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Abstract— The goal of this paper is to develop a compu-
tationally tractable framework for data driven control of
switched linear MIMO systems. Given a model structure
and experimental data collected at different operating
points, we seek to directly design a controller that stabilizes
all plants compatible with this information, without an
explicit plant identification. The main result of the paper
shows that this problem can be recast into a polynomial
optimization form and efficiently solved, leading to a robust
controller with guaranteed `∞ worse-case performance for
any switching amongst all plants that could have generated
the observed experimental data. The effectiveness of the
proposed technique is illustrated with a numerical example.

I. INTRODUCTION

Due to a large research effort undertaken during the
past decade, the problem of designing controllers for
switched linear systems has been, to a large extent,
solved (see for instance [11], [18], [1], [17], [9] and
references therein)). However, all of these approaches
rely on the availability of a model of the system to be
controlled. Thus, in practical cases, designing controllers
for switched systems usually entails first identifying a
plant model along with worst-case identification error
bounds that can then be used in conjunction with exist-
ing controller design techniques. However, the process
of identifying models for switched systems and obtain-
ing error bounds by validating these models against
additional data is far from trivial. Indeed, in its most
general form, this identification/(in)validation step is
known to be NP-hard (see for instance [20], [19]). Note
that this two step approach is conservative, even in the
LTI case, since typically the error bounds provided by
the identification/(in)validation steps are not tight.

Data driven control methods seek to circumvent this
conservatism by directly synthesizing a controller from
the experimental data, without identifying the plant
first. A large portion of these methods accomplish this
by finding a controller that minimizes a suitable per-
formance index. Tuning based data driven approaches
include iterative feedback [13], frequency domain, [14],
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correlation based [15], and virtual reference feedback
tuning [5], [10], [4]. An alternative, robust optimization
based approach was proposed in [7]. While successful,
these techniques are restricted to time invariant plants.
Indeed, to the best of the authors’ knowledge, the only
existing data-driven control method capable of handling
switched systems is [8], albeit with the caveat imposing
superstability, rather than stability, a much stronger
requirement. Motivated by the issues noted above, this
paper seeks to develop a switched DDC framework,
capable of handling finite, noisy data records, while
guaranteeing closed loop stability of all plants in the
consistency set. Contrary to [8], here we impose stabil-
ity, rather than superstability, leading to a (non-convex)
polynomial optimization problem. However, as we show
in the paper, this problem can be efficiently solved
by exploiting recent advances in semi-algebraic opti-
mization. When compared against [8], the main trade-
off is computational complexity versus conservatism.
Indeed as we illustrate with an example, the propose
technique can find stabilizing controllers in cases where
the superstability based approach fails to do so.

The paper is organized as follows: section II intro-
duces the notation, reviews some background results and
formally states the problem under consideration. Section
III exploits ideas from robust optimization, polyhedral
Lyapunov functions and polynomial optimization to re-
duce the problem to a tractable convex optimization.
Section IV illustrates these ideas with some examples
and shows the advantages of the proposed approach
vis-a-vis the one introduced in [8] . Finally, Section V
presents some conclusions and discusses open issues.

II. PRELIMINARIES

A. Notation and background results

x,X a vector in Rn, a matrix in Rm×n
X ≥ 0 X is element-wise non-negative (e.g.

X(i, j) ≥ 0)
X � 0 X is positive semi-definite
‖X‖∞ `∞ induced-norm of X

‖X‖∞
.
= sup

i

n∑
j=1

|X(i, j)|
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‖x‖∞ `∞-norm of x: ‖x‖∞
.
= supi |x(i)|

⊗ Kronecker product
vec(X) matrix vectorizing operation

vec(X) =
[
(X(:, 1))T . . . (X(:, n))T

]T
mat(x) vector to matrix operation
diag(s) create a diagonal matrix from the vector s.

B. Polynomial optimization problems

In this paper, we will reduce the data driven control
problem to a (non-convex) quadratically constrained
quadratic problem (QCQP) of the form:

min
x

vx
TQovx s.t. vx

TQkvx ≥ 0, k = 1, . . . , N (1)

for some symmetric matrices Qi, i = 0, .., where vx
T =[

1, x1 x2 . . . , xn
]
. These problems are a special case of

general polynomial optimization problems of the form:

p∗ =min
x∈K

p(x) =
∑
α

pαx
α

(2)

where α .
= [α1, . . . , αn], xα =

∏n
i=1 x

αi
i and the set

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, · · · , N} is defined
by a collection of polynomial constraints of the form
gk(x) =

∑
α gk,αx

α ≥ 0.
It can be shown [16], that problem (2) is equivalent to

the following optimization problem over the set P(K)
of probability measures µ supported on K:

p∗ = min
µ∈P(K)

∫
p(x)µ(dx) = min

µ

∑
α

pαmα

subject to mα
.
=

∫
K

xαµ(dx)

(3)

where mα,denotes the αth moment with respect to µ.
Problem (3) is convex since the objective function is
affine in mα, while the constraints are convex, albeit
infinite dimensional. As shown in [16] a (convergent)
sequence of finite dimensional convex relaxations with
cost pdm ↑ p∗ can be obtained by replacing the con-
straints in (3) by semidefinite constraints of the form:

Md(m)i,j =mα(i)+α(j) � 0, ∀i, j ≤ Sd
Ld(gkm)(i, j) =

∑
β

gk,βmβ+α(i)+α(j) � 0

∀i, j ≤ S
d−d deg(gk(x))

2 e

(4)

where M and L, the truncated moment and localizing
matrices, contain moments of order up to 2d and Sd

.
=(

d+n
n

)
, leading to a semi-definite program of the form

pdm
.
= minm

∑
α

pαmα subject to (4) (5)

If for some d the solution to the problem above satisfies

rank[Md(m)] = rank
(
Md−max(deg(gk(x)

)
(6)

then the relaxation is exact, that is pdm = p∗.
Remark 1: In the case of QCQP of the form (1),

the lowest order relaxation of (3) corresponds to d =
1, with objective and localizing matrices given by
Trace(QoM1) and Trace(QkM1) respectively. If the
solution to this relaxation satisfies rank(M1)= 1, it can
be easily shown that it is indeed exact. We will exploit
this property in Section III to obtain a computationally
tractable algorithm to synthesize data driven controllers.

C. Stability of switched systems

Consider a switched discrete time linear system:

x(t+ 1) = Aix(t), i ∈ {1, 2, ..ns} (7)

As shown in Lemma 4.1 in [1], (7) is asymptotically
stable under arbitrary switching if and only if there
exists a full column rank matrix V and ns matrices
Hi, ‖Hi‖∞ < 1 such that

VAi = HiV, i = 1, . . . , ns (8)

In this case the function V(x) .= ‖Vx‖∞ is a polyhedral
Lyapunov function for (7).

D. Statement of the Problem

Consider the setup shown in Figure 1, where each
node represents an active subsystem. Our goal is to de-
sign a switched state feedback controller that stabilizes,
under arbitrary switching, all possible plants compatible
with the observed experimental input/output data and
some minimal a-priori information about the system.
Formally, this problem can be stated as:

C(P1) 

? 

C(P2) 

? 

Fig. 1: Setup for Switched Data Driven Control Synthesis.

Problem 1: Consider a switched system composed of
ns LTI subsystems of the form:

xk+1 = Aixk + Biuk + wk (9)
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where xk ∈ Rn, uk ∈ Rm, and wk ∈ Rn, denote the
state, input and process noise, and where i denotes the
active sub-system at time k. Given experimental data
{uk,xk,xk+1}Tk=0, collected from an experiment where
each subsystem is sufficiently excited, find a switched
state feedback controller Fi, i = 1, . . . , ns such that
x = 0 is an asymptotically stable equilibrium point of
the resulting closed loop system

xk+1 = (Aσt
+ Bσt

Fσt
)xk (10)

for any switching sequence σt ∈ {1, . . . , ns} for all pairs
(Aσt

,Bσt
) consistent with the experimental data.

In the next section, we will show that, for the case of
`∞ bounded noise, the problem above can be recast as
a polynomial optimization problem, which in turn can
be relaxed to a semi-definite program.

III. MAIN RESULTS

In this section we present the main result of the
paper: a convex reformulation of Problem 1. Given a
bound ε on the `∞ norm of the process noise (e.g.
‖w‖∞ ≤ ε), define the consistency set P as the set of
all pairs (Aj ,Bj) compatible with this bound and the
experimental data. It can be easily seen that P = ∪P(i),
where each of the P(i) is a polytope of the form:

P(i) .= {a(i)
j ,b

(i)
j : ‖

(
xT
t
(i)
1

⊗ I
)

a
(i)
j +(

uT
t
(i)
1

⊗ I
)

b
(i)
j − x

t
(i)
1 +1
‖∞ ≤ ε}

(11)

where (A(i)
j ,B

(i)
j ) denotes a generic pair in P(i), a

(i)
j

.
=

vec(A(i)
j ), b

(i)
j

.
= vec(B(i)

j ) and where t
(i)
k , k =

1, . . . ,mi denotes the times at which the ith system is
active. In this context, Problem 1 is equivalent to:

Problem 2: Find a full column rank matrix V, and ns
matrices Fi such that, for all pairs (A

(i)
j ,B

(i)
j ) ∈ P(i),

there exist a matrix H
(i)
j with ‖H(i)

j ‖∞ < 1, such that

V
[
A

(i)
j + B

(i)
j Fi

]
= H

(i)
j V (12)

for i = 1, . . . , ns.
Note that in principle, the number of rows of the matrix
V is not bounded a priori. This fact, combined with the
bilinear dependence of (12) renders Problem 2 extremely
challenging. Thus, in the sequel, we will consider a
relaxation where we seek solutions where the matrix
V ∈ Rn×n. This allows for recasting Problem 2 into
the following robust optimization form:

Problem 3: Find a full rank matrix V ∈ Rn×n, a
switched feedback gain Fi and matrices H

(i)
j such that

V(A
(i)
j + B

(i)
j Fi) = H

(i)
j V and ‖H(i)

j ‖∞ ≤ d < 1
(13)

for all pairs (A
(i)
j ,B

(i)
j ) ∈ P(i), i = 1, . . . , ns.

While in principle this provides only sufficient condi-
tions for the existence of a switched gain Fi that solves
the DDC problem, this relaxation can be reformulated
as a polynomial optimization problem and solved using
the techniques outlined in Section II.

Theorem 1: Denote by t
(i)
k , k = 1, . . . ,mi the time

instants where the ith sub-system is active. Let:

X (i) .
=


xT

t
(i)
1

⊗ I

...
xT

t
(i)
mi

⊗ I

 ,U (i) .
=


uT

t
(i)
1

⊗ I

...
uT

t
(i)
mi

⊗ I

 , ξ(i) .
=


x
t
(i)
k

+1

...
x
t
(i)
mi

+1


Given a (full rank) matrix V ∈ Rn×n, a matrix S ∈
Rr×n2

and a non-negative vector λ ∈ Rr there exist
switched feedback gains Fi and matrices H

(i)
j such that

V(A
(i)
j + B

(i)
j Fi) = H

(i)
j V and Svec(H(i)

j ) ≤ λ
(14)

for all pairs (A
(i)
j ,B

(i)
j ) ∈ P(i), i = 1, . . . , ns if and

only if there exist ns matrices Y(i) ∈ Rr×2nmi , Y(i) ≥
0 and Fi ∈ Rm×n such that

Y(i)

[
X (i) U (i)

−X (i) −U (i)

]
=
[
(S(V−T ⊗V) S(FTi ⊗V)

]
Y(i)

[
ξ(i) + ε1
−ξ(i) + ε1

]
≤ λ

(15)
Proof: (Only a sketch given due to space con-

straints). Let Fi
.
= FiV and H

.
= VAV−1+VBFi. The

proof follows by noting that every pair (A,B) ∈ P(i)

satisfies (14) if and only if the polytope:

PH
.
=
{
(A,B) : Svec(VAV−1 + VBFi) ≤ λ

}
satisfies P(i) ⊆ PH and using the extended Farkas’
Lemma [12] to enforce this condition.

Corollary 1: Problem 3 is equivalent to the following
polynomial feasibility problem: Find ns matrices Yi ∈
Rn×2nmi ≥ 0,Fi ∈ Rn×m, a full rank matrix V ∈
Rn×n and a non-negative vector λ with elements λi ≤
d < 1 such that (15) holds for all matrices S ∈ Rn×n2

of the form:

S =
[
diag(s1) diag(s2) . . . diag(sn)

]
(16)

where si ∈ Rn is a vector with elements si,j = ±1.
Remark 2: Note that by defining Z = V−1 and

imposing the additional constraint VZ = I, the problem
above reduces to a (non-convex) quadratic program. In
principle, this problem can be reduced to a sequence of
SDPs or to a rank-constrained LMI using the techniques
outlined in Section II-B (see Remark 1). However, this
problem has a large number of constraints due to the
need to consider 2n

2

matrices S with all possible sign
vectors in Rn2

. Thus, while the Corollary above is of
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theoretical interest, from a practical standpoint, its use
is limited to relatively low order systems.

To address the computational complexity noted above,
in the next result we introduce a relaxation of Problem
3, that, albeit potentially conservative, has substantially
lower computational complexity. In addition, consistent
numerical experience shows that this relaxation works
well in situations were the noise level ε is small.

Corollary 2: Problem 3 is solvable if there exists a
matrix Λ ∈ Rn×n, Λ ≥ 0 and a scalar d < 1 such that
Λ1 ≤ d1 and the conditions in Theorem 1 hold with

S =

[
In2×n2

−In2×n2

]
and λ =

[
vec(Λ)
vec(Λ)

]
As before, the problem above reduces to a polynomial

optimization problem. To obtain a computationally effi-
cient algorithm, in this paper we will consider the first
order relaxation, and impose the additional constraint
rank(M) = 1. Finally, using a (re-weighted) nuclear
norm as surrogate for rank leads to the algorithm out-
lined in Algorithm 1.

Algorithm 1 Reweighted ‖.‖∗ based DDC design

Initialize: iter = 0,W(0) = I , d < 1
repeat

Solve

minm Trace(W(iter)M)
subject to:
λ ≥ 0
M(m) � 0
M(1, 1) = 1
VZ = I
mat(λ)1 ≤ d1
and, for all i = 1, . . . , ns
Y(i) ≥ 0

Y(i)

[
X (i) U (i)

−X (i) −U (i)

]
=

[
K N (i)

−K −N (i)

]
Y(i)

[
ξ(i) + ε1
−ξ(i) + ε1

]
≤ λ

where K = ZT ⊗V,N (i) = FTi ⊗V
M represents the moment matrix given by:
M = [1, vec(V)T , vec(Z)T , vec(Fi)T ]T×

[1, vec(V)T , vec(Z)T , vec(Fi)T ]
Update

W(iter+1) = (M(iter) + σ2(M
(iter))I)−1

iter = iter + 1

until rank{M} = 1.

IV. ILLUSTRATIVE EXAMPLE

In this section, we apply the proposed approach with
a simple academic example and illustrate its advantages

when compared against the approach proposed in [8].
Consider a MIMO LTI system that arbitrarily switches
between two modes, one stable and the other unstable.
The dynamics of the two sub-systems are given by:

A1 =

0.61 0.8 0
−0.8 0.61 0
0 0 0.2

 B1 =

−0.1503 0.4128
−0.7616 −0.5129
−0.0099 0.5701


(System 1)

A2 =

 0.2 0.4 0
−0.4 0.2 0
0 0 0.6

 ,B2 =

−0.8518 −0.5586
−0.2122 −0.9974
−0.9932 −0.6216


(System 2)

The experimental data was generated by applying a
random input u, with ‖u‖∞ ≤ 1, and the output
was corrupted with `∞ bounded random noise. The
noise bound for both systems is ‖w‖∞ ≤ 0.2. The
corresponding trajectories are shown in Fig. 2.
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Fig. 2: (Simulated) experimental data. Top: System 1.
Bottom: System 2.

For this example, the convex algorithm proposed in
[8] fails to produce a stabilizing controller (the algorithm
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yields an optimal value d > 1, which certifies that
the switched system cannot be superstabilized). On the
other hand, Algorithm 1 led to a value d = 0.99 < 1,
with the corresponding controller switching between the
following gains:

F1 =

[
−0.0769 0.9355 0.0736
−0.4922 −0.2585 −0.1192

]
(Gain 1)

F2 =

[
0.1669 0.1345 0.4496
−0.1915 0.0670 −0.1117

]
(Gain 2)

with

V =

−0.3367 −0.6297 −1.0102
−0.0512 1.1437 −0.4968
−0.8773 −0.1640 0.1145


and

Z =

−0.0376 −0.1806 −1.1149
−0.3354 0.7023 0.0877
−0.7683 −0.3776 0.3169


For reference purposes, we note that for the ground

truth data we have ‖H1‖∞ = ‖V(A1 + B1F1)Z‖∞ =
0.7873 and ‖H2‖∞ = ‖V(A2 + B2F2)Z‖∞ = 0.6146.
As expected, both of these values are smaller than d,
which is the worst case value over all possible switching
sequences and all plants in the consistency set.

The trajectories of each individual closed loop system
starting from a random initial condition (with no input
and without switching) are shown in Fig. 3. Similarly,
Fig. 4 shows the trajectories corresponding to a random
initial condition with ‖x0‖∞ ≤ 10, driven by the switch-
ing sequence σ = [21122211211122222111]. Note that,
as expected, in all cases the states converge to zero
exponentially, with convergence rate better than dk.

Finally, we briefly illustrate the disturbance rejection
properties of the resulting controllers. Assume that the
closed loop system is affected by an `∞ bounded dis-
turbance w, that is:

xk+1 = (Aσ + BσFσ)xk + wk

From (14) it can be shown that the set

S .
=

{
x : ‖Vx‖∞ ≤ µ

.
=
‖Vw‖∞
1− d

}
is positively invariant. Thus, any trajectory starting in
S is uniformly bounded (over all possible switching
sequences) by ‖x‖∞ ≤ M , where M = max ‖x‖∞
subject to ‖Vx‖∞ ≤ µ. This noise rejection property is
illustrated in Fig. 5 showing the response of the switched
closed loop system to a random disturbance w with
components ±1.
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Fig. 3: Individual system’s closed loop response to a ran-
dom initial condition showing exponential convergence
to 0 faster than dk. Top: System 1. Bottom: System 2.
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Fig. 4: State trajectories corresponding to a random ini-
tial condition and random switching. Again, as expected,
convergence rate to 0 is faster than dk.
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Fig. 5: State trajectories corresponding to a random `∞

bounded disturbance.

V. CONCLUSIONS

In this paper we presented a framework for synthe-
sizing data driven switched state feedback controllers
for switched discrete time systems. The key idea is to
exploit necessary and sufficient conditions for stability,
given in terms of the existence of a common polyhedral
Lyapunov function. While in principle this leads to a
very challenging non-convex optimization problem, the
main result of the paper shows that, if this polyhedral
function is limited to have at most 2n faces, then the
problem can be reduced, via Farkas’ Lemma, to a poly-
nomial optimization. In turn, by exploiting tools from
the theory of moments, this problem can be reduced to
a rank-constrained SDP for which efficient convex relax-
ations are readily available. The resulting controller is
guaranteed to exponentially stabilize (with convergence
rate of at least dk) all plants in the consistency set. When
compared against the technique proposed in [8], the
approach proposed here leads to less conservative results
since it only enforces closed loop stability (rather than
imposing super-stability, a much stronger, coordinate de-
pendent concept). This was illustrated with a simple ex-
ample, where the proposed approach led to a stabilizing
controller while the approach in [8] failed to do so. On
the other hand, this reduced conservatism comes at the
price of a heavier computational burden. For instance,
for the simple example in Section IV, Algorithm 1 took
typically around 20 to 30 seconds, while the approach in
[8] was able to certify infeasibility of superstabilization
in only 2.2 seconds. Efforts are currently under way to
reduce the computational complexity of Algorithm 1,
by exploiting the chordal structure of the problem and
developing custom made first order methods based on
randomized linear algebra.
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