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1 Introduction

A proper understanding of polarization effects for Λ-hyperons produced in high-energy

reactions is a longstanding challenge in hadronic physics. In fact, surprisingly large polar-

izations were found in early experiments at Fermi-Lab (along with follow-up measurements)

in pA → ΛX fixed target processes already 40 years ago [1–6]. Other fixed target mea-

surements of this reaction were reported by the NA48 Collaboration [7] and the HERA-B

Collaboration [8]. At CERN, Λ polarization was also measured in pp collisions at moderate

center-of-mass (c.m.) energy again close to 40 years ago [9]. Interestingly, the polarization

of Λ-hyperons was investigated just recently at the LHC by the ATLAS Collaboration [10].

Although only a tiny polarization, essentially consistent with zero, was found in the AT-

LAS measurements in the mid-rapidity region, this experimental pursuit shows that the

polarization of Λ-hyperons can be studied at the highest LHC energies and could be larger

in different kinematical regions at forward rapidities.

Theoretically, the hadronization of partons into hadrons in high-energy processes is

described in terms of non-perturbative matrix elements of certain QCD operators, which

can be extracted from fits to experimental data. However, this would be a very difficult

task to do on the basis of data taken from pp or pA reactions alone. One reason is that these

processes are mediated purely by the strong force, and therefore the analytical description

is complicated due to many competing effects that enter the QCD factorization formulas

for spin observables in pp or pA reactions. This is comparable to the extraction of parton

distribution functions (PDFs) — one would not want to rely on data only from pp reactions

in order to extract PDFs.

The situation becomes simpler for processes that involve electromagnetic interactions,

such as semi-inclusive deep-inelastic electron-nucleon scattering (SIDIS). Here, polarized

Λ’s may be produced in ep → eΛX or in the equivalent quasi-real photo-production pro-

cesses. Experimental studies of these reactions have been performed by the HERMES

Collaboration [11–13], as well as in neutrino-nucleon scattering by the NOMAD Collabo-

ration [14, 15].

The process of SIDIS at HERMES kinematics is subject to transverse-momentum

dependent (TMD) factorization. Here, intrinsic parton transverse momenta are explicitly

taken into account in the corresponding fragmentation functions (FFs). Studies of these

TMD FFs responsible for Λ polarization within the TMD factorization framework have

been presented in refs. [16–18]. For more general information on the current theoretical

and experimental status of FFs, we refer the reader to the recent review of ref. [19].

Perhaps the cleanest possible process both experimentally and theoretically to get ac-

cess to polarized Λ FFs is single-inclusive Λ production in electron-positron annihilation,

e+e− → ΛX. In principle, when calculating this process in perturbative QCD to leading

order, one can directly map out the dependence of the corresponding FFs on the longitudi-

nal momentum fraction z of the the fragmenting parton momentum carried by the hadron.

In this sense, single-inclusive annihilation plays the same role for FFs as inclusive DIS does

for PDFs.

Data on polarized Λ fragmentation in this reaction has been provided by the OPAL

Collaboration [20] at LEP. This measurement was performed on the Z-pole, i.e., at a c.m.
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energy equal to the mass of the Z-boson. While a substantial longitudinal polarization of

the Λ’s was detected by OPAL, the transverse polarization was found to be zero within

error bars. Interestingly, Belle has measured recently the production of unpolarized Λ’s [21]

in e+e− annihilation. In addition, Belle data [22, 23] on the transverse Λ polarization show

a significant non-zero effect in this process.

In this paper we (re-)investigate the process e+e− → Λ↑X from the point of view

of perturbative QCD and calculate the hard scattering factors to next-to-leading order

(NLO) accuracy. This calculation is particularly challenging for transverse spin observables

because they are suppressed in this process by a factor of 1/Q compared to the unpolarized

production rate, where Q =
√
s is the hard scale of the process and

√
s the c.m. energy of

the incident leptons. As a result, the theoretical description is more involved and is beyond

a simple partonic picture that may be used to understand unpolarized observables.

A suitable framework to describe transverse spin observables in single-inclusive pro-

cesses is the so-called collinear twist-3 formalism [24–35] (see ref. [36] for a recent review),

where one deals with collinear three-parton PDFs and FFs. In this framework, calcula-

tions at LO for various hyperon production processes have been performed in refs. [37–41],

where, in particular, analyses of fragmentation effects involving transversely polarized Λ’s

were pioneered in refs. [39, 41].

Our motivation for this work is twofold: 1) Only very limited NLO calculations within

the collinear twist-3 framework exist in the literature [42–47]. These studies mostly focused

on NLO corrections for so-called pole contributions of three-parton correlations in the

nucleon that are relevant for naive time-reversal odd (T-odd) observables like single-spin

asymmetries. By contrast, pole contributions do not exist for fragmentation correlators [18,

48, 49] and therefore the calculation is different from a technical standpoint (see, e.g.,

refs. [33, 34]). We expect this feature to persist in NLO calculations for fragmentation

processes. (We note that observables involving nucleon non-pole three-parton correlators

do exist for T-even processes [50–55].) In order to fully understand the NLO dynamics for

fragmentation, we choose to study the simplest process available, e+e− → Λ↑X. 2) If a

future global NLO QCD analysis of the available polarized Λ data involving data sets from

different experiments is to be performed, a NLO calculation for this process will be needed.

The rest of the paper is organized as follows. In section 2 we will define all of the

relevant soft fragmentation matrix elements. In section 3 we calculate the spin-dependent

cross section to LO. In section 4 we extend the calculation to NLO accuracy, which then

allows us to discuss evolution equations in section 5. We conclude in section 6 and give an

outlook for future work.

2 Twist-3 fragmentation correlators

In this section we will introduce and review all of the fragmentation matrix elements that

are needed for a factorized perturbative QCD (pQCD) twist-3 description of the spin-

dependent cross section for e+e− → ΛX. This section is to be a self-contained reference

for the reader, with the main calculations for the observable given in sections 3 and 4.

In the following we denote the four-momentum of the Λ-hyperon that is produced in a

– 3 –
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(a) Quark fragmentation
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p

(b) Anti-quark fragmentation

Ph

p

(c) Gluon fragmentation

Figure 1. Diagrammatic representation of two-parton fragmentation correlations.

fragmentation process as Pµh . We will neglect hadron masses as is typical in a pQCD

calculation, and we thus consider Pµh to be a light-like vector, P 2
h = 0. We introduce an

adjoint light-like vector nµ with n2 = 0 and Ph · n = 1. Note that these two conditions do

not completely fix the choice of n [56]. However, both Ph and n are needed to define what

is meant by the term transverse. If we define the projector

gµνT ≡ g
µν − Pµh n

ν − P νhnµ, (2.1)

then the transverse part of a four-vector aµ is defined as aµT = gµνT aν . In order to discuss

the spin-dependent fragmentation correlators we also need to introduce a four-spin vector

Sµh . In the rest frame of the hadron the zeroth component of Sµh vanishes, while the spatial

components indicate the polarization of the hadron in the rest frame. The normalization

of Sµh is then chosen to be S2
h = −1, and we also have Ph · Sh = 0.

2.1 Two-parton correlations

Based on a partonic interpretation of the fragmentation process [57, 58], a matrix ele-

ment that describes the hadronization of a parton into a jet of hadrons may be written

as 〈X|φ(0) |0〉, where φ stands for a generic partonic field (quark, anti-quark, or gluon)

and |X〉 is an arbitrary hadronic multi-particle state which forms an (unobserved) jet. If

one of the hadrons of the jet is detected and its four-momentum Ph and four-spin Sh are

measured, we may write instead 〈PhSh;X|φ(0) |0〉. In order to implement the soft fragmen-

tation process into a pQCD formula one can view the “square” as a cut forward transition

amplitude and sum over all possible unobserved hadron states. In this way fragmentation

correlators are defined.

2.1.1 Intrinsic twist-3

In single-inclusive high-energy processes, kinematical approximations are applied on the

parton momenta in the factorization of the cross section into a hard partonic cross section

and the non-perturbative correlation functions. For fragmentation, one assumes that the

jet of hadrons that is produced by a highly-energetic parton moves into the same direction

as the parton. To be precise, one approximates the momentum Ph of the detected hadron

– 4 –
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to be collinear to the initial parton’s momentum p. Since the parton “decays” into many

particles, the detected hadron only carries a fraction z of the initial parton momentum.

Hence, the kinematical approximation on the parton momentum reads

pµ ' 1

z
Pµh . (2.2)

The correlator that describes the fragmentation of a quark of flavor q into a hadron

with momentum Ph and spin Sh is represented in figure 1a. It can be expressed in terms

of fragmentation functions based on constraints of hermiticity and parity [57, 59, 60],

∆q
ij(z) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π
e−i

λ
z 〈0|[∞; 0] qi(0) |PhSh;X〉〈PhSh;X| q̄j(λn) [λ;∞]|0〉 (2.3)

=
z2ε

z

(
/PhD

q
1(z)− ShL /Phγ5G

q
1(z)− 1

2
[ /Ph, /Sh]γ5H

q
1(z)

−Mhε
PhnαShγαD

q
T (z)−Mh/ShTγ5G

q
T (z) +MhE

q(z)

−Mh ShL iγ5E
q
L(z) +Mh

i

2
[ /Ph, /n]Hq(z) +Mh ShL

1

2
[ /Ph, /n]γ5H

q
L(z)

)
.

The definition of the correlator ∆q(z) includes the quark field operator q(x) as well as

collinear Wilson lines [a; b] of gluon fields Aµ(x) that run along the light-like vector n,

[a; b] ≡ Pe−igµ
ε
∫ b
a dt (n·A)(tn). (2.4)

The Wilson line renders the correlator ∆q(z) color gauge invariant. Since it is a collinear

Wilson line, it reduces to unity in the so-called light-cone (n·A = 0) gauge of the gluon fields

Aµ. The Wilson line may be in the fundamental representation (for quark/anti-quark FFs)

or in the adjoint representation (for gluons). The number of colors in eq. (2.3) is denoted

by Nc (= 3 in QCD). The second line in eq. (2.3) is a well-known parameterization of

the collinear correlator ∆q(z), and we rely on the notation established in ref. [56]. (Note

that ShL ≡ Mh(n · Sh).) The first three functions in this parameterization, D1, G1 and

H1, are twist-2 FFs and describe the fragmentation of unpolarized quarks, longitudinally

polarized quarks, and transversely polarized quarks. The structures proportional to the

the hadron mass Mh are intrinsic twist-3 fragmentation correlation functions [56]. We note

that the whole purpose of the appearance of the hadron mass Mh in parameterizations like

eq. (2.3) (and subsequent parameterizations below) is to match mass dimensions. Other

scales may be possible as well, resulting in a redefinition of the twist-3 fragmentation

function. In this paper we will focus on the chiral-even functions DT and GT only. To

treat the ultraviolet (UV) and infrared (IR) divergences that enter the factorized definitions

of the fragmentation functions [61, 62], we defined the parameterization in arbitrary d =

4− 2ε dimensions.

A correlator for intrinsic anti-quark fragmentation may be pictorially represented as

in figure 1b and defined likewise,

∆q̄
ij(z) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π
e−i

λ
z 〈0|[∞; 0] q̄j(0) |PhSh;X〉〈PhSh;X| qi(λn) [λ;∞]|0〉. (2.5)

– 5 –
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The parameterization for ∆q̄(z) is the same as the one for ∆q(z), with

the obvious replacement of the flavor index q by the anti-flavor index q̄.

In addition, the E and G anti-quark FFs acquire a different sign, i.e.,

(Dq
1, H

q
1 , D

q
T , H

q, Hq
L) → (+Dq̄

1, +H q̄
1 , +Dq̄

T , +H q̄, +H q̄
L), respectively, and

(Gq1, G
q
T , E

q, Eq
L)→ (−Gq̄1, −G

q̄
T , −E q̄, −E

q̄
L), respectively.

The correlator for intrinsic gluon fragmentation is shown as a diagram in figure 1c.

Mathematically, it can be written as

∆g;µν(z) =
1

N2
c − 1

∑
X

∫ ∫ ∞
−∞

dλ

2π
e−i

λ
z 〈0|Fnµ(0) [0 ; ∞]|PhSh;X〉

×〈PhSh;X|[∞ ; λ]Fnν(λn)|0〉

=
z2ε

z2

(
− gµνT Dg

1(z)− SL iεPhnµν Gg1(z)

−Mh n
{µεν}PhnShT Dg

T (z)− iMh n
[µεν]PhnShT GgT (z)

)
. (2.6)

The matrix elements in the first line include the gluonic field-strength tensor Fµν . The

symbols {µ ν} and [µ ν] that appear in the parameterization indicate symmetrization and

antisymmetrization in the indices µ and ν. As before, the FFs Dg
1 and Gg1 are twist-2 ob-

jects that describe the fragmentation of unpolarized and polarized gluons. The structures

proportional to the hadron mass Mh are intrinsic twist-3 gluon fragmentation correla-

tion functions.

2.1.2 Kinematical twist-3

A different kind of two-parton fragmentation correlator is specific to twist-3 observables and

takes the transverse motion of the fragmenting partons into account. Such contributions

are called kinematical twist-3 [56]. Instead of the approximation in eq. (2.2), one adds

a transverse parton momentum pT that is considered to be a small deviation from the

otherwise collinear motion of the jet hadrons “in” the parton,

pµ ' 1

z
Pµh + pµT . (2.7)

In fact, in practice one performs a Taylor expansion of the perturbative hard scattering

subprocess with respect to pT to first order. This expansion is often called the collinear

expansion (see, e.g., ref. [26]). While the zeroth order constitutes the twist-2 contributions,

the first order in this expansion yields the kinematical twist-3 contributions. Since single-

particle inclusive processes are not directly sensitive to this transverse motion, the pT -

dependence will ultimately be integrated out. This leaves us with collinear matrix elements.

The kinematical twist-3 fragmentation correlations for quarks and anti-quarks are writ-

ten in terms of pT -dependent gauge-invariant matrix elements,

∆q
ij(z, pT ) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫
dd−2zT
(2π)d−2

e−i
λ
z
−ipT ·zT

×〈0|W [0T ] qi(0) |PhSh;X〉〈PhSh;X| q̄j(λn+ zT )W†[zT ]|0〉, (2.8)

∆q̄
ij(z, pT ) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫
dd−2zT
(2π)d−2

e−i
λ
z
−ipT ·zT

×〈0|W [0T ] q̄j(0) |PhSh;X〉〈PhSh;X| qi(λn+ zT )W†[zT ]|0〉. (2.9)

– 6 –
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The Wilson line is non-trivial for a TMD correlator, and one may assume a common

“staple-like” form [63–68]. However, the full pT dependence is in fact not needed in the

collinear twist-3 formalism — it is the “pT -weighted” correlator that enters,

∆q;ρ
∂;ij(z) =

∫
dd−2pT p

ρ
T ∆q

ij(z, pT )

=
z2ε

z
Mh

(
εPhnρShT /PhD

⊥(1),q
1T (z)− SρhT /Phγ5G

⊥(1),q
1T (z)

+
i

2
[ /Ph, γ

ρ
T ]H

⊥(1),q
1 (z) +

1

2
SL [ /Ph, γ

ρ
T ]γ5H

⊥(1),q
1L (z)

)
. (2.10)

The parameterization in the second line is again taken from ref. [56]. This correlator

may also be depicted as in figure 1a but with p defined as in eq. (2.7). Note that it

is entirely proportional to the hadron mass Mh, which indicates the twist-3 nature of

these correlations.

Also, the anti-quark kinematical twist-3 FFs may be derived from the TMD anti-

quark correlator eq. (2.9) by ∆q̄,ρ
∂ (z) =

∫
dd−2pT p

ρ
T ∆q̄(z, pT ). The parameterization is the

same as in eq. (2.10) but with a different sign for G
⊥(1)
1T , i.e., (D

⊥(1),q
1T , H

⊥(1),q
1 , H

⊥(1),q
1L )→

(+D
⊥(1),q̄
1T , +H

⊥(1),q̄
1 , +H

⊥(1),q̄
1L ), respectively, and G

⊥(1),q
1T → −G⊥(1),q̄

1T .

Lastly, we discuss the kinematical twist-3 contributions for gluons. The gluon TMD

fragmentation correlator can be defined as

∆g,µν(z, pT ) =
1

N2
c − 1

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫
dd−2zT
(2π)d−2

e−i
λ
z
−ipT ·zT (2.11)

×〈0|W [0T ]Fnµ(0) |PhSh;X〉〈PhSh;X|Fnν(λn+ zT )W†[zT ]|0〉.

Then, the kinematical twist-3 correlator for gluons is again obtained by a pT -weighting,

∆g;µν;ρ
∂ (z) =

∫
dd−2pT p

ρ
T ∆g,µν(z, pT )

=
z2ε

z2
Mh

(
gµνT εPhnρSh D

⊥(1)g
1T (z) + iεPhnµν SρhT G

⊥(1)g
1T (z)

−1

2

(
g
ρ{µ
T εν}PhnSh + S

{µ
hT ε

ν}Phnρ
)
H

(1)g
1 (z)

)
. (2.12)

Each of the intrinsic and kinematic twist-3 FFs depend on the momentum fraction z. The

support of these functions is z ∈ [0, 1]. An implicit assumption is that these FFs vanish

for z = 1.

2.2 Dynamical twist-3

Matrix elements involving three partonic fields are called dynamical twist-3 FFs. In general,

such structures are generated through an interference of two amplitudes: one that is a

coherent fragmentation of two partons into a hadron, and another that is the ordinary

one-parton fragmentation. The relevant matrix elements are depicted in figure 2.

Since more than one parton is responsible for the hadronization into the observed

hadron, naturally the matrix element will depend on more than one momentum. To en-

sure momentum conservation, the momenta in the two-parton amplitude are p′, (p − p′)

– 7 –
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(a) qg fragmentation
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(b) qq̄ fragmentation

Ph

p' p

p-p'

(c) gg fragmentation

Figure 2. Diagrammatic representation of three-parton fragmentation correlations.

while the momentum in the one-parton amplitude is p. As for the other twist-3 effects,

only collinear matrix elements are needed for single-inclusive processes. Hence, we approx-

imate, analogous to eq. (2.2), both partons to move collinearly in the same direction as the

observed hadron,

pµ ' 1

z
Pµh , p′µ ' 1

z′
Pµh . (2.13)

For later convenience, we may rewrite the second momentum fraction z′ as z′ = z/β.

The collinear dynamical twist-3 matrix elements then depend on the light-cone momentum

fraction z and the parameter β. It is a well-known property that so-called soft-pole frag-

mentation matrix elements vanish [48]. In other words, if D(z, β) is a generic dynamical

twist-3 fragmentation function, then D(z, β = 1) = 0 and D(z, β = 0) = 0. Therefore,

the support properties for D(z, β) are 0 ≤ z ≤ 1 and 0 < β < 1. The last condition is

equivalent to z < z′ < ∞. It has also been shown in ref. [56] that the derivative with

respect to β vanishes for β = 1, i.e., (∂D(z, β)/∂β)|β=1 = 0. This proof can be easily

modified to show (∂D(z, β)/∂β)|β=0 = 0 as well.

2.2.1 Quark-gluon-quark correlations

An important class of dynamical twist-3 FFs are those involving quark-gluon correlations,

cf. figure 2a. This means that a quark and a gluon radiated into the final state of a

particular process together fragment and hadronize. Mathematically, this diagram can be

expressed as follows,

∆qg;ρ
F ;ij(z, β) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dµ

2π
e−i

λ
z
βe−i

µ
z

(1−β)〈0| [∞; 0] qi(0) |PhSh;X〉

× 〈PhSh;X| q̄j(λm) [λ; µ] igµε Fnρ(µn) [µ; ∞]|0〉

= z2εMh

z

(
εPhnρSh /Ph i(D̂

qg
FT )∗(z, β) + SρhT /Phγ5 (ĜqgFT )∗(z, β)

+
i

2
[ /Ph, γ

ρ
T ] i(Ĥqg

FU )∗(z, β)− 1

2
ShL[ /Ph, γ

ρ
T ]γ5 (Ĥqg

FL)∗(z, β)

)
. (2.14)
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The parameterization in the second equation is taken from ref. [56], where for later conve-

nience we present the complex conjugated correlator. Note that each of the three-parton

FFs are complex due to the lack of a time-reversal constraint [66].

The situation for anti-quark-gluon fragmentation is handled as above for the intrinsic

and kinematical twist-3 cases. The relevant matrix element reads

∆q̄g;ρ
F ;ij(z, β) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dµ

2π
e−i

λ
z
βe−i

µ
z

(1−β)〈0| q̄j(0) [0; ∞]|PhSh;X〉

× 〈PhSh;X| [∞; µ] igµε Fnρ(µn) [µ; λ] qi(λn) |0〉. (2.15)

The parameterization of ∆q̄g
F is similar to the one for ∆qg

F but with the obvious replacements

(D̂qg
FT , Ĝ

qg
FT , Ĥ

qg
FU , Ĥ

qg
FL)→ (+D̂q̄g

FT ,−Ĝ
q̄g
FT ,+Ĥ

q̄g
FU ,+Ĥ

q̄g
FL), respectively.

2.2.2 Quark-anti-quark-gluon correlations

The situation where a quark-anti-quark fragmentation amplitude interferes with a one-

gluon amplitude is represented by the diagram in figure 2b. Mathematically, the graph

leads to a correlator ∆qq̄, defined as

∆qq̄;ρ
F ;ij(z, β) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dµ

2π
e−i

λ
z
βe−i

µ
z

(1−β)〈0| ([∞; 0]Fnρ(0) [0; ∞])ba |PhSh;X〉

×〈PhSh;X| (igµε[∞; µ] qi(µn))a (q̄j(λn) [λ; ∞])b |0〉.
(2.16)

The difference between ∆qq̄
F and the quark-gluon correlator (2.14) is that within ∆qg

F

the quark field in the one-quark fragmentation amplitude and the gluon field in the

quark-gluon fragmentation amplitude exchange their role. This implies that the pa-

rameterization of ∆qq̄
F is completely analogous to eq. (2.14), subject to the replace-

ments (D̂qg
FT , Ĝ

qg
FT , Ĥ

qg
FU , Ĥ

qg
FL) → (D̂qq̄

FT , Ĝ
qq̄
FT , Ĥ

qq̄
FU , Ĥ

qq̄
FL), respectively. In eq. (2.16)

we wrote explicitly how to understand the trace of the color indices a, b in the

fundamental representation.

Another relevant correlator may be obtained from eq. (2.16) by exchanging the role of

the quark and the anti-quark field,

∆q̄q;ρ
F ;ij(z, β) =

1

Nc

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dµ

2π
e−i

λ
z
βe−i

µ
z

(1−β)

×〈0| ([∞; 0]Fnρ(0) [0; ∞])ba |PhSh;X〉 (2.17)

×〈PhSh;X| ([∞; λ] qi(λn))b (igµεq̄j(µn) [µ; ∞])a |0〉.

The parameterization of this object is again analogous to eq. (2.14), but with different

labels (and, analogously, signs) for the FFs, i.e., we may write (D̂qg
FT , Ĝ

qg
FT , Ĥ

qg
FU , Ĥ

qg
FL) →

(D̂q̄q
FT ,−Ĝ

q̄q
FT , Ĥ

q̄q
FU , Ĥ

q̄q
FL), respectively. By comparing the two correlators (2.16) and (2.17),

we find the following symmetry relations,

D̂qq̄
FT (z, β) = D̂q̄q

FT (z, 1− β) ,

Ĝqq̄FT (z, β) = −Ĝq̄qFT (z, 1− β) ,
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Ĥqq̄
FU (z, β) = Ĥ q̄q

FU (z, 1− β) ,

Ĥqq̄
FL(z, β) = Ĥ q̄q

FL(z, 1− β) . (2.18)

In addition, integration of the correlators (2.16) and (2.17) over β leads to the same result.

In particular, this means that∫ 1

0
dβ D̂qq̄

FT (z, β) =

∫ 1

0
dβ D̂q̄q

FT (z, β) . (2.19)

2.2.3 Tri-gluon correlations

The third species of three-parton twist-3 fragmentation is represented by the diagram in

figure 2c where a two-gluon fragmentation amplitude interferes with a one-gluon amplitude.

This diagram leads to a formula for the antisymmetric tri-gluon correlator,

∆gg;µνρ
F (z, β) =

1

N2
c − 1

∑
X

∫ ∫ ∞
−∞

dλ

2π

∫ ∞
−∞

dµ

2π
e−i

λ
z
βe−i

µ
z

(1−β) ifαβγ

×〈0|Fnµ,α(0) |PhSh;X〉〈PhSh;X|Fnν,β(λn)igµε Fnρ,γ(µn) |0〉

= −z2εMh

z2

[
gµνT iεPhnρShN̂∗2 (z, β)− gµρT iεPhnνShN̂∗2 (z, 1− β)

−gνρT iε
PhnµShN̂∗1 (z, β)

]
. (2.20)

The matrix elements are understood to carry appropriate Wilson lines accompanying the

field-strength tensors Fnα in eq. (2.20) [30], but for brevity we omitted the explicit notation

of gauge links. The parameterization in (2.20) is similar to ref. [30] for tri-gluon distribu-

tions in the nucleon. However, the permutation symmetry of the gluon fields for tri-gluon

fragmentation (now that |PhSh;X〉〈PhSh;X| is in between the fields of the matrix element)

is such that there are two independent FFs N̂1(z, β), N̂2(z, β) instead of one like on the

PDF side. Note that the antisymmetric SU(Nc) structure constant fαβγ appears in the

definition of ∆gg
F . In principle, one may also define a similar symmetric tri-gluon correlator

which involves the symmetric structure constant dαβγ . However, such a matrix element will

not appear in the single-inclusive spin-dependent e+e− cross section, and for that reason

we do not further elaborate on the symmetric correlator in this paper. Note, however, that

the symmetric tri-gluon correlator may contribute in pp-collisions [31, 35, 69].

There is a symmetry relation for the correlator ∆gg
F . We could write the gluon bilinear

in the second matrix element of eq. (2.20) as a time-ordered bilinear. In ref. [70] arguments

are given that the time-ordering is irrelevant. This allows us to re-order the gluonic fields

in the second matrix element of (2.20). A subsequent relabeling of the integration variables

µ↔ λ leads to the relation,

∆gg;µνρ
F (z, β) = −∆gg;µρν

F (z, 1− β). (2.21)

Note that the sign in eq. (2.21) originates from an exchange of color indices in the antisym-

metric structure constant fαβγ . The symmetry relation (2.21) translates into a relation

directly for the function N̂1,

N̂1(z, β) = −N̂1(z, 1− β) . (2.22)
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There is no symmetry constraint for the other function N̂2. This means means that N̂2 is

the sum of a symmetric and antisymmetric part, N̂
s/a
2 (z, β) ≡ (N̂2(z, β)± N̂2(z, 1− β))/2,

respectively.

2.3 Equation of motion relations

The aforementioned various twist-3 fragmentation matrix elements are not completely in-

dependent of each other. In fact, one may derive constraints by means of the QCD-equation

of motion (EoM) for Heisenberg field operators within matrix elements.

The QCD EoM for quark fields q(x) reads

i /D(x) q(x)−mq q(x) = 0 , (2.23)

where Dµ
ab(x) ≡ δab∂µ− igAµab(x) is the well-known covariant derivative in the fundamental

representation. The application of this equation on matrix elements like ∆q, ∆q
∂ and ∆qg

F

leads to the following EoM relations (EoMRs) (cf. ref. [56]),

Dq
T (z)

z
= −D⊥(1),q

1T (z) +

∫ 1

0
dβ
=[D̂qg

FT − Ĝ
qg
FT ](z, β)

1− β
, (2.24)

GqT (z)

z
= G

⊥(1),q
1T (z)−

∫ 1

0
dβ
<[D̂qg

FT − Ĝ
qg
FT ](z, β)

1− β
, (2.25)

where = (<) indicates the imaginary (real) part of the functions. We note that one can also

derive constraints for the chiral-odd functions H and E in eqs. (2.3), (2.10), and (2.14).

Since they do not contribute to the spin-dependent single-inclusive annihilation cross sec-

tion, such constraints are irrelevant for this paper and for brevity we do not list them here.

(They can be found in ref. [56].) We do note, however, that the EoMRs (2.24) and (2.25)

are absolutely essential, as they are necessary for the restoration of gauge invariance of hard

scattering cross sections at twist-3 as well as for the cancellation of infrared divergences.

We will discuss this explicitly in the following sections. Consequently, without eqs. (2.24)

and (2.25), the collinear twist-3 formalism used to describe transverse spin observables in

single-inclusive processes would be flawed. In addition, so-called Lorentz invariance rela-

tions (see the next subsection) are needed to establish the frame-independence of the cross

section [56].

There are also EoMRs for gluon FFs. They can be derived from the inhomogeneous

QCD EoM for gluons

Dαβ
µ (x)Fµν,β(x) = −gµε

∑
q

q̄(x) γν tα q(x) , (2.26)

where the covariant derivative Dµ;αβ(x) = δαβ∂µ − g fαβγAµ;γ(x) in the adjoint repre-

sentation appears along with the gluonic field-strength tensor Fµν;α(x) = ∂µAν;α(x) −
∂νAµ;α(x) + gfαβγAµ;β(x)Aν;γ(x) and the color matrix tαab.
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(a) Single quark fragmentation
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(b) Single gluon fragmentation

Figure 3. Fragmentation mechanism in e+e− annihilation for intrinsic and kinematical

contributions.

Application of eq. (2.26) on the matrix elements in ∆g, ∆g
∂ , ∆gg

F and ∆qq̄
F yields the

following constraints on twist-3 gluon FFs,

Dg
T (z)

z
= D

⊥(1),g
1T (z)− (2− ε)H(1),g

1 (z)

+

∫ 1

0
dβ
=[N̂2](z, β)−=[N̂2](z, 1− β) − 2(1− ε)=[N̂1](z, β)

1− β

− 1

CF

∑
f=q,q̄

∫ 1

0
dβ =[D̂ff̄

FT ](z, β) , (2.27)

GgT (z)

z
= −G⊥(1),g

1T (z)−
∫ 1

0
dβ
<[N̂2](z, β)−<[N̂2](z, 1− β) − 2(1− ε)<[N̂1](z, β)

1− β

+
1

CF

∑
f=q,q̄

∫ 1

0
dβ <[D̂ff̄

FT ](z, β) . (2.28)

In the last lines of (2.27) and (2.28) we used the symmetry relation (2.19).

2.4 Lorentz invariance relations

There are also additional constraints, called Lorentz invariance relation (LIRs), derived

in ref. [56], which connect the various twist-3 FFs for quarks. The LIRs relevant for our

calculation are

Dq
T (z)

z
= −

(
1− z d

dz

)
D
⊥(1),q
1T (z)− 2

∫ 1

0
dβ
=[D̂qg

FT ](z, β)

(1− β)2
, (2.29)

GqT (z)

z
=
Gq1(z)

z
+

(
1− z d

dz

)
G
⊥(1),q
1T (z)− 2

∫ 1

0
dβ
<[ĜqgFT ](z, β)

(1− β)2
. (2.30)

We emphasize that similar LIRs have not been derived so far in the literature for twist-3

FFs of gluons.

3 Observables in single-inclusive annihilation at leading order

After having introduced all relevant twist-3 FFs, we proceed with a discussion on transverse

spin observables in the process e+e− → ΛX. We denote the momenta of the lepton and

anti-lepton by l and l′, respectively, and the momentum of the virtual photon by q = l+ l′.
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The typical scaling variable of this process is zh = 2Ph · q/s. Another useful variable for

the description of this reaction may be denoted as v = Ph · l′/Ph · q. Throughout this

paper we will work in a frame where qµ has no transverse components, where the term

“transverse” is defined in eq. (2.1). Such a choice is always possible. Consequently, the

lepton and photon momentum vectors can then be decomposed in terms of the variables

zh, v, the hard scale s, and the light-cone momenta Ph and n as follows,

qµ =
1

zh
Pµh +

zh
2
s nµ ,

lµ =
v

zh
Pµh +

zh
2

(1− v) s nµ + lµT ,

l′µ =
1− v
zh

Pµh +
zh
2
v s nµ − lµT . (3.1)

The fact that we neglect the lepton masses implies that l2T = −v(1− v) s.

There are several mechanisms that generate contributions to observables at twist-3,

which involve the soft fragmentation matrix elements discussed in section 2. The ampli-

tudes for intrinsic and kinematical twist-3 contributions to the cross section for fragmenting

quarks and gluons are schematically shown in figure 3. In these diagrams the soft fragmen-

tation of a quark or a gluon is already factored out from the hard scattering amplitudesM.

The fragmenting parton decays into an arbitrary hadronic final state. In addition, other

nf partons carrying momenta r1, . . . , rnf may be emitted into the final state in the hard

scattering process. Those momenta are integrated out. Note that the number of emitted

partons is at least nf = 1. Typically, the hard scattering cross sections for fragmenting

quarks and anti-quarks are the same, which is why we will not elaborate on anti-quarks

separately. On the other hand, FFs for quarks and anti-quarks may very well differ.

The dynamical twist-3 amplitudes are shown in figure 4 where two partons at the

same time fragment into a hadron. Those amplitudes are meant to interfere with corre-

sponding amplitudes in figure 3 within a cross section formula. The schematic diagrams

in figures 3, 4 may be used to give a formula for the intrinsic, kinematical and dynamical

twist-3 contributions to the cross section of the e+e− single-inclusive annihilation process.

Such a formula reads in d = 4− 2ε dimensions,

Eh
dσ

dd−1 ~Ph
=

∫ 1

zh

dw

( ∑
f=q,q̄

Tr

[
σ̂f (w) ∆f

(
zh
w

)]
+ σ̂gµν(w)

(
zh
w

)2

∆g;µν

(
zh
w

)

+
∑
f=q,q̄

Tr

[(
∂σ̂f

∂pρT

) ∣∣∣
p= w

zh
Ph

∆f ;ρ
∂

(
zh
w

)]

+

(
∂σ̂gµν
∂pρT

) ∣∣∣
p= w

zh
Ph

(
zh
w

)2

∆g;µν;ρ
∂

(
zh
w

)
+

∫ 1

0
dβ

{ ∑
f=q,q̄

(
−i

1− β

)
Tr

[
σ̂fgρ (w, β) ∆fg;ρ

F

(
zh
w
, β

)]

+
∑
f=q,q̄

Tr

[
iσ̂ff̄ρ (w, β) ∆ff̄ ;ρ

F

(
zh
w
, β

)]

+

(
−iz2

h

w2β(1− β)

)
σ̂ggµνρ(w, β) ∆gg;µνρ

F

(
zh
w
, β

)
+ c.c.

})
. (3.2)
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(a) qg fragmentation
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l
ri

X

Ph

-

Mqq p - p'

(b) qq̄ fragmentation
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l
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X

Ph

-

Mgg
p - p'

(c) gg fragmentation

Figure 4. Fragmentation mechanism in e+e− annihilation for dynamical contributions.

This formula is most easily derived in light-cone gauge with asymmetric boundary condi-

tions for the transverse gluon field components,

n ·A(x) = 0 and AT (n · x = +∞) +AT (n · x = −∞) = 0. (3.3)

In this gauge the fragmentation correlators ∆q,g, ∆qg
∂ and ∆qg;qq̄;gg

F simplify to a large

extent since the Wilson lines reduce to unity and the field-strength tensors are simply

Fnµ(x) = (n · ∂)AµT (x). The first line of (3.2) represents the twist-2 and intrinsic twist-

3 contributions of quarks and gluons to the hadron-spin dependent e+e− cross section.

The second line gives the kinematical twist-3 contributions; the third, fourth and fifth lines

give the dynamical twist-3 contributions of quark-gluon, quark-anti-quark, and gluon-gluon

correlations. We note that if the process under consideration factorizes at twist-3, eq. (3.2)

holds in any gauge. In particular, in Feynman gauge, where FnρT = (n·∂)AρT−∂
ρ
T (n·A)+. . .,

one is guaranteed that the term involving a matrix element with (n · ∂)AT will combine

with the term involving a matrix element with ∂T (n ·A) to give a contribution involving a

gauge-invariant correlator with FnρT . This was shown explicitly, e.g., in refs. [28, 30, 34].

The partonic cross sections σ̂ in (3.2) are provided by the following formulas,

σ̂qji(p) =
(4π2)ε

4(2π)3 zh s

∞∑
nf=1

∑
Inf

∫
dPSnfM

q
j(p)M̄

q
i (p) ,

σ̂g;µν(p) =
(4π2)ε

4(2π)3 zh s

∞∑
nf=2

∑
Inf

∫
dPSnfM

g;ν(p) (Mg;µ)∗ (p) ,

σ̂qg;ρji (p, p′) =
(4π2)ε

4(2π)3 zh s

∞∑
nf=1

∑
Inf

∫
dPSnfM

qg;ρ
j (p, p′)M̄q

i (p) ,
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σ̂qq̄;ρji (p, p′) =
(4π2)ε

4(2π)3 zh s

∞∑
nf=2

∑
Inf

∫
dPSnfM

qq̄
ji (p, p

′) (Mg;ρ)∗ (p) ,

σ̂gg;µνρ(p, p′) =
(4π2)ε

4(2π)3 zh s

∞∑
nf=2

∑
Inf

∫
dPSnfM

gg;νρ(p, p′) (Mg;µ)∗ (p) . (3.4)

The scattering amplitudesMq,g andMqg,qq̄,gg can be calculated perturbatively by means of

the usual Feynman rules with legs that connect to the soft fragmentation matrix elements

being amputated. This amputation results in “external” or “open” Dirac- or Minkowski

indices i, j or µ, ν, ρ, respectively, in the scattering amplitudes in (3.4). In addition, igµε,

along with a suitable color matrix, is factored out of the two-parton fragmentation scatter-

ing amplitudes Mqg,qq̄,gg and shifted into the definition of the three-parton fragmentation

correlators ∆F . The “barred” amplitude M̄q is defined as M̄q ≡M†γ0.

The partonic factors in (3.4) contain information on the leptonic annihilation into a

virtual gauge boson (a photon in this case), and for unpolarized leptons include an average

over the initial lepton helicities. One may also study the situation where one of the leptons

is polarized and consider a lepton spin asymmetry. To summarize, we implicitly use the

following sums or differences in the partonic cross sections in (3.4), generically in the

following form,

(∆)σ̂ =
1

4

∑
λ′=±1

(
(MM∗)(λ = +1, λ′)± (MM∗)(λ = −1, λ′)

)
. (3.5)

The plus sign indicates the lepton spin average σ̂, and the minus sign the lepton spin

asymmetry ∆σ̂. On the other hand, all quantum numbers of unobserved final state partons

are summed, as indicated by
∑

In
in (3.4). This sum includes the nf -dimensional Lorentz-

invariant phase space integrals,∫
dPSnf ≡

nf∏
n=1

∫
ddrn

(2π)d−1
δ+(r2

n) (2π)d δ(d)(q − p−Rnf ), (3.6)

where δ+(a2) = θ(a · n) δ(a2) and Rnf =
∑

n rn.

As already pointed out, we find that within the course of our calculations, light-cone

gauge (3.3) is the preferable gauge for the collinear twist-3 formalism. Not only can the

factorization formula (3.2) be established in a straightforward manner, also the gauge

invariance of the partonic cross sections (3.4) can be tested. The reason for that is: wherever

possible throughout our perturbative calculations we introduce a polarization sum over

gluon polarization vectors of the following form,

−
∑
λ=±1

(εµλ)∗(p) ενλ(p) ≡ dµν(p, n;κ) = gµν − κp
µnν + pνnµ

p · n+ iδ
. (3.7)

This polarization sum also appears in the numerator of the gluon propagator. Switching

the parameter κ between 0 or 1 allows us to switch between covariant (Feynman) gauge

and light-cone gauge. Eventually in the final result, the parameter κ should not appear
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(b) LO quark-gluon fragmentation.

Figure 5. Leading order diagrams.

in the partonic cross sections (3.4) if they are gauge-invariant. We consider this property

as an important check for our results. While gauge-invariance is ensured in a simple way

for twist-2 partonic cross sections, this is far less obvious for twist-3 partonic factors as

there are many entangled contributions. We will show that gauge-invariant partonic twist-3

factors can only be obtained through application of the EoMRs (2.24) and (2.25).

One may also consider the electromagnetic (e.m.) gauge invariance of the partonic

factors (3.4) as an important check of the validity of the results. In view of this aspect

one might work with a photon propagator in a general covariant gauge, i.e., a photon

propagator with a numerator gµν − (1 − ξ)qµqν/q2. Each partonic factor in (3.4) can be

separated into a well-known leptonic tensor Lµν = Tr[γµ l/γν l/′[γ5]] and a hadronic tensor

Wµν such that σ̂ ∼ LµνWµν . Since qµLµν = qνLµν = 0 the leptonic part will automatically

guarantee that the dependence on the gauge parameter ξ drops out. However, based on

e.m. current conservation for one-photon exchange, one expects that the hadronic tensor

satisfies the condition

qµW
µν = qνW

µν = 0 . (3.8)

It is straightforward to see already at LO that (3.8) only holds after application of both the

EoMRs (2.24) and (2.25). For this reason we consider the application of (2.24) and (2.25)

as a necessity and throughout this paper we choose to eliminate the intrinsic twist-3 FFs.

Below we proceed with a discussion of the leading order (LO) result without QCD

corrections. The two relevant diagrams are shown in figure 5. We note that since a gluon

polarization sum dµν(p, n;κ) does not appear in these diagrams, the gauge-invariance of

LO partonic factors is automatically ensured. Also, since there is only one unobserved

quark or anti-quark in the final state at LO, only the partonic cross sections σ̂q and σ̂qg

in (3.4) contribute to that order.

3.1 Unpolarized cross section

We first discuss the unpolarized cross section. Since this observable is leading twist, only

the diagram in figure 5a contributes. Also, only the first term in (3.2) is relevant. The

calculation is straightforward, and we find the well-known result

Eh dσ

dd−1 ~Ph
= σ0 ((1− v)2 + v2 − ε)

∑
f=q,q̄

e2
f D

f
1 (zh) +O(αs) , (3.9)

with σ0 = (4π2zh)ε2Ncα
2
em/(zhs

2).
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3.2 Double-longitudinally polarized cross section

The double-longitudinal spin asymmetry for ~e+ + e− → ~Λ +X is equally straightforward.

In the notation (3.5) we find

∆LLσ = σ0 (1− 2v)
∑
f=q,q̄

e2
f G

f
1(zh) +O(αs) . (3.10)

The symbol ∆LL in (3.10) indicates that we have also implicitly included the asymmetry

on the hadron spin, (σ(SL = 1)− σ(SL = −1))/2.

3.3 Transverse hadron-spin dependent cross section

The transverse-spin dependent cross section will receive contributions from both diagrams

in figure 5 (see also refs. [39, 41]). The calculation is straightforward, and we only present

the result:

Eh dσ(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh

×
∑
f=q,q̄

e2
f

(
Df
T (zh)

zh
−D⊥(1),f

1T (zh)+

∫ 1

0
dβ
=[D̂fg

FT − Ĝ
fg
FT ](zh, β)

1− β

)
+O(αs)

= −σ0 (1− 2v)
8Mh

zh s2
εll

′PhSh

×
∑
f=q,q̄

e2
f

(
D
⊥(1),f
1T (zh)−

∫ 1

0
dβ
=[D̂fg

FT − Ĝ
fg
FT ](zh, β)

1− β

)
+O(αs)

= σ0 (1− 2v)
8Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

Df
T (zh)

zh
+O(αs) . (3.11)

The first equality in eq. (3.11) clearly shows the various contributions from intrinsic, kine-

matical, and dynamical twist-3 contributions. The EoMR (2.24) is used to eliminate the

function DT in the second equality. On the other hand, one may choose to eliminate the

kinematical and dynamical twist-3 FFs instead, as is done in the third equality. Again, we

remind the reader that the LO partonic factors in (3.4) are color gauge invariant by them-

selves due to the absence of a gluonic polarizations sum or propagator (3.7). Therefore,

the use of (2.24) is not necessary from the point of view of color gauge invariance at LO.

However, the condition (3.8) is only satisfied through the use of (2.24).

The mere existence of a predicted non-zero single transverse-spin effect generated by

the function Dq
T (z) in the last line of eq. (3.11) is remarkable. In fact, the corresponding

single transverse nucleon-spin asymmetry in the crossed process of inclusive DIS has been

known to vanish due to time-reversal already in the 1960’s in the one-photon exchange

approximation [71]. In order to generate a non-zero effect for the single transverse nucleon-

spin asymmetry in inclusive, DIS one has to deal with two-photon exchanges, cf. refs. [72–

75]. The non-zero effect in the one-photon approximation in the annihilation process caused

by the intrinsic twist-3 fragmentation function Dq
T (z) can be attributed to the fact that
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(a) NLO virtual diagrams for quark fragmentation

l

l

q

p

q-p-r-

l

l

q
p

-

r r

q-p-r

(b) NLO real diagrams for quark fragmentation
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(c) NLO real diagrams for gluon fragmentation

Figure 6. Next-to-leading order diagrams relevant for 2-parton fragmentation.

fragmentation processes are not constrained by time-reversal [66]. This is due to non-

perturbative interactions in the in and out states in the definition of Dq
T (x) in eq. (2.3).

On the other hand, a corresponding intrinsic twist-3 parton correlation function in the

nucleon, f qT (x), is forbidden by time-reversal [76].

We also note that combining the LIR (2.29) with the EoMR (2.24) allows us to write the

spin-dependent annihilation cross section entirely in terms of dynamical twist-3 functions,

Eh dσ

dd−1 ~Ph
(Sh) = σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f (3.12)

× 2

∫ 1

zh

dw

w

∫ 1

0
dβ

[
(1+δ(1−w))=[D̂fg

FT−Ĝ
fg
FT ]( zhw , β)

1− β
+

2=[D̂fg
FT ]( zhw )

(1− β)2

])
+O(αs) .

This is true for any twist-3 transverse-spin observable, as first discussed in ref. [56].

4 Observables in single-inclusive annihilation at NLO

In this section we present our results of the partonic factors in eq. (3.4) to NLO accu-

racy. We first focus on the contributions generated by the interference of single-parton

fragmentation amplitudes. The relevant NLO QCD corrections are represented by the

graphs in figure 6. The first group of diagrams in figure 6a displays virtual corrections.

Since these diagrams contain a two-particle final state just like the LO contributions, their

– 18 –



J
H
E
P
0
1
(
2
0
1
9
)
1
1
1

mathematical form is similar compared to the result found in section 3, up to corrections

of order O(αs). However, the loop integrals in the virtual diagrams carry various sorts

of divergences. The divergences are regulated throughout this paper using dimensional

regularization in d = 4− 2ε dimensions with subtractions carried out in the MS scheme.

As mentioned in the previous section, we performed the calculations using a general

gluon propagator/polarization sum as in (3.7) wherever possible. This allows us to perform

important consistency checks on our calculations. One important check is the color gauge-

invariance of the partonic factors (3.4), as they should be independent of the “gauge”

parameter κ. We find that only after the application of the EoMRs (2.24) and (2.25), the

parameter κ drops out of the final results. This cancellation will be explained in more

detail below.

It is important to note that the form of the light-cone gauge polarization sum (3.7)

forces us to perform integrals in a specific way. Typically, one first has to perform the

integrations over the light-cone components of a generic loop or phase space momentum

kµ. Since the light-cone directions are specified by the light-cone momenta Pµh and nµ, we

split the d-dimensional integral as∫
ddk =

∫
dd−2kT

∫
d(k · n)

∫
d(k · Ph) . (4.1)

The dimension of the transverse space then regulates divergences. Working with a polar-

ization sum (3.7) and κ 6= 0 induces further spurious light-cone divergences for k · n → 0

in (4.1). Those divergences can be regulated in dimensional regularization as well by means

of the well-known Mandelstam-Leibbrandt prescription [77]. We note that in this approach,

however, it is difficult to identify the nature of the various divergences and to separate, for

instance, ultraviolet (UV) from infrared (IR) divergences. It is also possible to perform the

calculation in this way even if there are no explicit gluon polarizations.

The first term in the polarization sum (3.7) (for κ = 0) refers to a calculation that is

performed in Feynman gauge. One can calculate each diagram in dimensional regularization

in this gauge in an alternative way, for example, by calculating the involved Feynman

parameter integrals in a loop diagram directly, or by a direct evaluation of a phase space

integral in an appropriate frame. We performed the calculation for κ = 0 for each diagram

in both aforementioned ways, and obtained the same analytical results for κ = 0. This

gives us confidence that our final results are correct.

In Feynman gauge, one can explicitly show that the UV-divergences between the vertex

graph and the self-energy graphs in figure 6a cancel; hence, no direct UV-counterterms are

needed here. One can also show in general that the gauge parameter κ drops out in the

virtual diagrams in figure 6a.

The real graphs in figure 6b do contain IR- and collinear divergences that can be

regulated by analytically continuing to negative values of ε. Typically, one separates a

collinear divergence through a plus-prescription,

(1− w)−1−ε = −1

ε
δ(1− w) +

1

(1− w)+
− ε

(
ln(1− w)

1− w

)
+

+O(ε2) , (4.2)
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along with the usual definition,∫ 1

0
dw f(w) [g(w)]+ =

∫ 1

0
dw [f(w)− f(1)] g(w) . (4.3)

Unlike IR singularities that show up as 1/ε2-poles and cancel between real and virtual

diagrams, 1/ε collinear divergences in a first step remain in NLO cross sections. For both

the twist-2 and twist-3 observable analyzed in the following sections, we will follow the

subtraction procedure of Collins [62] as our method to remove these collinear singularities

and obtain finite results.

4.1 Unpolarized cross section at NLO

As a test case for our calculation of the interference effects of single-parton fragmentation

amplitudes shown in figure 6, we use the twist-2 unpolarized cross section. We find that all

types of partonic cross sections that contribute at NLO in figures 6a, 6b, 6c are individually

gauge invariant, as expected. The full result takes the following form [62],

Eh dσ

dd−1 ~Ph
= σ0 ((1− v)2 + v2)

×
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w
w−2ε

[
σ̂1;f
D1

(w)D
f [0]
1

(
zh
w

)
+ σ̂1;g

D1
(w)D

g[0]
1

(
zh
w

)]
+σ0 4 v (1− v)

×
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w
w−2ε

[
σ̂2;f
D1

(w)D
f [0]
1

(
zh
w

)
+ σ̂2;g

D1
(w)D

g[0]
1

(
zh
w

)]
−σ0 ((1− v)2 + v2 − ε)

∑
f=q,q̄

e2
f D

f [1]
1 (zh) +O(α2

s) , (4.4)

where

σ̂1;f
D1

(w) = (1− ε)δ(1− w) +
CF αs

2π
Sε

(
s

µ2

)−ε [
− 1

ε

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)

+ δ(1− w)

(
−3 +

2π2

3

)
+

(
ln(1− w)

1− w

)
+

(1 + w2) +
1− 3w + 5

2w
2

(1− w)+

]
, (4.5)

σ̂2;f
D1

(w) = −ε
2
δ(1− w) +

CFαs
2π

Sε

(
s

µ2

)−ε [3

4
δ(1− w) +

3− 2w + w2

2(1− w)+

]
, (4.6)

σ̂1;g
D1

(w) =
CFαs

2π
Sε

(
s

µ2

)−ε [
−1

ε

1 + (1− w)2

w
+

1 + (1− w)2

w
ln(1− w) + w

]
, (4.7)

σ̂2;g
D1

(w) =
CFαs

2π
Sε

(
s

µ2

)−ε [6− 6w + w2

2w

]
. (4.8)

The functions D
(f,g)[n]
1 (z) in (4.4) are n-loop renormalized FFs. The color factor CF is

the usual CF = (N2
c − 1)/(2Nc), with Nc = 3 the number of colors. The renormalization

scale µ also appears through the dimensional regularization approach, along with the MS
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factor Sε = (4π)ε/Γ(1− ε) from ref. [62]. Note that there are two structures in (4.4), one

proportional to (1−v)2 +v2, and the other to 4v(1−v). Those structures can be attributed

to different structure functions of the unpolarized cross section.

The 1/ε-terms in (4.5) and (4.7) are the well-known collinear singularities that one

encounters in NLO calculations, and they arise in the first and second terms of eq. (4.4).

The last term in eq. (4.4) is the “subtraction term” designed to remove these 1/ε-poles [62],

if a given process factorizes. The function D
f [1]
1 (z) in that term takes the form [62],

D
f [1]
1 (z) = D

f [1]
1(0)(z) +

∑
f ′=f,g

∫ 1

z

dw

w
Z

[1]
f→f ′(w)D

f ′[0]
1 (

z

w
) , (4.9)

where D
f [1]
1(0)(z) is the one-loop bare FF, and

Z
[1]
f→f (w) = −CFαs

2π

Sε
ε

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)
, (4.10)

Z
[1]
f→g(w) = −CFαs

2π

Sε
ε

(
1 + (1− w)2

w

)
. (4.11)

We note that in massless QCD, D
q[1]
1(0)(z) involves scaleless kT -integrals and therefore van-

ishes in dimensional regularization.

The last term in eq. (4.4), after one inserts (4.9), cancels the 1/ε-poles in (4.5) and (4.7).

We note that the cancellation of the collinear poles of the NLO cross section through this

procedure is a necessary condition for factorization of the observable. That is, the collinear

singularities of the NLO cross section (without a subtraction term) must match those from

a direct NLO calculation of the correlator. If only one of the collinear singularities in the

NLO (unsubtracted) partonic cross sections does not have a corresponding divergence in

the correlator, then this mismatch directly proves the observable does not factorize.

The final result for the unpolarized cross section in the limit ε→ 0 is

Eh dσ

d3 ~Ph
=

2Ncα
2
em

zhs2

{
((1− v)2 + v2)

∑
f=q,q̄

e2
f D

f
1 (zh, µ)

+ ((1− v)2 + v2)

×
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w

[
ĉ1;f
D1

(w)Df
1

(
zh
w

;µ

)
+ ĉ1;g

D1
(w)Dg

1

(
zh
w

;µ

)]
+ 4 v (1− v)

×
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w

[
ĉ2;f
D1

(w)Df
1

(
zh
w

;µ

)
+ ĉ2;g

D1
(w)Dg

1

(
zh
w

;µ

)]}
, (4.12)

where the finite partonic cross sections at order O(αs) read,

ĉ1;f
D1

(w) =
CF αs

2π

[
δ(1− w)

(
3

2
ln

(
s

µ2

)
− 9

2
+

2π2

3

)
+

(
ln(1− w)

1− w

)
+

(1 + w2) +
1 + w2

(1− w)+
ln

(
w2 s

µ2

)
− 3w(2− w)

2(1− w)+

]
, (4.13)
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ĉ2;f
D1

(w) =
CFαs

2π
, (4.14)

ĉ1;g
D1

(w) =
CFαs

2π

[
1 + (1− w)2

w
ln

(
w2(1− w)

s

µ2

)
− 2(1− w)

w

]
, (4.15)

ĉ2;g
D1

(w) =
CFαs

2π

[
2(1− w)

w

]
. (4.16)

These results are in agreement with earlier works (see refs. [78, 79] and references therein).

Throughout the paper we will denote partonic cross sections before collinear divergences

are subtracted by σ̂’s and finite partonic cross sections after subtraction by ĉ’s.

Note that the partonic cross sections (4.13), (4.15) depend on the arbitrary renormal-

ization scale µ. The fact that the physical, measurable cross section Ehdσ/d3 ~Ph does not

depend on µ allows one to deduce an evolution equation for the unpolarized FF,

∂

∂ lnµ2

(
Eh

dσ

d3 ~Ph

)
= 0 (4.17)

=⇒ ∂Df
1 (z;µ)

∂ lnµ2
=
∑
f ′=f,g

∫ 1

z

dw

w
P

[1]
f→f ′(w)Df ′

1

(
z

w
;µ

)
, (4.18)

where the well-known LO splitting functions P
[1]
f→f (w) and P

[1]
f→g(w) are given by

P
[1]
f→f (w) =

CFαs
2π

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)
, (4.19)

P
[1]
f→g(w) =

CFαs
2π

(
1 + (1− w)2

w

)
.

The expression in eq. (4.18) is the standard LO DGLAP-evolution equation. The reason for

the detailed discussion of the well-known twist-2 unpolarized cross section is that we will

use similar strategies for the more complicated and not as well-known twist-3 observables.

4.2 The double-longitudinally polarized cross section at NLO

For completeness we also include a discussion of the double-longitudinally polarized cross

section (3.10), extended to NLO. The calculation for this twist-2 observable is similar to the

one discussed in the previous section, but with two distinctions: firstly, we have to deal with

the Dirac-matrix γ5 in d dimensions. This requires a special procedure, and throughout this

paper we apply the so-called HVBM-scheme [80, 81]. Secondly, it is customary to include

a term +4ε(1 − w) in the polarized renormalization factor ∆Zqq = Zqq + 4CF ε(1 − w) in

order to preserve helicity conservation at the quark-gluon vertex in d dimensions [78, 79].

Otherwise, all comments made in the previous section on the NLO unpolarized cross section

also apply here.

We find for the double-longitudinal spin asymmetry in d = 4 dimensions after inclusion

of the subtraction graphs,

∆LLσ =
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w

[
∆ĉfG1

(w)Gf1

(
zh
w

;µ

)
+ ∆ĉgG1

(w)Gg1

(
zh
w

;µ

)]
+O(α2

s) ,
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with the finite polarized partonic cross sections,

∆ĉfG1
(w) = δ(1− w) +

CF αs
2π

[
δ(1− w)

(
3

2
ln

(
s

µ2

)
− 9

2
+

2π2

3

)
+

(
ln(1− w)

1− w

)
+

(1 + w2) +
1 + w2

(1− w)+
ln

(
w2 s

µ2

)
− 2 + 2w − w2

2(1− w)+

]
, (4.20)

∆ĉgG1
(w) =

CFαs
2π

[
(2− w) ln

(
w2(1− w)

s

µ2

)
− 4 + 3w

]
. (4.21)

Again, our calculation agrees with refs. [78, 79].

4.3 Transverse hadron-spin dependent cross section at NLO

We are now in a position to analyze the twist-3 observables. In this section we discuss the

spin-dependent cross section for unpolarized leptons and a transversely polarized hadron.

Note that we omit the subtraction graphs in the calculations that follow, and instead

postpone a discussion of this term until section 5.

4.3.1 Quark-quark & quark-gluon-quark fragmentation

Intrinsic & kinematical twist-3. We first focus on the intrinsic and kinematical twist-

3 contributions from quarks. Like the twist-2 observables, the intrinsic and kinemati-

cal twist-3 partonic cross sections at NLO can be calculated in a straightforward fashion

from the same diagrams in figure 6. Since we have already noticed the importance of the

EoMR (2.24) for the LO results, we also apply this relation immediately at NLO and re-

place the intrinsic twist-3 functions with kinematical and dynamical twist-3 functions. We

find the following results for the spin-dependent cross section,

Eh dσintr&kin(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w2
w−2ε

×
(
σ̂f
D

⊥(1)
1T

(w)D
⊥(1),f [0]
1T

(
zh
w

)
+σ̂fDT (w)

∫ 1

0
dβ
=[D̂

fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β

+ σ̂fGT (w)

∫ 1

0
dβ
<[D̂

fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β

)
+O(α2

s), (4.22)

where we refrain from giving the explicit form of the relevant partonic cross sections at this

point but rather wait until the dynamical graphs are included. We mention again that the

superscript “[0]” indicates LO renormalized functions.

Note that the loop diagrams in figure 6a generate an imaginary part. As a consequence,

there are also contributions to intrinsic- and kinematical twist-3 parts that are generated

by the FFs GT and G
⊥(1)
1T . By virtue of (2.25) we can eliminate these functions in favor of

the real parts of the quark-gluon-quark FFs (D̂FT−ĜFT ) in (4.22). We find that the vertex

diagram in figure 6a is gauge invariant, i.e., the dependence on the parameter κ, introduced

in eq. (3.7), drops out. This is different for the real diagrams in figure 6b where we find
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an explicit gauge dependence in both partonic factors for the intrinsic and kinematical

twist-3 functions Dq
T and D

⊥(1),q
1T before application of (2.24). After application of (2.24),

the partonic cross sections can be combined, and we find that the gauge-dependence for

the kinematical twist-3 function D
⊥(1),q
1T drops out in eq. (A.1) of appendix A. However,

there is a remaining gauge dependence in σ̂DT of the following form,

σ̂fDT (w) = · · ·+ κ

{
− δ(1− w)

(
1

ε2
− π2

6

)
+

1

ε

w(2− w)

(1− w)+
−
(

ln(1− w)

1− w

)
+

w(2− w)

+w(6− w)

}]
, (4.23)

where the dots indicate the gauge-independent part of σ̂DT . The explicit gauge dependence

must cancel a corresponding gauge dependence in the qgq fragmentation. We also mention

that the 1/ε2-poles cancel individually (except for the gauge-dependent ones in (4.23)) for

each partonic cross section even before application of (2.24).

Dynamical twist-3. Of course we expect also contributions from dynamical qgq twist-3

fragmentation at NLO. We first analyze the virtual loop corrections shown in figure 7.

Again, we emphasize that we calculated the loops both in Feynman gauge (κ = 0) and

light-cone gauge (κ = 1), see eq. (3.7). As before, we use dimensional regularization to

deal with UV, IR, collinear divergences, as well as light-cone divergences in light-cone

gauge upon application of the Mandelstam-Leibbrandt prescription [77]. We find that

the sum of all loop diagrams in figure 7 is gauge-invariant − while individual diagrams

yield very different expressions in both gauges. This is a very important feature as it

concerns the subtraction of UV-divergences by means of renormalization counterterms. If

the sum of all diagrams in figure 7 is gauge-invariant, so is its UV behavior. Consequently,

also the sum of all counterterms derived from a renormalized QCD Lagrangian must be

gauge-invariant. Hence, we may use the well-known counterterms in covariant gauge, see,

e.g., [62]. We apply counterterms for the self-energy diagrams in figure 7a and 7b, and the

vertex graphs in figure 7c. Self-energy corrections for external lines (the last two diagrams

in figure 7a and 7b) vanish in dimensional regularization as they are given by massless

integrals. However, counterterms for those diagrams must be included, and they come

with a well-known factor 1/2 [82]. Similar to the twist-2 observables, the counterterms

for the last two diagrams in figure 7a cancel with that for the first vertex correction in

figure 7c. The remaining MS UV counterterm has the following form,

−αs
2π

Sε
ε

[
11

12
Nc −

1

6
nf

]
≡ −αs

2π

Sε
ε
δUV. (4.24)

We explicitly checked that it is indeed gauge-invariant, i.e., there is no dependence on a

gauge-parameter ξ in covariant gauge. Also, nf is the number of active flavors, inherited

from the counterterm for the last self-energy graph in figure 7b. The loops in figure 7

generate imaginary parts as well. As in the case of quark-quark fragmentation, this induces

an additional sensitivity on the real parts of the dynamical twist-3 FFs.

We also need to include the radiative corrections from real diagrams shown in figure 8.

It turns out that this class of corrections is not gauge-invariant, i.e., we find different

– 24 –



J
H
E
P
0
1
(
2
0
1
9
)
1
1
1

l

l

q
p'

q-p

-

p-p'

l

l

q
p'

q-p

-

p-p'
l

l

q
p'

q-p
-

p-p'
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Figure 7. Virtual one-loop diagrams.

results in Feynman gauge and light-cone gauge. Collinear and IR-divergences are handled

by dimensional regularization, and we use eq. (4.2) to introduce the plus-prescription (4.3).

We again find that 1/ε2-poles cancels when adding virtual and real diagrams.

The qgq fragmentation channel assumes the following form at NLO,

Eh dσdyn(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w2
w−2ε

×
∫ 1

0
dβ

(
σ̂qgg1 (w, β)

=[D̂
fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β
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Figure 8. NLO corrections from real gluon radiation to quark-gluon fragmentation.

+σ̂qgg2 (w, β)
2=[D̂

fg[0]
FT ]( zhw , β)

β (1− β)2

+σ̂qgg3 (w, β)
<[D̂

fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β

)
+O(α2

s) , (4.25)

where again we refrain from stating the explicit form of the partonic cross sections until

eq. (4.25) is added to eq. (4.22). We note that the same gauge dependence as in eq. (4.23)

− but with a different sign − appears in σ̂qgq1 . Hence, the gauge dependence cancels when

adding all twist-3 contributions. We also note that the 1/ε-pole in the partonic cross

sections generated by imaginary parts of loop integrals, σ̂fGT of (4.22) and σ̂qgq3 of (4.25),

cancel when added together.

Result for quark-quark & quark-gluon-quark fragmentation at NLO. The

full result for quark-quark and quark-gluon-quark fragmentation is given by the sum of

eq. (4.22) and eq. (4.25),

Eh dσqq&qgq(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w2
w−2ε

∫ 1

0
dβ (4.26)

×
(
σ̂f
D

⊥(1)
1T

(w)D
⊥(1),f [0]
1T

(
zh
w

)
+ σ̂fg1 (w, β)

=[D̂
fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β

+ σ̂fg2 (w, β)
2=[D̂

fg[0]
FT ]( zhw , β)

(1− β)2
+ σ̂fg3 (w, β)

<[D̂
fg[0]
FT − Ĝ

fg[0]
FT ]( zhw , β)

1− β

)
+O(α2

s) ,

where the gauge-invariant partonic cross sections are given in appendix A, eqs. (A.1)–

(A.4). Note that there are no divergences as β → 1 because of the support properties of

the fragmentation correlators discussed before 2.2.1.

As with the LO result (cf. eq. (3.12)), we can replace the kinematical twist-3 FF

D
⊥(1),q
1T in (4.26) by combining both the EoMR (2.24) and the LIR (2.29). This leads to
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the following equations [56],

d

dz
D
⊥(1),q
1T (z) =

1

z

∫ 1

0
dβ

[
=[D̂qg

FT − Ĝ
qg
FT ](z, β)

1− β
+ 2
=[D̂qg

FT ](z, β)

(1− β)2

]
, (4.27)

D
⊥(1),q
1T (z) = −

∫ 1

z

dw

w

∫ 1

0
dβ

[
=[D̂qg

FT − Ĝ
qg
FT ]( zw , β)

1− β
+ 2
=[D̂qg

FT ]( zw , β)

(1− β)2

]
. (4.28)

In the second line, the usual boundary condition D
⊥(1),q
1T (z = 1) = 0 was applied.

Since the function D
⊥(1),q
1T appears convoluted under an integral in (4.26), the replace-

ment of it is a bit more subtle than at LO (3.12). We first realize that we need to split the

partonic cross section w−2−2εσ̂
D

⊥(1)
1T

(w) in eq. (A.1) into two parts, one that is proportional

to the delta function δ(1− w), and one that is proportional to plus distributions,

w−2−2εσ̂
D

⊥(1)
1T

(w) = σ̂δ δ(1− w) + w−2−2εσ̂+(w) . (4.29)

The part proportional to δ(1−w) requires the replacement (4.28), while for the other part

we need to integrate by parts and apply both identities (4.28) and (4.27). We find after a

straightforward calculation,∫ 1

zh

dw

w2
w−2ε σ̂f

D
⊥(1)
1T

(w)D
⊥(1),f
1T

(
zh
w

)
=

∫ 1

zh

dw

w

∫ 1

0
dβ Σ̂+(w) (4.30)

×

[
=[D̂fg

FT − Ĝ
fg
FT ]( zhw , β)

1− β
+ 2
=[D̂fg

FT ]( zhw , β)

(1− β)2

]
,

where Σ̂+(w) is related to the principal function of w−2−2εσ̂+(w) − with the plus prescrip-

tion removed in (A.1). Eventually, we find,

Σ̂+(w) = 2 + 2
CF αs

2π
Sε

(
s

µ2

)−ε{
− 1

ε

[
1

w
+

1

2
+ 2 ln(1− w)− ln(w)

]
+ 5 Li2(w)

+ ln2(1− w) +

(
− 5

2
+ 4 ln(w) +

1

w

)
ln(1− w)

+

(
4− ln(w) +

2

w

)
ln(w)− 9

2
− π2

6

}
. (4.31)

One may readily replace the kinematical twist-3 contributions in (4.26) with dynamical

functions by means of (4.30), and, as a result, add the function w1+2εΣ̂+(w) in (4.31) to

the partonic cross sections σ̂fg1 (w, β) and σ̂fg2 (w, β) in eqs. (A.2), (A.3). Thus, one can

obtain a result solely in terms of quark-gluon-quark correlators. In fact, these dynamical

functions are what one probes in a measurement of this observable, rather than the often

discussed polarizing FF D⊥1T [16–18].

4.3.2 Quark-anti-quark-gluon fragmentation

In the same way we can study another reaction channel induced by quark/anti-quark-gluon

fragmentation. The relevant diagrams are shown in figure 9 and they interfere with the
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Figure 9. NLO corrections from quark radiation to quark/anti-quark fragmentation.
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Figure 10. NLO corrections from quark radiation to gluon-gluon fragmentation.

gluon fragmentation diagrams in figure 6c. We find that the contributions coming from the

first and second diagram in figure 9 cancel when summed. The other diagrams contribute

and the resulting cross section acquires the following form,

Eh dσqq̄g(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w2
w−2ε

∫ 1

0
dβ (4.32)

×
(
σ̂ff̄4 (w, β)=[D̂

ff̄ [0]
FT ]

(
zh
w
, β

)
+ σ̂ff̄5 (w, β)=[Ĝ

ff̄ [0]
FT ]

(
zh
w
, β

))
+O(α2

s) ,

where the partonic cross sections are given in appendix A, eqs. (A.5), (A.6). We again

find that the κ dependence completely drops out in the partonic cross sections σ̂4 and

σ̂5. Also, we note that σ̂4 is symmetric and σ̂5 antisymmetric under a transformation β →
1−β. This means that quark/anti-quark/gluon and anti-quark/quark/gluon fragmentation

contribute equally.

4.3.3 Gluon-gluon & tri-gluon fragmentation

At last we calculate the remaining contributions from two-gluon and tri-gluon fragmenta-

tion. The first contributions originate from the squared sum of the diagrams in figure 6c

while the latter is generated from an interference of the diagrams in figure 10 with those in

figure 6c. We note that none of these diagrams involves a gluon propagator or polarization
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sum. Hence, we cannot explicitly check that the κ-dependence vanishes, as we did for the

other channels. Nonetheless we calculated the partonic cross sections using two different

methods, as discussed below eq. (4.1), and find exact agreement for each of the perturbative

cross sections.

Intrinsic & kinematical twist-3 for gluons. The contributions from gluon intrinsic-

and kinematical twist-3 functions read

Eh dσintr&kin(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh Q
∫ 1

zh

dw

w2
w−2ε (4.33)

×
(
σ̂g
D

⊥(1)
1T

(w)D
⊥(1),g[0]
1T

(
zh
w

)
+ σ̂gH1

(w)H
(1),g[0]
1

(
zh
w

)
+σ̂gDT (w)

∫ 1

0
dβ

2=[N̂
a[0]
2 ]( zhw , β)− 2(1− ε)=[N̂

[0]
1 ]( zhw , β)

1− β

− 1

CF
σ̂gDT (w)

∑
f=q,q̄

∫ 1

0
dβ =[D̂

ff̄ [0]
FT ]

(
zh
w
, β

))
+O(α2

s) ,

where again we have already applied the EoMR (2.27) for gluons in order to eliminate the

intrinsic twist-3 gluon function Dg
T (z). In addition, we introduced a notation for the sum

of fractional active quark charges, Q ≡ 2
∑

q e
2
q , and N̂a

2 is the antisymmetric combination

N̂a
2 (z, β) ≡ (N̂2(z, β) − N̂2(z, 1 − β))/2. As before, we refrain from explicitly stating the

relevant partonic cross sections at this point until the dynamical graphs are included.

Dynamical twist-3 for gluons. The contribution from tri-gluon fragmentation takes

the following form,

Eh dσdyn(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh Q

×
∫ 1

zh

dw

w2
w−2ε

∫ 1

0
dβ

(
σ̂gNs

2
(w, β)

=[N̂
s[0]
2 ]( zhw , β)

β2(1− β)2
(4.34)

+ σ̂gNa
2
(w, β)

=[N̂
a[0]
2 ]( zhw , β)

β2(1− β)2
+ σ̂gN1

(wβ)
=[N̂

[0]
1 ]( zhw , β)

β2(1− β)2

)
+O(α2

s)

with N̂ s,a
2 (z, β) ≡ (N̂2(z, β) ± N̂2(z, 1 − β))/2 the symmetric and antisymmetric part of

N̂2(z, β). Note again that there are no divergences as β → 0 or 1 because of the support

properties of the fragmentation correlators discussed before 2.2.1.

Result for the combined gg& ggg channel. The full result for gluon-gluon and tri-

gluon fragmentation is given by the sum of eq. (4.33) and eq. (4.34),

Eh dσgg&ggg(Sh)

dd−1 ~Ph
= σ0 (1− 2v)

4Mh

zh s2
εll

′PhSh Q
∫ 1

zh

dw

w2
w−2ε

∫ 1

0
dβ (4.35)

×

(
σ̂g
D

⊥(1)
1T

(w)D
⊥(1),g[0]
1T

(
zh
w

)
+ σ̂gH1

(w)H
(1),g[0]
1

(
zh
w

)
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+σ̂g1(w, β)
=[N̂

s[0]
2 ]( zhw , β)

β2(1− β)2
+ σ̂g2(w, β)

=[N̂
a[0]
2 ]( zhw , β)

β2(1− β)2

+σ̂g3(w, β)
=[N̂

[0]
1 ]( zhw , β)

β2(1− β)2
− 1

CF
σ̂gDT (w)

∑
f=q,q̄

=[D̂
ff̄ [0]
FT ]

(
zh
w
, β

))
,

where the explicit form of the partonic cross sections is given in appendix A,

eqs. (A.7)–(A.12).

Note that the collinear divergence for σ̂gH1
(w) cancels. Hence, it does not appear in

the evolution of the twist-3 fragmentation functions at LO. Also, we mention that the

collinear pole for the kinematical gluon twist-3 function D
⊥(1),g
1T is just the usual twist-2

qg-splitting function. We conjecture that the term in (4.35) generated by D
⊥(1),g
1T can be

converted to ggg- and qq̄g dynamical twist-3 functions by means of gluon LIRs, just like

we did in (4.30). Unfortunately, LIRs for gluons have not been derived in the literature,

to the best of our knowledge. We leave this subject as future work. In addition, note

that σ̂g1 is symmetric under β → 1 − β, while σ̂g2,3 are antisymmetric. The last term

in (4.35) is proportional to =[D̂qq̄
FT ], which is generated non-perturbatively by the gluon

QCD EoMR (2.27). Note the difference with the term proportional to =[D̂qq̄
FT ] in (4.32).

The partonic cross sections σ̂gDT in (4.35) and σ̂ff̄4 in (4.32) carry different color factors

and also different charge factors. Nevertheless, in principle, they may be combined when

adding all twist-3 contributions (4.26), (4.32) and (4.35).

5 Evolution equation for DT (z)

In section 4 we calculated terms relevant for the transverse-spin dependent e+e− → Λ↑X

cross section at NLO accuracy, where we have shown how to obtain gauge-invariant partonic

cross sections free of 1/ε2-poles. We can collect these results and write down the total cross

section as

Eh dσ(Sh)

dd−1 ~Ph
= (4.26) + (4.32) + (4.35)

− σ0 (1− 2v)
4Mh

zh s2
εll

′PhSh
∑
f=q,q̄

e2
f

2D
f [1]
T (zh)

zh
+O(α2

s) , (5.1)

where σ0 = (4π2zh)ε2Ncα
2
em/(zhs

2). The last term in eq. (5.1), where the function D
f [1]
T (z)

is the one-loop renormalized intrinsic FF, is the subtraction term that should remove the

collinear divergences in the partonic cross sections (A.1)–(A.12). This is in full analogy to

the unpolarized case (cf. eq. (4.4)). Note again, due to the EoMR (2.24) and LIR (2.29),

the function Df
T (z) can be written as

Df
T (z) = −z

(
D
⊥(1),f
1T (z)−

∫ 1

0
dβ
=[D̂fg

FT − Ĝ
fg
FT ](z, β)

1− β

)
(5.2)

= z

∫ 1

z

dw

w

∫ 1

0
dβ

[
(1 + δ(1− w))=[D̂fg

FT − Ĝ
fg
FT ]( zw , β)

1− β
+

2=[D̂fg
FT ]( zw )

(1− β)2

]
. (5.3)
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Unfortunately, the result for D
f [1]
T (z) has not been derived in the literature so far, to the

best of our knowledge. There have only been NLO calculations of chiral-odd collinear

twist-3 FFs [83–85] that are relevant for unpolarized hadrons as well as D
⊥(1)
1T (z) for trans-

verse polarization [84]. The derivation of D
f [1]
T (z) (along with the renormalization of the

dynamical twist-3 FFs in eq. (5.3)) needed for the subtraction term in eq. (5.1) is beyond

the scope of this paper and will be the subject of future work.

However, if collinear twist-3 factorization holds for e+e− → Λ↑X, we can read off

the renormalization counterterms from the unsubtracted partonic cross sections (A.1)–

(A.3), (A.5)–(A.6), and (A.7)–(A.12). The one-loop renormalized intrinsic FF then takes

the form,

D
f [1]
T (z) = D

f [1]
T (0)(z)

+
z

2

∫ 1

z

dw

w2

∫ 1

0
dβ

[
Z

[1]
1,f→f (w)D

⊥(1),f [0]
1T

(
z

w

)
+ Z

[1]
1,f→g(w)D

⊥(1),g[0]
1T

(
z

w

)
+ Z

[1]
2,f→fg(w, β)

=[D̂
fg[0]
FT − Ĝ

fg[0]
FT ]( zw , β)

1− β
+ Z

[1]
3,f→fg(w, β)

2=[D̂
fg[0]
FT ]( zw , β)

(1− β)2

+
∑

f ′=q′,q̄′

Z
[1]

4,f→f ′f̄ ′(w, β)=
[
D̂
f ′f̄ ′[0]
FT

(
z

w
, β

)]

+
∑

f ′=q′,q̄′

Z
[1]

5,f→f ′f̄ ′(w, β)=
[
Ĝ
f ′f̄ ′[0]
FT

(
z

w
, β

)]

+ Z
[1]
6,f→gg(w, β)

=[N̂
s[0]
2 ( zw , β)]

β2(1− β)2
+ Z

[1]
7,f→gg(w, β)

=[N̂
a[0]
2 ( zw , β)]

β2(1− β)2

+ Z
[1]
8,f→gg(w, β)

=[N̂
[0]
1 ( zw , β)]

β2(1− β)2

]
, (5.4)

where the UV counterterms Z can be found in appendix B, eqs. (B.1)–(B.9). We again

emphasize that we have simply postulated the form of D
f [1]
T (z), and this is not a proof of

twist-3 factorization at one loop for this process. Rather, one would have to directly calcu-

late D
f [1]
T (z) and confirm eq. (5.4) and the UV counterterms (B.1)–(B.9). Nevertheless, we

proceed with the evaluation of eq. (5.1) to determine the cross section for e+e− → Λ↑X

at NLO in d = 4 dimensions,

Eh dσ(Sh)

d3 ~Ph
=

8MhNcα
2
em

(zhs2)2
(1− 2v) εll

′PhSh
∑
f=q,q̄

e2
f

∫ 1

zh

dw

w2

∫ 1

0
dβ

×
{(

ĉf
D

⊥(1)
1T

(w)D
⊥(1),f
1T

(
zh
w

;µ

)
+ ĉfg1 (w, β)

=[D̂fg
FT − Ĝ

fg
FT ]( zhw , β;µ)

1− β

+ ĉfg2 (w, β)
2=[D̂fg

FT ]( zhw , β;µ)

(1− β)2
+ ĉfg3 (w, β)

<[D̂fg
FT − Ĝ

fg
FT ]( zhw , β;µ)

1− β

)
+

(
ĉff̄4 (w, β)=[D̂ff̄

FT ]

(
zh
w
, β;µ

)
+ ĉff̄5 (w, β)=[Ĝff̄FT ]

(
zh
w
, β;µ

))
+

(
ĉg
D

⊥(1)
1T

(w)D
⊥(1),g
1T

(
zh
w

;µ

)
+ ĉgH1

(w)H
(1),g
1

(
zh
w

;µ

)
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+ ĉg1(w, β)
=[N̂ s

2 ]( zhw , β;µ)

β2(1− β)2
+ ĉg2(w, β)

=[N̂a
2 ]( zhw , β;µ)

β2(1− β)2

+ ĉg3(w, β)
=[N̂1]( zhw , β;µ)

β2(1− β)2
− 1

CF
ĉgDT (w)

∑
f ′=q′,q̄′

=[D̂f ′f̄ ′

FT ]

(
zh
w
, β;µ

))}
+O(α2

s) , (5.5)

where the finite partonic cross sections in the MS scheme are given by

ĉf
D

⊥(1)
1T

(w) = −2δ(1− w) + 2
CFαs

2π

[
1 + w2

(1− w)+
ln

(
µ2

sw2

)
+ δ(1− w)

(
3

2
ln

(
µ2

s

)
+

9

2
− 2π2

3

)
−
(

ln(1− w)

1− w

)
+

(1 + w2)

+
4 + 2w − 3w2

2 (1− w)+

]
, (5.6)

ĉfg1 (w, β) = 2 δ(1− w)

+ 2
αs
2π

[
δ(1− w)

[(
CF −

Nc

2

)
ln(β)

1− β
ln

(
µ2

sw2

)
+ δUV lnw

]
+CF

1− 2w − w2

(1− w)+
ln

(
µ2

sw2

)
+CF

{
δ(1− w)

[
2 ln(β)− 1

2 ln2(β)

1− β
− 1

2
ln(1− β)− 3

2
+

2π2

3

]
− (1− 2w − w2)

(
ln(1− w)

1− w

)
+

+
2− 11

2 w + 2w2

(1− w)+
− w

β

}
− Nc

2

{
δ(1− w)

[
1

β
ln(1− β) +

2 ln(β)− 1
2 ln2(β)

1− β

]
− w

β (1− w β)

}]
,

(5.7)

ĉfg2 (w, β) =
αs
2π

1

β

[
− 2

(
CF (1− β)− Nc

2

)
ln

(
µ2

sw2

)
− 2CF

(
−w +

wβ

2
+ (1− β)(2− ln(1− w))

)
+Nc

(
1− ln(1− w) +

1− w
1− wβ

)]
, (5.8)

ĉfg3 (w, β) =
αs
2π

[
− 2π δ(1− w)

(
3

2
CF +

(
CF −

Nc

2

)
ln(β)

1− β

)]
, (5.9)

ĉff̄4 (w, β) = 2
αs
2π

(
CF −

Nc

2

)[
2(1− w) + w3β(1− β)

β(1− β)(1− wβ)(1− w(1− β))
ln

(
µ2

sw2

)
+

4− 5w + w2 + w3β(1− β)−
(
2(1− w) + w3β(1− β)

)
ln(1− w)

β(1− β)(1− wβ)(1− w(1− β))

]
,

(5.10)

ĉff̄5 (w, β) = 2
αs
2π

(CF −
Nc

2
)

[
w3(1− 2β)

(1− wβ)(1− w(1− β))
ln

(
µ2

sw2

)
−
w(1− 2β)

[
1− w − w2β(1− β) (1− ln(1− w))

]
β(1− β)(1− wβ)(1− w(1− β))

]
, (5.11)
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ĉgDT (w) = 4
CF αs

2π

1− w
w

[
ln

(
µ2

sw2(1− w)

)
+ 3− w

]
, (5.12)

ĉg
D

⊥(1)
1T

(w) = 2
CF αs

2π

[
− 1 + (1− w)2

w
ln

(
µ2

sw2(1− w)

)
− 6

1− w
w

]
, (5.13)

ĉgH1
(w) = 4

CF αs
2π

[
7− 5w

w
− 2(1− w)

]
, (5.14)

ĉg1(w, β) =
CF αs

2π

[
(1− w + 2wβ(1− β)) ln

(
µ2

sw2(1− w)

)
+1− w − 4wβ(1− β)

]
, (5.15)

ĉg2(w, β) =
CF αs

2π
(1− 2β)

1− w
w

[
(8− 3w − 4β(1− β)) ln

(
µ2

sw2(1− w)

)
+ 24− 11w − 4β(1− β)(3− w)

]
, (5.16)

ĉg3(w, β) =
CF αs

2π
(1− 2β)

1− w
w

[
(4− w − 4β(1− β)) ln

(
µ2

sw2(1− w)

)
+ 12− 5w + 4β(1− β)(2− w)

]
. (5.17)

From this result, one can derive the LO evolution equation for Df
T (z) as

∂

∂ lnµ2

(
Df
T (z;µ)

)
=
z

2

∫ 1

z

dw

w2

∫ 1

0
dβ

[
P

[1]
1,f→f (w)D

⊥(1),f
1T

(
z

w
;µ

)
+ P

[1]
1,f→g(w)D

⊥(1),g
1T

(
z

w
;µ

)
+ P

[1]
2,f→fg(w, β)

=[D̂fg
FT − Ĝ

fg
FT ]( zw , β;µ)

1− β

+ P
[1]
3,f→fg(w, β)

2=[D̂fg
FT ]( zw , β;µ)

(1− β)2

+
∑

f ′=q′,q̄′

P
[1]

4,f→f ′f̄ ′(w, β)=
[
D̂f ′f̄ ′

FT

(
z

w
, β;µ

)]

+
∑

f ′=q′,q̄′

P
[1]

5,f→f ′f̄ ′(w, β)=
[
Ĝf

′f̄ ′

FT

(
z

w
, β;µ

)]

+ P
[1]
6,f→gg(w, β)

=[N̂ s
2 ( zw , β;µ)]

β2(1− β)2
+ P

[1]
7,f→gg(w, β)

=[N̂a
2 ( zw , β;µ)]

β2(1− β)2

+ P
[1]
8,f→gg(w, β)

=[N̂1( zw , β;µ)]

β2(1− β)2

]
, (5.18)

where

P
[1]
1,f→f (w) = −2

CFαs
2π

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)
, (5.19)

P
[1]
1,f→g(w) = 4

CFαs
2π

(
1 + (1− w)2

w

)
, (5.20)
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P
[1]
2,f→fg(w, β) = −2

αs
2π

(
δ(1− w)

[(
CF −

Nc

2

)
ln(β)

1− β
− 1

2
δUV

]
+ CF

1− 2w − w2

(1− w)+

)
,

(5.21)

P
[1]
3,f→fg(w, β) = 2

CFαs
2π

(
CF

1− β
β
− Nc

2

1

β

)
, (5.22)

P
[1]

4,f→f ′f̄ ′(w, β) = −2
αs
2π

(
δff

′
(CF − Nc

2 )(2(1− w) + w3β(1− β))

β(1− β)(1− wβ)(1− w(1− β))
− 4

1− w
w

)
, (5.23)

P
[1]

5,f→f ′f̄ ′(w, β) = −2
αs
2π

δff
′
(CF − Nc

2 )w3(1− 2β)

(1− wβ)(1− w(1− β))
, (5.24)

P
[1]
6,f→gg(w, β) = −2

CF αs
2π

(1− w + 2wβ(1− β))) (5.25)

P
[1]
7,f→gg(w, β) = −2

CF αs
2π

(1− 2β)
1− w
w

(8− 3w − 4β(1− β)) , (5.26)

P
[1]
8,f→gg(w, β) = −2

CF αs
2π

(1− 2β)
1− w
w

(4− w + 4β(1− β)) . (5.27)

The expressions in eqs. (5.5), (5.18) are new from this work and are our main results.

6 Conclusions

In this paper we studied the production of polarized Λ-hyperons in electron-positron an-

nihilation. We performed the perturbative QCD computations for the transverse-spin

dependent differential cross section at both leading (LO) and next-to-leading order (NLO).

Our leading-order result is given in eq. (3.11), which receives contributions from intrinsic,

kinematic, and dynamic twist-3 fragmentation correlators. With the help of equation-

of-motion relations, we find that the final result can be expressed in terms of a single

intrinsic twist-3 fragmentation correlator Dq
T (z), not the kinematical function D⊥ q1T (z) that

one might have naively expected based on work in the Generalized Parton Model [16, 17].

Thus, the sizable transverse polarization measured in such a process indicates directly the

size of Dq
T (z). The next-to-leading order expression for the cross section involving hard

partonic cross sections and interference terms is given in eq. (5.5). Assuming that collinear

twist-3 factorization holds in this process, we derived the evolution equation in eq. (5.18)

for the intrinsic twist-3 FF Dq
T (z). The expressions in eqs. (5.5), (5.18) are the main re-

sults of this work. As a cross-check of the collinear twist-3 factorization, an independent

computation for the evolution equation of Dq
T (z) is desirable. We will pursue such a study

in a future publication, where we plan to derive such an evolution equation directly from

the operator definition of Dq
T (z). Another future research direction we are also pursuing

at the moment is to study other related spin observables, such as the longitudinal lepton

— transverse hadron spin asymmetry. The techniques developed in our paper would be

very useful in this regard. Last but not least, the phenomenology at NLO would be very

interesting though it could be quite challenging.
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A Transverse hadron-spin partonic cross sections before subtraction

In this appendix we give the partonic cross sections for the transverse-hadron spin observ-

able before the subtraction of collinear divergences (see the discussion in section 5).

A.1 Quark-quark & quark-gluon-quark

The partonic cross sections in eq. (4.26) read

σ̂f
D

⊥(1)
1T

(w) = −2δ(1− w) + 2
CFαs

2π
Sε

(
s

µ2

)−ε [1

ε

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)
(A.1)

+ δ(1− w)

(
9

2
− 2π2

3

)
−
(

ln(1− w)

1− w

)
+

(1 + w2) +
4 + 2w − 3w2

2 (1− w)+

]
,

σ̂fg1 (w, β) = 2 δ(1− w) + 2
αs
2π
Sε

(
s

µ2

)−ε
(A.2)

×
[

1

ε

{
δ(1− w)

[(
CF −

Nc

2

)
ln(β)

1− β
− 1

2

(
s

µ2

)ε
δUV

]
+ CF

1− 2w − w2

(1− w)+

}
+CF

{
δ(1− w)

[
2 ln(β)− 1

2 ln2(β)

1− β
− 1

2
ln(1− β)− 3

2
+

2π2

3

]
− (1− 2w − w2)

(
ln(1− w)

1− w

)
+

+
2− 11

2 w + 2w2

(1− w)+
− w

β

}
− Nc

2

{
δ(1− w)

[
1

β
ln(1− β) +

2 ln(β)− 1
2 ln2(β)

1− β

]
− w

β (1− w β)

}]
,

σ̂fg2 (w, β) =
CFαs

2π
Sε

(
s

µ2

)−ε 1

β

[
− 2

ε

(
CF (1− β)− Nc

2

)
(A.3)

−2CF

(
−w +

wβ

2
+ (1− β)(2− ln(1− w))

)
+Nc

(
1− ln(1− w) +

1− w
1− wβ

)]
,

σ̂fg3 (w, β) =
αs
2π
Sε

(
s

µ2

)−ε [
− 2π δ(1− w)

(
3

2
CF +

(
CF −

Nc

2

)
ln(β)

1− β

)]
. (A.4)

A.2 Quark-anti-quark-gluon

The partonic cross sections in eq. (4.32) read

σ̂ff̄4 (w, β) = 2
αs
2π

(
CF −

Nc

2

)
Sε

(
s

µ2

)−ε [1

ε

2(1− w) + w3β(1− β)

β(1− β)(1− wβ)(1− w(1− β))

+
4− 5w + w2 + w3β(1− β)−

(
2(1− w) + w3β(1− β)

)
ln(1− w)

β(1− β)(1− wβ)(1− w(1− β))

]
, (A.5)
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σ̂ff̄5 (w, β) = 2
αs
2π

(
CF −

Nc

2

)
Sε

(
s

µ2

)−ε [1

ε

w3(1− 2β)

(1− wβ)(1− w(1− β))
(A.6)

−
w(1− 2β)

[
1− w − w2β(1− β) (1− ln(1− w))

]
β(1− β)(1− wβ)(1− w(1− β))

]
.

A.3 Gluon-gluon & tri-gluon

The partonic cross sections in eq. (4.35) read

σ̂gDT (w) = 4
CF αs

2π
Sε

(
s

µ2

)−ε 1− w
w

[
1

ε
+ 3− w − ln(1− w)

]
, (A.7)

σ̂g
D

⊥(1)
1T

(w) = 2
CF αs

2π
Sε

(
s

µ2

)−ε [
− 1

ε

1 + (1− w)2

w
− 6

1− w
w

+
1 + (1− w)2

w
ln(1− w)

]
,

(A.8)

σ̂gH1
(w) = 4

CF αs
2π

Sε

(
s

µ2

)−ε [7− 5w

w
− 2(1− w)

]
, (A.9)

σ̂g1(w, β) =
CF αs

2π
Sε

(
s

µ2

)−ε [1− w + 2wβ(1− β)

ε

+1− w − 4wβ(1− β)− (1− w + 2wβ(1− β)) ln(1− w)

]
, (A.10)

σ̂g2(w, β) =
CF αs

2π
Sε

(
s

µ2

)−ε
(1− 2β)

1− w
w

[
1

ε
(8− 3w − 4β(1− β)) + 24− 11w

−(8− 3w) ln(1− w)− 4β(1− β)(3− w − ln(1− w))

]
, (A.11)

σ̂g3(w, β) =
CF αs

2π
Sε

(
s

µ2

)−ε
(1− 2β)

1− w
w

[
1

ε
(4− w + 4β(1− β)) + 12− 5w

−(4− w) ln(1− w) + 4β(1− β)(2− w − ln(1− w))

]
. (A.12)

B UV counterterms for D
[1]
T (z)

The UV counterterms in eq. (5.4) read

Z
[1]
1,f→f (w) = 2

CFαs
2π

Sε
ε

(
1 + w2

(1− w)+
+

3

2
δ(1− w)

)
, (B.1)

Z
[1]
1,f→g(w) = −4

CFαs
2π

Sε
ε

(
1 + (1− w)2

w

)
, (B.2)

Z
[1]
2,f→fg(w, β) = 2

αs
2π

Sε
ε

(
δ(1− w)

[
(CF −

Nc

2
)

ln(β)

1− β
− 1

2
δUV

]
+ CF

1− 2w − w2

(1− w)+

)
,

(B.3)

Z
[1]
3,f→fg(w, β) = −2

αs
2π

Sε
ε

(
CF

1− β
β
− Nc

2

1

β

)
, (B.4)

Z
[1]

4,f→f ′f̄ ′(w, β) = 2
αs
2π

Sε
ε

(
δff

′
(CF − Nc

2 )(2(1− w) + w3β(1− β))

β(1− β)(1− wβ)(1− w(1− β))
− 4

1− w
w

)
, (B.5)
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Z
[1]

5,f→f ′f̄ ′(w, β) = 2
αs
2π

Sε
ε

δff
′
(CF − Nc

2 )w3(1− 2β)

(1− wβ)(1− w(1− β))
, (B.6)

Z
[1]
6,f→gg(w, β) = 2

CF αs
2π

Sε
ε

(1− w + 2wβ(1− β))) (B.7)

Z
[1]
7,f→gg(w, β) = 2

CF αs
2π

Sε
ε

(1− 2β)
1− w
w

(8− 3w − 4β(1− β)) , (B.8)

Z
[1]
8,f→gg(w, β) = 2

CF αs
2π

Sε
ε

(1− 2β)
1− w
w

(4− w + 4β(1− β)) . (B.9)
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