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Abstract— This paper considers the problem of identifying
error in variables switched affine models from experimental
input/output data. Since this problem is generically NP hard,
several relaxations have been proposed in the past. While these
relaxations work well for low dimensional systems with few sub-
systems, they scale poorly with both the number of subsystems
and their memory. As an alternative, in this paper we present a
computationally efficient method based on embedding the data
in the manifold of positive semidefinite matrices, and using
a manifold metric to detect switches and identify subsystems.
The main result of the paper shows that, under dwell-time
assumptions, the method is guaranteed to identify the system,
for suitably low noise scenarios. In the case of larger noise
levels, consistent numerical experience shows that the proposed
method outperforms existing ones. These results are illustrated
with a non-trivial practical example: action segmentation.

I. INTRODUCTION

Switched systems are pervasive across applications do-
mains ranging from systems biology to manufacturing. Thus,
a large research effort has been devoted in the past decade
to develop controllers for such systems. Successful appli-
cation of this control design framework to practical prob-
lems requires the ability to identify switched models from
experimental data. Identification of switched systems in the
case of error in the process models has been extensively
studied in the past decades [29], [11]. The related methods
can be generally divided into three categories: optimization
based methods, algebraic methods, and clustering based
methods. In optimization based methods, [32] and [3] re-
cast the problem into a combinatorial optimization. In the
case of bounded noise, [17] proposed to use a branch and
bound approach to efficiently solve the optimization problem.
Additional approaches include sparse optimization [28], [1],
polynomial optimization [26], [27], [31], particle-swarm [19]
and difference of convex functions programming [8]. Very
recently, it was shown in [25] that indeed, this problem can
be solved in polynomial time, provided that the goal is to
find a hybrid system that explains the observed data with
the minimum number of switches, rather than the minimum
number of subsystems. This method is very efficient for `2

bounded noise but performance degrades substantially in the
case of `∞ bounds.
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Regarding algebraic methods, to the best of our knowl-
edge, [36] was the first to apply these techniques to switched
systems identification. While the approach works well for
noiseless data, performance degrades quickly with the noise
level. [23], [24], [22] addressed this issue by using methods
such as total least squares to denoise the data. Finally,
clustering based approaches (see for instance [10], [2], [16],
[12], [14], [34], [15] and references therein) borrow tools
from pattern recognition and machine learning.

On the other hand, far fewer methods exist to handle the
case of error-in-variables models, where each of the measure-
ments is assumed to be corrupted by noise. In this case, the
problem is known to be NP hard and most existing methods
are based upon convex relaxations of the original non-convex
problem. In particular, [9], [5], [6] proposed a polynomial
optimization based approach, which in turn is relaxed to a se-
quence of convex semi-definite programs. While in principle
this sequence of approximations is guaranteed to converge
to the actual system, in practice, computational complexity
prevents considering higher elements of the sequence, ne-
cessitating adding rank constraints to the algorithm. Thus,
while empirically shown to work, theoretical convergence
guarantees are lost. Further, even when considering low order
relaxations, computational complexity scales combinatorially
both with the number of subsystems and their order.

To avoid this difficulty, in this paper we propose a com-
putationally efficient alternative, based upon the idea of em-
bedding the data in the manifold of positive definite matrices
and using a manifold distance-like function to compare the
dynamics underlying short segments of the data record. In
this context, switches in the system are characterized by
sharp increases in this distance. Further, segments where
the same subsystem is active can be identified by finding
clusters where this distance is small, a problem that can
be efficiently solved by recasting it into a graph cut form.
Our theoretical results show that, under minimum dwell
time assumptions, in the case of suitably low noise, this
approach is guaranteed to identify the minimum number
of subsystems that explains the observed data. In scenarios
with higher noise levels these theoretical guarantees are lost,
but numerical experience shows that the proposed method
consistently outperforms existing approaches in terms of
computational burden and identification error. These results
are illustrated with a non-trivial practical example: activity
segmentation from time traces of the position of a person’s

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 3006



centroid. While the proposed technique is less general than
those in [9], [5], [6], since it assumes dwell time constraints,
it is able to exploit these constraints to substantially lower the
computational burden, as opposed to polynomial optimiza-
tion based approaches. Thus, it substantially outperforms
these approaches in many practical scenarios (e.g. biological
systems) where dwell time constraints arise naturally.

The paper is organized as follows: Section II contains the
notation, some required background on Riemannian metrics,
and formally states the problem under consideration. Section
III presents the proposed solution, along with the supporting
theory. Section IV illustrates these results with a practical ex-
ample. Finally, Section V presents some concluding remarks
and points out to some open questions.

II. PRELIMINARIES

In this section we introduce the notation used in the paper
and recall, for ease of reference, some key results.

A. Notation
R set of real numbers
Sn set of symmetric matrices in Rn×n
Sn+(Sn++) cone of positive-semidefinite

(-definite) matrices in Sn
MT transpose of matrix M
|M| determinant of M
N (M) null space of M
‖M‖∗ nuclear norm of M
‖M‖F Frobenius norm of M
σr(M) rth singular value of M
Hr,q

x Hankel matrix associated with a vec-
tor sequence x1:n where n = r+q−
1 and

Hr,q
x

.
=


x0 x1 · · · xq−1
x1 x2 · · · xq
...

...
. . .

...
xr−1 xr · · · xn


G Gram matrix associated with a given

Hankel matrix: G = HHT

In Identity matrix, In ∈ Rn×n
Jld(X,Y) Jensen-Bregman LogDet Divergence:

Jld(X,Y) = log

∣∣∣∣X + Y

2

∣∣∣∣−1

2
log |XY|, X,Y ∈ Sn++

B. Background results on the Jensen-Bregman LogDet diver-
gence

In this paper we will embed data in the manifold of
positive definite matrices and use distances there to detect
switches and compare systems. To this effect, we need a
metric that takes into account the non-flat geometry of Sn++.

The intrinsic metric in Sn++ is the so-called Affine Invariant
Riemannian Metric (AIRM) [30], [4], defined by

JR(X,Y)
.
= ‖ log

(
X−

1
2 YX−

1
2

)
‖F

While this metric is induced by the geodesic length along
the manifold curvature, its main disadvantage is its high
computational cost. A recently introduced, computationally
effective surrogate is the Jensen-Bregman LogDet Diver-
gence (JBLD) [7]:

Jld(X,Y) , log

∣∣∣∣X + Y

2

∣∣∣∣− 1

2
log |XY| (1)

As shown in [13] the JBLD is geometry aware and is closely
related to AIRM (Theorem 1 in [13]).

Note that (1) is only well defined for matrices in Sn++.
However, this paper requires comparing positive semi-
definite matrices, for which the JBLD is not defined. The
following result extending the JBLD to Sn+, provides the the-
oretical justification for the proposed identification method.

Theorem 1 ([38]): Given X,Y ∈ Sn+, define the regular-
ized matrices X(σ) = X + σI, Y(σ) = Y + σI, where
σ > 0. Then

lim
σ→0

Jld(X(σ),Y(σ)) 6=∞ ⇐⇒ N (X) = N (Y) (2)

C. Problem Statement

In this paper we are interested in identifying Error-in-
Variables Switched ARX models (EIV-SARX) from exper-
imental input/output data and some minimal a-priori infor-
mation on the system to be identified and the statistics of the
noise. Specifically, we are interested in solving:

Problem 1: Given experimental input/output data
{(ut, yt)Tt=t0} and bounds ση, σν on the covariance of the
noise, find a set of coefficients {ana

k=1(i), b
na

k=1(i)} so that
the EIV-SARX model

ŷt =

na∑
k=1

ak(st)ŷt−k +

na∑
k=1

bk(st)ût−k

yt = ŷt + ηt, ut = ût + νt

(3)

explains the observed data. Here ŷ, û represent the actual
input/output variables, corrupted by additive noise ηk, νk,
yt, ut denote their measured values, and st is the mode
variable indicating which subsystem is active at time t.
Assumption A1: Minimality To avoid ambiguities, we will
assume that each LTI subsystem has a minimal representation
of the form above. Equivalently, if the input/output pairs
(yti , uti) are explained by an ntha order ARX model, there
does not exist another ARX model with n′a < na that
explains the same subset of data.

Remark 1: Note that the problem above is ill posed, even
under Assumption 1, since the experimental data can always
be explained by fitting a model to each data point. Thus, to
regularize the problem we will seek to explain the data with
the minimum possible number of subsystems. This scenario
arises often in practical applications such as fault tolerant
control, fault detection and isolation, image segmentation,
and activity recognition.
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III. EIV-SARX IDENTIFICATION VIA JBLD BASED
SPECTRAL CLUSTERING

In this section we present the proposed method, summa-
rized in Algorithm 1, and provide its theoretical justification.
The main idea is to partition the experimental data into
subsets, each of which are known to have been generated
by an LTI system of order at most na, and then compute
a manifold distance between the dynamics underlying each
segment. Once these distances are obtained, a graph cut
step is performed to assign segments to clusters, each cor-
responding to a single subsystem. Finally, the parameters
of the subsystems are recovered by simply performing a
LTI systems identification step on each cluster. A high level
outline of this algorithm is provided in Algorithm 1.

Algorithm 1 Riemannian distance-like function based
switched system identification

Inputs: input sequence u1:n, output sequence y1:n, sliding
window size h, Hankel row size r = 2na + 1.
Step 1: Data Segmentation. Use (8) to partition the input
and output sequences into segments of length h, each
generated by a single LTI system. The ith segment of
input and output are denoted uci:ci+h−1 and yci:ci+h−1,
respectively.
for i = 1 to # of segments do

Hu,i ← Hankelize uci:ci+h−2
Hy,i ← Hankelize yci:ci+h−1

Gi ←
[
Hy,i

Hu,i

] [
HT

y,i HT
u,i

]
Ĝi(σ)← Gi

‖Gi‖∗ + σIr
end for
Step 2: Spectral Clustering.
Compute D, where Dij = Jld(Ĝi(σ), Ĝj(σ))

Compute the similarity matrix W, where Wij = e−
D2

ij
2

Cluster labels z← normalized cuts on W
Step 3: Subsystem Identification.
for i = 1 to # of clusters do

Perform a LTI SysId step on cluster zi
end for
Outputs: ai,bi

The next result provides the theoretical underpinnings of
the proposed algorithm:

Theorem 2: Under the following assumptions:
A.2 Noiseless data1.
A.3 Dwell time: once the system (3) switches to a given

subsystem, it remains there for T ≥ 4na+1 sampling
instants.

A.4 Persistence of the excitation. For any window j of
length h ≥ 3na + 1 where the ith system is active,
then σr(Ĝ

i
j) ≥ σi > 0, where, for a rank r matrix,

σr(.) denotes the smallest non-zero singular value, and
Ĝi
j
.
=

Gi
j

‖Gi
j‖∗

.

1The more general case with noisy data is considered in Theorem 3.

Then, there exists some σ > 0 such that Algorithm 1 exactly
recovers the underlying system.

Establishing this result, requires analyzing first the prop-
erties of the data segmentation and clustering steps.

A. Step 1: Switch Detection and Data Segmentation

The goal of this step is to segment the data into portions
where only one subsystem is active. To this effect, we will
build two sequences {T−i } and {T+

i }, such that actual switch
instants Ti satisfy T−i ≤ Ti ≤ T

+
i . Hence, the data yk at time

instants k ∈ [T+
i , T

−
i+1−1] is known to have been generated

by a single subsystem. The algorithm (outlined in (8)), uses
a sliding window of size h ≥ 3na + 1 to detect switches
by comparing the corresponding Gram matrices. Specifically,
given a time instant k and a regularization parameter σ, let
Ĝk(σ) denote the (normalized, regularized) Gram matrix
built from the data in the segment [k, k + h − 1], where
h ≥ 3na + 1 is the chosen window length:

Ĝk(σ) =
Gk

‖Gk‖∗
+ σIr (4)

where r .
= 2na + 1,

Gk =

[
Hy,k

Hu,k

] [
Hy,k

Hu,k

]T
(5)

and

Hy,k =


yk yk+1 · · · yk−na+h−1
yk+1 yk+2 · · · yk−na+h

...
...

. . .
...

yk+na
yk+na+1 · · · yk+h−1

 (6)

Hu,k =

 uk · · · uk−na+h−1
...

. . .
...

uk+na−1 · · · uk+h−2

 (7)

Given an increasing sequence {i}, define ji by:

j+i = argmin
j≥i+1

{
j : Jld(Ĝi(σ), Ĝj(σ)) ≥ τ

}
T+
i = j+i + h− 1

j−i = argmin
j≤T+

i

{
j : Jld(Ĝj(σ), ĜT+

i
(σ)) < τ

}
T−i = j−i + na

(8)

where τ denotes a suitable threshold. As we show next, in
the case of noiseless data, the sequences T−i , T

+
i bracket

the actual switching sequence. Before establishing a formal
proof of this result, below we illustrate the intuition behind it
with a simple example. Consider the following two models:

yk+1 = 0.5yk + 0.5uk (system1)

yk+1 = uk (system2)

and the following input/output sequences:
u(1:8)={1,4,0,1,2,3,0,4}, y(1:9)={-1,0,2,1,1,2,3,0,4}.
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The corresponding Hankel matrices, with h = 3na + 1 = 4
are

H1 =

−1 0 2
0 2 1
1 4 0

 ,H2 =

0 2 1
2 1 1
4 0 1

 ,H3 =

2 1 1
1 1 2
0 1 2


H4 =

1 1 2
1 2 3
1 2 3

 ,H5 =

1 2 3
2 3 0
2 3 0

 ,H6 =

2 3 0
3 0 4
3 0 4


Here the points 1-4 were generated with the model yk+1 =
0.5yk+0.5uk and the points 6-9 were generated by the model
yk+1 = uk. Note that the point y5 satisfies both models,
and hence it could be assigned to either class. In terms of
the corresponding Gram matrices, it is easily seen that the
procedure above yields j+1 = 3, T+

1 = 6, j−1 = 4, T−1 =
5. This correctly indicates that the earliest possible switch
happened at T = 5, and the latest possible one at T = 6.
Thus, the points in the intervals [1, 4] and [6, 9] each belong
to a single class.

Lemma 1: Under Assumptions A.2–A.4, there exists some
σ > 0 small enough such that the sequences generated using
(8) satisfy T−i ≤ Ti ≤ T+

i , where Ti denotes the actual
switching instants.

Proof: Omitted for space reasons, can be obtained by
contacting the authors.

B. Step 2: Spectral Clustering

Once I .
= ∪k[T+

k , T
−
k+1−1], the set of all intervals known

to contain data generated by a single subsystem, has been
found proceeding as outlined in the previous section, the
next step is to identify the minimum number of subsystems
of order nr ≤ na that could have generated the observed
data. We propose to solve this problem by recasting it into
a spectral clustering form. Specifically, consider all possible
sliding windows wi of length h contained in some interval
[T+
k , T

−
k+1− 1] and a graph where each node represents one

such window, and where the edge connecting two nodes has
associated a weight Wij given by:

Wij =

{
1 if wi, wj ⊆ [T+

k , T
−
k+1 − 1] for some k

exp(−D2
ij

2 ) otherwise
(9)

where Dij is the manifold distance between the Gram ma-
trices corresponding to the windows (wi, wj). Note that W
measures the similarity between the underlying systems: if
the data in wi and wj was generated by different subsystems,
as σ → 0, Dij becomes large and hence Wij → 0. Thus,
intuitively, the minimum number of subsystems required to
explain the data can be obtained by performing a graph cut
that seeks to minimize the total cost of cut (that is the sum
of the distances on the edges that cross the cut).

While there are several algorithms available for perform-
ing graph cuts, in this paper we will use the normalized cuts
algorithm proposed in [35], since it has been proven to be
effective and robust. Given a undirected graph with n nodes,
the degree of a node is defined as the sum of the weights
of all edges that are connected to it. Thus, we can define
a degree matrix Λn,n = diag{λ1, λ2, · · · , λn}, where λi is

the degree of the ith node. The normalized graph Laplacian
matrix is then defined as:

L = In −Λ−
1
2 WΛ−

1
2 (10)

where W is the similarity matrix. As shown in [21], [20],
L ∈ Sn+, and its smallest eigenvalue is always zero. More-
over, the multiplicity of the eigenvalue 0 equals the number
of connected components in the graph, and the corresponding
eigenspace is spanned by the indicator vectors of those
components (see for instance [37]).

Lemma 2: Given nw windows of length h, each con-
taining noiseless data generated by a single subsystem,
the spectral clustering step described above generates the
minimum number of subsystems that interpolate the observed
data.

Proof: Omitted for space reasons, can be obtained by
contacting the authors.
Proof of Theorem 2: Follows from combining Lemmas 1 and
2. �

C. Handling Noisy Data

Consider now the case where the measured data is cor-
rupted by noise. In this case, the matrices G are generically
full rank and the result above no longer holds. In principle,
such a case can be handled by “denoising” the data, that
is, looking for matrices Ei ∈ Sr+, ‖Ei‖ ≤ ση such that
rank(Gi + Ei) ≤ 2na. While it can be shown that for ση
small enough, Algorithm 1 applied to the denoised data is
still guaranteed to recover the correct system, the entailed
computational complexity is not trivial. Rank minimization
problems are generically NP-hard and the standard convex
relaxation where a re-weighted nuclear norm is used as
a surrogate for rank requires solving a sequence of semi-
definite programs whose complexity scales at least as n6a.

As an alternative, as we show next, under suitable assump-
tions on the noise, Theorem 2 still holds.

Theorem 3: Assume that the noise is white, with zero
mean and covariance σnoise and uncorrelated with the in-
put/output sequences {u, y}. Then, if σnoise is small enough,
Algorithm 1 recovers the correct data segmentation.

Proof: Omitted for space reasons, can be obtained by
contacting the authors

Note that the results above only guarantee perfect recovery
for small enough noise level. Nevertheless, consistent numer-
ical experience shows that the JBLD metric separates well
data segments corresponding to different subsystems, even
for moderately large noise levels.

D. Step 3: Subsystem Identification

After Step 2, each cluster should contain data segments
generated from a single subsystem. Hence, at this point any
LTI system identification technique that handles EIV scenar-
ios can be used to recover the parameters that characterize
each subsystem. In this paper we will use a Structured Total
Least Norm (STLN) based approach [33], since consistent
numerical experience shows that it is substantially faster
than competing methods (e.g. matlab’s ssest command), with
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comparable errors. Briefly, in this context the goal is to find
a parameter vector θ that satisfies:

Yi1 −Ei1 Ui1 − Fi1
Yi2 −Ei2 Ui2 − Fi2

...
...

Yim −Eim Uim − Fim

θi =


bi1 − fi1
bi2 − fi2

...
bim − fim

 (11)

where

Yij =


ytsij−1 ytsij−2 · · · ytsij−na

ytsij ytsij−1 · · · ytsij−na+1

...
...

. . .
...

yteij−1 yteij−2 · · · yteij−na

 (12)

Et =


ηtsij−1 ηtsij−2 · · · ηtsij−na

ηtsij ηtsij−1 · · · ηtsij−na+1

...
...

. . .
...

ηteij−1 ηteij−2 · · · ηteij−na

 (13)

Ut =


utsij−1 utsij−2 · · · utsij−na

utsij utsij−1 · · · utsij−na+1

...
...

. . .
...

uteij−1 uteij−2 · · · uteij−na

 (14)

Ft =


νtsij−1 νtsij−2 · · · νtsij−na

νtsij νtsij−1 · · · νtsij−na+1

...
...

. . .
...

νteij−1 νteij−2 · · · νteij−na

 (15)

θi =
[
ai,1 · · · ai,na

bi,1 · · · bi,na

]T
(16)

btsij =
[
ytsij ytsij+1 · · · yteij

]T
(17)

ftsij =
[
ηtsij ηtsij+1 · · · ηteij

]T
(18)

Here i denotes the index of the subsystem, j is the index
of disconnected segments generated by the same subsystem,
tsij and teij denote i the starting and ending switch time
of a segment, θi denotes the model of subsystem i, and
Eij ,Fij are the structured error terms. While this problem is
non-convex, consistent numerical experience shows that the
STLN approach in [33], although only guaranteed to provide
a local optimum, works well in practice.

E. Step 4: Labeling ambiguous data points

While Step 3 above generates the solution to Problem 1,
many applications, such as anomaly detection, require, in
addition to identifying the parameters of each subsystem,
assigning labels to each point and estimating the actual
switching instant. This can be accomplished by searching
each interval [T−k , T

+
k ], known to contain a switch, for the

location that minimizes the identification error. Specifically,
assume that the data before T−k was generated by the
subsystem s1 with parameters θs1 , and the one after T+

k

by s2 with parameters θs2 . The best estimate of the actual
switch location is given by

imin = argmin
i∈[T−

k ,T
+
k −1]

i−1∑
j=T−

k

(θTs1φj − yj)
2 +

T+
k∑

j=i

(θTs2φj − yj)
2

(19)
where

φj = [yj−1 · · · yj−na
uj−1 · · · uj−na

]T (20)

Then, data points in [T−k , imin−1] are labeled s1, and those
in [imin, T

+
k ] are labeled as s2.

IV. A PRACTICAL APPLICATION: ACTION SEGMENTATION

In this section, we applied the proposed method to real
data from a computer vision action segmentation problem.
We recorded a video in our lab with the following sequence
of actions. (i) The subject began with walking from the
right to the left; (ii) halfway, he squatted and stood up,
and (iii) then he continued walking to the left. Sample
frames from this video are shown in Figure 1. We used
background subtraction to get the blob of the subject. Then,
we computed the center of the blob in each frame, and used
the y coordinate of its trajectory as the data. Since there is
no input available here, we model the trajectory as impulse
response. The segmentation result using the proposed method
is shown in Figure 2. A comparison of the proposed method
against existing techniques is given in Table I. As shown
there the proposed method achieved the highest identity
accuracy 95.35% with a modest computational burden.

Figures

ME

March 2, 2018

Figure 1: Simulate a new signal with computed parameters and subsystem identity.
Compare with the original signal.

1

Figures

ME

March 2, 2018

Figure 1: Simulate a new signal with computed parameters and subsystem identity.
Compare with the original signal.

Figure 2: Simulate a new signal with computed parameters and subsystem identity.
Compare with the original signal.

1

Fig. 1. Top figure: Sample frames from a walking and squatting sequence.
Bottom figure: foreground blobs and the center of mass of the subject.
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Fig. 2. Action segment labels obtained using the proposed method.

V. CONCLUSIONS

Despite its practical relevance, identification of Error-In-
Variables SARX models is far from solved. In this paper
we propose an approach based upon firstly embedding the
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TABLE I
ACTION SEGMENTATION EXAMPLE: COMPARISON OF THE PROPOSED

APPROACH AGAINST OTHER METHODS.

Methods Label accuracy Running time
Continuous [18] 51.94% 1.42s

kLinReg [16] 57.36% 0.01s
MinSubmodels [28] 59.69% 1.85s

SON-EM [14] 89.92% 3.58s
Proposed 95.35% 0.29s

data in the PSD manifold and then segmenting it there
using graph cuts, where the weights of the edges are given
by the manifold distance between segments. Once the data
is segmented, the parameters of each subsystem can be
extracted by any EIV LTI systems identification method.
Theoretical results are provided showing that this approach
is guaranteed to identify time intervals where a single system
is active, and to correctly cluster all segments corresponding
to the same underlying dynamics, provided that the noise
level is suitably low. Further, in cases where the number of
subsystems is a-priori unknown, it can be estimated from
the eigenvalues of the Laplacian of the associated graph.
While for higher noise levels these theoretical guarantees
no longer hold, consistent numerical experience shows that
the method works well, even for moderately large noise. As
illustrated with a practical example, the proposed algorithm
is computationally efficient and leads to better segmentations
than existing ones. Current research seeks to extend these
results to classes of non-linear systems.
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