around the electroweak (EW) scale. Indeed,
it is beyond any doubt that EW symmetry was broken at
some point in the history of the Universe, and a straightfor-
ward possibility would be that the PT responsible for
baryogenesis took place when EW symmetry was broken.
As any cosmological PT, an electroweak phase transition

(EWPT) would generate a stochastic gravitational wave
(GW) background sourced in the collision of nucleating
bubbles and the plasma motion induced by bubble colli-
sions. In the specific case of a strong EWPT, it is expected
that, due to redshift, the GW signal would nowadays peak

at frequencies around the millihertz-to-decahertz range [2].
Interestingly, this frequency range overlaps with the fre-
quency ranges which future space-based interferometers,
such as LISA [2], DECIGO [3], and BBO [4], will be most
sensitive to. Discovering such a gravitational wave signal
would establish the EWPT as a new milestone in our
understanding of the early Universe.
In the Standard Model (SM), electroweak symmetry

breaking (EWSB) would proceed via a smooth crossover
unless the Higgs mass is below ∼70 GeV [5,6]. Therefore,
the discovery of the SM Higgs boson with a mass mh ¼
125 GeV [7,8] meant that the SM alone cannot satisfy the
third Sakharov condition, i.e., departure from thermal
equilibrium.1

Consequently, the problem of strongly first order EWPTs
was considered in several beyond the Standard Model
(BSM) scenarios, most of them containing extra scalar
states with respect to the SM. Examples include scalar
singlet extensions [9–18], two Higgs doublet models
[19–24], the (next to) minimal supersymmetric standard
model2 (MSSM) [(NMSSM)] [26,27], or composite Higgs
models [28–33]. Scalars are of particular interest as, when
integrating out heavy scalars, a ðH†HÞ3 term can be
generated and therefore induce a barrier in the Higgs
potential [11,34]. Also, scalars contribute to a negative
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1Moreover, the amount of CP violation in the SM is too small
for satisfying the second Sakharov condition, which means that
new sources of CP violation should be considered. Addressing
this problem is, however, beyond the scope of this work.

2In the MSSM, the first order EWPT is excluded by the
measured Higgs mass, mh ¼ 125 GeV, and by light top squark
searches [25].
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cubic term in the Higgs effective potential in the high-
temperature expansion and therefore can induce a barrier via
thermal effects [35]. There has been much less focus on
fermionic extensions in the context of EW baryogenesis
[36–41] as fermions do not contribute as much in the high-
temperature expansion. However, when the critical temper-
ature is low compared to the new fermion masses, fermions
contribute to the Higgs effective potential in the sameway as
scalars and therefore can lead to nontrivial effects in the
thermal history of the early Universe. For example, Ref. [38]
considered two fermionic multiplets: a Majorana singlet and
a vectorlike (Dirac) SUð2ÞL doublet with the same quantum
numbers as the SM leptonic doublet. In this setup, a strong
first order EWPT can be induced by the neutral fermions,
which couple strongly to the Higgs.
In this paper, we study a SM extension containing only

Dirac fermions and investigate the impact of these fermions
on the thermal history of the Universe. We choose a BSM
spectrum containing only vectorlike leptons (VLLs), as
current limits from the LHC push vectorlike quarks at
masses above 1 TeV, making them too heavy to considerably
influence the EWPT. We show that such a model can indeed
accommodate a SFOPT capable of generating the BAU as
long as the new fermions couple strongly to the Higgs.
Interestingly, we find that, although having only one scalar
field—the SM Higgs—our model predicts a three-step phase
transition, consisting of one smooth crossover at high
temperatures and two SFOPTs at temperatures of the order
of the EW scale. Moreover, we calculate the GW signal and
collider impact of our model, comparing the signals with
present and/or future collider (LHC) and GW searches.
This paper is structured as follows. In Sec. II, we construct

a model containing new VLLs, show how it can accom-
modate SFOPTs, and discuss the general predictions of this
model. Section III is dedicated to a more detailed analysis
of three benchmark points, for which we calculate the GW
signature and several collider observables, such as the VLL
production cross sections and branching ratios. Finally, we
summarize and present our conclusions in Sec. IV.

II. NEW DIRAC FERMIONS AND THE PHASE
STRUCTURE OF THE UNIVERSE

In this section, we build a minimal Dirac VLL model that
can produce SFOPTs in the early Universe. To calculate the
PT strength in our model, we construct its one-loop
effective potential, comprising both zero- and finite-
temperature pieces, and then include the so-called Daisy
resummation contribution. We then discuss the thermal
behavior and current constraints of this model.

A. A minimal vectorlike lepton model
for strong phase transitions

Let us start by outlining the logical steps followed when
building our model. Firstly, we require that the new

fermions couple strongly to the Higgs field. In the limit
of null Yukawa couplings for the new fermions, adding them
would leave the one-loop effective potential unchanged with
respect to the SM-only case. In order to dramatically change
the thermal evolution of the one-loop effective potential,
which exhibits only a crossover in the SM, one should
therefore consider strong Yukawas for the VLLs.
The simplest VLL model would correspond to adding a

single VLL multiplet to the SM. In such a case, the only
possible non-SM Yukawa terms would couple a SM lepton
and the VLL multiplet to the Higgs doublet. However, such
a term would mix the VLL and the SM lepton (which we
assume to be the τ lepton, to avoid stronger constraints
from electrons and muons). As explained in the previous
paragraph, the new Yukawa coupling has to be large, which
would result in a strong mixing between the VLL and τ and
hence a significant departure from the SM prediction of the
τ couplings. This forces us to discard such a scenario, as
the τ couplings are tightly constrained to be SM-like by
experimental measurements such as Z → ττ decays at LEP
[42] or h → ττ decays at LHC [43,44]. Therefore, through-
out this section, we neglect the mixing between VLLs and
the SM fermions,3 as the corresponding Yukawa couplings
would have an insignificant effect on the phase structure of
the Universe.
The next logical choice would be to augment the SM

with one VLL doublet and one VLL singlet, since this
configuration would allow for a Yukawa term coupling the
two VLL multiplets to the Higgs doublet. However, such a
model with strong Yukawas would badly violate custodial
symmetry, giving rise to unacceptable contributions to the
T parameter [45–47]. As we have checked, one cannot
accommodate SFOPTs in this scenario without dramati-
cally exceeding the experimental bounds on the T
parameter.
Therefore, the minimal solution is to add one VLL

doublet and two VLL singlets, since such a configuration
can accommodate an (approximate) custodial symmetry,
which allows for large Yukawas while avoiding significant
contributions to the T parameter. We choose the new
leptons to have similar SUð3Þc × SUð2ÞL ×Uð1ÞY quan-
tum numbers as their SM counterparts:

LL;R ¼
�
N

E

�
L;R

∼ ð1; 2Þ−1=2; N0
L;R ∼ ð1; 1Þ0;

E0
L;R ∼ ð1; 1Þ−1; ð1Þ

where L, R stand for the VLL chiralities. The new fermions

Nð0Þ
L;R and Eð0Þ

L;R have zero and −1 electric charge, respec-
tively, so we shall refer to them as neutral VLLs or VL
neutrinos and charged VLLs or VL electrons. For denoting
the multiplets in the equation above, we use the standard

3We will come back to this point in Sec. III.
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ðSUð3Þc; SUð2ÞLÞY notation, where the hypercharge Y is
given by the difference between the electric charge and the
third isospin component, i.e., Y ¼ Q − T3.
As stated previously, we neglect for the time being the

mixing between the SM leptons and the VLLs. Therefore,
the most general renormalizable VLLYukawa Lagrangian,
consistent with SUð3Þc × SUð2ÞL ×Uð1ÞY gauge sym-
metry, reads

−LVLL ¼ yNR
L̄LH̃N0

R þ yNL
N̄0

LH̃
†LR þ yER

L̄LHE0
R

þ yEL
Ē0
LH

†LR þmLL̄LLR þmNN̄0
LN

0
R

þmEĒ0
LE

0
R þ H:c:; ð2Þ

where H represents the SM Higgs doublet and H̃ its SUð2Þ
conjugate, y’s the dimensionless Yukawa couplings, and
m’s the vectorlike masses. Upon EWSB, one can write the
neutral and charged mass matrices, respectively, as

MN ¼
�

mL vhyNL

vhyNR
mN

�
; ME ¼

�
mL vhyEL

vhyER
mE

�
;

ð3Þ

with vh ≡ v=
ffiffiffi
2

p
≃ 174 GeV, where v ≃ 246 GeV is the

Higgs vacuum expectation value. The physical masses,
which we denote and order as mN1

< mN2
and mE1

< mE2
,

are obtained as usual by bidiagonalizing the mass matrices
from the above equation. The physical couplings of the
VLL eigenstates can be calculated from the corresponding
rotation matrices that bidiagonalize the mass matrices.

B. Phase transition calculation

To study the thermal history of the Universe, we first
write down the one-loop effective scalar potential, taking
into account the effect of SM particles strongly coupled
to the Higgs (W and Z bosons, t quark, h boson, and
Goldstone bosons, χ) and of the VLLs. We denote the
background field-dependent squared mass as ωiðϕÞ, where
i labels the particles and ϕ is the background field value.
For the SM fields coupling strongly to the Higgs, the
various ω’s are

ωW;ZðϕÞ ¼
m2

W;Z

v2
ϕ2; ωtðϕÞ ¼

m2
t

v2
ϕ2;

ωhðϕÞ ¼
m2

h

2v2
ð3ϕ2 − v2Þ; ωχðϕÞ ¼

m2
h

2v2
ðϕ2 − v2Þ:

ð4Þ

Throughout this work, we use the following values for the
masses of the SM particles [48]:

mW ¼ 80.4 GeV; mZ ¼ 91.2 GeV;

mt ¼ 174 GeV; mh ¼ 125 GeV: ð5Þ

The ϕ-dependent VLL squared eigenmasses are obtained
by diagonalizing M†

XMX, with X ¼ N, E, and MX
defined in Eq. (3). We thus have

ωX1;2
ðϕÞ ¼ 1

2

0
B@m2

L þm2
X þ y2XL

þ y2XR

2
ϕ2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

L þm2
X þ y2XL

þ y2XR

2
ϕ2

�2

− ð2mLmX − yXL
yXR

ϕ2Þ2
s 1

CA; ð6Þ

where “−” corresponds to X1 (the lighter eigenstate) and
“þ” to X2 (the heavier eigenstate). To make the connection
with previous notations, we remind the reader that
ωXj

ðvÞ ¼ m2
Xj
, with j ¼ 1, 2.

1. The effective potential

We now proceed to calculating the one-loop effective
potential, comprised of the SM tree-level part and the
zero- and finite-temperature one-loop contributions (for
both the SM particles and the VLLs), to which we add the
so-called Daisy contribution. The Daisy (or ring) con-
tribution is a finite-temperature effect coming from the
resummation of higher-loop IR-divergent diagrams of a
certain topology [49], whose sum amounts to a finite
result.

The SM tree level contribution is given by

V0ðϕÞ ¼
m2

h

8v2
ðϕ2 − v2Þ2: ð7Þ

The one-loop zero-temperature contribution.—We work in
the on-shell renormalization scheme for the one-loop
contribution:

dΔV0
1

dϕ

����
ϕ¼v

¼ d2ΔV0
1

dϕ2

����
ϕ¼v

¼ 0; ð8Þ

where ΔV0
1ðϕÞ is the (finite) Coleman-Weinberg potential,

which includes the counterterms and the zero-temperature
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piece of the one-loop correction to the potential. We further
split ΔV0

1ðϕÞ into two pieces:

ΔV0
1ðϕÞ ¼ ΔV0

1;SMðϕÞ þ ΔV0
1;VLLðϕÞ; ð9Þ

ΔV0
1;SM comprising the effect of SM particles and ΔV0

1;VLL

capturing the VLL contribution (at T ¼ 0). In the Landau
gauge, which we are going to use throughout this work,
these two contributions read4

ΔV0
1;SMðϕÞ ¼

X
i¼W;Z;h;χ;t

ni
64π2

�
ω2
i ðϕÞ

�
log

ωiðϕÞ
ωiðvÞ

−
3

2

�

þ 2ωiðvÞωiðϕÞ
�
; ð10Þ

ΔV0
1;VLLðϕÞ ¼

X
i¼N1;2;E1;2

nVLL
64π2

�
ω2
i ðϕÞ

�
log

ωiðϕÞ
μ2

−
1

2

�

þ aiϕ2 −
bi
v2

ϕ4

�
; ð11Þ

where the coefficients ai and bi, with i ¼ N1, N2, E1, E2,
are given, respectively, by [36,38]

ai ¼
1

2

��
ω02
i þ ωiω

00
i − 3

ωiω
0
i

v

�
log

ωi

μ2
þ ω02

i

�
; ð12Þ

bi ¼
1

4

��
ω02
i þ ωiω

00
i −

ωiω
0
i

v

�
log

ωi

μ2
þ ω02

i

�
: ð13Þ

In Eqs. (11)–(13), μ denotes an arbitrary energy scale which
is introduced to make the logarithm arguments adimen-
sional. Moreover, we used the following notations:

ωi ≡ωiðvÞ; ω0
i ≡ dωðϕÞ

dϕ

����
ϕ¼v

; and ω00
i ≡ d2ωðϕÞ

dϕ2

����
ϕ¼v

:

ð14Þ

Finally, the number of degrees of freedom for the fields
running in the loops is

nfW;Z;h;χ;t;VLLg ¼ f6; 3; 1; 3;−12;−4g; ð15Þ

with nVLL ¼ nN1;2
¼ nE1;2

¼ −4, since the VLLs we intro-
duce are Dirac fermions.
The one-loop finite-temperature contribution is

obtained, in the imaginary time formalism, by performing
a Wick rotation and compactifying the resulting Euclidean
time dimension on a circle of radius R ¼ ð2πTÞ−1, with T
denoting the temperature. The fields are thus Fourier
expanded along the periodic time dimension, with eigen-
frequencies given by the Matsubara frequencies, which are
given by 2nπT for bosons (periodic on the time circle) and
ð2nþ 1ÞπT for fermions (antiperiodic on the time circle).
Performing the infinite sum on these frequencies gives rise
to the finite-T contribution to the potential, which reads

ΔVT
1 ðϕ; TÞ ¼

T4

2π2

� X
i¼W;Z;h;χ

niJb

�
ωiðϕÞ
T2

�

þ
X

i¼t;N1;2;E1;2

niJf

�
ωiðϕÞ
T2

��
: ð16Þ

Here, Jb and Jf are adimensional integrals accounting for
the thermal contribution of boson and fermions, respec-
tively, and are given by (see e.g., Ref. [53])

Jb;fðx2Þ ¼
Z

∞

0

dkk2 log ½1 ∓ e−
ffiffiffiffiffiffiffiffiffi
k2þx2

p
�; ð17Þ

where the “−” (“þ”) sign applies to bosons (fermions).

The Daisy contribution.—At a finite temperature, the
perturbative expansion in terms of a small coupling breaks
down due to IR divergences coming from thermal loops
involving bosonic 0 modes, which have vanishing
Matsubara frequencies. This problem can be fixed by
performing a resummation of a certain class of diagrams,
the so-called ring or Daisy diagrams, which are N-loop
diagrams in which N − 1 loops are each attached to the
main one through one and only one four-point vertex.
While all these diagrams are IR divergent if taken one by
one, their sum adds up to a finite result, which corresponds
to the following contribution to the effective potential:

ΔVDðϕ; TÞ

¼ T
12π

X
i¼h;χ;W;Z;γ

n̄i½ω3=2
i ðϕÞ − ðωiðϕÞ þ ΠiðTÞÞ3=2�;

ð18Þ

with n̄fh;χ;W;Z;γg ¼ f1; 3; 2; 1; 1g representing either scalar
(h, χ) or gauge boson longitudinal degrees of freedom,
since only these degrees of freedom acquire a thermal mass
(transverse gauge modes are protected by gauge sym-
metry). Note that fermionic diagrams do not produce
any IR divergences, as their 0 modes have nonvanishing
Matsubara frequencies. In the equation above, the Πi’s

4Note that, since ωχðvÞ ¼ 0, the Goldstone contribution at one
loop diverges due to the logarithmic term. This IR divergence can
be cured by imposing that the second derivative of the total
potential (tree plus one-loop contributions) at ϕ ¼ v is equal to
the one-loop Higgs mass evaluated at p2 ¼ m2

h (and not p
2 ¼ 0),

where p is the external momentum in the Higgs self-energy
diagram. This amounts to replacing ωχðvÞ with ωhðvÞ [50] in the
logarithmic term corresponding to i ¼ χ from Eq. (10). For a
more detailed discussion of the matter, see Refs. [51,52].
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represent the thermal or Debye masses of the fields
appearing in the sum [52]:

Πh;χðTÞ ¼
T2

4v2
ðm2

h þm2
Z þ 2m2

W þ 2m2
t Þ; ð19Þ

ΠWðTÞ ¼
22T2

3v2
m2

W; ð20Þ

ΠZðTÞ ¼
22T2

3v2
ðm2

Z −m2
WÞ − ωWðϕÞ; ð21Þ

ΠγðTÞ ¼ ωWðϕÞ þ
22T2

3v2
m2

W: ð22Þ

In the expressions above, we use the high-temperature
approximation for the contribution of the SM particles,
which is justified by the fact that the Daisy diagrams give a
negligible contribution for ωiðϕÞ≳ T2. Moreover, because
the strong phase transitions in our model occur at temper-
atures well below the VLL masses, we neglect the VLL
contribution to the Πi’s in Eqs. (19)–(22).
Adding all the pieces together, the effective potential we

use for calculating the strength of the phase transition is
given by

Vðϕ; TÞ ¼ V0ðϕÞ þ ΔV0
1;SMðϕÞ þ ΔV0

1;VLLðϕÞ
þ ΔVT

1 ðϕ; TÞ þ ΔVDðϕ; TÞ; ð23Þ

with all the contributions detailed in Eqs. (7), (10), (11),
(16), and (18). Finally, since only potential differences have
a physical impact in our analysis, we shift the potential by a
constant such that Vðϕ ¼ 0; TÞ ¼ 0 for every T.

2. Scan for the PT strength calculation

We now calculate the strength of the phase transition in
our model. We scan over the following range of parameter
values:

mL;mN;mE ∈ ½500; 1500� GeV; yNL;R
; yEL;R

∈ ½2;
ffiffiffiffiffiffi
4π

p
�:

ð24Þ

In our initial scans, we allowed for wider ranges and found
out that parameter values inside the ranges shown above are
more likely to lead to strong phase transitions. Also, as
noted in Ref. [38], having yNR

yNL
> 0 and yER

yEL
> 0

favors SFOPTs, which is why we chose all the Yukawas to
be positive.
After each point in parameter space is generated, we

check whether said point is in agreement with experimental
constraints. Firstly, as the VLLs under consideration have
SUð2ÞL quantum numbers, they affect the electroweak
gauge boson self-energies, so one constraint is the con-
tribution to the oblique parameters S and T [45,46], for

which we use the 2σ values quoted in Ref. [54]. Secondly,
the charged VLLs change the loop-induced hγγ coupling
with respect to its SM value. This coupling is probed at
the LHC through the diphoton Higgs signal strength,
μγγ ≡ Γðh → γγÞ=Γðh → γγÞSM. As the experimental
bound for this observable, we use the 2σ interval quoted
by the ATLAS Collaboration, 0.71 < μγγ < 1.29 [55].5

Thirdly, we impose a lower bound on the masses of the
lighter eigenstates,mE1

>100GeV andmN1
>90GeV [42].

From the theoretical point of view, we also impose
a lower limit on the depth of the EW minimum at the
lower minimum, jVðϕ ¼ v; T ¼ 0Þj [we remind the reader
that, by convention, Vð0; TÞ ¼ 0]. As illustrated in
Ref. [57], the lower the depth of the present-day EW
minimum, the more delayed and thus the stronger the
phase transition is. For our analysis, we choose
jVðϕ ¼ v; T ¼ 0Þj < 8.5 × 107 GeV4, a value for which
we checked explicitly that most of the surviving points
exhibit SFOPTs.
For the points surviving the constraints listed above, we

calculate the phase transition strength (or order parameter),
which is defined as ξ≡ ϕc=Tc, where ϕc and Tc are the
critical field value and critical temperature, respectively. Tc
is defined as the temperature at which the values of the
potential at the minima located at ϕ ¼ 0 (“symmetric
minimum”) at ϕ ≠ 0 (“broken minimum”) become degen-
erate. ϕc is defined as the position along the field axis of the
broken minimum for T ¼ Tc:

Vðϕc; TcÞ ¼ 0 and V 0ðϕc; TcÞ ¼ 0 with ϕc ≠ 0:

ð25Þ

In order to find the critical field value and temperature for a
given point in the parameter space spanned by the VLL
Yukawas and diagonal mass terms, we numerically solve
the system of equations Eq. (25), whose solution is given
by ϕc and Tc from which we calculate the phase transition
strength, ξ ¼ ϕc=Tc. In the above equations, the prime
symbol denotes differentiation with respect to ϕ.
To speed up computations, without spoiling the reliabil-

ity of our results, we calculate ϕc and Tc for the one-
loop effective potential without the subleading scalar
(Higgsþ Goldstone) and Daisy contributions. We checked
that adding taking into account these contributions amounts
to a Oð5%–10%Þ correction to the values of ξ, which
justifies a posteriori our approximation.6 Therefore, in the
following, unless mentioned otherwise, all the scatter plots
resulting from our scan will not feature the scalar and Daisy
contributions.

5A subsequent CMS measurement shows a slightly higher
value for the h → γγ signal strength, μγγ ¼ 1.18þ0.17

−0.12 at 1σ [56].
6Nevertheless, when studying the benchmark points in Sec. III,

we are going to take into account the scalar and Daisy con-
tributions too.
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C. General predictions of the model

We now present some general predictions of our model.
The most striking one concerns the nontrivial thermal
evolution of the potential from Eq. (23). For the scan
points that pass the constraints, three distinct phase
transitions are predicted in the early Universe: one cross-
over and two SFOPTs. As an illustration of this fact, we
show in Fig. 1 the behavior of the potential for the
benchmark point BM1 presented in Sec. III. In Fig. 1,
we plot the potential as a function of the background field
value ϕ for six different temperatures. In its early stages, the
Universe starts in the symmetric phase, i.e., at ϕ ¼ 0, and
then, as it expands and cools down, has a crossover to the
broken phase, ϕ ≠ 0, which results in EWSB. In the
following, we shall refer to the broken phase also as
the EW or broken minimum. As the temperature lowers,
the EW minimum becomes less and less deep, and a
potential barrier starts developing between the symmetric
and broken phases. At a critical temperature, which we
denote by Tc2, the two minima become degenerate, and the
Universe starts tunneling back to the symmetric phase, thus
undergoing a SFOPT and restoring EW symmetry. We
denote the critical field value for this first SFOPTas ϕc2 and
the corresponding PT strength as ξ2 ¼ ϕc2=Tc2 . After this
SFOPT, as the Universe cools down, the EW minimum
becomes a local minimum and for this particular point in
parameter space even disappears altogether. However, this
trend reverses at even lower temperatures, the EW mini-
mum becomes again degenerate with the symmetric one,
and EW symmetry breaking is triggered once again. This

happens for a critical temperature Tc1 and a corresponding
critical field value ϕc1 , with the PT strength given by
ξ1 ¼ ϕc1=Tc1 . For temperatures below Tc1, the Universe
remains in the EW minimum.
We now discuss the nontrivial behavior of the potential,

as shown in Fig. 1, focusing on the contributions determin-
ing the three PTs—the crossover and the two SFOPT.
Firstly, the symmetry-breaking crossover occurring at high
T ≳ 500–600 GeV is induced through thermal effects: the
light VLL (N1 and E1) thermal contribution, which favors
the broken phase, competes with the SM and heavy VLL
(N2 and E2) thermal pieces, which tend to keep the
Universe in the symmetric phase. The crossover takes
place when the first contribution overtakes the other one.
Secondly, the earlier, symmetry-restoring SFOPT, which
typically takes place at T ∼ 150–200 GeV, is sourced by
both finite- and zero-temperature effects. In this case, the
SM thermal part and the T ¼ 0 VLL contribution tend to
restore EW symmetry, whereas the light VLL thermal part
and the SM T ¼ 0 contribution work towards keeping the
Universe in the broken minimum. The net effect is a barrier
between the two minima, and the symmetry-restoring PT is
thus strongly first order. Concerning the heavy VLLs, they
are decoupled from the thermal bath at this stage and play a
negligible role in the dynamics of the earlier SFOPT.
Finally, the later SFOPT, which occurs at temperatures
around 100 GeV and is responsible with generating the
BAU, is again the result of an interplay between zero- and
finite-T effects. On one side, the SM thermal piece and the
T ¼ 0VLL contribution favor the Universe to remain in the

FIG. 1. Thermal evolution of the potential, with Vðϕ; TÞ (in units of m4
Z) plotted as a function of the background field value ϕ for six

temperature values: T ¼ 700, 500, 190, 174, 110, and 95 GeV. In these plots, the scalar and Daisy contributions have been taken into
account when calculating the effective potential.
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symmetric phase, while the SM T ¼ 0 part favors EWSB.
Adding together these competing effects, a barrier is again
generated between the two minima, and EW symmetry is
broken via a SFOPT. The thermal impact of the new
fermions is negligible for this PT, as both light and heavy
VLLs are decoupled from the plasma when this PT occurs.
Among the two SFOPTs in this model, only the later one

is responsible for generating the BAU. During the later
one, the Universe undergoes a phase transition from the
symmetric phase to the broken phase. This leads to the
formation and expansion of bubbles of the true vacuum in
the false, symmetric vacuum. In the presence of the CP
violation, particle interactions with the expanding bubbles
can lead to the creation of an excess of baryons inside the
bubbles through baryon number violating processes
induced by sphalerons [58]. The sphaleron process, when
in equilibrium, wipes off the created excess of baryons.
The sphaleron rate in the broken phase is proportional to

e−
ffiffiffiffiffiffiffiffiffiffi
ωWðϕÞ

p
=T and is suppressed if the phase transition is of

strong first order, ξ, is greater than 1.3 [59]. In our case, this
condition translates to ξ1 ≳ 1.3, which, as we are going to
see in the following, is satisfied by most of the surviving
points from our scan. The earlier phase transition, however,

cannot generate baryon asymmetry. The sphaleron rate is
unsuppressed and behaves as T4 [59] in the symmetric
phase, so any matter-antimatter asymmetry thus generated
would be wiped out by the high sphaleron rate in the
symmetric phase, to which the Universe tunnels during the
earlier SFOPT.
We now display some scatter plots resulting from our

scan. As mentioned previously, the points shown in these
scatter plots correspond to a computation done without
incorporating the scalar and Daisy contributions to the
effective potential.
Firstly, we display in Fig. 2 the correlation between ξ1

and ξ2, the strengths of the two SFOPTs. A feature
implied by this plot is that, in our model, the later PT
is in general stronger than the earlier one, i.e., ξ1 > ξ2.
In simple terms, this can be explained by noting that the
critical field values are rather close, ϕc1 ≃ ϕc2 ≃OðvÞ (see
the example in Fig. 1), whereas there is a larger separa-
tion between the two critical temperatures, Tc2 > Tc1 .
Furthermore, as we shall see in Sec. III, the later SFOPT
generally produces a stronger GW signal than the earlier
one, as ξ1 > ξ2.
Secondly, we plot in Fig. 3 the masses of the lighter VLL

eigenstates, mN1
and mE1

, vs the corresponding values of
ξ1. We find that, when applying the constraints mentioned
in Sec. II B, the lightest new particles predicted by our
model lie in the hundreds of GeV range, with masses
typically comprised between 250 and 900 GeV. We also
notice a correlation between the masses of N1 and E1 and
the strength of the later PT: the larger is ξ1, the lower are the
upper bounds of mN1

and mE1
. This correlation can be

understood by using a decoupling argument: the more
massive the new fermions become, the more we expect
their influence on EW scale physics to diminish. It is also
worth noting that, in the right panel of Fig. 3, as ξ1
increases, the lower bound on the mass of E1 increases.
This behavior is induced by the μγγ constraint: larger values
of ξ1 need larger values of Yukawa couplings for the
charged VLLs, which, in order to satisfy the limit on μγγ ,
need to be compensated by a larger mE1

.

FIG. 2. Strength of the earlier phase transition ξ2 plotted against
the strength of the late phase transition ξ1.

FIG. 3. Correlation between the strength of the later phase transition ξ and the mass in GeV of the lighter neutral (left) and charged
(right) VLL eigenstate.
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Finally, we show in Fig. 4 the correlation between the
Higgs-diphoton signal strength, μγγ , and ξ1. The diphoton
signal strength is influenced in our model by the charged
VLLs running in the h → γγ loop. We observe a clear trend
in the figure: the stronger the later SFOPT is, the more μγγ
deviates from its SM value, μSMγγ ¼ 1. Moreover, the
deviation of the diphoton signal strength is always positive,
our model predicting an increase of the order of 15%–30%
in μγγ . This correlation can be understood as follows: in
order to obtain strong PTs, the new VLLs—both neutral
and charged—need to be not too heavy and to have large
Yukawa couplings to the SM Higgs. In turn, relatively light
charged VLLs which couple strongly to the Higgs give a
sizable contribution to the hγγ loop, hence the deviation
in μγγ. The positive interference between the charged VLL
and SM contributions comes from the fact that strong
SFOPTs favor same-sign Yukawa couplings in the charged
mass matrix written in Eq. (3). We also mention that ξ1 and
the S, T parameters are uncorrelated.
Before moving to the next section, we would like to

stress the importance of μγγ in testing our model. As
explained in the previous paragraph, for our model,
achieving a FOPT strong enough to accommodate the
generation of the BAU entails a deviation of more than 10%
of the loop-induced hγγ coupling from its SM value. The
μγγ observable is currently measured by the two LHC
collaborations, ATLAS and CMS, and the present error is
of the order of ∼15% at 1σ [55,60]. However, in the future
high-luminosity phase of LHC, HL-LHC, the error μγγ is
expected to reduce to ∼5% [61–63]. Therefore, we con-
clude that the HL-LHC will be able to fully test our model
of VLL-induced EW baryogenesis.

III. GRAVITATIONAL WAVE AND
COLLIDER SIGNATURES

In this section, we perform an in-depth analysis of three
benchmark points selected from our model. The first

benchmark point corresponds to the strongest later first
order PT in the parameter space. The second benchmark
point has a relatively lower value of μγγ but at the same time
accommodating two SFOPTs. The third benchmark point
corresponds to the lowest value (among the points retained
from our scan) of the mass of the lightest charged
eigenstate, mE1

. For all three benchmark points, the later
PT, which is the one responsible for generating the BAU, is
strongly first order, ξ1 > 1.3. Moreover, the Higgs dipho-
ton signal strength deviates from unity, as expected from
the high Yukawas, but is still within the 2σ interval quoted
by the most recent ATLAS measurement [55].
Furthermore, the masses of the lightest VLLs are in the

400–800 GeV range, and the (correlated) values of the S
and T parameters are well within the 2σ range. The
benchmark scenarios are listed in Table I. In addition to
the observables discussed in Sec. II C, we calculate the GW
spectrum and several collider observables (VLL branching
ratios and production cross sections) corresponding to these
benchmarks and comment on the detectability of such
signals at future GWexperiments and the LHC. We remind
that in this section we take into account the scalar and
Daisy contributions as well when calculating the effective
potential.

A. GW signature

A first order EWPT is expected to generate a stochastic
background of gravitational waves [64,65]. In a radiation-
dominated Universe, there are three sources of GW
production at a SFOPT: bubble collisions, in which the
localized energy density generates a quadrupole contribu-
tion to the stress-energy tensor, which in turn gives rise to
gravitational waves, plus sound waves in the plasma and
magnetohydrodynamic turbulence. The latter two are
generated after the bubbles have collided.
There are two key parameters that determine the spec-

trum of the stochastic GW background generated during

TABLE I. Benchmark points.

BM1 BM2 BM3

yNL
3.40 3.47 3.47

yNR
3.49 3.45 3.36

yEL
3.34 3.33 2.55

yER
3.46 3.41 3.28

mL (TeV) 1.06 1.42 1.43
mN (TeV) 0.94 0.75 0.83
mE (TeV) 1.34 1.25 0.72
ξ1 2.34 2 1.56
ξ2 1.54 1.35 1.38
μγγ 1.28 1.20 1.28

Δχ2ðS; TÞ 1.33 3.60 4.57
mN1

(GeV) 400 401 466
mE1

(GeV) 592 740 460
FIG. 4. Scatter plot of the strength of the later phase transition,
ξ, vs the h → γγ signal strength μγγ .
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a SFOPT. The first one, denoted by α, represents the ratio
between the latent heat released during the PT and the
radiation energy density at the temperature at which the PT
occurs. The α parameter plays a role in setting the strength
of the GW signal: the higher is α, the stronger is the
predicted GW stochastic background. The second one,
commonly referred to as β, sets the inverse timescale
associated with the PT duration. β influences both the
strength of the GW signal, as well as the frequency at which
the GW peaks. A higher value of β implies a weaker GW
signal and a shifting towards higher values of the peak
frequency of the signal. For details regarding our compu-
tation of the GW spectrum we refer the reader to
Appendix A.
For the points of our scan that accommodate a strong

enough first order later PT, the typical values of these
parameters are

α ∼ 0.01–0.1; β=HPT ∼ 103–104: ð26Þ

By comparison, the more popular singlet scalar models
feature higher values of α and lower values of β [66,67],
which is why our VLL model predicts weaker GW signals
than the singlet extension of the SM. Moreover, due to the
high values of β=HPT, the typical GW signal of our VLL
model peaks at frequencies in the 0.01–1 Hz range. This
can be understood immediately from Eq. (A10), which
states that the peak frequency depends linearly on β=HPT.
An interesting prediction of the VLL model under study
is the multipeaked GW signature [68–70], which is
generated by the two SFOPTs featured for the points
selected by our scans. We find that the GW signature
coming from the earlier SFOPT is weaker and peaks at
higher frequencies than the one resulting from the later
SFOPT. These features are a consequence of having
α2 < α1 and ðβ=HPTÞ2 > ðβ=HPTÞ1.
The parameters relevant to the GW spectrum are listed in

Table II. We show in Figs. 5–7 the spectrum h2ΩGW, as a
function of the frequency f, of the GWs released during the
two SFOPTs predicted for the three benchmarks listed in
Table I. The solid black line corresponds to the later PT,
while the dashed one stands for the earlier PT. Owing to the
fact that β1 < β2 and α1 > α2, the GW signal from the later
(and stronger) PT is generally 2–3 orders of magnitude

stronger than the signal from the earlier PT. The GW1

signal, corresponding to the later PT, peaks at frequencies
of ∼0.05 Hz, ∼0.1 Hz, and ∼0.3 Hz for the three bench-
mark points, respectively, while the other signal’s peak is
located at ∼0.4 Hz, ∼0.7 Hz, and ∼0.5 Hz for the three
benchmark points, respectively. The colored regions re-
present the future sensitivity of the LISA experiment for
four possible configurations, C1–C4 [2], and of the
DECIGO [3] and BBO [4] experiments. The sensitivity
curves are taken from Ref. [2] for LISA and from Ref. [71]
for DECIGO and BBO. We observe that, even if the GW1

signal has a strength comparable to the sensitivity of the C1
configuration of LISA, it peaks at a frequency which does
not correspond to the maximum LISA sensitivity, which
lies in the millihertz range. Therefore, we conclude that this
GW signal would not be detectable by the LISA experi-
ment. However, the stronger GW1 signals, such as the ones
from benchmarks BM1 and BM2, can be detected by the
DECIGO and BBO experiments, whose projected sensi-
tivities are maximized close to the peak frequency of GW1.
On the other hand, the weaker GW2 signal would escape

FIG. 5. GW spectrum h2ΩGW for the earlier (dashed black
line) and later (solid black line) SFOPTs, as a function of the
frequency f in hertz, for the benchmark point BM1 described in
Table I. The colored regions correspond to the sensitivities of
several future GW experiments: the four possible LISA con-
figurations, C1–C4, [2], and the DECIGO [3] and BBO [4]
experiments. The sensitivity curves for the latter two have been
taken from Ref. [71].

FIG. 6. The same as Fig. 5, but for the benchmark point BM2
described in Table I.

TABLE II. Relevant parameters to the GW spectrum.

BM1 BM2 BM3

TPT2
(GeV) 165 186 164

α2 0.012 0.010 0.005

ð β
HPT

Þ
2

6480 10 880 9690

TPT1
(GeV) 82.8 97.7 118

α1 0.074 0.060 0.016

ð β
HPT

Þ
1

1834 3740 7710
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detection at all three GW experiments we consider in
this work.

B. LHC signatures

The main VLL production mechanism at the LHC is pair
production. The total VLL pair production cross sections
for our benchmarks are of Oð0.1Þ–Oð0.4Þ fb at the LHC,
whereas the SM fermionþ VLL ones are severely sup-
pressed by the small VLL-τ mixing (see Appendix B). For
the first two benchmarks, because ofmE1

> mN1
þmW , the

E1 → N1W decay channel is open. As it is not suppressed
by SM-VLL mixing, it is the dominant decay mode of E1.
This also explains the sizable difference between the
widths of E1 and N1. For the third benchmark, the
approximate degeneracy of E1 and N1 drastically reduces
the N1 → E1W branching ratio. As a result, E1 has a width
of ∼30 MeV [instead of Oð10Þ GeV in the previous two
examples], its most probable decay channel beingE1 → τh,
with subleading νW and τZ branching ratios.
These findings, alongside with other collider predic-

tions, are collected in Table III for all three benchmarks.

In summary, the cross section for VLL pair production at a
13 TeV proton-proton collider are below the femtobarn
level, rendering direct searches at the LHC challenging.
Moreover, single VLL production (in association with a
SM lepton) is below the attobarn level, which means that
such a process is undetectable at the LHC. However, as
explained at the end of Sec. II C, a more promising search
avenue is measuring the Higgs to diphoton signal strength
μγγ , for which our model predicts a rather significant
enhancement (but still within experimental limits) with
respect to its SM value.

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the impact of a minimal
Dirac VLL model on the thermal history of the Universe.
We have shown that, indeed, TeV-scale VLLs can induce
strongly first order EW phase transitions, which would
generate favorable conditions for a dynamical origin of the
baryon asymmetry in the Universe. We have also discussed
the collider and GW predictions of such a scenario and
assessed how it can be tested at the LHC and at future GW
experiments, such as LISA.
Remarkably, such a simple setup predicts a complex

phase structure of the Universe, involving three PTs: a
crossover in the very early Universe (T ≳ 500 GeV), which
results in EWSB, followed by two SFOPTs, both at EW-
scale temperatures, the first one restoring EW symmetry,
and the last one breaking it again. This nontrivial succes-
sion of PTs can be traced back to competing thermal and
nonthermal effects coming from the VLLs and the SM
contribution. To the best of our knowledge, our model
provides a first example of single-field multistep strongly
first order EW phase transitions.
Since our model exhibits two SFOPTs, it also predicts a

GW signature featuring two peaks. We noticed that, for
nearly all the points from our scan, the later SFOPT
produces a stronger GW signal and peaks at a lower
frequency than the earlier one. Generally, the signal peaks
are located at frequencies in the 0.01–1 Hz range.
Meanwhile, the maximum LISA sensitivity (corresponding
to the C1 scenario) is achieved for f ∼ 4 mHz, whereas
DECIGO and BBO are most sensitive to f ∼ 0.1–0.3 Hz.
Thus, even if for some points of parameter space our model
features a later PTwith a GW signal strength comparable to
the reach of LISA, the offset between the GW peak
frequency and the frequency of maximum LISA sensitivity
leads us to conclude that LISA is unlikely to detect the GW
signature predicted by our model. However, the detection
prospects at DECIGO and BBO are more optimistic, as
their typical maximum sensitivity is achieved at frequencies
close to the peak frequencies of the GW1 signal.
Finally, on the collider front, direct production of the

VLLs is not a promising way of testing our model at the
LHC, as the predicted cross sections of VLL pair produc-
tion are around the 0.1 fb level. Even without a dedicated

TABLE III. Predictions for the masses, decay widths, branch-
ing ratios, and 13 TeV LHC production cross sections of the
lighter VLL eigenstates for the three benchmark points. Here, fNP
denotes the new fermions N1 or E1, while fSM stands for a τ or ν.

BM1 BM2 BM3

mN1
(GeV) 400 401 466

ΓN1
(MeV) 1.32 0.38 0.96

mE1
(GeV) 592 740 460

ΓE2
(GeV) 7.46 11 0.032

BRðE1 → N1WÞ 0.995 0.996 � � �
BRðE1 → τhÞ 3.5 × 10−3 2.5 × 10−3 0.606
BRðE1 → νWÞ 7.6 × 10−4 9.6 × 10−4 0.29
BRðE1 → τZÞ 4.6 × 10−4 4.1 × 10−4 0.104
σðpp → E1E1Þ (fb) 0.32 0.13 0.41
σðpp → E1N1Þ (fb) 0.36 0.09 0.09
σðpp → N1N1Þ (fb) 0.31 0.11 0.08
σðpp → fNPfSMÞ (fb) Oð10−4Þ <10−4 <10−3

FIG. 7. The same as Fig. 5, but for the benchmark point BM3
described in Table I.
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collider analysis, we estimate that such low rates would
make pair-produced VLLs difficult to study at the LHC.
Furthermore, production of a VLL in association with a SM
lepton has a cross section of Oð10−4Þ fb, which is beyond
doubt out of the reach of LHC. Instead, the measurement of
the diphoton Higgs signal strength μγγ is a powerful collider
probe of our scenario. The relatively light charged VLLs
which, as required for inducing a SFOPT in the early
Universe, couple strongly to the Higgs, enhance μγγ by at
least 15% with respect to its SM value of 1. While the
current μγγ searches still allow for such departures from the
SM, the high-luminosity (HL) option of LHC will constrain
μγγ at the level of 5% [61–63]. Therefore, we conclude that,
through μγγ, HL-LHC will be able to fully test our scenario
of VLL-induced SFOPTs.
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APPENDIX A: CALCULATION OF
GRAVITATIONAL WAVE SPECTRUM

Our calculation of the GW spectrum relies on the results
collected in Ref. [2], while the notation follows the one
from Ref [66].
We start by calculating the α and β parameters, which

have been already discussed in the main text. In order to
determine their values, several computational steps need to
be taken. First, the “bounce” action S3ðTÞ has to be
evaluated (see e.g., Ref. [72]):

S3ðTÞ ¼ 4π

Z
drr2

�
1

2

�
dϕb

dr

�
2

þ VðϕbðrÞ; TÞ
�
; ðA1Þ

with ϕbðrÞ being the SOð3Þ-symmetric bounce solution,
which describes the field value profile of an expanding

spherically symmetric bubble, with r measuring the dis-
tance from the center of the bubble. For a given temperature
T, the bounce solution ϕbðrÞ satisfies the following differ-
ential equation:

d2ϕb

dr2
þ 2

r
dϕb

dr
¼ V 0ðϕ; TÞ; with

ϕbðr ¼ ∞Þ ¼ ϕtrue and
dϕb

dr

����
r¼0

¼ 0; ðA2Þ

where ϕtrue represents the field coordinate of the true
vacuum (the global minimum of the potential at a given
temperature) and the prime symbol denotes differentiation
with respect to ϕ.
At a finite temperature, the nucleation rate of true

vacuum bubbles behaves as Γn ∼ AðTÞ expð− S3ðTÞ
T Þ (see

e.g., Ref. [73]). Denoting by H the Hubble expansion rate,
the phase transition begins when Γn ≃H, this condition

being equivalent to S3ðTnÞ
Tn

≃ 142, which serves as a defi-
nition of the nucleation temperature Tn. The PT continues
until a fraction of order unity of the Universe is filled by
true vacuum bubbles, which occurs at a temperature
denoted by Tp (percolation temperature). Then, as the
bubbles collide, the energy stored in their walls is trans-
ferred to the plasma as heat, causing the plasma to reheat to
a temperature Treh > Tp. Following Ref. [66], we make the
simplifying approximation that Tn ≃ Tp ≃ Treh ≡ TPT,
which is justified a posteriori by the high values of
β=HPT that imply a short duration of the PT. We thus
define the temperature at which the PT occurs as

S3ðTPTÞ
TPT

¼ 142: ðA3Þ

The temperature at which the PT occurs, TPT, is an
essential ingredient for computing the α and β parameters,
whose physical meaning was described at the beginning of
this Appendix. Mathematically, the two parameters are
defined as [74]

α ¼ ½Vðϕfalse; TPTÞ − Vðϕtrue; TPTÞ� þ TPT½∂TVðϕtrue; TÞ − ∂TVðϕfalse; TÞ�TPT

ρrad;trueðTPTÞ
; ðA4Þ

β

HPT
¼ TPT

d
dT

�
S3ðTÞ
T

�����
TPT

; ðA5Þ

with HPT being the Hubble rate corresponding to TPT, and
ρrad;trueðTPTÞ the radiation energy density in the true
vacuum phase, ρrad;tðTPTÞ ¼ ðπ2=30Þgeff;PTT4

PT, where
geff;PT denotes the number of relativistic degrees of freedom

(again in the true vacuum phase) at temperature TPT. ϕfalse
is the ϕ coordinate of the false vacuum, while ϕtrue has the
same meaning as in Eq. (A2). For the SFOPTs present in
our model, either ϕfalse or ϕtrue are equal to 0.
Having defined α and β, we now concentrate on the

calculation of the GW spectrum. As discussed in Sec. III A,
there are three sources of GWs produced at a SFOPT:
bubble collisions, sound waves in the plasma, and
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magnetohydrodynamic (MHD) turbulence. As in Ref. [2],
we suppose that the three contributions to the stochastic
GW background combine linearly, giving the total GW
signal:

h2ΩGW ≃ h2Ωcol þ h2Ωsw þ h2Ωturb: ðA6Þ

The spectrum of the GWs produced by bubble collisions
reads

h2ΩcolðfÞ ¼ 1.67 × 10−5
�

0.11v3w
0.42þ v2w

��
β

HPT

�
−2
�
κcolα

1þ α

�
2

×

�
geff;PT
100

�
−1=3 3.8ðf=fcolÞ2.8

1þ 2.8ðf=fcolÞ3.8
; ðA7Þ

where κcol is the fraction of latent heat converted into
bubble wall kinetic energy and vw the bubble wall speed.
The bubble collision spectrum has a peak frequency
given by

fcol ¼ ð1.65 × 10−5 HzÞ
�

0.62
1.8 − 0.1vw þ v2w

��
β

HPT

�

×

�
TPT

100 GeV

��
geff;PT
100

�
1=6

: ðA8Þ

The sound wave contribution is given by

h2ΩswðfÞ ¼ 2.62 × 10−6vw

�
β

HPT

�
−1
�

κvα

1þ α

�
2

×

�
geff;PT
100

�
−1=3 73.5ðf=fswÞ3

ð4þ 3ðf=fswÞ2Þ3.5
ðA9Þ

and peaks at a frequency

fsw ¼ ð1.9 × 10−5 HzÞ
�
1

vw

��
β

HPT

�

×

�
TPT

100 GeV

��
geff;PT
100

�
1=6

: ðA10Þ

In Eq. (A9), κv stands for the fraction of latent heat trans-
ferred into the bulk motion of the plasma. Finally, the MHD
turbulence decay contributes to the GW spectrum as

h2ΩturbðfÞ ¼ 3.35 × 10−4vw

�
β

HPT

�
−1

×

�
κturbα

1þ α

�
3=2

�
geff
100

�
−1=3

×
ðf=fturbÞ3

ð1þ f=fturbÞ11=3ð1þ 8πf=h�Þ
; ðA11Þ

where κturb is the fraction of latent heat transferred to
turbulent plasma motion, and

fturb¼ð2.7×10−5HzÞ
�
1

vw

��
β

HPT

��
TPT

100GeV

��
geff
100

�
1=6

;

h�¼ð1.65×10−5HzÞ
�

TPT

100GeV

��
geff
100

�
1=6

: ðA12Þ

The question of choosing the efficiency factors κcol;sw;turb
and the bubble wall velocity vw is model dependent and
involves certain calculations and assumptions regarding the
dynamics of the bubble walls. Therefore, such a task is
beyond the scope of the current work. Instead, we resort to
a much simpler approach. Using the results from Ref. [75],
in which the authors numerically express κv as a function
of vw

7 for different values of α, we choose the bubble wall
velocity vw such that it corresponds to the maximum value
of κv for a given value of α. In our model, the strongest PTs
typically have α≲ 0.1, and we choose vw ¼ 0.6, from
which it follows that κv ≃ 0.4 [75]. Concerning the turbu-
lence efficiency factor, it is given by κturb ¼ ϵκv, with the
choice ϵ ¼ 0.05 [66]. Finally, we take for definiteness
κcol ¼ 0.5 but nevertheless mention that the choice for κcol
plays little role in our analysis, as the sound wave
contribution is the one dominating by far the GW spectrum
predicted by our scenario.

APPENDIX B: SM-VLL MIXING FOR
COLLIDER PHENOMENOLOGY

In the absence of mixing with the SM fermions, the
lightest VLL of our model would be stable. For the range
of N1 and E1 masses predicted by our scenario, this would
not be a viable option. On the one hand, ifmE1

> mN1
, then

a stable N1 would not be a suitable dark matter (DM)
candidate: the large Yukawas necessary for a SFOPTwould
induce a strong SUð2ÞL-doublet component in N1. This
would imply a sizable ZN1N1 coupling, which would be in
conflict with null results from DM direct detection experi-
ments [76]. On the other hand, formN1

> mE1
, E1 would be

a stable charged particle, but we choose to not pursue this
possibility. Therefore, in order to avoid stable VLLs, our
model has to feature a mixing between the VLL sector and
the SM fermions.
We thus choose to introduce a small τ lepton-VLL

mixing in our model, which is achieved by adding the
following Yukawa terms to the Lagrangian in Eq. (2):

−Lmix ¼ y1L̄LHτR þ y2L̄3
LHE0

R þ H:c:; ðB1Þ

where L3
L is the third-generation SM lepton doublet. For

simplicity, we suppose that the SM neutrinos do not mix
with the neutral VLLs. When presenting our collider
predictions for the benchmarks in Sec. III, we choose
y1 ¼ y2 ¼ 0.05. We have explicitly checked that these
values for y1;2 predict deviations from the SM values in

7In Ref. [75], κv is denoted simply as κ and vw as ξw.
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the Wτν and Zττ couplings which are below the sensitivity
achieved at the LEP experiment [42] or in τ lifetime
measurements [48]. More precisely, the precision in the
measurement of the Zττ axial coupling and the Wτν
couplings (from τ lifetime8 measurements) is at the permille
level, while the precision for the Zττ vectorial coupling
measurement is at the percent level (see e.g., PDG [48]).
Meanwhile, in our model, we checked that τ-VLL mixing
amounts to shifts with respect to the SMwhich are typically
one order of magnitude below the corresponding exper-
imental sensitivities.
We now briefly discuss the deviation in the hττ Yukawa

coupling induced by τ-VLL mixing. We start by noting
that, in order to address this problem, we would in principle
need to add another term in the Lagrangian, namely the
SM-like term yτL̄3

LHτR þ H:c:, with yτ a free parameter.
However, once the values of all the other Yukawas are
specified, yτ can be chosen such that the τ mass central
experimental value mτ ≃ 1.777 GeV is reproduced. Once
this step is performed, the result is a deviation in the hττ
physical Yukawa coupling. We have checked that for our
values of y1;2 and the scanned values of the other
parameters in Eq. (2), the hττ coupling never deviates
by more than ∼5% from its SM value, which is below the
current sensitivity achieved by measurements of the h → ττ
decay at the LHC [60,77].

APPENDIX C: THEORETICAL CONSTRAINTS

In this Appendix, we briefly overview the theoretical
constraints affecting our model. Any model containing new
fermions that couple strongly to the Higgs suffers from
theoretical inconsistencies and can only be viewed as a low-
energy effective description of a more fundamental UV
completion. Indeed, the effect of large Yukawas is twofold:
on the one hand, they tend to push the one-loop effective
potential towards negative values for large values of ϕ;
on the other hand, the renormalization group equations
(RGEs) drive the strong Yukawas towards Landau poles,
which signal the breakdown at high energies of the theory
under consideration. Moreover, too high values of the
Yukawa couplings can lead to unitarity violation in various
processes, such as VLL-VLL scattering. Therefore, in the
following, we discuss the problems of vacuum stability,
Yukawa Landau poles, and unitarity in our model. For
concreteness, we analyze the benchmark point “BM1,”
discussed in Sec. III. Since BM1 exhibits the strongest later
PT among the points in our scan, we expect that the above
theoretical consideration will be most constraining for this
point, as the other points typically present weaker Yukawa
couplings.

We start by considering the issue of vacuum stability. Due
to the large Yukawa couplings we consider, loop effects
associated with the new fermions destabilize the effective
potential at high field values, rendering it unbounded from
below. This has catastrophic consequences for the EW
vacuum, which becomes unstable. For instance, in the case
of benchmark point BM1, the zero-temperature one-loop
effective potential becomes negative at ϕ ≃ 2.5 TeV, which
is slightly above the mass scale of the heavier VLL
eigenstates, mN2

≃ 1.6 TeV and mE2
≃ 1.8 TeV.

The simplest solution for stabilizing the EW vacuum is
to add the dimension-6 effective operator ðH†HÞ3=Λ2 [38],
which can arise, for example, from a UV completion
featuring compositeness or strong dynamics. Indeed, we
find that, for Λ ≤ 3.2 TeV, the potential increases mono-
tonically for ϕ > v and thus is no longer unbounded from
below. Therefore, the EW minimum becomes absolutely
stable. For the slightly higher value of Λ ¼ 5 TeV, the
zero-temperature potential develops a second minimum,
deeper than the EW one, at ϕ ∼ 6.4 TeV. In this case,
tunneling from the EW minimum to the deeper one
becomes possible. We find that theOð4Þ-symmetric bounce
action for this transition is S4 ≃ 20, and, using the formal-
ism from Refs. [78,79], we estimate the EW vacuum
lifetime to be roughly 40 orders of magnitude lower than
the age of the Universe. Clearly, such a situation is ruled
out. For higher values of the cutoff scale, the EW vacuum
becomes even more short-lived.
Before moving on, we mention that, as argued in

Ref. [38], we expect the ðH†HÞ3 operator to have a
negligible contribution (of the order v2=Λ2Þ on the dynam-
ics of the PTs in our model.
We now turn our attention to the Landau poles appearing

in our model. For our RGE analysis, we have adapted the
general one-loop Yukawa RGEs from Ref. [80] to our case,
taking into account only the running of the VLL and top
Yukawas and neglecting the subleading contribution of the
gauge couplings. The resulting beta functions are given by

32π2βyt ¼ yt

�
9

2
jytj2 þ jyNL

j2 þ jyNR
j2

þ jyEL
j2 þ jyER

j2
�
;

32π2βyNL
¼ yNL

�
5

2
jyNL

j2 − 1

2
jyEL

j2

þ jyNR
j2 þ jyER

j2 þ 3jytj2
�
; ðC1Þ

with βy ≡ dy
d log μ. The beta functions for yNR

and yEL;R
can be

obtained from the second line of Eq. (C1) by an appropriate
interchange of the indices, i.e., N ↔ E and/or L ↔ R. As
an example, interchanging N and E in the expression of
βyNL

gives βyEL . For the initial conditions of the RGEs, we

8Since all the (tree-level) τ decays are proportional to the Wτν
coupling squared, a rescaling of the latter would change the τ
lepton lifetime accordingly.
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consider a starting energy scale μ0 and take ytðμ0Þ ¼ 1,
whereas for the VLL Yukawas at μ0 we take the values
listed in Table I in the BM1 column. Under these
assumptions, we find that the Yukawa Landau poles occur
at a scale around ∼20μ0. Thus, taking μ0 ¼ 500 GeV,
which corresponds to a scale associated with the lighter
VLL mass eigenstates, would lead to a Landau pole at
μ ∼ 10 TeV. This finding is consistent with a UV com-
pletion at Λ ≤ 5 TeV that would stabilize the potential, as
discussed in the previous paragraph.
Finally, we study the partial wave unitarity constraints on

the possible values of Yukawa couplings. We focus on the
2 → 2 process of VLL-VLL scattering, as its amplitude
scales as the square of VLLYukawa couplings. We neglect
the subleading contributions coming from gauge boson
exchanges, and, using the Feynman gauge, we consider
only Feynman diagrams involving internal scalars (Higgs

and Goldstones). We work in the high-energy limit where
all the masses involved in the process can be neglected.
More specifically, we consider the full transition matrix of
ψ iψ̄ j → ψkψ̄ l scattering amplitudes, with i, j, k, l labeling
the four possible VLL states, and restrain ourselves to the
þþþþ helicity states (see e.g., Ref. [81] for a discussion).
The J ¼ 0 (vanishing total angular momentum) partial
wave unitarity criterion, applied to the highest eigenvalue
of the ψ iψ̄ j → ψkψ̄ l transition matrix, leads to the follow-
ing constraint:

max fjyNL
j2 þ jyER

j2; jyNR
j2 þ jyEL

j2g < 8π; ðC2Þ

which is automatically satisfied by imposing jyVLLj<
ffiffiffiffiffiffi
4π

p
,

as we did in our scan.
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