
Physics Letters B 793 (2019) 41–47
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Soft drop groomed jet angularities at the LHC

Zhong-Bo Kang a,b,c, Kyle Lee d,e,∗, Xiaohui Liu f, Felix Ringer g

a Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
b Mani L. Bhaumik Institute for Theoretical Physics, University of California, Los Angeles, CA 90095, USA
c Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
d C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
e Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
f Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
g Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 January 2019
Received in revised form 31 March 2019
Accepted 8 April 2019
Available online 11 April 2019
Editor: A. Ringwald

Jet angularities are a class of jet substructure observables where a continuous parameter is introduced in 
order to interpolate between different classic observables such as the jet mass and jet broadening. We 
consider jet angularities measured on an inclusive jet sample at the LHC where the soft drop grooming 
procedure is applied in order to remove soft contaminations from the jets. The soft drop algorithm allows 
for a precise comparison between theory and data and could be used to extract the QCD strong coupling 
constant αs from jet substructure data in the future. We develop a framework to realize the resummation 
of all relevant large logarithms at the next-to-leading logarithmic (NLL) accuracy. To demonstrate that 
the developed formalism is suitable for the extraction of αs , we extend our calculations to next-to-next-
to-leading logarithm (NNLL) for the jet mass case. Overall, we find good agreement between our NLL 
numerical results and Pythia simulations for LHC kinematics and we observe an improved agreement 
when the NNLL components are included. In addition, we expect that groomed jet angularities will be a 
useful handle for studying the modification of jets in heavy-ion collisions.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In recent years significant progress has been made in achiev-
ing a quantitative understanding of jet substructure observables. 
Jet substructure techniques allow for a wide range of applications, 
see [1,2] for recent reviews. Observables like the jet mass distri-
bution have a large non-perturbative (NP) contribution at the LHC 
making a comparison of data with purely perturbative results in 
QCD problematic. However, the NP contribution can be system-
atically reduced by making use of grooming algorithms that are 
designed to remove soft wide angle radiation from the observed jet 
which then also need to be taken into account in the perturbative 
calculations. The grooming procedure discussed in this work is soft 
drop declustering [3] which has several advantages from a theoret-
ical point of view [4]. The soft drop groomed jet mass distribution 
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was calculated in [5–7] and the corresponding LHC measurements 
from ATLAS and CMS can be found in [8,9]. A good agreement be-
tween theory and experimental data was obtained for the shape 
of the jet mass distribution. In this work, we extend the groomed 
jet mass calculation of [7] to a more general class of observables 
which are known as (groomed) jet angularities τa with the follow-
ing definition [10–12]

τa = 1

pT

∑
i∈ J

pT i�R2−a
i J . (1)

Here the pT i denote the transverse momenta of the particles i in 
the jet and �R2

i J = (�ηi J )
2 + (�φi J )

2 is their distance to the jet 
axis. The sum runs over all particles in the (groomed) jet and pT

in the denominator is the jet’s transverse momentum. Here a is 
a free parameter that controls the sensitivity to collinear radiation 
and it smoothly interpolates between different traditional jet shape 
variables. Note that part of the existing literature adopted a differ-
ent convention 2 − a ≡ α for the exponent of �Ri J in Eq. (1). We 
consider the cross section
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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σincl

dσ

dηdpT dτa
, (2)

differential in the jet angularity variable τa and the observed jet’s 
transverse momentum pT and rapidity η. We consider inclusive jet 
production pp → jet + X and thus normalize by the total inclusive 
jet production cross section σincl . Jet angularities without grooming 
have been discussed in the literature, see for example [13–15]. In 
this work, we focus on the impact of the soft drop grooming proce-
dure on the jet angularity measurements. The soft drop grooming 
procedure can be summarized as follows. First, the observed jet 
is reclustered with the Cambridge/Aachen (C/A) algorithm [16,17]. 
Second, the soft drop criterion

min[pT 1, pT 2]
pT 1 + pT 2

> zcut

(
�R12

R

)β

, (3)

is checked at each clustering step when going backward through 
the C/A clustering tree. Here pT 1,2 are the momenta of the two 
branches that had been merged together and �R12 is their geo-
metric distance in the η-φ plane. When the softer branch fails the 
criterion it is removed from the jet and the procedure continues 
until it is satisfied. The remaining particles in the jet constitute 
the soft drop groomed jet. A convenient choice can be made for 
the soft threshold parameter zcut and the angular exponent β . For 
β = 0 the soft drop procedure reduces to the modified mass drop 
tagger (mMDT) developed in [4]. The jet angularity measurement 
is performed only on the particles that remain in the groomed jet 
when the soft drop procedure ends.

We see two important applications for the observables dis-
cussed here which we outline in the following. First, as it was 
recently proposed in [18], the QCD strong coupling constant αs can 
be determined from groomed jet substructure observables. Sim-
ilarly, event shape variables in e+e− collisions have been estab-
lished as important benchmark processes to constrain the strong 
coupling constant. See [19–24] for analyses along those lines. 
Groomed jet angularities or also energy-energy correlation func-
tions [25] constitute a natural extension from event shapes in 
e+e− collisions to the more complicated environment in pp col-
lisions at the LHC.

From the theoretical side, a precise extraction of the strong cou-
pling constant requires a sophisticated understanding of the jet an-
gularities at fixed order including resummation and NP effects for 
τa → 0. In this work, we perform the resummation of all relevant 
logarithms as specified in the next section at next-to-leading loga-
rithmic (NLL) accuracy. For the jet mass case, a = 0 in Eq. (1), with 
β = 0 we also extend the resummation to next-to-next-to-leading 
logarithmic (NNLL) order. The desired precision for a competitive 
extraction of αs is next-to-next-to-leading order (NNLO) supple-
mented with the resummation at NNLL accuracy. This accuracy is 
achieved for the e+e− event shape variables mentioned above that 
are included in the determination of the world average of the QCD 
strong coupling constant αs(M2

Z ) = 0.1181 ± 0.0011 [26]. In this 
work we focus specifically on the jet substructure of an inclusive 
jet sample pp → jet + X [27–29] which can be extended system-
atically beyond the currently achieved precision in the future. Also 
note that we consistently normalize the jet angularity cross section 
in Eq. (2) to the inclusive jet production cross section σincl. Such 
a normalization is desired for the extraction of αs and the inclu-
sive jet production cross section is under good theoretical control 
after dedicated theoretical efforts in the past years. In [30], the 
full NNLO calculation was completed and in [31,32] the joint re-
summation of threshold and jet radius logarithms was carried out. 
Therefore, the normalization of the cross section chosen in Eq. (2)
appears as a natural choice and the perturbative accuracy can be 
extended systematically in the future. See also [33]. In addition, 
inclusive jet cross sections can be measured with the highest ex-
perimental statistics.

Secondly, we expect that (groomed) jet angularities can be a 
useful tool for jet studies in heavy-ion collisions. In [34–36], it 
was found that in heavy-ion collisions both the groomed and un-
groomed jet mass distributions are unmodified relative to the pp
baseline within the experimental uncertainties. However, other jet 
substructure observables show a significant modification due to 
the presence of the QCD medium. For example, the closely related 
jet broadening or girth, a = 1 in Eq. (1), was measured by ALICE 
in [37] which exhibits a large non-trivial modification pattern. By 
measuring jet angularities in heavy-ion collisions for different val-
ues of a and β it will be possible to systematically map out which 
jet substructure observables are modified and it will help to under-
stand the underlying dynamics. Our work thus provides another 
step toward utilizing jets as precision probes of the quark-gluon 
plasma.

The remainder of this paper is organized as follows. In sec-
tion 2, we outline the factorization formalism developed in this 
work. In section 3, we present numerical results and compare to 
Pythia simulations for exemplary LHC kinematics. We draw our 
conclusions in section 4 and we present an outlook.

2. Theoretical framework

In the first part of this section, we introduce the factorization 
theorem used in this work for the soft drop groomed jet angu-
larities. We present the relevant functions and their associated 
renormalization group (RG) evolution equations at NLL accuracy. 
In the second part, we extend the framework to NNLL for the jet 
mass case with β = 0.

2.1. Groomed jet angularities

In this section we outline the factorization structure for the 
groomed jet angularity cross section. Throughout this work we use 
the framework of Soft Collinear Effective Theory (SCET) [38–42]
and we follow the framework for inclusive jet production pp →
jet + X developed in [7,15]. For sufficiently narrow jets with a ra-
dius R � 1 [27,29,43] we can write the triple differential cross 
section in Eq. (2) as

dσ

dηdpT dτa
=

∑
abc

fa(xa,μ) ⊗ fb(xb,μ)

⊗Hc
ab(xa, xb, η, pT /z,μ)

⊗Gc(z, pT R, τa,μ, zcut, β).

(4)

Here fa,b denote the parton distribution functions to find partons 
a, b in the colliding protons. The parton’s momentum fractions 
are denoted by xa,b . The hard functions Hc

ab describe the hard-
scattering event ab → c to produce a final state parton which has 
a transverse momentum of pT /z that fragments into the observed 
jet. The production of the jet is described by the semi-inclusive jet 
functions Gc . They depend on the transverse momentum fraction 
z contained in the jet relative to that of the initial parton and, in 
addition, Gc captures the information about the angularity τa of 
the observed jet. In addition, it depends on the soft drop grooming 
parameters zcut, β following Eq. (3). Similar to parton-to-hadron 
fragmentation functions, the semi-inclusive jet functions Gc satisfy 
RG equations which take the form of standard DGLAP evolution 
equations
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μ
d

dμ
Gi(z, pT R, τa,μ, zcut, β)

=
∑

j

P ji(z) ⊗ G j(z, pT R, τa,μ, zcut, β).
(5)

Here, P ji(z) denote the Altarelli-Parisi splitting kernels. By solving 
the DGLAP evolution equations between the scales μ ∼ pT R → pT , 
the resummation of single logarithms in the jet radius parameter 
αn

s lnn R can be achieved at NLL following the numerical procedure 
of [45,46]. Power corrections ∼ O(R2) to Eq. (4) are generally ex-
pected to be small, even for a relatively large jet radius R ∼ 1, 
see for example Refs. [7,44]. On the other hand, the advantages 
of working in the small-R limit are for example the possibility to 
define quark-gluon fractions perturbatively order-by-order in QCD 
through Eq. (4). In addition, it is possible to include non-global 
logarithms [47] in zcut [7] and it is possible to study universal-
ity aspects of the relevant nonperturbative physics, see [48–50]. 
In particular the universality aspect of the nonperturbative correc-
tions is an essential ingredient for the extraction of αs which is 
often fitted simultaneously with a nonperturbative shape function, 
see [19,20], and which is discussed in more detail in section 3. In 
the phenomenologically relevant kinematic regime with the scal-
ing

τ
1/(2−a)
a /R � zcut � 1, (6)

large logarithms may spoil the convergence of the perturbative ex-
pansion of the cross section which requires the resummation to 
all orders. This can be achieved by a refactorization of the semi-
inclusive jet function Gc . Each function then obeys it’s own RG 
evolution equation which eventually allows for the all order re-
summation of the relevant large logarithms. We find

Gc(z, pT R, τa,μ, zcut, β)

=
∑

i

Hc→i(z, pT R,μ)S /∈gr
i (zcut pT R, β,μ)

∫
dτ

Ci
a dτ

Si
a (7)

×δ(τa − τ
Ci
a − τ

Si
a )Ci(τ

Ci
a , pT ,μ)Sgr

i (τ
Si

a , pT , R,μ, zcut, β).

The hard matching functions Hc→i describe how a parton c com-
ing from the hard interaction initiates a jet with parton i. They 
take into account energetic radiation at the scale μ ∼ pT R outside 
of the observed jet [51,52] as they are not allowed to contribute 
to the observed jet angularity with the scaling in Eq. (6). The soft 
functions S /∈gr

i take into account soft radiation that always fail the 
soft drop criterion in Eq. (3). Therefore, S /∈gr

i does not depend on 
the observed jet angularity τa . On the other hand, Sgr

i takes into 
account soft radiation boosted along the direction of the jet that 
may or may not pass the soft drop criterion which introduces 
the dependence on τa and zcut, β . The remaining collinear mode 
Ci [53] takes into account collinear radiation in the jet, which 
parametrically always passes the soft drop criterion and thus it 
is insensitive to zcut, β and it contributes to the observed jet an-
gularity τa . The radiation associated with the collinear function is 
sufficiently energetic such that it is not affected by the grooming 
algorithm up to power corrections. In addition, the collinear mode 
does not probe the jet boundary and therefore the collinear func-
tion is independent of R . See [5,7] for further discussions of the 
obtained factorization structure.

The refactorized form of the semi-inclusive jet function in 
Eq. (7) can be derived analogously to the groomed jet mass case, 
a = 0 [7]. Note that each function in Eq. (7) depends only on 
a single scale which allows for the resummation of all relevant 
large logarithms. Within the effective field theory framework this 
is achieved by evaluating each function at its natural scale which 
eliminates the large logarithms at fixed order. Using RG evolu-
tion techniques all functions can then be evolved to a common 
scale through which the all order resummation is achieved. Here, 
for practical reasons, typically the scale μ ∼ pT of the hard func-
tions in Eq. (4) is used. Besides the resummation of single loga-
rithms in the jet radius parameter R , which is achieved by solving 
Eq. (5), we perform the NLL resummation of double logarithms 
in αn

s ln2n(τ
1/(2−a)
a /R) and αn

s ln2n zcut. Note that for all relevant 
functions in Eq. (7) it is possible to write down definitions at the 
operator level. We refer the interested reader to [7] where the op-
erator definitions for the soft drop jet mass distribution were given 
within SCET.

We are now going to present the results for the soft function 
Sgr

i that takes into account soft radiation boosted along the jet and 
may pass the soft drop criterion and thus contribute to the ob-
served jet angularity. The bare result at NLO is given by

Sgr
i (τa, pT , R,μ, zcut, β)

= δ(τa) + αs

π

Ci

1 − a

[
2 − a + β

1 + β

(
− 1

ε2
+ π2

24

)
(8)

× δ(τa) + A

ε

(
1

Aτa

)
+

− 2(1 + β)

2 − a + β
A

(
ln(Aτa)

Aτa

)
+

]
,

where Ci = C F ,A for i = q, g and the variable A is given by

A =
(( zcut

Rβ

) 1−a
2−a+β pT

μ

) 2−a+β
1+β

. (9)

There are two limiting cases that can be checked for consistency. 
For a = 0, Eq. (8) reduces to the soft function of the groomed jet 
mass distribution [7] and for β → ∞, we obtain the ungroomed jet 
angularity soft function of [13,15]. After performing the renormal-
ization of the bare soft functions Sgr

i in Eq. (8), the RG evolution 
equations are obtained as

μ
d

dμ
Sgr

i (τa, pT , R,μ, zcut, β)

=
∫

dτ ′
aγ

gr
Si

(τa − τ ′
a, pT , R,μ, zcut, β) (10)

×Sgr
i (τ ′

a, pT , R,μ, zcut, β),

where the anomalous dimensions γ gr
Si

are given by

γ
gr
Si

(τa, pT , R,μ, zcut, β)

= αs

π

Ci

1 − a

[(
1

τa

)
+

+ 2 − a + β

2 + 2β
ln(A)δ(τa)

]
.

(11)

Note that the collinear functions Ci and the soft functions S /∈gr
i sat-

isfy similar evolution equations which can be found together with 
the RG equations for the hard matching functions Hc→i in [7]. Be-
sides the hard scale μ ∼ pT and the jet scale μ J ∼ pT R , we sum-
marize here for completeness the natural scales of the collinear 
function and the two soft functions

μC ∼ pT τ
1/(2−a)
a , μ

/∈gr
S ∼ zcut pT R,

μ
gr
S ∼ pT

( zcut

Rβ

) 1−a
2−a+β

τ
1+β

2−a+β

a .

(12)

We note that there is a transition point of the groomed jet an-
gularity distribution to the ungroomed case at large values of τa . 
After this transition point the radiation is sufficiently energetic that 
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grooming does not play a role anymore. The soft function Sgr
i re-

duces to the ungroomed jet angularity soft function of [13,15] and, 
in addition, the soft function taking into account radiation that 
fails soft drop reduces to unity S /∈gr

i → 1. This can be seen explic-
itly by analyzing the phase space constraints for the soft function 
Sgr

i . Both the jet algorithm and the soft drop grooming criterion 
put constraints on the soft radiation. Above the jet angularity value 
of

τa = zcut R2−a, (13)

for β − a > −2, the soft drop constraint is less restrictive than the 
jet algorithm constraint and it can be dropped. Thus the soft func-
tion reduces to its ungroomed analogue. Note that the transition 
point here depends only on a but it is independent of the param-
eter β . This transition point is found at NLO but also holds for the 
evolution in the sense that the two soft scales merge yielding the 
ungroomed soft scale μungr

S of [15],

μgr|τa=zcut R2−a = μ/∈gr|τa=zcut R2−a = pT τa

R1−a
= μ

ungr
S . (14)

In addition, the anomalous dimensions for the evolution of the two 
soft functions add up to the ungroomed case [7]

γ
/∈gr

Si
δ(τa) + γ

gr
Si

= γ
ungr
Si

. (15)

This transition point can also be seen from our numerical results 
presented in the next section. Independent of β the numerical 
results intersect at this point, except for a numerically small re-
maining dependence on β due to the fixed order expressions of 
the soft functions.

2.2. The groomed jet mass distribution at NNLL

In order to perform the resummation at NNLL order for the 
groomed jet mass distribution with β = 0 we need the anomalous 
dimensions of all the relevant functions in Eq. (7) beyond one-loop. 
For the collinear function Ci and the two soft functions S /∈gr

i and 
Sgr

i , we can generally write the evolution equations as

dF (μ)

d lnμ
=

[
2
cusp[αs] ln

μ

Q
+ γ [αs]

]
F (μ). (16)

The multiplicative form of the RG equations holds for S /∈gr
i and 

also for Ci and Sgr
i after taking the Fourier transform of Eq. (7). The 

cusp 
cusp[αs] and the non-cusp contribution γ [αs] can be written 
as a perturbative expansion in the strong coupling constant αs as


cusp =
∞∑

n=0

( αs

4π

)n+1

n, γ =

∞∑
n=0

( αs

4π

)n+1
γ (n). (17)

To achieve NNLL accuracy, we include the cusp anomalous di-
mension up to three-loop order [54,55]. In addition, we need the 
two-loop non-cusp contributions γ (1) . The relevant results for the 
collinear function can be obtained from [56,57]. The anomalous di-
mension γ gr

Si
for the collinear soft function is also universal and its 

NNLO result can be found in [5], which is

γ
gr,(1)
Si

= Ci

[
−17.005C F +

(
−55.20 + 22π2

9
+ 56ζ3

)
C A

+
(

23.61 − 8π2

9

)
n f T R

]
,

(18)

where Ci = C F for quark jets and Ci = C A for gluon jets.
To extract the two-loop non-cusp anomalous dimension γ /∈gr,(1)
Si

for the soft function S /∈gr
i , we utilize the fact that the sum of the 

anomalous dimensions of the two groomed soft functions has to 
be equal to the anomalous dimension of the soft function that 
appears in the ungroomed calculation, see Eq. (15). We explicitly 
performed the calculation of the two-loop non-cusp anomalous di-
mension γ ungr,(1)

Si
for the soft function in the ungroomed case by 

relating the ungroomed jet mass to the hemisphere mass [58]. We 
isolated the non-global contribution and we checked our results 
against the ones in [59] to find full agreement. Using the consis-
tency relation in Eq. (15), we find

γ
/∈gr,(1)

Si
= Ci

[
17.005C F +

(
25.2741 − 11

9
π2 − 28ζ3

)
C A

+
(

−15.3137 + 4

9
π2

)
T Rn f

]
.

(19)

It is interesting to note that γ /∈gr
Si

is found to be numerically iden-
tical to half of the anomalous dimension of the global soft function 
SG in [5] up to two-loop. The relative numerical error after taking 
into account the factor of 1/2 is of the order of O(10−5).

We thus have all the relevant ingredients to perform the resum-
mation at NNLL accuracy up to non-global logarithms [47]. Their 
contribution is expected to be small as they only appear as loga-
rithms of zcut = 0.1 [7].

3. Phenomenology

In this section we present numerical results using the the-
oretical formalism presented above. In addition, we compare to 
Pythia8 results [60] for LHC kinematics and we analyze the struc-
ture of the NP contribution to the cross section. The scale μgr

S of 
the soft function Sgr

i is the lowest scale in our calculation. As it 
approaches �QCD, NP effects start to become important. By identi-
fying μgr

S � �QCD, we find that NP effects are relevant in the region

τa �
(

�QCD Rβ

pT zcut

) 1−a
1+β �QCD

pT
. (20)

Following [48], we include NP effects using a shape function which 
is convolved with the purely perturbative result in Eq. (4). The ar-
gument τa of the purely perturbative cross section is shifted by the 
virtuality of the soft mode Sgr

i [5]. We thus have

dσ

dηdpT dτa
=

∫
dkF (k)

dσ pert

dηdpT dτa

⎛
⎝τa −

(
kRβ

pT zcut

) 1−a
1+β k

pT

⎞
⎠ . (21)

We adopt the following model for the NP shape function [50]

F (k) = 4k

�2
a

exp(−2k/�a), (22)

which is normalized to unity and it only depends on a single pa-
rameter �a which is given by its first moment. Alternatively, it 
is also common to use for example Pythia to estimate the non-
perturbative contribution. In addition, we use profile scales [61]
in order to smoothly freeze the relevant scales in Eq. (12) above 
the Landau pole. Throughout this work we use the CT14 PDF set 
of [62]. We choose to fix the scale μ/∈gr

S relative to the jet scale 
μ J and, in addition, we relate the collinear scale μC to μgr

S , see 
Eq. (12). The QCD scale uncertainty bands presented in this sec-
tion are obtained by varying all scales by factors of 2 around their 
canonical choices and by taking the envelope. We do not include 
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Fig. 1. Groomed jet angularities at the LHC for different values of a = 0.5 (upper panels) and a = 0 (lower panels), zcut = 0.1 and β = 0, 1, 2 (from left to right). We choose √
s = 13 TeV, pT > 600 GeV, |η| < 1.5 for an inclusive jet sample reconstructed using the anti-kT algorithm. The purely perturbative result at NLL is shown (yellow band) 

as well as results using Pythia (blue). In addition, we show the perturbative result after including non-perturbative effects using the shape function as discussed in the text 
(hatched red band).

Fig. 2. Same as Fig. 1 but for a = −0.5 (upper panels) and a = −1 (lower panels).
the uncertainties from the NP model and the αs prescription used 
to deal with the Landau pole.

We start by presenting results for the groomed angularities at 
NLL accuracy for LHC kinematics at 

√
s = 13 TeV. The inclusive 

jet sample is reconstructed with R = 0.8 using the anti-kT algo-
rithm [63] and we require pT > 600 GeV and |η| < 1.5. In Fig. 1
we show the results for a = 0.5 (upper panels) and a = 0 (lower 
panels) for the grooming parameters zcut = 0.1 and β = 0, 1, 2 (left 
to right) and we normalize our results by the inclusive jet cross 
section. Fig. 2 displays the jet angularities for a = −0.5 (upper pan-
els) and a = −1 (lower panels) for the same kinematical setup. We 
show the purely perturbative results (yellow bands) obtained from 
the factorization formula in Eq. (4). We obtain the largest QCD 
scale uncertainties for a = 0.5. This is expected as the parameter a
controls the sensitivity to soft physics, see Eq. (1). Note that power 
corrections associated with the soft recoil become increasingly im-
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Fig. 3. Comparison of the groomed jet mass distribution for β = 0 at NLL (left) and NNLL (right). We use the same kinematical setup as in Fig. 1 and Fig. 2 above.
portant as a → 1. This problem could be handled conveniently by 
using a recoil-free axis such as the winner-take-all axis instead of 
the standard jet axis used here. See for example [64]. The corre-
sponding Pythia8 results are shown in blue in Figs. 1 and 2. We 
show the particle level results from Pythia including initial state 
radiation (ISR), multi parton interactions (MPI) and hadronization. 
In order to correct the purely perturbative results to the particle 
level we include NP effects by convolving with the NP shape func-
tion as shown in Eq. (21). For the parameter �a that appears in the 
NP shape function in Eq. (22), we factor out the a dependence as

�a = �a=0

1 − a
, (23)

which was introduced for angularity measurements in e+e− col-
lisions [49]. In principle, the NP shape function depends on the 
grooming parameters zcut, β and for β → ∞ or zcut → 0 the 
ungroomed results needs to be recovered. A more rigorous field 
theoretic treatment of the NP shape functions including the de-
pendence on the grooming parameters can be found in [65]. Here 
we choose �a=0 = 1 GeV which, overall, gives a reasonable esti-
mate of the relevant NP physics as shown by the red hatched band. 
In practice, the value of �a=0 can be determined via a global fit to 
the jet angularity data with different choices of a. This way of de-
termining the NP model is one of the major advantages of studying 
jet angularity distributions.

In Fig. 3, we show a comparison of the jet mass distribution 
τ0 for β = 0 at NLL (left) and NNLL (right) using the same NP 
model. We observe that the central values of the NLL and NNLL 
predictions are very close to each other, which implies the good 
convergence of the perturbative series. The NNLL central value 
agrees slightly better with the Pythia simulations than the NLL 
one both in the perturbative and non-perturbative regions. How-
ever, we noticed an enhanced QCD scale uncertainty at NNLL in 
the small τ0 region, mainly due to the inclusion of the non-zero 
non-cusp soft anomalous dimensions starting at two-loop. In the 
future, one may include the two-loop Wilson coefficients of each 
function to achieve full NNLL′ accuracy and to further reduce the 
theoretical uncertainty. The full NNLO results are either known [56,
57] or can be obtained using the existing analytic [58] or numeri-
cal techniques [66].

4. Conclusions

In this work, we studied soft drop groomed jet angularities for 
inclusive jet production pp → jet + X at the LHC. We presented 
a factorized form of the cross section in the phenomenologically 
relevant region of small jet angularities τa . The analytical calcula-
tion of all relevant ingredients was performed at next-to-leading 
order. Using renormalization group techniques, the resummation 
of all relevant large logarithms in the jet radius parameter R , the 
jet angularity τa and the soft drop grooming parameter zcut was 
achieved. The soft drop grooming procedure makes the jet angu-
larities robust in the complicated LHC environment which allows 
for a one-to-one comparison between data and first principles 
calculations in QCD. We presented numerical results for repre-
sentative LHC kinematics at 

√
s = 13 TeV for different values of 

the jet angularity parameter a and the grooming parameter β . In 
order to estimate the impact of non-perturbative physics, we com-
pared to Pythia results at the particle level. Overall we found good 
agreement after including non-perturbative effects through a shape 
function. We expect that our results will be very relevant for future 
extractions of the QCD strong coupling constant αs from jet sub-
structure data taken at the LHC. From the theory side it is crucial 
to extend the theoretical accuracy beyond NLL in order to achieve 
a competitive extraction of αs . In this work, we performed a step 
in this direction by extending the resummation of all relevant large 
logarithms to NNLL accuracy for the case of the jet mass distribu-
tion and β = 0 for which we found an improved agreement with 
the results from Pythia. In the future, the more general cases can 
be obtained using existing numerical techniques. In addition, the 
matching with the full NNLO calculations for inclusive jet produc-
tion [30] need to be carried out in order to meet the precision 
requirements for a reliable determination of αs . We also expect 
that the measurement of (groomed) jet angularities for different 
values of a in heavy-ion collisions will allow for a more complete 
understanding of how jets get modified as they traverse the dense 
and hot QCD medium.
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