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ABSTRACT: We study the production of polarized A-hyperons in electron-positron annihi-
lation. We are particularly interested in the transverse-spin dependence of the cross section
for unpolarized incident electron-positron pairs. At high energies this process may be de-
scribed in the collinear twist-3 framework, where the hadronization transition of partons
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QCD factorization for twist-3 observables at next-to-leading order, we derive the evolution
equation for the relevant twist-3 fragmentation matrix element.

KEYwoRrDS: NLO Computations

ARX1v EPRINT: 1810.08645

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP01(2019)111


mailto:lpg10@psu.edu
mailto:zkang@physics.ucla.edu
mailto:pitonyak@lvc.edu
mailto:schlegel@nmsu.edu
mailto:syoshida@lanl.gov
https://arxiv.org/abs/1810.08645
https://doi.org/10.1007/JHEP01(2019)111

Contents

Introduction

Twist-3 fragmentation correlators

2.1 Two-parton correlations
2.1.1 Intrinsic twist-3
2.1.2  Kinematical twist-3

2.2 Dynamical twist-3
2.2.1 Quark-gluon-quark correlations
2.2.2  Quark-anti-quark-gluon correlations
2.2.3 'Tri-gluon correlations

2.3 Equation of motion relations

2.4 Lorentz invariance relations

Observables in single-inclusive annihilation at leading order
3.1 Unpolarized cross section
3.2 Double-longitudinally polarized cross section

3.3 Transverse hadron-spin dependent cross section

Observables in single-inclusive annihilation at NLO
4.1 Unpolarized cross section at NLO
4.2  The double-longitudinally polarized cross section at NLO
4.3 Transverse hadron-spin dependent cross section at NLO
4.3.1 Quark-quark & quark-gluon-quark fragmentation
4.3.2 Quark-anti-quark-gluon fragmentation
4.3.3 Gluon-gluon & tri-gluon fragmentation

Evolution equation for Dr(z)
Conclusions

Transverse hadron-spin partonic cross sections before subtraction
A.1 Quark-quark & quark-gluon-quark

A.2 Quark-anti-quark-gluon

A.3 Gluon-gluon & tri-gluon

B UV counterterms for D%](z)

© 00 N O e e W

10
11
12

12
16
17
17

18
20
22
23
23
27
28

30

34

35
35
35
36

36




1 Introduction

A proper understanding of polarization effects for A-hyperons produced in high-energy
reactions is a longstanding challenge in hadronic physics. In fact, surprisingly large polar-
izations were found in early experiments at Fermi-Lab (along with follow-up measurements)
in pA — AX fixed target processes already 40 years ago [1-6]. Other fixed target mea-
surements of this reaction were reported by the NA48 Collaboration [7] and the HERA-B
Collaboration [8]. At CERN, A polarization was also measured in pp collisions at moderate
center-of-mass (c.m.) energy again close to 40 years ago [9]. Interestingly, the polarization
of A-hyperons was investigated just recently at the LHC by the ATLAS Collaboration [10].
Although only a tiny polarization, essentially consistent with zero, was found in the AT-
LAS measurements in the mid-rapidity region, this experimental pursuit shows that the
polarization of A-hyperons can be studied at the highest LHC energies and could be larger
in different kinematical regions at forward rapidities.

Theoretically, the hadronization of partons into hadrons in high-energy processes is
described in terms of non-perturbative matrix elements of certain QCD operators, which
can be extracted from fits to experimental data. However, this would be a very difficult
task to do on the basis of data taken from pp or pA reactions alone. One reason is that these
processes are mediated purely by the strong force, and therefore the analytical description
is complicated due to many competing effects that enter the QCD factorization formulas
for spin observables in pp or pA reactions. This is comparable to the extraction of parton
distribution functions (PDFs) — one would not want to rely on data only from pp reactions
in order to extract PDFs.

The situation becomes simpler for processes that involve electromagnetic interactions,
such as semi-inclusive deep-inelastic electron-nucleon scattering (SIDIS). Here, polarized
A’s may be produced in ep — eAX or in the equivalent quasi-real photo-production pro-
cesses. Experimental studies of these reactions have been performed by the HERMES
Collaboration [11-13], as well as in neutrino-nucleon scattering by the NOMAD Collabo-
ration [14, 15].

The process of SIDIS at HERMES kinematics is subject to transverse-momentum
dependent (TMD) factorization. Here, intrinsic parton transverse momenta are explicitly
taken into account in the corresponding fragmentation functions (FFs). Studies of these
TMD FFs responsible for A polarization within the TMD factorization framework have
been presented in refs. [16-18]. For more general information on the current theoretical
and experimental status of FFs, we refer the reader to the recent review of ref. [19].

Perhaps the cleanest possible process both experimentally and theoretically to get ac-
cess to polarized A FFs is single-inclusive A production in electron-positron annihilation,
ete”™ — A X. In principle, when calculating this process in perturbative QCD to leading
order, one can directly map out the dependence of the corresponding FFs on the longitudi-
nal momentum fraction z of the the fragmenting parton momentum carried by the hadron.
In this sense, single-inclusive annihilation plays the same role for FF's as inclusive DIS does
for PDFs.

Data on polarized A fragmentation in this reaction has been provided by the OPAL
Collaboration [20] at LEP. This measurement was performed on the Z-pole, i.e., at a c.m.



energy equal to the mass of the Z-boson. While a substantial longitudinal polarization of
the A’s was detected by OPAL, the transverse polarization was found to be zero within
error bars. Interestingly, Belle has measured recently the production of unpolarized A’s [21]
in eTe™ annihilation. In addition, Belle data [22, 23] on the transverse A polarization show
a significant non-zero effect in this process.

In this paper we (re-)investigate the process ete™ — ATX from the point of view
of perturbative QCD and calculate the hard scattering factors to next-to-leading order
(NLO) accuracy. This calculation is particularly challenging for transverse spin observables
because they are suppressed in this process by a factor of 1/@Q compared to the unpolarized
production rate, where @ = /s is the hard scale of the process and /s the c.m. energy of
the incident leptons. As a result, the theoretical description is more involved and is beyond
a simple partonic picture that may be used to understand unpolarized observables.

A suitable framework to describe transverse spin observables in single-inclusive pro-
cesses is the so-called collinear twist-3 formalism [24-35] (see ref. [36] for a recent review),
where one deals with collinear three-parton PDFs and FFs. In this framework, calcula-
tions at LO for various hyperon production processes have been performed in refs. [37-41],
where, in particular, analyses of fragmentation effects involving transversely polarized A’s
were pioneered in refs. [39, 41].

Our motivation for this work is twofold: 1) Only very limited NLO calculations within
the collinear twist-3 framework exist in the literature [42-47]. These studies mostly focused
on NLO corrections for so-called pole contributions of three-parton correlations in the
nucleon that are relevant for naive time-reversal odd (T-odd) observables like single-spin
asymmetries. By contrast, pole contributions do not exist for fragmentation correlators [18,
48, 49] and therefore the calculation is different from a technical standpoint (see, e.g.,
refs. [33, 34]). We expect this feature to persist in NLO calculations for fragmentation
processes. (We note that observables involving nucleon non-pole three-parton correlators
do exist for T-even processes [50-55].) In order to fully understand the NLO dynamics for
fragmentation, we choose to study the simplest process available, ete™ — ATX. 2) If a
future global NLO QCD analysis of the available polarized A data involving data sets from
different experiments is to be performed, a NLO calculation for this process will be needed.

The rest of the paper is organized as follows. In section 2 we will define all of the
relevant soft fragmentation matrix elements. In section 3 we calculate the spin-dependent
cross section to LO. In section 4 we extend the calculation to NLO accuracy, which then
allows us to discuss evolution equations in section 5. We conclude in section 6 and give an
outlook for future work.

2 Twist-3 fragmentation correlators

In this section we will introduce and review all of the fragmentation matrix elements that
are needed for a factorized perturbative QCD (pQCD) twist-3 description of the spin-
dependent cross section for ete™ — A X. This section is to be a self-contained reference
for the reader, with the main calculations for the observable given in sections 3 and 4.
In the following we denote the four-momentum of the A-hyperon that is produced in a
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Figure 1. Diagrammatic representation of two-parton fragmentation correlations.

fragmentation process as P,t” . We will neglect hadron masses as is typical in a pQCD
calculation, and we thus consider P}’L‘ to be a light-like vector, P,f = 0. We introduce an
adjoint light-like vector n* with n? = 0 and P}, - n = 1. Note that these two conditions do
not completely fix the choice of n [56]. However, both P, and n are needed to define what
is meant by the term transverse. If we define the projector

gy’ =g — P'n” — Pnt, (2.1)

then the transverse part of a four-vector a* is defined as ac‘; = g,f;f' a,. In order to discuss
the spin-dependent fragmentation correlators we also need to introduce a four-spin vector
S}'. In the rest frame of the hadron the zeroth component of S} vanishes, while the spatial
components indicate the polarization of the hadron in the rest frame. The normalization
of S,’f is then chosen to be S,% = —1, and we also have Py, - S, = 0.

2.1 Two-parton correlations

Based on a partonic interpretation of the fragmentation process [57, 58], a matrix ele-
ment that describes the hadronization of a parton into a jet of hadrons may be written
as (X|#(0)|0), where ¢ stands for a generic partonic field (quark, anti-quark, or gluon)
and |X) is an arbitrary hadronic multi-particle state which forms an (unobserved) jet. If
one of the hadrons of the jet is detected and its four-momentum Pj and four-spin S} are
measured, we may write instead (P, Sp; X|#(0) |0). In order to implement the soft fragmen-
tation process into a pQCD formula one can view the “square” as a cut forward transition
amplitude and sum over all possible unobserved hadron states. In this way fragmentation
correlators are defined.

2.1.1 Intrinsic twist-3

In single-inclusive high-energy processes, kinematical approximations are applied on the
parton momenta in the factorization of the cross section into a hard partonic cross section
and the non-perturbative correlation functions. For fragmentation, one assumes that the
jet of hadrons that is produced by a highly-energetic parton moves into the same direction
as the parton. To be precise, one approximates the momentum P, of the detected hadron



to be collinear to the initial parton’s momentum p. Since the parton “decays” into many
particles, the detected hadron only carries a fraction z of the initial parton momentum.
Hence, the kinematical approximation on the parton momentum reads

p* ~ =P, (2.2)

The correlator that describes the fragmentation of a quark of flavor ¢ into a hadron
with momentum P, and spin S} is represented in figure la. It can be expressed in terms
of fragmentation functions based on constraints of hermiticity and parity [57, 59, 60],

A%(2) = %ﬁ / (01005 0] :(0) | P X) (PShs X[ 4;(0m) [\ oclf0)  (2.3)

= 2 (P DU - Sua Pirs G1G2) = 3 S H1C)
_MhePhnaSh,ya Dq ( ) — Mh$hT’Y5 Gq (Z) + Mh Eq( )

My Sup 95 () + My L Po ) HO() + My Sy & mh,m%ﬂ;i(z)).

The definition of the correlator A%(z) includes the quark field operator ¢(z) as well as
collinear Wilson lines [a; b] of gluon fields A#(x) that run along the light-like vector n,

[a; ] = Peion Ju b (A (), (2.4)

The Wilson line renders the correlator A?(z) color gauge invariant. Since it is a collinear
Wilson line, it reduces to unity in the so-called light-cone (n-A = 0) gauge of the gluon fields
AF. The Wilson line may be in the fundamental representation (for quark/anti-quark FFs)
or in the adjoint representation (for gluons). The number of colors in eq. (2.3) is denoted
by N. (= 3 in QCD). The second line in eq. (2.3) is a well-known parameterization of
the collinear correlator A4(z), and we rely on the notation established in ref. [56]. (Note
that Spr = Mp(n - Sy).) The first three functions in this parameterization, D, G and
H;, are twist-2 FFs and describe the fragmentation of unpolarized quarks, longitudinally
polarized quarks, and transversely polarized quarks. The structures proportional to the
the hadron mass M, are intrinsic twist-3 fragmentation correlation functions [56]. We note
that the whole purpose of the appearance of the hadron mass M}, in parameterizations like
eq. (2.3) (and subsequent parameterizations below) is to match mass dimensions. Other
scales may be possible as well, resulting in a redefinition of the twist-3 fragmentation
function. In this paper we will focus on the chiral-even functions Dy and Gr only. To
treat the ultraviolet (UV) and infrared (IR) divergences that enter the factorized definitions
of the fragmentation functions [61, 62], we defined the parameterization in arbitrary d =
4 — 2¢ dimensions.

A correlator for intrinsic anti-quark fragmentation may be pictorially represented as
in figure 1b and defined likewise,

¥ / 2(0][00: 0] 45 (0) | P Sh: X) (PSii X | g () [A; 00][0)- (2.5)



The parameterization for A9(z) is the same as the one for AY(z), with
the obvious replacement of the flavor index ¢ by the anti-flavor index ¢.
In addition, the FE and G anti-quark FFs acquire a different sign, i.e.,
(DY, H{, D%, H1, H}) e (+D1, —H{lq, +DZL, +H7, +HY), respectively, and
(GY, G%, E1, E]) — (-GY, —G%, —E1, —EY), respectively.

The correlator for intrinsic gluon fragmentation is shown as a diagram in figure lc.
Mathematically, it can be written as

AI(z) = %/ 2 (0] F™(0) [05 0] | PaSh: X)
<Py X oo Al E™ (n)0)

2e

z nuv
= S5 (gl DI — Spien e 6 (z)
— My, nlrerPnnSir Di(z) — i My, nlite/1PhnSnt G%(z)). (2.6)

The matrix elements in the first line include the gluonic field-strength tensor F#”. The
symbols {x v} and [p v] that appear in the parameterization indicate symmetrization and
antisymmetrization in the indices u and v. As before, the FFs DY and GY are twist-2 ob-
jects that describe the fragmentation of unpolarized and polarized gluons. The structures
proportional to the hadron mass M} are intrinsic twist-3 gluon fragmentation correla-
tion functions.

2.1.2 Kinematical twist-3

A different kind of two-parton fragmentation correlator is specific to twist-3 observables and
takes the transverse motion of the fragmenting partons into account. Such contributions
are called kinematical twist-3 [56]. Instead of the approximation in eq. (2.2), one adds
a transverse parton momentum pp that is considered to be a small deviation from the
otherwise collinear motion of the jet hadrons “in” the parton,

1

In fact, in practice one performs a Taylor expansion of the perturbative hard scattering
subprocess with respect to pr to first order. This expansion is often called the collinear
expansion (see, e.g., ref. [26]). While the zeroth order constitutes the twist-2 contributions,
the first order in this expansion yields the kinematical twist-3 contributions. Since single-
particle inclusive processes are not directly sensitive to this transverse motion, the pp-
dependence will ultimately be integrated out. This leaves us with collinear matrix elements.

The kinematical twist-3 fragmentation correlations for quarks and anti-quarks are writ-
ten in terms of pT—dependent gauge—invariant matrix elements,

dd2 N

O\W[OT]qx >|Phsh, X)(PnSp; X| @5 (An + 20) WTzr][0),  (2.8)

dd 22T o—i2—ipr-
e = L3 [ £ e

x (0pW[or] qj( >|Phsh, X){(PySp; X| g;(An + 27) Wil27]0).  (2.9)



The Wilson line is non-trivial for a TMD correlator, and one may assume a common
“staple-like” form [63-68]. However, the full p; dependence is in fact not needed in the
collinear twist-3 formalism — it is the “pp-weighted” correlator that enters,

A%Li(z) = /dd “pr o A (2, pr)

Z25
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The parameterization in the second line is again taken from ref. [56]. This correlator
may also be depicted as in figure la but with p defined as in eq. (2.7). Note that it
is entirely proportional to the hadron mass M}, which indicates the twist-3 nature of
these correlations.

Also, the anti-quark kinematical twist-3 FFs may be derived from the TMD anti-

quark correlator eq. (2.9) by Aq ’(z) = [d¥2pr pf AY(z, pr). The parameterization is the
same as in eq. (2.10) but with a dlfferent sign for Glr}l), ie. (D#l)’q, L(l) , Hj ( )4 N —
(—I—Df‘T(l)’q, +H; L1)g +H1L( ) ), respectively, and GHE ) —Gi‘T(l)’ )

Lastly, we discuss the kinematical twist-3 contributions for gluons. The gluon TMD
fragmentation correlator can be defined as

dd2 )

x (0|[W[or] FW( )rPhSh, XY (PpSp; X| F™ (An + z0) Wi 2r]|0).

Then, the kinematical twist-3 correlator for gluons is again obtained by a pp-weighting,

AF(z) = [ a2y 809z pr)

2e
_ th< 7 PhnpShD () ( )+ jebnmuy SP Gi_:,(«l)g(Z)

-5 <g;{“e”}1’h"5h + SthetPme) (s (z)> . (2.12)

Each of the intrinsic and kinematic twist-3 FF's depend on the momentum fraction z. The
support of these functions is z € [0,1]. An implicit assumption is that these FFs vanish
for z = 1.

2.2 Dynamical twist-3

Matrix elements involving three partonic fields are called dynamical twist-3 FFs. In general,
such structures are generated through an interference of two amplitudes: one that is a
coherent fragmentation of two partons into a hadron, and another that is the ordinary
one-parton fragmentation. The relevant matrix elements are depicted in figure 2.

Since more than one parton is responsible for the hadronization into the observed
hadron, naturally the matrix element will depend on more than one momentum. To en-

sure momentum conservation, the momenta in the two-parton amplitude are p’, (p — p')



(c) gg fragmentation

Figure 2. Diagrammatic representation of three-parton fragmentation correlations.

while the momentum in the one-parton amplitude is p. As for the other twist-3 effects,
only collinear matrix elements are needed for single-inclusive processes. Hence, we approx-
imate, analogous to eq. (2.2), both partons to move collinearly in the same direction as the
observed hadron,

p'~ =P, pr Z—Pﬁ (2.13)

For later convenience, we may rewrite the second momentum fraction 2’ as 2z’ = z/0.
The collinear dynamical twist-3 matrix elements then depend on the light-cone momentum
fraction z and the parameter 5. It is a well-known property that so-called soft-pole frag-
mentation matrix elements vanish [48]. In other words, if D(z, ) is a generic dynamical
twist-3 fragmentation function, then D(z,5 = 1) = 0 and D(z,8 = 0) = 0. Therefore,
the support properties for D(z,) are 0 < z < 1 and 0 < 8 < 1. The last condition is
equivalent to z < 2’ < oo. It has also been shown in ref. [56] that the derivative with
respect to [ vanishes for § = 1, i.e., (90D(z,5)/08)|g=1 = 0. This proof can be easily
modified to show (9D(z, 3)/08)|s=0 = 0 as well.

2.2.1 Quark-gluon-quark correlations

An important class of dynamical twist-3 FFs are those involving quark-gluon correlations,
cf. figure 2a. This means that a quark and a gluon radiated into the final state of a
particular process together fragment and hadronize. Mathematically, this diagram can be
expressed as follows,

. 1 AN [ dp ag e
qag;p _ - i 2B s B iR (1-8) . 4 .
M) = 5 %ﬁ | S SR e 0l 00(0) [P X)
% (PuShs X| 35(0m) [A; ] igu F™ () [ o0][0)
M, " a * A *
= (S (D) 6 8) + Sl Pis (CF)' (. 5)

# UL (0) = 3SuulPrnfs () G.9) ). (214)



The parameterization in the second equation is taken from ref. [56], where for later conve-
nience we present the complex conjugated correlator. Note that each of the three-parton
FFs are complex due to the lack of a time-reversal constraint [66].

The situation for anti-quark-gluon fragmentation is handled as above for the intrinsic
and kinematical twist-3 cases. The relevant matrix element reads

_ 1 0 dA [e'e] dM Cxp aim -
ag;p _ i£B8,—1L(1-5) . . .
AFE(z,8) = N g/w o /OO I (0] g;(0) [0; 0] | PySh; X)
X (PpSp; X[ [oos p]igu® F™(un) [u; A] ¢i(An) [0). (2.15)

The parameterization of A(}g is similar to the one for A% but with the obvious replacements
(DY, G¥ HE HEY ) — (+ D%, =G +HE, +HJY, ), respectively.

2.2.2 Quark-anti-quark-gluon correlations

The situation where a quark-anti-quark fragmentation amplitude interferes with a one-
gluon amplitude is represented by the diagram in figure 2b. Mathematically, the graph
leads to a correlator A%, defined as

) 1 AN [ dp g _m n
A?«%’{}(z,ﬁ)=N¥ [ [ Sk e 0] focs 0] 7 0) 05 ool | PSi X)

X (PpSp; X[ (igp©[oo; p] gi(pn)), (g5(An) [A; oo]), [0).
(2.16)

The difference between A% and the quark-gluon correlator (2.14) is that within A%
the quark field in the one-quark fragmentation amplitude and the gluon field in the
quark-gluon fragmentation amplitude exchange their role. This implies that the pa-
rameterization of A%‘? is completely analogous to eq. (2.14), subject to the replace-
ments (ﬁngT,@?T,I:I%gU,IQT%QL) — (bg%,é‘}%,ﬁ%%,ﬁ%‘z), respectively. In eq. (2.16)
we wrote explicitly how to understand the trace of the color indices a, b in the
fundamental representation.

Another relevant correlator may be obtained from eq. (2.16) by exchanging the role of
the quark and the anti-quark field,

AT (2 ) = ;i / S / " G idgemiza-s)
; . oo 21 J_ o 2m

x (0] ([o0; 0] F*7(0) [0; o0])pa | PrSh; X) (2.17)
X (P Sn; X| ([005 Al i(An)),, (ign®gj(pun) [ o0]), 10).
The parameterization of this object is again analogous to eq. (2.14), but with different
labels (and, analogously, signs) for the FFs, i.e., we may write (ﬁ}zﬂT, @ngT, I:I%%, ﬁ%gL) —
(ﬁ%qT, —GQF?T, ﬁ%qU, f[%qL), respectively. By comparing the two correlators (2.16) and (2.17),
we find the following symmetry relations,
[)quT(Zaﬂ) = D%QT(Zv 1-8),
G?T(Z’ B) = _G?T(Z’ 1-5),



HL(2,8) = HIG (2,1 8),

In addition, integration of the correlators (2.16) and (2.17) over 3 leads to the same result.
In particular, this means that

1 B 1 o
/ 43 D (2, B) = / 48 DT (=, ). (2.19)
0 0

2.2.3 Tri-gluon correlations

The third species of three-parton twist-3 fragmentation is represented by the diagram in
figure 2c where a two-gluon fragmentation amplitude interferes with a one-gluon amplitude.
This diagram leads to a formula for the antisymmetric tri-gluon correlator,

A%Q;WP(Z’B) _ N21 : ¥/m ;D‘/Oo gje—iéﬂe—i%(l—ﬁ) Z-faﬁv
c —o0 2T J oo 4T

(0] F™%(0) | Py Shs X ) (PrSp: X| F™P (An)igu® F™* (pum) |0)

M - .
— B i€ N (2, 8) - gfie N (21 - )

—giliebn S NE (2, B) | (2.20)

The matrix elements are understood to carry appropriate Wilson lines accompanying the
field-strength tensors F"* in eq. (2.20) [30], but for brevity we omitted the explicit notation
of gauge links. The parameterization in (2.20) is similar to ref. [30] for tri-gluon distribu-
tions in the nucleon. However, the permutation symmetry of the gluon fields for tri-gluon
fragmentation (now that | P, Sh; X)(PrSh; X| is in between the fields of the matrix element)
is such that there are two independent FFs Nl(z, B), Ng(z, B) instead of one like on the
PDF side. Note that the antisymmetric SU(V,) structure constant 87 appears in the
definition of A‘l’,g . In principle, one may also define a similar symmetric tri-gluon correlator
which involves the symmetric structure constant d*?7. However, such a matrix element will
not appear in the single-inclusive spin-dependent eTe™ cross section, and for that reason
we do not further elaborate on the symmetric correlator in this paper. Note, however, that
the symmetric tri-gluon correlator may contribute in pp-collisions [31, 35, 69].

There is a symmetry relation for the correlator A%Y. We could write the gluon bilinear
in the second matrix element of eq. (2.20) as a time-ordered bilinear. In ref. [70] arguments
are given that the time-ordering is irrelevant. This allows us to re-order the gluonic fields
in the second matrix element of (2.20). A subsequent relabeling of the integration variables
i <> X leads to the relation,

AJTHP (2, B) = —AJFHP7 (2,1 — B). (2.21)

Note that the sign in eq. (2.21) originates from an exchange of color indices in the antisym-
metric structure constant f*#7. The symmetry relation (2.21) translates into a relation
directly for the function Ni,

Nl(Z’ﬁ) :_Nl(z’l_ﬂ)' (222)

~10 -



There is no symmetry constraint for the other function Ns. This means means that Ny is
the sum of a symmetric and antisymmetric part, ]\725/“(2', B) = (Na(z, 8) £ No(z,1— 1)) /2,
respectively.

2.3 Equation of motion relations

The aforementioned various twist-3 fragmentation matrix elements are not completely in-
dependent of each other. In fact, one may derive constraints by means of the QCD-equation
of motion (EoM) for Heisenberg field operators within matrix elements.

The QCD EoM for quark fields g(x) reads

iP(x)g(x) —mgq(z) =0, (2.23)

where D (x) = 850" —igAL, () is the well-known covariant derivative in the fundamental
representation. The application of this equation on matrix elements like A9, A% and A%g
leads to the following EoM relations (EoMRs) (cf. ref. [56]),

D;’jz) _ _piWag / a5 SID%y - _GETKz,ﬁ) | (2.2
G2 Dqg @qg
Z(Z) _ Gi-T / dB FTl_gT](Z’ﬁ) 7 (225)

where & (R) indicates the imaginary (real) part of the functions. We note that one can also
derive constraints for the chiral-odd functions H and E in egs. (2.3), (2.10), and (2.14).
Since they do not contribute to the spin-dependent single-inclusive annihilation cross sec-
tion, such constraints are irrelevant for this paper and for brevity we do not list them here.
(They can be found in ref. [56].) We do note, however, that the EoMRs (2.24) and (2.25)
are absolutely essential, as they are necessary for the restoration of gauge invariance of hard
scattering cross sections at twist-3 as well as for the cancellation of infrared divergences.
We will discuss this explicitly in the following sections. Consequently, without egs. (2.24)
and (2.25), the collinear twist-3 formalism used to describe transverse spin observables in
single-inclusive processes would be flawed. In addition, so-called Lorentz invariance rela-
tions (see the next subsection) are needed to establish the frame-independence of the cross
section [56].

There are also EoMRs for gluon FFs. They can be derived from the inhomogeneous
QCD EoM for gluons

Dy () FH"P(2) = —gn Z z)y" 1% q(x), (2.26)

where the covariant derivative DHF(x) = §YP9H — g f*P7 AR (z) in the adjoint repre-
sentation appears along with the gluonic field-strength tensor FH:%(x) = OFAV(x) —
¥ AFi () + g fPY ARP () AV (z) and the color matrix t2,.

- 11 -



(a) Single quark fragmentation (b) Single gluon fragmentation

Figure 3. Fragmentation mechanism in ete™ annihilation for intrinsic and kinematical
contributions.

Application of eq. (2.26) on the matrix elements in AY, A‘g, A% and A}{g yields the
following constraints on twist-3 gluon FF's,

Di®) _ pia(e) - -0 1O (2)
/ dB%N2 Z5)_%[N2](z71_5)_2(1_5)%[1\[1](2’6)

1-5
Z / dB (D) (=, 8), (2.27)
f 9,4
G%Z(z) Gy / a3 R[No](2, 8) — [NZ](Z’i:?_2(1_6)%[Nﬂ(z’ﬁ)
/ ABRDIL) (=, 8) . (2.28)
f 4,4

In the last lines of (2.27) and (2.28) we used the symmetry relation (2.19).

2.4 Lorentz invariance relations

There are also additional constraints, called Lorentz invariance relation (LIRs), derived
in ref. [56], which connect the various twist-3 FFs for quarks. The LIRs relevant for our
calculation are

PHE (1o ) plfoac) -2 [ a9 D%QT ezt (229)

z dz
G%z(z) _ G({Z(z) n (1 _ Zi) G () - / dﬁW' (2.30)

We emphasize that similar LIRs have not been derived so far in the literature for twist-3
FFs of gluons.

3 Observables in single-inclusive annihilation at leading order

After having introduced all relevant twist-3 FF's, we proceed with a discussion on transverse
spin observables in the process eTe™ — A X. We denote the momenta of the lepton and
anti-lepton by [ and I/, respectively, and the momentum of the virtual photon by ¢ =1 +1’.
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The typical scaling variable of this process is 2z, = 2P}, - ¢/s. Another useful variable for
the description of this reaction may be denoted as v = Pj, - I'/Pj, - q. Throughout this
paper we will work in a frame where ¢* has no transverse components, where the term
“transverse” is defined in eq. (2.1). Such a choice is always possible. Consequently, the
lepton and photon momentum vectors can then be decomposed in terms of the variables
zn, U, the hard scale s, and the light-cone momenta Pj, and n as follows,

1 Zh
b= — pH L et
q ) h+2sn,

= Lpr 2 ) st 1
Zh 2
1—w

Zh
' = . P/’ + Evsn“ — 1. (3.1)

The fact that we neglect the lepton masses implies that 12 = —v(1 — v) s.

There are several mechanisms that generate contributions to observables at twist-3,
which involve the soft fragmentation matrix elements discussed in section 2. The ampli-
tudes for intrinsic and kinematical twist-3 contributions to the cross section for fragmenting
quarks and gluons are schematically shown in figure 3. In these diagrams the soft fragmen-
tation of a quark or a gluon is already factored out from the hard scattering amplitudes M.
The fragmenting parton decays into an arbitrary hadronic final state. In addition, other
ny partons carrying momenta rq, ..., rp, may be emitted into the final state in the hard
scattering process. Those momenta are integrated out. Note that the number of emitted
partons is at least ny = 1. Typically, the hard scattering cross sections for fragmenting
quarks and anti-quarks are the same, which is why we will not elaborate on anti-quarks
separately. On the other hand, FFs for quarks and anti-quarks may very well differ.

The dynamical twist-3 amplitudes are shown in figure 4 where two partons at the
same time fragment into a hadron. Those amplitudes are meant to interfere with corre-
sponding amplitudes in figure 3 within a cross section formula. The schematic diagrams
in figures 3, 4 may be used to give a formula for the intrinsic, kinematical and dynamical
twist-3 contributions to the cross section of the eTe™ single-inclusive annihilation process.
Such a formula reads in d = 4 — 2¢ dimensions,

do 1 Z 2\ z
_ ~f =k ~g Zho ) Agipv [ Zh
Ehdd_lp,h /Zhdw<z Tr[a (w) A <w>]+a‘“’(w)<w>A (w)

f:qvq
8&f . Zh
+ > Tr <p> Ay ()]
= op’y, ’p:z}LPh w
95} 2\’ giuvip [ Zh
*(a;;;) L;;ph (w) A7\
1 —1 . oz
[l 5 () prensie(2)
f=a,q

+ ) T [w;jf(w,ﬁ) Agf;f’(’z,ﬁﬂ

f=a,q

n <—ZZ}2L> 599 (w B) AQQ;MVP<Z}L /B) —i—C.C.}) . (32)
w2B(1 - p) ) Treett F w’
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(a) qg fragmentation

(c) gg fragmentation

Figure 4. Fragmentation mechanism in ete™ annihilation for dynamical contributions.

This formula is most easily derived in light-cone gauge with asymmetric boundary condi-
tions for the transverse gluon field components,

n-A(x) =0 and Ap(n-z =+4o00) + Ap(n-o = —o0) =0. (3.3)

In this gauge the fragmentation correlators A%9, A% and AWI%99 gimplify to a large
extent since the Wilson lines reduce to unity and the field-strength tensors are simply
F'(z) = (n-9)A%(x). The first line of (3.2) represents the twist-2 and intrinsic twist-
3 contributions of quarks and gluons to the hadron-spin dependent ete™ cross section.
The second line gives the kinematical twist-3 contributions; the third, fourth and fifth lines
give the dynamical twist-3 contributions of quark-gluon, quark-anti-quark, and gluon-gluon
correlations. We note that if the process under consideration factorizes at twist-3, eq. (3.2)
holds in any gauge. In particular, in Feynman gauge, where F;* = (n-9)A%.—05(n-A)+. . .,
one is guaranteed that the term involving a matrix element with (n - 0)Ar will combine
with the term involving a matrix element with dr(n - A) to give a contribution involving a
gauge-invariant correlator with F;”. This was shown explicitly, e.g., in refs. [28, 30, 34].
The partonic cross sections ¢ in (3.2) are provided by the following formulas,

~q _ (4772)6 S / q 1q

O']z(p) - 4(27_(_)3 Zh S lelz dPSnf M](p) M?, (p)7

ne= ny
o (CT E— /' . ik

g v — gV gn
=2 In,

~qg;p no_ (47%)° - / qg;p NIV

in (pvp) - 4(271’)3 Zhsngllz dPSnf M] (pap)Mz (p)a

=11In,
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~q;p no_ (4m%)° - / qq / gipy*
HPP) = T ars ZQIZ dPS,,, M (p,p') (M)" (p),
np=2In;
00 / (472)¢ /
9g;pvp qg;vp g K
G (p,p') = FICISERE ;212 dPS,,, MIT¥P(p, p') (MTH)" (p).  (3.4)
nf

The scattering amplitudes M%9 and M%999:99 can be calculated perturbatively by means of
the usual Feynman rules with legs that connect to the soft fragmentation matrix elements
being amputated. This amputation results in “external” or “open” Dirac- or Minkowski
indices 4, j or u, v, p, respectively, in the scattering amplitudes in (3.4). In addition, igu®,
along with a suitable color matrix, is factored out of the two-parton fragmentation scatter-
ing amplitudes M99:99:99 and shifted into the definition of the three-parton fragmentation
correlators Ap. The “barred” amplitude MY is defined as M? = M40,

The partonic factors in (3.4) contain information on the leptonic annihilation into a
virtual gauge boson (a photon in this case), and for unpolarized leptons include an average
over the initial lepton helicities. One may also study the situation where one of the leptons
is polarized and consider a lepton spin asymmetry. To summarize, we implicitly use the
following sums or differences in the partonic cross sections in (3.4), generically in the
following form,

(A)G = i Z (MMH (A =+1,N) £ (MM*(A = -1,X)). (3.5)

N==%1

The plus sign indicates the lepton spin average &, and the minus sign the lepton spin
asymmetry Ag. On the other hand, all quantum numbers of unobserved final state partons
are summed, as indicated by »; in (3.4). This sum includes the ny-dimensional Lorentz-
invariant phase space integrals,

dTn
/ dpsnf*H / T 0702 2760 a —p = Ry ), (3.6)

where 67 (a®) = 0(a-n)6(a®) and Ry, = 3, 7.

As already pointed out, we find that within the course of our calculations, light-cone
gauge (3.3) is the preferable gauge for the collinear twist-3 formalism. Not only can the
factorization formula (3.2) be established in a straightforward manner, also the gauge
invariance of the partonic cross sections (3.4) can be tested. The reason for that is: wherever
possible throughout our perturbative calculations we introduce a polarization sum over
gluon polarization vectors of the following form,

p“n + p¥nt
p-n+id

— S (Y ) ) = A (pnik) = g —

A==%1

(3.7)

This polarization sum also appears in the numerator of the gluon propagator. Switching
the parameter x between 0 or 1 allows us to switch between covariant (Feynman) gauge
and light-cone gauge. Eventually in the final result, the parameter s should not appear
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(a) LO quark fragmentation. (b) LO quark-gluon fragmentation.

Figure 5. Leading order diagrams.

in the partonic cross sections (3.4) if they are gauge-invariant. We consider this property
as an important check for our results. While gauge-invariance is ensured in a simple way
for twist-2 partonic cross sections, this is far less obvious for twist-3 partonic factors as
there are many entangled contributions. We will show that gauge-invariant partonic twist-3
factors can only be obtained through application of the EoMRs (2.24) and (2.25).

One may also consider the electromagnetic (e.m.) gauge invariance of the partonic
factors (3.4) as an important check of the validity of the results. In view of this aspect
one might work with a photon propagator in a general covariant gauge, i.e., a photon
propagator with a numerator g"¥ — (1 — ¢)g*q”/q*. Each partonic factor in (3.4) can be
separated into a well-known leptonic tensor Ly, = Tr[y*]v"}'[y5]] and a hadronic tensor
WH such that 6 ~ L, WH. Since ¢" L, = ¢"L,,, = 0 the leptonic part will automatically
guarantee that the dependence on the gauge parameter £ drops out. However, based on
e.m. current conservation for one-photon exchange, one expects that the hadronic tensor
satisfies the condition

Wt =qWH =0. (3.8)

It is straightforward to see already at LO that (3.8) only holds after application of both the
EoMRs (2.24) and (2.25). For this reason we consider the application of (2.24) and (2.25)
as a necessity and throughout this paper we choose to eliminate the intrinsic twist-3 FF's.

Below we proceed with a discussion of the leading order (LO) result without QCD
corrections. The two relevant diagrams are shown in figure 5. We note that since a gluon
polarization sum d*(p,n; k) does not appear in these diagrams, the gauge-invariance of
LO partonic factors is automatically ensured. Also, since there is only one unobserved
quark or anti-quark in the final state at LO, only the partonic cross sections 6% and 6%9
in (3.4) contribute to that order.

3.1 Unpolarized cross section

We first discuss the unpolarized cross section. Since this observable is leading twist, only
the diagram in figure 5a contributes. Also, only the first term in (3.2) is relevant. The
calculation is straightforward, and we find the well-known result

E,do
b =oo (10 +0?—€) Y 3 Df(z) + Oas), (3.9)
d=Lhy, I=aq

with oo = (4722,)°2N.a2,,/(21,52).
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3.2 Double-longitudinally polarized cross section

The double-longitudinal spin asymmetry for €T + e~ — A+ X is equally straightforward.
In the notation (3.5) we find

ApLo=09(1—20) > €5 Gf(z1) + Olas). (3.10)
f=a,q
The symbol Ay in (3.10) indicates that we have also implicitly included the asymmetry
on the hadron spin, (o(S, =1) —o(Sp = —1))/2.
3.3 Transverse hadron-spin dependent cross section

The transverse-spin dependent cross section will receive contributions from both diagrams
in figure 5 (see also refs. [39, 41]). The calculation is straightforward, and we only present

the result:
Ey, do(Sh) AM,
=Y. = o9 (1 —2v) P ' FrSh
Di(z) . 1a b SIDIE — GI% (e, B)
x Y e} ( Tzh — D )’f(Zh)—l—/O dp———+L 1_FBT + O(as)
f=a,q
8Mp up,s,

= —0'0(1—27])@6

1 ~infa _ AF
DI (Di#)’f(zh) - [ ap PR ) +0(a)
f=a.q

— 8Mn 1wp,s 2 D:];(Zh)

= 00(1—20)%?6 h hf;qef%—l—O(as). (3.11)
The first equality in eq. (3.11) clearly shows the various contributions from intrinsic, kine-
matical, and dynamical twist-3 contributions. The EoMR (2.24) is used to eliminate the
function Dr in the second equality. On the other hand, one may choose to eliminate the
kinematical and dynamical twist-3 FF's instead, as is done in the third equality. Again, we
remind the reader that the LO partonic factors in (3.4) are color gauge invariant by them-
selves due to the absence of a gluonic polarizations sum or propagator (3.7). Therefore,
the use of (2.24) is not necessary from the point of view of color gauge invariance at LO.
However, the condition (3.8) is only satisfied through the use of (2.24).

The mere existence of a predicted non-zero single transverse-spin effect generated by
the function DZ(z) in the last line of eq. (3.11) is remarkable. In fact, the corresponding
single transverse nucleon-spin asymmetry in the crossed process of inclusive DIS has been
known to vanish due to time-reversal already in the 1960’s in the one-photon exchange
approximation [71]. In order to generate a non-zero effect for the single transverse nucleon-
spin asymmetry in inclusive, DIS one has to deal with two-photon exchanges, cf. refs. [72—
75]. The non-zero effect in the one-photon approximation in the annihilation process caused
by the intrinsic twist-3 fragmentation function DZ(z) can be attributed to the fact that
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(¢) NLO real diagrams for gluon fragmentation

Figure 6. Next-to-leading order diagrams relevant for 2-parton fragmentation.

fragmentation processes are not constrained by time-reversal [66]. This is due to non-
perturbative interactions in the in and out states in the definition of D%.(x) in eq. (2.3).
On the other hand, a corresponding intrinsic twist-3 parton correlation function in the
nucleon, f#(z), is forbidden by time-reversal [76].

We also note that combining the LIR (2.29) with the EoMR (2.24) allows us to write the
spin-dependent annihilation cross section entirely in terms of dynamical twist-3 functions,

FE) do - _ 4Mj, M PuSh
ﬁ(sh) = 00 (1 — 2v) —2& P fzq:qef (3.12)
/ dw / (1+6(1-w)) 3D~ GI1(.B) | 23(DFFIG)
1-8 (1-p5)?
+ O(a) .

This is true for any twist-3 transverse-spin observable, as first discussed in ref. [56].

4 Observables in single-inclusive annihilation at NLO

In this section we present our results of the partonic factors in eq. (3.4) to NLO accu-
racy. We first focus on the contributions generated by the interference of single-parton
fragmentation amplitudes. The relevant NLO QCD corrections are represented by the
graphs in figure 6. The first group of diagrams in figure 6a displays virtual corrections.
Since these diagrams contain a two-particle final state just like the LO contributions, their
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mathematical form is similar compared to the result found in section 3, up to corrections
of order O(«s). However, the loop integrals in the virtual diagrams carry various sorts
of divergences. The divergences are regulated throughout this paper using dimensional
regularization in d = 4 — 2¢ dimensions with subtractions carried out in the MS scheme.

As mentioned in the previous section, we performed the calculations using a general
gluon propagator/polarization sum as in (3.7) wherever possible. This allows us to perform
important consistency checks on our calculations. One important check is the color gauge-
invariance of the partonic factors (3.4), as they should be independent of the “gauge”
parameter k. We find that only after the application of the EoMRs (2.24) and (2.25), the
parameter x drops out of the final results. This cancellation will be explained in more
detail below.

It is important to note that the form of the light-cone gauge polarization sum (3.7)
forces us to perform integrals in a specific way. Typically, one first has to perform the
integrations over the light-cone components of a generic loop or phase space momentum
k*. Since the light-cone directions are specified by the light-cone momenta Pf; and n*, we
split the d-dimensional integral as

/ddk = /dd—%T/d(k-n)/d(k-Ph). (4.1)

The dimension of the transverse space then regulates divergences. Working with a polar-
ization sum (3.7) and k # 0 induces further spurious light-cone divergences for k-n — 0
in (4.1). Those divergences can be regulated in dimensional regularization as well by means
of the well-known Mandelstam-Leibbrandt prescription [77]. We note that in this approach,
however, it is difficult to identify the nature of the various divergences and to separate, for
instance, ultraviolet (UV) from infrared (IR) divergences. It is also possible to perform the
calculation in this way even if there are no explicit gluon polarizations.

The first term in the polarization sum (3.7) (for k = 0) refers to a calculation that is
performed in Feynman gauge. One can calculate each diagram in dimensional regularization
in this gauge in an alternative way, for example, by calculating the involved Feynman
parameter integrals in a loop diagram directly, or by a direct evaluation of a phase space
integral in an appropriate frame. We performed the calculation for x = 0 for each diagram
in both aforementioned ways, and obtained the same analytical results for xk = 0. This
gives us confidence that our final results are correct.

In Feynman gauge, one can explicitly show that the UV-divergences between the vertex
graph and the self-energy graphs in figure 6a cancel; hence, no direct UV-counterterms are
needed here. One can also show in general that the gauge parameter x drops out in the
virtual diagrams in figure 6a.

The real graphs in figure 6b do contain IR- and collinear divergences that can be
regulated by analytically continuing to negative values of e. Typically, one separates a
collinear divergence through a plus-prescription,

—1l—e _ 1 1 ln(l—w)
(].—U)) 1 ——25(1—’U})+m—5 (HU)++O(82), (42)
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along with the usual definition,

1 1
/ dw f(w) [g(w)]+=/ dw [f(w) = f(1)] g(w) . (4.3)
0 0

Unlike IR singularities that show up as 1/e2-poles and cancel between real and virtual
diagrams, 1/e collinear divergences in a first step remain in NLO cross sections. For both
the twist-2 and twist-3 observable analyzed in the following sections, we will follow the
subtraction procedure of Collins [62] as our method to remove these collinear singularities
and obtain finite results.

4.1 Unpolarized cross section at NLO

As a test case for our calculation of the interference effects of single-parton fragmentation
amplitudes shown in figure 6, we use the twist-2 unpolarized cross section. We find that all
types of partonic cross sections that contribute at NLO in figures 6a, 6b, 6¢ are individually
gauge invariant, as expected. The full result takes the following form [62],

Eth' 2 2
— = o9 ((1 —v) 4w
e ATy
Udw . z . z
2 —2¢ | ALf flol( Zh ~1; [0]{ #h
54 [ st (2) oo (2)]
+opdv(1—0)
X Z e?c %Uw_za [&g{(w) D{[O] <ZL) —l—&z‘?(w) Di’[o] (Zh)]
f=a.q Eh
—o0((1=v)* +0% =€) 3 ¢} Di(an) +0(o3). (4.4)
f=a,q
where
—e 2
~Lif —(1— 1— Cr as 5 _1f 14w 3 1 —
op, (w) = (1 —¢)é(1 —w) + - Se 2 E (1—w)++25( w)
om? In(1 — w) oo 1= 3w+ 3w?
1— 34T S G T |
+4( w)( 3+ 3 )+< - >+( +w*) + i—w). , (4.5)
2f N Ego Craso (s 7 [3:, 3 — 2w+ w?
aDl(w)— 2(5(1 w) + o= S. ,u2> [4(5(1 w) + 20 —w) | (4.6)
1 Craog s\ S 11+(1—-w)? 14+(1—-w)?
A = s (5) [P w0 w ] G
s Cro 5\ °[6— 6w+ w?
Fow) = T, <M> [m} (48)

The functions Dgf ’g)[n](z) in (4.4) are n-loop renormalized FFs. The color factor Cr is
the usual Cr = (N2 —1)/(2N,), with N, = 3 the number of colors. The renormalization
scale y also appears through the dimensional regularization approach, along with the MS
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factor S; = (47)%/T(1 — ¢) from ref. [62]. Note that there are two structures in (4.4), one
proportional to (1—v)2+v?, and the other to 4v(1—wv). Those structures can be attributed
to different structure functions of the unpolarized cross section.

The 1/e-terms in (4.5) and (4.7) are the well-known collinear singularities that one
encounters in NLO calculations, and they arise in the first and second terms of eq. (4.4).
The last term in eq. (4.4) is the “subtraction term” designed to remove these 1/e-poles [62],
if a given process factorizes. The function Df m(z) in that term takes the form [62],

not, 2
oft) = pifj(a+ 3 / W 20 () D), (19)

where D/!! }( ) is the one-loop bare FF, and

1(0)
1] _ _CFOéS Se 1+ w? § B
Z;" p(w) = P <(1 —w)s + 5 (1l —w) ), (4.10)
1] B _CFocs Se (14 (1 —w)?
Zfﬁg( w) = 5 - ( " ) (4.11)

We note that in massless QCD, D‘IZE)])(Z) involves scaleless kr-integrals and therefore van-
ishes in dimensional regularization.

The last term in eq. (4.4), after one inserts (4.9), cancels the 1/e-poles in (4.5) and (4.7).
We note that the cancellation of the collinear poles of the NLO cross section through this
procedure is a necessary condition for factorization of the observable. That is, the collinear
singularities of the NLO cross section (without a subtraction term) must match those from
a direct NLO calculation of the correlator. If only one of the collinear singularities in the
NLO (unsubtracted) partonic cross sections does not have a corresponding divergence in
the correlator, then this mismatch directly proves the observable does not factorize.

The final result for the unpolarized cross section in the limit € — 0 is

E,doc  2N.?2,
g {a-v24) ¥ @l
f=4,q

+((1—v)* +27)

% oot () oot ()

5 3 Broot () a3} o

where the finite partonic cross sections at order O(as) read,

R Cr as 3 s 9 2r?
bl = S o (m () -3+ %)

+ (mil__ww)x (14 w?) + &j;‘)’; In (w2:2> - M} , (4.13)
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Cros

& (w) = £, (4.14)
Qs —w)? S —w

&9 (w) = C;r [1 + (lw ) <w2(1 _ w)/ﬂ) _ 2(111))] 7 (4.15)

e = Sy A0 e

These results are in agreement with earlier works (see refs. [78, 79] and references therein).
Throughout the paper we will denote partonic cross sections before collinear divergences
are subtracted by 6’s and finite partonic cross sections after subtraction by ¢’s.

Note that the partonic cross sections (4.13), (4.15) depend on the arbitrary renormal-
ization scale p. The fact that the physical, measurable cross section Epdo/ d3]3h does not
depend on g allows one to deduce an evolution equation for the unpolarized FF,

0 do
Ty <Ehd3ﬁh) =0 (4.17)

= Tomu2 8lnu Z / f—>f' w) Dy <w;,u>, (4.18)

where the well-known LO splitting functions P}L s(w) and P}L ,(w) are given by
Cra 1+ w? 3
P (w) = ZE2 S5(1— 4.1

[1] o Cros {1+ (1 — w)2
Pyog(w) = 27 ( w '

The expression in eq. (4.18) is the standard LO DGLAP-evolution equation. The reason for
the detailed discussion of the well-known twist-2 unpolarized cross section is that we will
use similar strategies for the more complicated and not as well-known twist-3 observables.

4.2 The double-longitudinally polarized cross section at NLO

For completeness we also include a discussion of the double-longitudinally polarized cross
section (3.10), extended to NLO. The calculation for this twist-2 observable is similar to the
one discussed in the previous section, but with two distinctions: firstly, we have to deal with
the Dirac-matrix ~y5 in d dimensions. This requires a special procedure, and throughout this
paper we apply the so-called HVBM-scheme [80, 81]. Secondly, it is customary to include
a term +4e(1 — w) in the polarized renormalization factor AZ% = Z99 4+ 4Cpe(1 — w) in
order to preserve helicity conservation at the quark-gluon vertex in d dimensions [78, 79].
Otherwise, all comments made in the previous section on the NLO unpolarized cross section
also apply here.

We find for the double-longitudinal spin asymmetry in d = 4 dimensions after inclusion
of the subtraction graphs,

d .
Appo = Z ef/ v [AC& )G{(Z;,u) +Ac%1(w)G§’<'Z;;u>} +0(a?),

f=a,4
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with the finite polarized partonic cross sections,

A@él (w) = 6(1 —w) + Cg:s [5(1 —w) <2ln (8> B % + 23”2)

/1/2
+ <ln§1__ww)>+ (1+w?) + &ji‘i In <w2:2) - 2;(121_” ;)102], (4.20)
A, (w) = CQF: [(2 —w)ln <w2(1 - w):2> 4+ 3w} . (4.21)

Again, our calculation agrees with refs. [78, 79].

4.3 Transverse hadron-spin dependent cross section at NLO

We are now in a position to analyze the twist-3 observables. In this section we discuss the
spin-dependent cross section for unpolarized leptons and a transversely polarized hadron.
Note that we omit the subtraction graphs in the calculations that follow, and instead
postpone a discussion of this term until section 5.

4.3.1 Quark-quark & quark-gluon-quark fragmentation

Intrinsic & kinematical twist-3. We first focus on the intrinsic and kinematical twist-
3 contributions from quarks. Like the twist-2 observables, the intrinsic and kinemati-
cal twist-3 partonic cross sections at NLO can be calculated in a straightforward fashion
from the same diagrams in figure 6. Since we have already noticed the importance of the
EoMR (2.24) for the LO results, we also apply this relation immediately at NLO and re-
place the intrinsic twist-3 functions with kinematical and dynamical twist-3 functions. We
find the following results for the spin-dependent cross section,

intr&ki 1
BLAPSS)  n, 5 g [
dd—lPh Zh S

ef —Sw
_ Zn w
f=q,q

A L(1),f[0] [ #n
(Dl ()
1T

w

1 i HFI0l  Afgloly, 2
~f S[Dpr- — Ger 132, B)
() /O ap .

1 Afalol  AfglOly, zn
+&£T(w)/0 s MDrr 1G%T ](w’5)>+0(a§), (4.22)

where we refrain from giving the explicit form of the relevant partonic cross sections at this

point but rather wait until the dynamical graphs are included. We mention again that the
superscript “[0]” indicates LO renormalized functions.

Note that the loop diagrams in figure 6a generate an imaginary part. As a consequence,
there are also contributions to intrinsic- and kinematical twist-3 parts that are generated
by the FFs Gr and GlLT(l). By virtue of (2.25) we can eliminate these functions in favor of
the real parts of the quark-gluon-quark FFs (15 rr—G Fr) in (4.22). We find that the vertex
diagram in figure 6a is gauge invariant, i.e., the dependence on the parameter x, introduced
in eq. (3.7), drops out. This is different for the real diagrams in figure 6b where we find
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an explicit gauge dependence in both partonic factors for the intrinsic and kinematical
twist-3 functions D% and D#l)’q before application of (2.24). After application of (2.24),
the partonic cross sections can be combined, and we find that the gauge-dependence for
the kinematical twist-3 function Df‘T(l)’q drops out in eq. (A.1) of appendix A. However,
there is a remaining gauge dependence in 6p,, of the following form,

o) = e —a-w) (5T )+ 1R - (M) we-w

+w(6 — w)}] , (4.23)

where the dots indicate the gauge-independent part of 6p,.. The explicit gauge dependence
must cancel a corresponding gauge dependence in the ggq fragmentation. We also mention
that the 1/e2-poles cancel individually (except for the gauge-dependent ones in (4.23)) for
each partonic cross section even before application of (2.24).

Dynamical twist-3. Of course we expect also contributions from dynamical ggq twist-3
fragmentation at NLO. We first analyze the virtual loop corrections shown in figure 7.
Again, we emphasize that we calculated the loops both in Feynman gauge (k = 0) and
light-cone gauge (k = 1), see eq. (3.7). As before, we use dimensional regularization to
deal with UV, IR, collinear divergences, as well as light-cone divergences in light-cone
gauge upon application of the Mandelstam-Leibbrandt prescription [77]. We find that
the sum of all loop diagrams in figure 7 is gauge-invariant — while individual diagrams
yield very different expressions in both gauges. This is a very important feature as it
concerns the subtraction of UV-divergences by means of renormalization counterterms. If
the sum of all diagrams in figure 7 is gauge-invariant, so is its UV behavior. Consequently,
also the sum of all counterterms derived from a renormalized QCD Lagrangian must be
gauge-invariant. Hence, we may use the well-known counterterms in covariant gauge, see,
e.g., [62]. We apply counterterms for the self-energy diagrams in figure 7a and 7b, and the
vertex graphs in figure 7c. Self-energy corrections for external lines (the last two diagrams
in figure 7a and 7b) vanish in dimensional regularization as they are given by massless
integrals. However, counterterms for those diagrams must be included, and they come
with a well-known factor 1/2 [82]. Similar to the twist-2 observables, the counterterms
for the last two diagrams in figure 7a cancel with that for the first vertex correction in
figure 7c. The remaining MS UV counterterm has the following form,

s S [HN 1 f} as Se

2 €

Ve g = ———dyv. (4.24)
We explicitly checked that it is indeed gauge-invariant, i.e., there is no dependence on a
gauge-parameter { in covariant gauge. Also, ns is the number of active flavors, inherited
from the counterterm for the last self-energy graph in figure 7b. The loops in figure 7
generate imaginary parts as well. As in the case of quark-quark fragmentation, this induces
an additional sensitivity on the real parts of the dynamical twist-3 FFs.

We also need to include the radiative corrections from real diagrams shown in figure 8.
It turns out that this class of corrections is not gauge-invariant, i.e., we find different
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aq-p q-p

(a) Self-energy corrections to the quark lines

g9-p
(d) Box diagram

Figure 7. Virtual one-loop diagrams.

results in Feynman gauge and light-cone gauge. Collinear and IR-divergences are handled
by dimensional regularization, and we use eq. (4.2) to introduce the plus-prescription (4.3).
We again find that 1/2-poles cancels when adding virtual and real diagrams.

The qgq fragmentation channel assumes the following form at NLO,

Ep do®™ AMy, g td
L_,(Sh) =09 (1 —2v) 72 el PrSh Z e% —Igw_%
Al “h f=aq Y
1 A %[Bfg[o] . GAfg[O}](@ B)
< [ as (o%gg(w,m e
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Figure 8. NLO corrections from real gluon radiation to quark-gluon fragmentation.

23[DIF") (2, 8)

Aqgg w’
w0 =51 —gp
Afalol _ Afglolyczn

where again we refrain from stating the explicit form of the partonic cross sections until
eq. (4.25) is added to eq. (4.22). We note that the same gauge dependence as in eq. (4.23)
— but with a different sign — appears in 6{’?. Hence, the gauge dependence cancels when
adding all twist-3 contributions. We also note that the 1/e-pole in the partonic cross
sections generated by imaginary parts of loop integrals, aé of (4.22) and 6497 of (4.25),

cancel when added together.

Result for quark-quark & quark-gluon-quark fragmentation at NLO. The
full result for quark-quark and quark-gluon-quark fragmentation is given by the sum of
eq. (4.22) and eq. (4.25),

Ej, dgdadagd( g 4M, Ydw . [*
h d71*(h)_ (1_2)2815 UPhShZef S /dﬁ (4.26)
d Ph h f=a,3 Zh 0
Afal0]  Afgl0ly 2
. 0.710] {2k . SDpr — Gy |32, B)
X<U£1i<1> []( >+ fgw,ﬁ) FT 1_5
fal0ly/ 2 Afal0]  Afgl0ly, 2y
fg [D ](E?/B) Afg §R[l)FT - GFT ](ﬁvﬂ)
+U2 (wvﬁ) (1 _6)2 (w ﬁ) 1 _5
+0(a),

where the gauge-invariant partonic cross sections are given in appendix A, egs. (A.1)—
(A.4). Note that there are no divergences as 5 — 1 because of the support properties of
the fragmentation correlators discussed before 2.2.1.

As with the LO result (cf. eq. (3.12)), we can replace the kinematical twist-3 FF
DY in (4.26) by combining both the EoMR (2.24) and the LIR (2.29). This leads to
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the following equations [56],

d Dl(l),q( ) = 1 /ldﬁ [%[b%gT _G%}T](Zaﬁ)

el 2) —
dz1T z

1= 3 (- 32 (4.27)

H%m%m,@)] |
0
_D#U”@)z-illiflfdﬁ[gﬂﬂ%ﬁ_G%ﬂQ}ﬁ)+2%u¥%K;¢”].M2&

1-p 1-p)?
In the second line, the usual boundary condition Df‘T(l)’q(z = 1) = 0 was applied.

Since the function D#l)’q appears convoluted under an integral in (4.26), the replace-
ment of it is a bit more subtle than at LO (3.12). We first realize that we need to split the

partonic cross section w_Z_QE&DLu) (w) in eq. (A.1) into two parts, one that is proportional
1T

to the delta function §(1 — w), and one that is proportional to plus distributions,

w727286’Dl(1) (w) = 656(1 —w) +w 2 %6, (w). (4.29)
1T

The part proportional to §(1 — w) requires the replacement (4.28), while for the other part
we need to integrate by parts and apply both identities (4.28) and (4.27). We find after a
straightforward calculation,

1 1 1

dw o . J_(l)f(Zh) / dw/ N
—w “a w)D7 | — ) = — dg ¥ (w 4.30
| vl D () = [ [Lass (430)

S[Df — GG 8) | SIDEICGE. )
X + 2 3 ,
1-p (1-5)

where 3 (w) is related to the principal function of w2264, (w) — with the plus prescrip-

tion removed in (A.1). Eventually, we find,

. B Cr ag s\ ° 111 1 .
Yi(w) =242 o Se </$2> {—8[w+2+21n(1—w)—ln(w)]+5L12(w)

+1In%(1 —w) + ( +4ln(w)+;) In(1 — w)

+<4 ~In(w) + 2) In(w) — g - 7;2} (4.31)

One may readily replace the kinematical twist-3 contributions in (4.26) with dynamical
functions by means of (4.30), and, as a result, add the function w!'*23%, (w) in (4.31) to
the partonic cross sections Ff{g(w,ﬂ) and 6gg(w,6) in egs. (A.2), (A.3). Thus, one can
obtain a result solely in terms of quark-gluon-quark correlators. In fact, these dynamical
functions are what one probes in a measurement of this observable, rather than the often
discussed polarizing FF D1z [16-18)].

4.3.2 Quark-anti-quark-gluon fragmentation

In the same way we can study another reaction channel induced by quark/anti-quark-gluon
fragmentation. The relevant diagrams are shown in figure 9 and they interfere with the
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Figure 10. NLO corrections from quark radiation to gluon-gluon fragmentation.

gluon fragmentation diagrams in figure 6¢c. We find that the contributions coming from the
first and second diagram in figure 9 cancel when summed. The other diagrams contribute
and the resulting cross section acquires the following form,

Eh dO'qqg(Sh) 41%}1 ll P S / /1
—_ = 1—2v h=h E 2 d 4.32
dd_lph 00( ) zhs 0 ﬂ ( 3 )

f=a,q
(o808 SDE(2,5) + ! 5) SIGH) (2.5) ) + 0(a),

where the partonic cross sections are given in appendix A, egs. (A.5), (A.6). We again
find that the x dependence completely drops out in the partonic cross sections 64 and
05. Also, we note that 64 is symmetric and 65 antisymmetric under a transformation 8 —
1—f. This means that quark/anti-quark/gluon and anti-quark/quark/gluon fragmentation
contribute equally.

4.3.3 Gluon-gluon & tri-gluon fragmentation

At last we calculate the remaining contributions from two-gluon and tri-gluon fragmenta-
tion. The first contributions originate from the squared sum of the diagrams in figure 6¢
while the latter is generated from an interference of the diagrams in figure 10 with those in
figure 6¢c. We note that none of these diagrams involves a gluon propagator or polarization
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sum. Hence, we cannot explicitly check that the x-dependence vanishes, as we did for the
other channels. Nonetheless we calculated the partonic cross sections using two different
methods, as discussed below eq. (4.1), and find exact agreement for each of the perturbative
cross sections.

Intrinsic & kinematical twist-3 for gluons. The contributions from gluon intrinsic-
and kinematical twist-3 functions read

E: d intr&kin AM 1 d
ndo _ (Sh) oo (1 — 20) —1 h U PrSh 0 / %wds (4.33)
dd—lph Zh s2 Zh

~ 1(1),9[0] { %h ~ 1),9[0] [ Zh
(3,00 (2 oy 00 (1

1 e nral0ly/ zn _ a0l za
39, (w) / ap 230 16 5) 12_<16 ) SN (%, 8)

G Z/dﬁwf“o( ,B>> 0(0?).

f=a,q

where again we have already applied the EoMR (2.27) for gluons in order to eliminate the
intrinsic twist-3 gluon function D(z). In addition, we introduced a notation for the sum
of fractional active quark charges, @ =25 q e?], and Ng is the antisymmetric combination
N¢(z,8) = (Na(z,8) — Na(z,1 — 8))/2. As before, we refrain from explicitly stating the
relevant partonic cross sections at this point until the dynamical graphs are included.

Dynamical twist-3 for gluons. The contribution from tri-gluon fragmentation takes
the following form,

Ej, do®™(S),) _ 4 My, ' PuSh
dd——lﬁh_%(l_%)zm ©
Ld Ny,
< [ L / a3 <0Ns(w B)W (4.34)
) SN2, B) J[Nl[”]](%,ﬂ)) )
g w _ 1w 7
+O-N2ﬂ(waﬁ) /82( /8) + ( 5) 52(1 _ 6)2 + O(as)

with N3%(z,8) = (Na(z,8) + Na(z,1 — §))/2 the symmetric and antisymmetric part of
Nz(z, B). Note again that there are no divergences as 8 — 0 or 1 because of the support
properties of the fragmentation correlators discussed before 2.2.1.

Result for the combined gg & ggg channel. The full result for gluon-gluon and tri-
gluon fragmentation is given by the sum of eq. (4.33) and eq. (4.34),

E» dogs&ess (g AM 1
h O'd_l _ ( h) _ (1 _ % ) h ll Py S, 9 / 6/ dﬁ (435)
de=1p, zp, 52 0

~ 1(1), Zh ~ s Zh
. <a;;#1> () D () o o, () 11050 (2
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+67(w, B) + 69 (w, B)

B2(1 - B)? B2(1 - B)?
R SNz g 1 N
1oy, ) o DL s () ST QD ]<,6> |
B1-p2  Cp P = T2\ w

where the explicit form of the partonic cross sections is given in appendix A,
egs. (A.7)-(A.12).

Note that the collinear divergence for 6%1 (w) cancels. Hence, it does not appear in
the evolution of the twist-3 fragmentation functions at LO. Also, we mention that the
collinear pole for the kinematical gluon twist-3 function D#l)’g is just the usual twist-2
qg-splitting function. We conjecture that the term in (4.35) generated by D#l)’g can be
converted to ggg- and qgg dynamical twist-3 functions by means of gluon LIRs, just like
we did in (4.30). Unfortunately, LIRs for gluons have not been derived in the literature,
to the best of our knowledge. We leave this subject as future work. In addition, note
that 67 is symmetric under 5 — 1 — 3, while 63,3 are antisymmetric. The last term
in (4.35) is proportional to g[f)?ﬁTL which is generated non-perturbatively by the gluon

QCD EoMR (2.27). Note the difference with the term proportional to S[f)%qT] in (4.32).

The partonic cross sections ¢4, in (4.35) and FL{JE in (4.32) carry different color factors
T

and also different charge factors. Nevertheless, in principle, they may be combined when
adding all twist-3 contributions (4.26), (4.32) and (4.35).

5 Evolution equation for Dr(z)

In section 4 we calculated terms relevant for the transverse-spin dependent ete™ — ATX
cross section at NLO accuracy, where we have shown how to obtain gauge-invariant partonic
cross sections free of 1/e2-poles. We can collect these results and write down the total cross

section as

Erdo(Sy)

—— = (4.26) + (4.32) + (4.35

rig = (20 +(132) + (435)

fl
AMy, 2D
— a9 (1 — 20) —— el PrSh Ze}MJrO(ag), (5.1)

zn 8 Pyt zn

where 0¢ = (47%2,)°2N.02,,/(21,5%). The last term in eq. (5.1), where the function Dgi;m (2)
is the one-loop renormalized intrinsic FF, is the subtraction term that should remove the
collinear divergences in the partonic cross sections (A.1)—(A.12). This is in full analogy to
the unpolarized case (cf. eq. (4.4)). Note again, due to the EoMR (2.24) and LIR (2.29),
the function D{ﬂ(z) can be written as

[ Hf9 Afg
Dj(z) = (D#”’f@) R = /3)) (52)

[y
L qw 1 51 — w)S Afg _Gvfg z ) NI 12
[ [Las (14601 —w)) 1[1_9? #E.8) 2 ([IDEE];M) 5.3)
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Unfortunately, the result for Dgﬂm(z) has not been derived in the literature so far, to the
best of our knowledge. There have only been NLO calculations of chiral-odd collinear
twist-3 FFs [83-85] that are relevant for unpolarized hadrons as well as Df‘T(l)(z) for trans-
verse polarization [84]. The derivation of D:];m(z) (along with the renormalization of the
dynamical twist-3 FFs in eq. (5.3)) needed for the subtraction term in eq. (5.1) is beyond
the scope of this paper and will be the subject of future work.

However, if collinear twist-3 factorization holds for ete™ — ATX, we can read off
the renormalization counterterms from the unsubtracted partonic cross sections (A.1)—
(A.3), (A.5)-(A.6), and (A.7)-(A.12). The one-loop renormalized intrinsic FF then takes

the form,

DI (2) = DG (2)

dw 1] P10 (2 1 1(1)g00 { #
w2 [0 [as 20 DO 2) 4 20 DO 2)
2

J[ng[o] Gfg[o}]( .B) 2%[f)f9[0]]( .B)
T Z%”—n‘g(w’ﬁ) = 1-8 + Zig FEACNE) (1Ff 3)
B o)
f/_ / 7/
S s sl (2)]
f/_ / _/
SN, s[0] ,,8 Na[O} ,,8
+Z€£11”—>gg(w A ;2?1 —(wﬁ) ! +Z£1}—>gg(w 8) [ﬁ2i (%) :
x N[O} z
2 o) S | o4

where the UV counterterms Z can be found in appendix B, eqgs. (B.1)—(B.9). We again
emphasize that we have simply postulated the form of D%m(z), and this is not a proof of
twist-3 factorization at one loop for this process. Rather, one would have to directly calcu-
late Dg?m (z) and confirm eq. (5.4) and the UV counterterms (B.1)—(B.9). Nevertheless, we
proceed with the evaluation of eq. (5.1) to determine the cross section for ete™ — AT X
at NLO in d = 4 dimensions,

En dO'(Sh) _ 8Mp N, aem (1 - 2 ll Py Sy, Z / dw/ dg

d3p, (zns2)2 P2
S[DT9. — Gl @ g,
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+ (e w0) SO (22, 5:) + e (w,0) S1GH1 (2,51 )
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1T
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+0(a2), (5.5)

where the finite partonic cross sections in the MS scheme are given by

2 2
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From this result, one can derive the LO evolution equation for D%(z) as
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(5.12)
(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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The expressions in egs. (5.5), (5.18) are new from this work and are our main results.

6 Conclusions

In this paper we studied the production of polarized A-hyperons in electron-positron an-
nihilation. We performed the perturbative QCD computations for the transverse-spin
dependent differential cross section at both leading (LO) and next-to-leading order (NLO).
Our leading-order result is given in eq. (3.11), which receives contributions from intrinsic,
kinematic, and dynamic twist-3 fragmentation correlators. With the help of equation-
of-motion relations, we find that the final result can be expressed in terms of a single
intrinsic twist-3 fragmentation correlator D7.(z), not the kinematical function Dqu(z) that
one might have naively expected based on work in the Generalized Parton Model [16, 17].
Thus, the sizable transverse polarization measured in such a process indicates directly the
size of D%.(z). The next-to-leading order expression for the cross section involving hard
partonic cross sections and interference terms is given in eq. (5.5). Assuming that collinear
twist-3 factorization holds in this process, we derived the evolution equation in eq. (5.18)
for the intrinsic twist-3 FF DZ(z). The expressions in egs. (5.5), (5.18) are the main re-
sults of this work. As a cross-check of the collinear twist-3 factorization, an independent
computation for the evolution equation of D% (z) is desirable. We will pursue such a study
in a future publication, where we plan to derive such an evolution equation directly from
the operator definition of D7.(z). Another future research direction we are also pursuing
at the moment is to study other related spin observables, such as the longitudinal lepton
— transverse hadron spin asymmetry. The techniques developed in our paper would be
very useful in this regard. Last but not least, the phenomenology at NLO would be very
interesting though it could be quite challenging.
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A Transverse hadron-spin partonic cross sections before subtraction

In this appendix we give the partonic cross sections for the transverse-hadron spin observ-
able before the subtraction of collinear divergences (see the discussion in section 5).

A.1 Quark-quark & quark-gluon-quark

The partonic cross sections in eq. (4.26) read

6?@u>=2&11@+4§&<;>% (A2)
AT PR PR
~{oaw [you -0+ ZOTEEO) ],
) - Lo () S ]-2 (era-p-F) (A3)
~20r (w5 4 (1= B2~ In(1 - )
SR
{7 (w, B) = ;‘—;SE <:2> B [— 27 (1 — w) (g Cr + (OF - A;) ﬂ%) ] . (A.4)

A.2 Quark-anti-quark-gluon

The partonic cross sections in eq. (4.32) read

T w.8) = 2% (op— Neg (2 [1 20 —w) +w5(1 - 5)
P =252 (cr=5)5:(3) |25 a0 s et =5
N 4—5w+w? +wB(l— ) — (2(1 —w) +w*B(1 — B)) In(1 — w)

BA=p)1—-wp)(l —w(l-p))

, (A5)
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26)

w8y = 29 (cp— Nelg (£} 1w
Wi =232(cr-5)s () [Famemi—aa—a) .
w1l -28)[1—w—w?B(1-p)(1-In(1 - w))]}
B =pB)A—wh)(1—wl-p)) '
A.3 Gluon-gluon & tri-gluon
The partonic cross sections in eq. (4.35) read
Cr s 1wl
69, (w) = 4 ;TO‘ S. <:2> Tw L +3—w—In(l— w)} : (A7)
R Cr as 11+ (1-w)? 11— 1+ (1 —w)?
O'glLT(U( w) = ;Ta a<:2> C (w w) -6 ww+ ( w) In(1 —w)|,
(A.8)
CFras c[7-5
69, (w) = 4 12““:‘ S. (:2) — Yo —w)], (A.9)
. Cr as - w+2wl(l-7
+1l—w—4wp(l—-3)— (1 —w+2wh(l—p4))In(1 - w)] , (A.10)
53w, B) = C;O‘S S. (;’2)_ (1-28) 1_Tw [i (8 — 3w —48(1 — B)) + 24 — 11w
—(8 =3w)In(l —w) —48(1 - B)(3 —w —In(1 — w))] : (A.11)
64(w, B) = ngo‘s S. (;) (1- 25)1_Tw [i(zl —w+48(1 - B)) + 12 — 5w
—(4—w)1n(1—w)—|—46(1—ﬂ)(Q—w—ln(l—w))] . (A.12)
B UV counterterms for Dg,}](z)
The UV counterterms in eq. (5.4) read
Croag Se 14 w? 3
Zh p(w) = 2 ;T - <(1 —ot 5001~ w)> : (B.1)
[1] . CFOés SE 1+ (1 —’LU)2
Zy g (w) = —4 5 5< " > : (B.2)
s Se Ne. 1 1 1—2w—w?
Z2[ﬂ‘—>fg(w7/3) = 2%? (5(1 —w) [(CF - 2)11138’? - 25UV] + CF(l_ww)iU) :
(B.3)
1] oas S, 1-8 N:.1
2 (w0, 8) = 202 % <0F L 2/3> | (B.4)
0 o Se (6 (Cr = T2 —w) +wB(1-B)  1-w
2y peten) =252 (R ey ) ©®9
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as Se 617 (Cr — ) wi(1 - 2B)

s i) = 2 s T wB) - w(l - ) (B6)
2 o(w.8) = 25255 (1 w1 - ) (B.7)
2 0 8) = 29595 1 9 T (5 g ap( - ) B3)
2w, 8) = 252 % (9 17 (4t ap1 - ) (B.9)
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