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Abstract: We explore the problem of identification of LPV models when the scheduling
variables are not known in advance and the model parameters exhibit a dynamic dependence on
them. We consider an affine ARX model structure whose parameters vary with time. We solve
for the model’s parameters and scheduling variables in two steps. In the first step, we use the
measured input-output data to realize a parameter trajectory by solving a regularized Hankel
matrix rank minimization problem. The regularization penalty is guided by the prior knowledge
regarding the nature of system’s time variation. In the second step, the scheduling variables
are estimated as parameters of a sparse ARX structure relating the model’s parameters to the
measured input-output variables. The effectiveness of the proposed approach is illustrated with
two practical examples.
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1. INTRODUCTION

A common description of dynamic phenomena is a non-
linear state-space model subject to inputs u(t), contain-
ing states x(t) and generating outputs y(t). The set of
inputs and states define its operating conditions. When
this model is linearized, the resulting linear models are
dependent upon the operating points about which the lin-
earization occurred. In a linear parameter varying (LPV)
modeling approach, the dependence of the linear model
on its operating point is projected into a lower dimen-
sional space called the scheduling space. This projection is
guided by physical intuition, or an analysis of the manner
in which the inputs and states affect the output. This
task is not always apparent and bad assumptions, such
as choosing scheduling variables based on data acquisition
convenience, may cause loss of fidelity in capturing the
observed behavior. Hence it is imperative to consider if
scheduling information can be extracted from the data
along with the model coefficients, while judiciously using
prior knowledge about the system’s behavior.

Extraction of switching regimes or schedule has been con-
sidered in the context of piecewise affine model identifi-
cation by Sznaier and Bemporad, see Ozay et al. (2012),
and Breschi et al. (2016) among others. The scheduling
variables are usually the entire regressor set that is used
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to define the separating hyperplanes. This form does not
capture the case where local dynamics are inherently time-
varying, for example, the flight dynamics of a rocket
that is continuously losing mass in addition to experi-
encing discrete events where an entire propulsion stage is
dropped. One can also consider a linear/affine model struc-
ture whose coefficients are continuous functions of certain
scheduling variables. A popular class of such models are
bilinear in structure and are typically identified using a
subspace approach. These approaches rely on extension of
linear system concepts of reachability and controllability in
order to express the model’s states as a linear combination
of certain basis functions. Such approaches are usually
computationally expensive since the block sizes of the
data matrices grow exponentially with length of data (van
Wingerden and Verhaegen (2008),Verdult and Verhaegen
(2002)). They also often impose a restriction on the input
(Favoreel et al. (1999)) or scheduling (Felici et al. (2007))
to make the problem tractable. For a comprehensive sum-
mary of LPV identification approaches, see Toth (2010)
and dos Santos et al. (2012).

The goal of this paper is to provide a computationally
efficient algorithm for identifying linear input-output mod-
els with time-varying parameters from experimental data
and some minimal a-priori information about the model
structure. As shown in the paper, this can be accomplished
by following a two step procedure: In the first step, a
suitable parameter trajectory is obtained by solving a
regularized Hankel matrix rank minimization problem. In
the second step, the scheduling variables are estimated as
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parameters of a sparse ARX structure relating the model’s
parameters to the measured input-output variables. The
paper is organized as follows: Section 2 introduces the
model structure under consideration and formally states
the problem of interest. Section 3 presents the proposed
algorithm and illustrates the ideas behind it by analyzing
some simple cases. Section 4 illustrates the effectiveness of
the proposed method with two practical examples. Finally,
Section 5 present some conclusions and points out to some
open questions.

2. MODEL STRUCTURE

In this paper we consider the input-output model form
with time-varying parameters. The dependence of param-
eters on scheduling variables is not known in advance. The
model structure chosen for analysis is an ARX structure:

A(t, q)y(t) = B(t, q)u(t) + e(t) (1)

where A(t, q) and B(t, q) are time-varying polynomials in
delay operator q−1:

A(t, q) = 1 + a1(t)q
−1 + a2(t)q

−2 + . . .+ ana(t)q
−na

B(t, q) = b1(t)q
−nk + b2(t)q

−nk−1 + . . .+ bnb(t)q
−nb−nk+1

(2)

nk denotes input-to-output lag which can be zero. The
model’s parameter vector is:

Θ(t) = [a1(t), a2(t), . . . , ana(t), b1(t), . . . , bnb(t)]
T (3)

The model structure can also be written as:

y(t) = Θ(t)TΦ(t) + e(t) (4)

where Φ(t) is the vector of model’s regressors composed
of lagged input-output variables. The length of Φ(t) is
n = na+ nb. The models parameters Θ(t) are assumed to
evolve according to an affine auto-regressive process driven
by the “inputs” u(t) and y(t):

F (q)(Θ(t)− Θ̄) = G1(q)u(t) +G2(q)y(t) (5)

where F (q), G1(q), G2(q) are constant-coefficient polyno-
mials of arbitrary orders and Θ̄ is the affine term. G2(q)’s
leading coefficient is zero so that there is at least one
sample lag in contribution of y(t). The free entries of Θ̄,
F , G1 and G2 can be thought of as original model’s hyper-
parameters. Equation (5) allows a rational dependence of
model’s parameters on the system’s states and inputs.
Note that this form of parameter representation makes
the model essentially a bilinear structure. Such forms are
appealing candidates for modeling many nonlinear pro-
cesses such as those arising in the areas of fMRI decon-
volution and nonlinear tracking, see, for example, Bruni
et al. (1974), Penny et al. (2005), and Priestley (1991). In
this context, the problem of interest in this paper can be
precisely stated as:

Problem 1. Given input/output data, and a-priori bounds
on na, nb, nk and ‖e‖, find a model of the form (4)-(5) that
explains the observed data within the approximation error
bounds.

Remark 1. Note that the problem above is ill posed, since
typically there are multiple parameterizations that can
generate the experimental data. Several regularizations
that exploit additional information to remove this ambi-
guity will be discussed in Section 3.

The approach pursued in this paper to solve Problem
1 is to first realize the Θ(t) trajectory of Equation (4)
under suitable constraints. Then use the estimated Θ(t)
and the input-output data measurements to estimate the
values of Θ̄, F (q), G1(q) and G2(q) coefficients. This would
deliver Θ(t) expressed as a function of model regressors in
a rational form. If F , G1 and G2 are sufficiently sparse,
we can treat the contributing regressors as scheduling
variables.

3. RANK MINIMIZATION FORMULATION FOR
ESTIMATING PARAMETER TRAJECTORY

Suppose u(t) and y(t) are uniformly sampled and N
measurements for t = 1, 2, . . . , N are available. Consider a
state-space realization of the Θ(t) dynamics in Equation
(5):

X(t+ 1) = AθX(t) +B1
θu(t) +B2

θy(t)

Θ(t) = CθX(t) +D1
θu(t) + Θ̄

(6)

Let U(t) = [u(t), y(t), 1(t)]T be the augmented input
vector of length p = ny+nu+1, where the step input 1(t) is
added to account for the affine term Θ̄. Then as described
in subspace identification literature (Overschee and Moor
(1994)), the minimal order of parameter model (Equation
(6)) is equal to the rank of the matrix Hn,m,N (Θ)H⊥

U
where:

Hn,m,N (Θ) =




Θ(1) Θ(2) . . . Θ(N −m+ 1)
Θ(2) Θ(3) . . . Θ(N −m+ 2)
...

...
. . .

...
Θ(m) Θ(m+ 1) . . . Θ(N)




(7)

H⊥
U ∈ �(N−m+1)×q is a matrix whose columns form an

orthogonal basis for the null space (nullity q) of the Hankel
matrix Hp,m,N (U):

Hp,m,N (U) =




U(1) U(2) . . . U(N −m+ 1)
U(2) U(3) . . . U(N −m+ 2)
...

...
. . .

...
U(m) U(m+ 1) . . . U(N)


 (8)

From the discussion above, it follows that the parameter-
ization that explains the observed data with the lowest
order model for the evolution of the parameter Θ can be
found by minimizing the rank of Hn,m,N (Θ)H⊥

U subject to
the constraint that the final model should interpolate the
observed data up to some model error.

minimize
Θ

rank(Hn,m,N (Θ)H⊥
U )

subject to ∥∥y(t)−Θ(t)TΦ(t)
∥∥ ≤ δ1

plus additional constraints

(9)

where the minimization is over the entire Θ(t) sequence
of N samples. δ1 is a measure of maximum output distur-
bance. Since rank minimization is computationally NP-
hard, a convex relaxation of the problem above is ob-
tained by using an iteratively re-weighted trace minimiza-
tion heuristics (Mohan and Fazel (2010), Sznaier et al.
(2014b)), summarized in Algorithm 1. The choice of addi-
tional constraints reflects our prior knowledge about the
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parameters of a sparse ARX structure relating the model’s
parameters to the measured input-output variables. The
paper is organized as follows: Section 2 introduces the
model structure under consideration and formally states
the problem of interest. Section 3 presents the proposed
algorithm and illustrates the ideas behind it by analyzing
some simple cases. Section 4 illustrates the effectiveness of
the proposed method with two practical examples. Finally,
Section 5 present some conclusions and points out to some
open questions.

2. MODEL STRUCTURE

In this paper we consider the input-output model form
with time-varying parameters. The dependence of param-
eters on scheduling variables is not known in advance. The
model structure chosen for analysis is an ARX structure:

A(t, q)y(t) = B(t, q)u(t) + e(t) (1)

where A(t, q) and B(t, q) are time-varying polynomials in
delay operator q−1:

A(t, q) = 1 + a1(t)q
−1 + a2(t)q

−2 + . . .+ ana(t)q
−na

B(t, q) = b1(t)q
−nk + b2(t)q

−nk−1 + . . .+ bnb(t)q
−nb−nk+1

(2)

nk denotes input-to-output lag which can be zero. The
model’s parameter vector is:

Θ(t) = [a1(t), a2(t), . . . , ana(t), b1(t), . . . , bnb(t)]
T (3)

The model structure can also be written as:

y(t) = Θ(t)TΦ(t) + e(t) (4)

where Φ(t) is the vector of model’s regressors composed
of lagged input-output variables. The length of Φ(t) is
n = na+ nb. The models parameters Θ(t) are assumed to
evolve according to an affine auto-regressive process driven
by the “inputs” u(t) and y(t):

F (q)(Θ(t)− Θ̄) = G1(q)u(t) +G2(q)y(t) (5)

where F (q), G1(q), G2(q) are constant-coefficient polyno-
mials of arbitrary orders and Θ̄ is the affine term. G2(q)’s
leading coefficient is zero so that there is at least one
sample lag in contribution of y(t). The free entries of Θ̄,
F , G1 and G2 can be thought of as original model’s hyper-
parameters. Equation (5) allows a rational dependence of
model’s parameters on the system’s states and inputs.
Note that this form of parameter representation makes
the model essentially a bilinear structure. Such forms are
appealing candidates for modeling many nonlinear pro-
cesses such as those arising in the areas of fMRI decon-
volution and nonlinear tracking, see, for example, Bruni
et al. (1974), Penny et al. (2005), and Priestley (1991). In
this context, the problem of interest in this paper can be
precisely stated as:

Problem 1. Given input/output data, and a-priori bounds
on na, nb, nk and ‖e‖, find a model of the form (4)-(5) that
explains the observed data within the approximation error
bounds.

Remark 1. Note that the problem above is ill posed, since
typically there are multiple parameterizations that can
generate the experimental data. Several regularizations
that exploit additional information to remove this ambi-
guity will be discussed in Section 3.

The approach pursued in this paper to solve Problem
1 is to first realize the Θ(t) trajectory of Equation (4)
under suitable constraints. Then use the estimated Θ(t)
and the input-output data measurements to estimate the
values of Θ̄, F (q), G1(q) and G2(q) coefficients. This would
deliver Θ(t) expressed as a function of model regressors in
a rational form. If F , G1 and G2 are sufficiently sparse,
we can treat the contributing regressors as scheduling
variables.

3. RANK MINIMIZATION FORMULATION FOR
ESTIMATING PARAMETER TRAJECTORY

Suppose u(t) and y(t) are uniformly sampled and N
measurements for t = 1, 2, . . . , N are available. Consider a
state-space realization of the Θ(t) dynamics in Equation
(5):

X(t+ 1) = AθX(t) +B1
θu(t) +B2

θy(t)

Θ(t) = CθX(t) +D1
θu(t) + Θ̄

(6)

Let U(t) = [u(t), y(t), 1(t)]T be the augmented input
vector of length p = ny+nu+1, where the step input 1(t) is
added to account for the affine term Θ̄. Then as described
in subspace identification literature (Overschee and Moor
(1994)), the minimal order of parameter model (Equation
(6)) is equal to the rank of the matrix Hn,m,N (Θ)H⊥

U
where:

Hn,m,N (Θ) =




Θ(1) Θ(2) . . . Θ(N −m+ 1)
Θ(2) Θ(3) . . . Θ(N −m+ 2)
...

...
. . .

...
Θ(m) Θ(m+ 1) . . . Θ(N)




(7)

H⊥
U ∈ �(N−m+1)×q is a matrix whose columns form an

orthogonal basis for the null space (nullity q) of the Hankel
matrix Hp,m,N (U):

Hp,m,N (U) =




U(1) U(2) . . . U(N −m+ 1)
U(2) U(3) . . . U(N −m+ 2)
...

...
. . .

...
U(m) U(m+ 1) . . . U(N)


 (8)

From the discussion above, it follows that the parameter-
ization that explains the observed data with the lowest
order model for the evolution of the parameter Θ can be
found by minimizing the rank of Hn,m,N (Θ)H⊥

U subject to
the constraint that the final model should interpolate the
observed data up to some model error.

minimize
Θ

rank(Hn,m,N (Θ)H⊥
U )

subject to ∥∥y(t)−Θ(t)TΦ(t)
∥∥ ≤ δ1

plus additional constraints

(9)

where the minimization is over the entire Θ(t) sequence
of N samples. δ1 is a measure of maximum output distur-
bance. Since rank minimization is computationally NP-
hard, a convex relaxation of the problem above is ob-
tained by using an iteratively re-weighted trace minimiza-
tion heuristics (Mohan and Fazel (2010), Sznaier et al.
(2014b)), summarized in Algorithm 1. The choice of addi-
tional constraints reflects our prior knowledge about the
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system behavior. For example, we can impose constraints
that Θ(t) changes more slowly than the output of y(t)
of the model, the changes are “smooth”, and/or limited
to a 1-norm ball with unknown center. Finally, once a
trajectory for Θ(t) is obtained, a linear (affine) model is
fit to it using the standard subspace approach.

Algorithm 1 Reweighted ‖.‖∗ based rank minimization

Initialize: k = 0,Wy(0) = I,Wz(0) = I, δo small
repeat

Solve

min
X(k),Y(k),Z(k)

Trace

[
W(k)

y Y(k) 0

0 W(k)
z Z(k)

]

subject to:

[
Y(k) Θ(k)

ΘT(k)
Z(k)

]
� 0

Θ(k) ∈ S
where S is the feasible set in (9).

Decompose Θ(k) = UDVT .
Set δ ← min[diag(D)] + δ0.

Set W
(k+1)
y ←

(
Y(k) + δI

)−1

Set W
(k+1)
z ←

(
Z(k) + δI

)−1

Set k ← k + 1.
until a convergence criterion is reached. return Θ(k)

Note in passing, that as expected, in the case of a linear
time-invariant process (that is, A,B are constant coeffi-
cient polynomials in Equation (1)), the algorithm above
yields a constant value for Θ. This is due to the fact
that the minimal value of ‖Hn,m,N (Θ)H⊥

U ‖∗ is zero, and
D1

θ ≡ 0. To see this, note that Hp,m,N (U) has m rows of
all ones owing to the Θ̄ term. Since Hp,m,N (U)H⊥

U = 0,
the columns of H⊥

U must sum to zero. Since Hn,m,N (Θ) =
[I, I, . . . I]T × Θ̄ × [1, 1, . . . 1] in the LTI case, we have
Hn,m,N (Θ)H⊥

U = 0.

Similarly, for time-varying processes where the parameters
Θ(t) show a static dependence on the inputs u(t), the min-
imal value of ‖Hn,m,N (Θ)H⊥

U ‖∗ is zero but D1
θ �= 0. This

is also easily seen by taking Θ(t) = KU(t), where K is an
n×pmatrix. ThenHn,m,N (Θ) = block-diag(K)Hp,m,N (U)
and zero value of ‖Hn,m,N (Θ)H⊥

U ‖∗ follows from the or-
thogonality of H⊥

U to Hp,m,N (U).

3.1 Additional Regularization Constraints

As noted in Section 2, Problem 1 is typically ill-posed,
since it admits multiple solutions. These additional solu-
tions can be ruled out by imposing “regularization con-
straints” that reflects our prior knowledge about the sys-
tem behavior. Examples of additional information that can
be captured by these constraints include:

(1) Only a few of the parameters in the Θ vector vary
with time.

(2) The parameters vary either intermittently or slowly
relative to the rate of change of model’s states and
outputs.

In the sequel we indicate how to incorporate these con-
straints into the proposed formulation and illustrate the

use of the resulting framework for solving different types
of parameter-varying identification problems.

3.2 LTI Systems

The approach is first applied to the well-known case of
linear time-invariant (LTI) systems (Overschee and Moor
(1994), Liu and Vandenberghe (2009), Fazel et al. (2013),
Sznaier et al. (2014a)) as a simple proof of concept. The
approach is also used to fit the dynamic model (Equation
(6)) to the Θ(t) trajectory.

For a linear time-invariant system with an offset term, a
large L1-penalty on the change in parameters is imposed,
so that the objective is:

minimize
Θ

∥∥Hn,m,N (Θ)H⊥
U

∥∥
∗ + λ ‖∆Θ‖1

subject to ∥∥y(t)−ΘTΦ(t)
∥∥ ≤ δ1

(10)

where ∆Θ ∈ �n. ∆Θ(i) is the maximum change in
parameter Θ(i) between successive time samples, over the
available data’s time span. Another formulation is to treat
the constraint on prediction error as a penalty in the
objective, which yields an elastic-net type of structure:

minimize
Θ

∥∥Hn,m,N (Θ)H⊥
U

∥∥
∗ + λ1 ‖∆Θ‖1 +

λ2

∥∥y(t)−ΘTΦ(t)
∥∥ (11)

where λ1 and λ2 are regularization constants. λ1 is typi-
cally large.

Sparsity Constraints for Parameter Dynamics Our ob-
jective is to describe Θ(t) using as few past values of
u(t) and y(t) in linear (affine) equation (6). The minimal
order of the dynamics are determined by solving Equa-
tion (9) which addresses the main sparsity consideration
regarding use of as few regressors as possible. The only
additional consideration is the choice of a minimal subset
of input/output variables (u(t), y(t)), that is, making B1

θ ,
B2

θ and D1
θ column-sparse.

A more direct way of inducing sparsity in the linear model
for Θ(t) is to use an ARX parameterization obtained by
a matrix fraction description (MFD) of the dynamics.
Suppose nx denotes the estimated rank of Hn,m,N (Θ)H⊥

U .
Then:

A(q)Θ(t) = B1(q)u(t) +B2(q)y(t) +B01(t) + e(t) (12)

A(q) is a diagonal polynomial matrix of auto-regressive
terms for each Θ variable, each diagonal of order ≤ nx.
B0 is an n-by-1 constant vector to account for the affine
term andB1(q),B2(q) are vectors of nx-order polynomials;
the leading coefficients of B2(q) are zero. The polynomial
coefficients can be determined by solving:

minimize
β

∥∥∥vec(Θ(t))− βT Φ̂(t)
∥∥∥+ L ‖β‖1 (13)

where β = vec(A,B0, B1, B2) is the vector of polynomial

coefficients and Φ̂(t) is the regressor matrix. L ‖β‖1 is the
regularizing penalty. If the goal is to reduce the number of
input/output variables from the set u(t), y(t) participating
in the model, then the penalty can be changed to a Group
Lasso one:
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Fig. 1. Linear system results: Scatter plot of Norm-
minimization vs. N4SID, OE validation fit values for
linear Output-error model identification.

minimize
β

∥∥∥vec(Θ(t))− βT Φ̂(t)
∥∥∥+

L ‖vec(‖βA‖∞ , ‖βB0
‖∞ , ‖βB1

‖∞ , ‖βB2
‖∞)‖

1

(14)

where βA is the vector of coefficients of the A(q) polyno-
mial etc.

As an example, consider 20 random realizations of a
second order transfer function simulated using a PRBS
signal. Gaussian white noise with SNR = 12dB is added
to the simulated outputs. Each record contains N=100
samples. The results from the proposed rank-minimization
approach are generated using Equations (10) and (13).
For comparison, standard subspace (N4SID) approach and
Output Error (OE) estimation in the MATLAB R© System
Identification ToolboxTM [Ljung (2017)] are also gener-
ated. All the models are validated using an independent
dataset. The fit metrics are computed using a Normalized
Root Mean Squared (NRMSE) goodness of fit metric, ex-
pressed as percentage. The results are shown in Figure 1. It
is observed that the rank-minimization approach is able to
meet the performance of the standard linear identification
software results.

3.3 Bilinear Systems

The proposed representation of Θ(t) dynamics means that
we essentially have a bilinear system with terms composed
of lagged input-output variables. As an example, consider
the system:

A(q)y(t) = B0u(t)F (u(t)) +B1(q)u(t) + e(t) (15)

where A(q) and B1(q) are fixed coefficient polynomials,
B0 is a constant and F (.) is a low-pass filter. This can be
expressed in LPV form:

A(q)y(t) = B(q, t)u(t) + e(t) (16)

where B(q, t) is a time-varying polynomial. For example, if
A(q) andB1(q) are second-order, B1(q) has no feedthrough
term and F (.) is a third-order moving average filter, then

B(q, t) = [b0(t), b1q
−1, b2q

−2], b0(t) =
∑2

i=0 αiu(t− i). We
then have a second order ARX model with a time-varying
input gain b0(t). The objective function is:

minimize
B,Θ

∥∥Hn,m,N (Θ)H⊥
U

∥∥
∗

subject to∥∥y(t)−ΘTΦ(t)
∥∥ ≤ δ1

‖∆Θmax‖1 ≤ δ2

(17)

Fig. 2. Estimated Θ(t) trajectory compared against the
true values.

The first constraint checks prediction error, the second
imposes a limit on the rate of change of parameters Θ(t).
Here ∆Θmax is a vector of maximum allowable parameter
changes, such that for the ith parameter, the value is
max

t
(|θi(t+ 1)− θi(t)|).

A simulation using low-pass filtered input sequence was
performed of a second order polynomial model containing
a bilinear term such that F (.) is a fourth order FIR filter.
Gaussian white noise of 14dB SNR was added to the
simulated output. The resulting single-input, single-output
data was split into three portions. The first portion was
used as the main estimation data. The second portion was
used in a cross-validation test to determine a good value
for δ1. The third portion was reserved for model validation.
The value of δ2 was chosen such that it was the minimum
value for which the estimation problem was feasible (1e-4
here). A time-varying ARX model of order na = 2, nb = 3,
nk = 0 was fit to the estimation data. The estimated
parameter trajectory compared against their true values
is shown in Figure 2. The singular values of H(Θ)H⊥

U are
shown in Figure 3.

The SVD plot shows 5 significant singular values. Hence
a fifth order ARX model with L1-penalty was fit to
the parameter trajectory. The resulting hyper-parameters
were used to simulate the model response to the validation
data input with zero initial conditions. If the nature of
the time variation of the parameter b0(t) is known in
advance, the model parameters can also be determined
by a linear ARX estimation by treating each bilinear term
as a known input. This can be treated as “Oracle” result
for comparing the limit of performance of the proposed
estimation algorithm. A typical fit to the validation data
is shown in Figure 4.

50 similar experiments were performed for this system for
SNRs around 10dB, 20 dB and 30dB. The NRMSE fit
value ranges and the corresponding “Oracle” results are
shown in the box plot of Figure 5.

IFAC LPVS 2018
Florianopolis, Brazil, September 3-5, 2018

254



	 Rajiv Singh et al. / IFAC PapersOnLine 51-26 (2018) 74–80	 77

Fig. 1. Linear system results: Scatter plot of Norm-
minimization vs. N4SID, OE validation fit values for
linear Output-error model identification.

minimize
β

∥∥∥vec(Θ(t))− βT Φ̂(t)
∥∥∥+

L ‖vec(‖βA‖∞ , ‖βB0
‖∞ , ‖βB1

‖∞ , ‖βB2
‖∞)‖

1

(14)

where βA is the vector of coefficients of the A(q) polyno-
mial etc.

As an example, consider 20 random realizations of a
second order transfer function simulated using a PRBS
signal. Gaussian white noise with SNR = 12dB is added
to the simulated outputs. Each record contains N=100
samples. The results from the proposed rank-minimization
approach are generated using Equations (10) and (13).
For comparison, standard subspace (N4SID) approach and
Output Error (OE) estimation in the MATLAB R© System
Identification ToolboxTM [Ljung (2017)] are also gener-
ated. All the models are validated using an independent
dataset. The fit metrics are computed using a Normalized
Root Mean Squared (NRMSE) goodness of fit metric, ex-
pressed as percentage. The results are shown in Figure 1. It
is observed that the rank-minimization approach is able to
meet the performance of the standard linear identification
software results.

3.3 Bilinear Systems

The proposed representation of Θ(t) dynamics means that
we essentially have a bilinear system with terms composed
of lagged input-output variables. As an example, consider
the system:

A(q)y(t) = B0u(t)F (u(t)) +B1(q)u(t) + e(t) (15)

where A(q) and B1(q) are fixed coefficient polynomials,
B0 is a constant and F (.) is a low-pass filter. This can be
expressed in LPV form:

A(q)y(t) = B(q, t)u(t) + e(t) (16)

where B(q, t) is a time-varying polynomial. For example, if
A(q) andB1(q) are second-order, B1(q) has no feedthrough
term and F (.) is a third-order moving average filter, then

B(q, t) = [b0(t), b1q
−1, b2q

−2], b0(t) =
∑2

i=0 αiu(t− i). We
then have a second order ARX model with a time-varying
input gain b0(t). The objective function is:

minimize
B,Θ

∥∥Hn,m,N (Θ)H⊥
U

∥∥
∗

subject to∥∥y(t)−ΘTΦ(t)
∥∥ ≤ δ1

‖∆Θmax‖1 ≤ δ2

(17)

Fig. 2. Estimated Θ(t) trajectory compared against the
true values.

The first constraint checks prediction error, the second
imposes a limit on the rate of change of parameters Θ(t).
Here ∆Θmax is a vector of maximum allowable parameter
changes, such that for the ith parameter, the value is
max

t
(|θi(t+ 1)− θi(t)|).

A simulation using low-pass filtered input sequence was
performed of a second order polynomial model containing
a bilinear term such that F (.) is a fourth order FIR filter.
Gaussian white noise of 14dB SNR was added to the
simulated output. The resulting single-input, single-output
data was split into three portions. The first portion was
used as the main estimation data. The second portion was
used in a cross-validation test to determine a good value
for δ1. The third portion was reserved for model validation.
The value of δ2 was chosen such that it was the minimum
value for which the estimation problem was feasible (1e-4
here). A time-varying ARX model of order na = 2, nb = 3,
nk = 0 was fit to the estimation data. The estimated
parameter trajectory compared against their true values
is shown in Figure 2. The singular values of H(Θ)H⊥

U are
shown in Figure 3.

The SVD plot shows 5 significant singular values. Hence
a fifth order ARX model with L1-penalty was fit to
the parameter trajectory. The resulting hyper-parameters
were used to simulate the model response to the validation
data input with zero initial conditions. If the nature of
the time variation of the parameter b0(t) is known in
advance, the model parameters can also be determined
by a linear ARX estimation by treating each bilinear term
as a known input. This can be treated as “Oracle” result
for comparing the limit of performance of the proposed
estimation algorithm. A typical fit to the validation data
is shown in Figure 4.

50 similar experiments were performed for this system for
SNRs around 10dB, 20 dB and 30dB. The NRMSE fit
value ranges and the corresponding “Oracle” results are
shown in the box plot of Figure 5.
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Fig. 3. Estimated singular values for the bilinear identifi-
cation problem. First five singular values are found to
be significant.

Fig. 4. Bilinear model response validation. Shown are the
measured data, “Oracle” model response and Bilin-
ear identification by the proposed rank minimization
approach.

Fig. 5. NRMSE fit distribution for the bilinear identified
model (red) and the linear “Oracle” model (cyan).

Fig. 6. IC Engine input-output data. y1 is the output
(RPM/100) and u1 is the input (V).

Fig. 7. Fit results for the engine RPM. Top plot shows the
singular values while the bottom plot shows fit to the
output.

4. EXAMPLES

In this section we illustrate the potential of the proposed
approach with two practical examples:

4.1 IC Engine Dynamics

The dynamic relationship between the voltage controlling
the Bypass Idle Air Valve (BPAV) and the engine speed is
known to be nonlinear. 1500 samples of the control voltage
V and the engine speed (RPM/100) were collected at a
sampling rate of 0.04 seconds. The measured input-output
data is shown in figure 6.

Orders na = 4, nb = 2, nk = 2 were used for estimation
using the first half of the measured data downsampled by a
factor of five. The prior knowledge is that the nonlinearity
is usually of low-order polynomial in nature. Maximum
rate of change and smoothness constraints were imposed.
Regularization constants were tweaked until a low-order
Θ(t)) model that was able to provide good fit to the
estimation data was obtained. The fit to the whole dataset
is shown in figure 7.
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Fig. 8. Motorized camera input-output data. y1, y2 are the
outputs, u1, u2, . . . , u6 are the inputs.

4.2 Motorized Camera Dynamics

This example shows the identification of a multi-input,
multi-output (MIMO) system describing a motorized cam-
era. The input vector u(t) is composed of 6 variables: the
3 translation velocity components in the orthogonal X-
Y-Z coordinate system fixed to the camera (m/s), and
the 3 rotation velocity components around the X-Y-Z axis
(rad/s). The output vector y(t) contains 2 variables: the
position (in pixel) of a point which is the image taken by
the camera of a fixed point in the 3D space. See figure 8.

The model orders were guided by results from using
linear ARX identification, which even though suboptimal,
provides a good estimate of the number of regressors
involved. A constant input was added to account for offset.
The orders chosen were: na = ( 1 1

1 1 ), nb = ( 2 2 2 2 2 2 1
2 2 2 2 2 2 1 )

and nk = ( 1 1 1 1 1 1 0
1 1 1 1 1 1 0 ).

The main regularization idea is to force as many parame-
ters to constant values as possible while limiting the rate
of change of the variation in the free parameters. The se-
lection of free parameters was made by independent trials
on combinations that forced all except a few parameters
to be fixed. A first order model was fit separately to each
of the free parameters, the choice of orders being guided
by the number of non-zero singular values estimated by
the rank minimization procedure. The results are shown
in Fig. 9.

Fig. 9. Fit results for the 2 outputs. Top plot shows the
singular values while the second and the third plots
show fits to the two outputs.

5. CONCLUSIONS

The well-known rank-minimization approach that is the
foundation of linear subspace identification methods is
generalized for identification of time-varying linear ARX
models. The approach is useful for estimation of LPV
models where the choice of scheduling parameters, or the
nature of dynamic dependence of the model parameters
on them, is not known in advance. It is shown that such
an approach offers a feasible framework for analysis of
such systems provided the constraints are carefully derived
using prior knowledge and applied to the minimization
objective.

5.1 Ongoing and Future Work

Setting up the right constraints to ensure identifiability
is one of the main difficulties. If we do not fully know
apriori what regularization constants to use, we do not
know what parameter trajectory Θ(t) is more reasonable
than others. Use of cross-validation to tune regularization
constants, exploiting physical knowledge regarding the
nature of parameters (in grey box case), and imposing
smoothness/sparsity constraints all seem to hold promise.
Working with 3 datasets is often helpful - one for parame-
ter estimation, one for tuning regularization constants by
cross-validation, and one for independent validation. We
are investigating how more information regarding the con-
straints can be extracted from data itself by means of ap-
propriately designed experiments, or by using a Bayesian
estimation framework to turn soft information (such as
exponential stability) into concrete constraint information
(see, for example, Chen et al. (2012)).
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