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Abstract 18 
Neural oscillations are widely studied using methods based on the Fourier transform, which 19 
models data as sums of sinusoids. This has successfully uncovered numerous links between 20 
oscillations and cognition or disease. However, neural data are nonsinusoidal, and these 21 
nonsinusoidal features are increasingly linked to a variety of behavioral and cognitive states, 22 
pathophysiology, and underlying neuronal circuit properties. Here, we present a new analysis 23 
framework—one that is complementary to existing Fourier- and Hilbert-transform based 24 
approaches—that quantifies oscillatory features in the time domain, on a cycle-by-cycle basis. 25 
We have released this cycle-by-cycle analysis suite as bycycle, a fully documented, open-26 
source Python package with detailed tutorials and troubleshooting cases. This approach 27 
performs tests to assess whether an oscillation is present at any given moment and, if so, 28 
quantifies each oscillatory cycle by its amplitude, period, and waveform symmetry, the latter of 29 
which is missed using conventional approaches. In a series of simulated event-related studies, 30 
we show how conventional Fourier- and Hilbert-transform approaches can conflate event-31 
related changes in oscillation burst duration as increased oscillatory amplitude and as a change 32 
in the oscillation frequency, even though those features were unchanged in simulation. Our 33 
approach avoids these errors. Further, we validate this approach in simulation and against 34 
experimental recordings of patients with Parkinson’s disease, who are known to have 35 
nonsinusoidal beta (12-30 Hz) oscillations. 36 
 37 
New and Noteworthy 38 
We introduce a fully documented, open-source Python package, bycycle, for analyzing neural 39 
oscillations on a cycle-by-cycle basis. This approach is complementary to traditional, Fourier- 40 
and Hilbert-transform based approaches, but avoids specific pitfalls. First, bycycle confirms an 41 
oscillation is present, to avoid analyzing aperiodic, non-oscillatory data as oscillations. Next, it 42 
quantifies nonsinusoidal aspects of oscillations, increasingly linked to neural circuit physiology, 43 
behavioral states, and diseases. This approach is tested against simulated and real data. 44 
 45 
Introduction 46 
As a prominent feature of brain recordings, neural oscillations are frequently correlated to both 47 
pathologies (Uhlhaas and Singer 2010; Voytek and Knight 2015) and healthy behaviors such as 48 
movement, sleep, perception, and cognitive performance (Klimesch 1999; Massimini et al. 49 
2004; Hanslmayr et al. 2007; Miller et al. 2007). Standard approaches for studying these 50 
oscillations are based on the Fourier transform, which decomposes a signal into component 51 
stationary sinusoids. However, brain rhythms are neither strictly stationary nor sinusoidal, as 52 
they come and go with varying amplitudes, frequencies, and waveforms (van Dijk et al. 2010; 53 
Jones 2016; Cole and Voytek 2017; Schaworonkow and Nikulin 2018). Therefore, 54 
decomposition of the neural signal using the Fourier transform does not parsimoniously capture 55 
all of the interesting structure present in neural signals. This is suboptimal given that 56 
nonsinusoidal oscillatory features carry physiological information (Buzsáki et al. 1986; 57 
Hentschke et al. 2007; Pietersen et al. 2009; Mazaheri and Jensen 2010; Belluscio et al. 2012; 58 
Lewis et al. 2012; Lee and Jones 2013; Trimper et al. 2014; Sherman et al. 2016; Cole and 59 
Voytek 2017; Cole et al. 2017; Bartz et al. 2018, Jackson et al., 2019), and non-stationarities of 60 
low-frequency cortical oscillations may reflect different physiological processes (Peterson and 61 
Voytek 2017; Cole and Voytek 2018). Not properly accounting for these nonsinusoidal 62 
waveforms makes conventional analyses susceptible to artifactual results, such as apparent 63 
phase-amplitude and cross-frequency coupling where no such multi-frequency interaction exists 64 
(Kramer et al. 2008; Gerber et al. 2016; Lozano-Soldevilla et al. 2016; Scheffer-Teixeira and 65 
Tort 2016; Cole et al. 2017; Vaz et al. 2017). 66 
 67 



 

3 

Methods used to analyze temporal properties of oscillations are also usually based on the 68 
Fourier- and Hilbert-transforms. “Instantaneous” measures of oscillatory amplitude and 69 
frequency are widely used to estimate these time-varying properties of an oscillation of interest 70 
(Canolty et al. 2006; Voytek et al., 2013; Voytek et al., 2015; Samaha and Postle 2015). 71 
However, the computation of such instantaneous features does not directly measure them in the 72 
original recording. Instead values are imputed from a transformed version of the data in which 73 
the signal is usually limited to a narrow sinusoidal frequency band (Bruns 2004). The 74 
mathematical nature of these approaches is such that they will always give a numerical result; 75 
they will always return an instantaneous amplitude, phase, and frequency value, even if there is 76 
no oscillation present in the signal (Haller et al., 2018). This is nonoptimal because amplitude, 77 
phase, and frequency—as they are often intuited—should be undefined if no oscillation is 78 
present. To address the issue of identifying periods of oscillation versus no oscillation, new 79 
methods, such as delay differential analysis, have been developed to identify rhythmic sections 80 
of the signal in which oscillatory analysis is warranted (Sampson et al., 2019). Periods of no 81 
oscillations are common because aggregate electrophysiological signals such as EEG, MEG, 82 
ECoG, and LFP contain an aperiodic component (Haller et al., 2018) that likely reflects the 83 
relative contributions of synaptic currents near the recorded region (Mazzoni et al., 2015; Gao et 84 
al., 2017). This means that narrowband analyses—without consideration of the nonstationary 85 
dynamics of the oscillatory signal—can give misleading results. This can lead to 86 
mischaracterizations of the data, such as phase slips, oscillatory frequency fluctuating within a 87 
single cycle, or an apparent increase in high frequency amplitude caused by a sharp transient 88 
(Kramer et al. 2008; Nelli et al. 2017). 89 
 90 
We recently reviewed that waveform shape is diverse across the brain and relates to 91 
physiology, pathology, and behavior (Cole and Voytek 2017). The hippocampal theta rhythm 92 
(Buzsáki et al. 1985), cortical slow oscillation (Amzica and Steriade 1998), and the mu rhythm 93 
(Pfurtscheller et al. 1997) are particularly known to have stereotyped nonsinusoidal waveforms. 94 
There are a wide variety of circuit activation patterns for oscillators of each frequency 95 
(Womelsdorf et al. 2014), and the specifics of these dynamics may relate to the temporal 96 
dynamics of a single cycle of the recorded oscillation, or its waveform shape. Therefore, 97 
differences in waveform shape may hint at differences in the parameters, conditions, or even 98 
qualitative mechanisms of the oscillatory generator. One potential interpretation of waveform 99 
shape is that sharper oscillatory extrema may be produced by more synchronous neural activity 100 
(Sherman et al. 2016; Cole et al. 2017). This may be caused by excitatory synaptic currents 101 
occurring relatively simultaneously in a cortical region and integrating in the local field to yield a 102 
sharp waveform, whereas those same currents, more spread out in time, will result in a 103 
smoother local field potential. 104 
 105 
Here we present a time-domain approach, complementary to traditional frequency-domain 106 
analyses, designed to characterize nonsinusoidal and transient brain rhythms to help quantify 107 
information not easily extracted from conventional, Fourier-based neural signal processing. For 108 
each oscillatory cycle, amplitude and period (frequency) are quantified, as are its waveform 109 
(a)symmetries. In contrast to the instantaneous features cited above, cycle-by-cycle measures 110 
are directly computed on points of the time series rather than relying on transforms that assume 111 
a quasi-sinusoidal structure. The only reliance on more traditional approaches is an initial, very 112 
broad filter used to remove the influence of high frequency, noisy transients on estimating lower 113 
frequency oscillation peaks and troughs. This is followed by a more narrow filter to isolate the 114 
oscillatory band of interest, solely for the purpose of finding zero-crossings. While these filters 115 
are used as simple tools to aid in segmenting the signal into cycles and localizing peaks, 116 
troughs, and zero-crossings, these filters do not significantly bias the waveform of the oscillation 117 
of interest. Importantly, the output also specifies whether the oscillation of interest is present or 118 
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absent in the signal during each “cycle” period, as it is unlikely that the oscillation is present 119 
throughout the whole duration of the signal (Fransen et al. 2015; Jones 2016). This is critical, as 120 
estimates of oscillatory features are meaningless if no oscillation is present (Haller et al., 2018). 121 
 122 
Materials and Methods 123 
All methods described here are available in the open-source package “bycycle”, available at 124 
https://github.com/bycycle-tools/bycycle, with detailed tutorials at https://bycycle-tools.github.io. 125 
All Python code to replicate the figures in this paper are shared at 126 
https://github.com/voytekresearch/Cole_2018_cyclebycycle. Filtering and Hilbert analyses, and 127 
signal simulations, made use of the neurodsp package (Cole et al., 2019). All tests are 128 
nonparametric, such that two-sample unpaired tests are Mann-Whitney U and two-sample 129 
paired tests are Wilcoxon Signed Rank. 130 
 131 
Segmentation of signal into cycles 132 
The first step in characterizing individual oscillatory cycles in a neural signal is to segment the 133 
entire recording into cycles. First, putative peaks and troughs are identified throughout the 134 
recording. The raw data (Fig. 1A) is passed through a lowpass filter to reduce higher frequency 135 
activity (Fig. 1B) that may interfere with peak and trough identification. Next, the signal is 136 
bandpass filtered around the oscillation band of interest, ideally verified from the power spectral 137 
density (Haller et al. 2018). The time points of the rise and decay zero-crossings are identified 138 
(Fig. 1C) and the minima and maxima between these zero-crossings are declared as putative 139 
peaks and troughs from the broadly-filtered (not narrowband filtered) signal (Fig. 1D). Finally, 140 
the midpoints of the rise and decay flanks are computed by finding the time point at which the 141 
voltage is halfway between the peak and trough voltage (Fig. 1E). 142 
 143 
Together, the times of the extrema and flank midpoints can be used to estimate a “waveform 144 
phase” time series by linearly interpolating between their theoretical phases (Siapas et al. 145 
2005). This means that between each extremum and zero-crossing, phase is assumed to be 146 
linear. For example, because the phase of a peak is 0 and the phase of the next zero-crossing 147 
is π/2, if there are 10 time-points between a peak and the next zero-crossing, then the phase of 148 
each time point between will increase in π/20 increments. If the signal is nonsinusoidal, this 149 
estimate slightly but systematically deviates from the instantaneous phase commonly computed 150 
by bandpass filtering the signal in the oscillatory frequency band and applying the Hilbert 151 
transform. This is because the Hilbert transform can artificially shift phase values in an attempt 152 
to fit a sinusoid to a nonsinusoidal signal. This can cause non-intuitive phase shifts, for example 153 
fitting sinusoidal peaks away from the true time domain voltage peak for that cycle. That is, the 154 
waveform phase estimate more closely matches the locations of the oscillatory peaks and 155 
troughs, which can be skewed when a nonsinusoidal oscillation is filtered in a narrow frequency 156 
band (Belluscio et al. 2012; Dvorak and Fenton 2014). 157 
 158 
Note that this process of cycle segmentation uses some bandpass filtering for localizing 159 
extrema (Fig. 1B,C). This superficially seems in contrast with a proclaimed key advantage of the 160 
cycle-by-cycle method, where a sinusoidal waveform is not assumed. However, individual cycle 161 
statistics are not computed on this narrowband filtered signal; filtering here is a tool useful for 162 
roughly estimating peak and trough times. The lowpass filter is used to remove the high 163 
frequencies that may make identifying the peaks and troughs of the lower frequency rhythm 164 
more difficult. However, the filter is potentially removing some of the oscillatory signal that is 165 
especially sharp and requires high-frequency sine waves to reconstruct. Therefore, the cutoff 166 
frequency of the lowpass filter is set to around 4 times the frequency of the oscillations of 167 
interest (e.g., 40 Hz for ~10 Hz alpha oscillations) as a compromise between the fidelity of 168 
waveform shape and the ability to localize peaks and troughs (Fig. 1A-B). 169 
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 170 
Cycle feature computation 171 
After the signal is segmented into cycles, each cycle is characterized by a few intuitive features 172 
(Fig. 1F). In all analyses, cycles are chosen to start and end at consecutive troughs. The 173 
amplitude of the cycle is computed as the average voltage difference between the peak and the 174 
two adjacent troughs. The period is defined as the time between the two troughs. Rise-decay 175 
symmetry (rdsym) is the fraction of the period that was composed of the rise time. A rise-decay 176 
symmetry value of 0.5 would therefore indicate the cycle had equal durations of rise and decay. 177 
Note that while a sinusoid has rdsym=0.5, several classes of nonsinusoids can as well, such as 178 
triangle waves. 179 
 180 
Peak-trough symmetry (ptsym) is the fraction of the period, encompassing the previous trough 181 
and current peak, that was composed of the peak. Similar to rise-decay symmetry, a peak-182 
trough symmetry value of 0.5 indicates that the peak and trough were the same duration. The 183 
peak period is defined as the time between a rise midpoint and subsequent decay midpoint, 184 
while the trough period is defined as the time between a decay midpoint and subsequent rise 185 
midpoint. The values of each cycle feature are provided in a table in which each row represents 186 
an individual cycle. Fig. 1G shows the cycle feature values for the recording processed 187 
throughout Fig. 1. The distributions of these features across all cycles can be computed to 188 
compare oscillation properties in different neural signals (Fig. 2G-J). 189 
 190 
Detection of oscillatory periods 191 
After segmenting the signal into putative cycles, an algorithm is applied to determine whether 192 
each cycle is part of an oscillatory rhythm in the signal. The entire signal is preliminarily 193 
segmented into putative cycles, even the portions in which no oscillation is present. Therefore, 194 
the term “cycle” is used here not to specifically refer to a cycle of an oscillatory process, but 195 
rather a time segment lasting approximately one period of the oscillation of interest. Oscillation 196 
presence is identified by time periods in which at least three consecutive putative cycles in the 197 
time series had similar amplitudes, similar periods, and rise and decay flanks that are 198 
predominantly monotonic. To test this, three additional features are computed for each cycle. 199 
First, the amplitude consistency of a cycle is quantified as the relative difference in the rise and 200 
decay voltage (e.g., 0.5 corresponds to the change in voltage in one flank being 2 times bigger 201 
than the other, 1.0 corresponds to the rise and decay flanks having equal changes in voltage, 202 
etc.). The minimum value is taken after computing this measure for each pair of adjacent rise 203 
and decay flanks that includes one of the current cycle’s flanks. The period consistency feature 204 
is computed as the maximal relative difference between the cycle’s period and the period of the 205 
adjacent cycles (e.g., 0.5 corresponds to the previous or subsequent period being twice or half 206 
the duration of the current cycle). The third and final feature, monotonicity, is the fraction of 207 
instantaneous voltage changes (difference between consecutive samples) that are positive 208 
during the rise phase and negative during the decay phase (e.g., 0.8 corresponds to 20% of the 209 
voltage time series going in the opposite direction of the current flank). 210 
 211 
These requirements for declaring oscillation presence are based on the definition of a periodic 212 
process, in which the voltage at time t + � should be predictable from the voltage at time t, 213 
where the process has a period �. In order for the future voltage to be reliably predicted from 214 
the past voltage, the amplitude and period must be conserved from cycle to cycle. The 215 
monotonicity requirement was added because it was empirically found to separate periods of 216 
apparent periodic and aperiodic activity. 217 
 218 
For all simulated recordings, amplitude consistency and period consistency thresholds were set 219 
to 0.6 and the monotonicity threshold was set to 0.9, because visual inspection of the 220 
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oscillations detection results showed that these parameters detected oscillations well. For the 221 
motor cortical beta recordings, oscillation detection parameters were tuned to improve accuracy 222 
as judged by visual inspection (amplitude consistency threshold = 0.3, period consistency 223 
threshold = 0.5, monotonicity threshold = 0.6). This was necessary because the beta oscillations 224 
were generally less monotonic and less consistent compared to the simulated data. An 225 
additional threshold was added such that cycle amplitude must be above the twentieth 226 
percentile to avoid aperiodic portions of the signal being considered as a part of an oscillation. 227 
 228 
Simulation of oscillations with noise 229 
Voltage time series were simulated using the neurodsp package (Cole et al., 2019) to have 230 
properties similar to real neural recordings. Four sets of signals were simulated for Figs. 2-5. 231 
Unless otherwise specified, the oscillation in these simulated signals was in the alpha range (6-232 
14 Hz) with an average frequency of 10 Hz. 233 
 234 
The nonstationary, nonsinusoidal oscillatory signal was simulated as follows:  235 
 236 

1. A time-series of zeroes is created to match the desired length of the ultimate signal. 237 
2. The zeroes time series is broken into windows representing “cycles” of a potential 238 

oscillation, where each window length is the period of the potential oscillation, drawn 239 
randomly from a normal distribution, here of mean 100 ms and standard deviation of 5 240 
ms. 241 

3. Each window is defined to be either in an oscillatory state or not. If the prior window is 242 
not in an oscillatory state, then the current window starts oscillating with a probability of 243 
0.1. 244 

4. Once an oscillating cycle occurs, each successive cycle will end the oscillatory state with 245 
a probability of 0.1. In other words, if the signal was currently in an oscillatory state, then 246 
it had a 10% probability of exiting that state after each cycle. 247 

5. If a window is determined to be in an oscillatory state, a waveform is simulated as 248 
follows: 249 

a. The amplitude of that cycle is sampled from a distribution, here of mean 1 and 250 
standard deviation of 0.1 (arbitrary units). 251 

b. The rdsym of that cycle is sampled from a distribution, here of mean 0.5 and 252 
standard deviation of 0.05. 253 

 254 
Noise was simulated using brown (1/f2) noise that was highpass filtered at 1 Hz (filter order = 3 255 
seconds). This brown noise is referred to as the “aperiodic” component of the signal, whereas 256 
the oscillation is referred to as the “periodic” component (Haller et al., 2018). This noise was 257 
added to the periodic oscillatory signal. Unless otherwise specified, the aperiodic component 258 
was scaled such that it had the same variance as the periodic component. A lowpass filter at 40 259 
Hz (filter order = 100 ms) was applied prior to cycle-by-cycle analysis, in order to remove high 260 
frequency power that would complicate extrema localization. 261 
 262 
To compare cycle feature distributions across recordings, two example recordings (Fig. 2A,D) 263 
were simulated using the parameters specified above, for 1000 seconds each. However, the 264 
second signal (Fig. 2D) was modified such that the power of the periodic component was twice 265 
that of the power of the aperiodic component, and the average rise-decay symmetry was 0.3 266 
instead of 0.5. To determine the accuracy of the cycle features, 41 recordings were simulated 267 
for 5 minutes each in which the relative variance of the aperiodic and periodic components was 268 
varied between 0.1 and 10 with equal spacing in logarithmic space (Fig. 3). In this simulation, 269 
the standard deviations of cycle features were increased to �=0.2 for amplitude, �=15 ms for 270 
period, and �=0.1 for rise-decay symmetry. 271 
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 272 
Two additional sets of signals were simulated in order to compare cycle-by-cycle measures with 273 
instantaneous amplitude and frequency measures (Figs. 4,5). These simulations were modeled 274 
after an event-related design where each simulation is a “trial”. Trials were simulated such that a 275 
10 Hz oscillation burst was induced after an “event”. Brown noise was simulated throughout the 276 
trial (-1 to 2 seconds), and a bursting oscillation was simulated from 0 to 2 seconds in the same 277 
manner as above. Three conditions of 100 trials each were simulated for assessing amplitude 278 
measures. The “higher amp” condition induced alpha oscillations with a 20% greater amplitude 279 
than in the “baseline” condition. The “more bursts” condition was 50% more likely to enter an 280 
oscillation and 50% less likely to leave an oscillation, compared to the other conditions. Similar 281 
trials were simulated for comparing cycle-by-cycle and instantaneous measures of frequency. 282 
For this experiment, a “faster” condition was simulated using an 11 Hz oscillation instead of a 10 283 
Hz oscillation. 284 
 285 
Instantaneous amplitude and frequency computation 286 
Instantaneous measures of amplitude and frequency were computed using common methods 287 
and applied to the simulated alpha oscillations described in the previous paragraph. Signals 288 
were first bandpass filtered (8-12 Hz) and then the Hilbert transform was applied. The 289 
magnitude of the resultant time series was computed to obtain the instantaneous amplitude 290 
estimate, and the angle was computed to obtain the instantaneous phase estimate. 291 
Instantaneous frequency was computed from the instantaneous derivative of the phase time 292 
series, and then iteratively median filtered using 10 window sizes linearly spaced between 10 293 
ms and 400 ms, as previously described (Samaha and Postle 2015). 294 
 295 
Motor cortical beta recordings 296 
Electrocorticography recordings from 23 patients with Parkinson’s disease were obtained during 297 
surgery for implantation of a deep brain stimulator and publicly released (de Hemptinne et al. 298 
2015). Briefly, a strip of electrodes with 1 cm contacts was inserted over the primary motor 299 
cortex (M1) and re-referenced using a bipolar montage of adjacent contacts. The signals 300 
analyzed in this study were from a single channel in which one of the electrodes was over M1. 301 
Recordings were collected for 30 seconds before and during DBS. For more information on the 302 
data collection see (de Hemptinne et al. 2015). Recording sampling rate was 1000 Hz. Prior to 303 
cycle-by-cycle analysis, signals were lowpass filtered at 200 Hz, and high frequency peaks (60 304 
Hz and above) were removed (for more information see (Cole et al. 2017)). During cycle 305 
segmentation the narrow bandpass filter cutoff frequencies were 13 and 30 Hz. 306 
 307 

[Insert Figure 1 here] 308 
 309 
Results 310 
Comparison of cycle-by-cycle oscillatory feature distributions 311 
To demonstrate the general approach of our method, we applied our cycle-by-cycle analysis 312 
technique (Fig. 1, see Methods) to two simulated neural recordings of 1000 seconds each. 313 
These simulated signals (Fig. 2A,D, “signal A” and “signal D”) are composed of both transient 314 
10 Hz (alpha) oscillations (Fig. 2B,E) and aperiodic noise (Fig. 2C,F) (see Methods). Periods of 315 
the signal in which alpha oscillations were present were determined, and the features of these 316 
cycles were computed (see Methods). The distributions of each cycle feature were compared 317 
between the two signals. Signal D in general has higher amplitude alpha oscillations (mean 318 
peak-to-trough voltage = 3.0) compared to the signal A (mean 2.6) as shown in their histograms 319 
(Fig. 2G). This is because the two signals were simulated with different ratios of periodic to 320 
aperiodic power, prior to z-scoring. However, the two signals were not differentiated by their 321 
periods, which were both 100 ms on average (Fig. 2H). These signals were detected to have 322 
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differences in their rise-decay symmetry (Fig. 2I) but not peak-trough symmetry (Fig. 2J). This is 323 
because signal A was simulated to have an average rise-decay symmetry of 0.5 whereas signal 324 
D was simulated to have an average rise-decay symmetry of 0.3. However, the average 325 
measured rise-decay symmetry for signal D was 0.37. This is because adding noise to the data 326 
biased the symmetry measures such that they seem to be more symmetric. 327 
 328 

[Insert Figure 2 here] 329 
 330 
Accuracy of cycle-by-cycle characterization 331 
To assess the accuracy of our cycle-by-cycle oscillatory characterization, we compared cycle 332 
features measured in simulated neural signals (5 minutes each) with the ground truth of the 333 
simulation. Signals were simulated at a variety of signal-to-noise (SNR) levels by controlling the 334 
relative power of the simulated periodic component (“oscillation”, e.g. Fig. 2B) and the simulated 335 
aperiodic component (“noise”, e.g. Fig. 2C). Example traces are plotted for an example signal 336 
with a high amount of noise (SNR = 0.32, Fig. 3A) and one with a lower amount of noise (SNR = 337 
3.2, Fig. 3B). The gray trace is the simulated periodic component, and the black trace is the 338 
combination of the periodic and aperiodic components after a 40 Hz lowpass filter, applied to 339 
improve peak and trough localization. Sensibly, there is a greater correspondence between the 340 
simulated oscillations and the measured oscillation in the signal with higher SNR, as shown by 341 
the stronger correlation between gray and black traces in Fig. 3B compared to Fig. 3A. 342 
 343 
The error between the measured amplitude, period, and rise-decay symmetry estimates of each 344 
cycle was computed for these signals. For the noisier signal (SNR = 0.32), there was larger 345 
variance between the measured cycle features and the ground truth. The correlations between 346 
the measurements and the ground truth were low for all cycle features, namely amplitude (Fig. 347 
3C, Pearson r = 0.19), period (Fig. 3D, r = 0.25), and rise-decay symmetry (Fig. 3E, r = 0.06). 348 
For the signal with less noise (SNR = 3.2), the correlations were higher for amplitude (Fig. 3F, r 349 
= 0.52), period (Fig. 3G, r = 0.46), and rise-decay symmetry (Fig. 3H, r = 0.30). For each 350 
feature, the average error was computed across simulated signals with SNR varying from 0.1 to 351 
10. The error of each cycle feature estimate was normalized by the ground truth in order to 352 
compute a normalized error measurement. Fig. 3I shows that this error decreases as signal 353 
SNR increases. Note that these errors are computed for individual cycles, but analyses are 354 
intended be performed on cycle feature averages over trials or resting-state recordings. In these 355 
cases, as more cycles are sampled, the error between the ground-truth and measured cycle 356 
feature means will decrease. 357 
 358 

[Insert Figure 3 here] 359 
 360 
Cycle-by-cycle estimates vs. instantaneous measures of amplitude and frequency 361 
It is possible that estimating amplitude and frequency on a cycle-by-cycle basis could provide a 362 
more precise estimate of these properties compared to conventional “instantaneous” 363 
approaches that first apply a narrow bandpass filter, followed by the Hilbert transform. Here we 364 
compared how these measures could differentiate conditions in a simulated experiment that 365 
elicit oscillations with differing amplitude and frequency (see Methods). This hypothetical 366 
experiment resulted in a 10 Hz oscillation appearing after an event. There were three 367 
conditions: “baseline”, “higher amp”, and “more bursts” (Fig. 4A). The oscillations in the “higher 368 
amp” condition were 10% greater in amplitude than in the other conditions. The “more bursts” 369 
condition was 50% more likely to enter an oscillatory state and 50% less likely to leave it 370 
compared to the other conditions. Instantaneous and cycle-by-cycle amplitudes were computed 371 
for the simulated trials (100 per condition) and averaged across each condition. 372 
 373 
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The average instantaneous amplitude trace for “higher amp” was appropriately greater 374 
compared to the “baseline” condition (Fig. 4B). However, the instantaneous amplitude for the 375 
“more bursts” trials was even greater, even though the simulated oscillations were the same 376 
size as the “baseline” trials. This undesirable trait of conflating more (or longer) bursts as higher 377 
average amplitude is the result of averaging non-stationary processes across many trials 378 
(Latimer et al. 2015; Jones 2016). This means that, using traditional Hilbert approaches, a 379 
consistent oscillation at a lower amplitude may not be distinguishable from an inconsistent 380 
oscillation at a higher amplitude. 381 
 382 
In contrast, the cycle-by-cycle amplitude measure was appropriately increased specifically only 383 
for the “higher amp” condition (red line, Fig. 4C). Additionally, the cycle-by-cycle approach 384 
quantifies how often the signal was in an oscillatory state, and so we can observe that the “more 385 
bursts” condition was oscillating more than the other two conditions (Fig. 4D). In this simulated 386 
experiment, the cycle-by-cycle measures better discriminate the appropriate features of 387 
oscillatory amplitude as compared to instantaneous methods. 388 
 389 
Further, we examined how well these two approaches perform with regards to measuring 390 
oscillatory amplitude. To do this, amplitude was averaged from 500 to 1000 ms in each trial. 391 
Across trials, this mean instantaneous amplitude did not significantly differentiate the “baseline” 392 
and “higher amp” conditions (Fig. 4E, U = 4480, p = 0.10) while the mean cycle amplitude 393 
significantly differentiated these conditions (Fig. 4F, U = 182, p < 10-5). Additionally, 394 
instantaneous amplitude analysis falsely resulted in a significant difference in oscillation 395 
amplitude between the “baseline” and “more bursts” conditions (Fig. 4G, U = 2781, p < 10-7), 396 
while the cycle-by-cycle amplitude analysis successfully found no significant difference (Fig. 4H, 397 
U = 819, p = 0.37). 398 
 399 

[Insert Figure 4 here] 400 
 401 
Similarly, we simulated an experiment to determine the difference in the efficacy of oscillation 402 
frequency estimates obtained from the conventional instantaneous approach and the cycle-by-403 
cycle approach (Fig. 5A). Rather than simulating a set of trials with increased amplitude, here a 404 
“faster” condition was added in which an 11 Hz oscillation was simulated, whereas the 405 
oscillations in the other conditions had a frequency of 10 Hz. The instantaneous frequency was 406 
averaged across trials for each condition (Fig. 5B). Similarly, frequency was computed from the 407 
cycle-by-cycle period measures and averaged across trials (Fig. 5C). Both instantaneous and 408 
cycle-by-cycle approaches were able to differentiate between the “baseline” and “faster” 409 
conditions (Fig. 5D-E, instantaneous U = 3351, p < 10-4; cycle U = 100, p < 10-7). However, the 410 
instantaneous frequency estimates were considerably lower than the simulated ground truth 411 
frequencies, such that the average instantaneous frequency for each trial was 9.3 Hz for the 412 
“baseline” condition and 9.9 Hz for the “faster” condition. In contrast, the cycle-by-cycle 413 
estimates of frequency were appropriately around 10 Hz for the “baseline” condition and 11 Hz 414 
for the “faster” condition. 415 
 416 
Furthermore, there was a spurious increase in instantaneous frequency in the “more bursts” 417 
condition compared to the “baseline” condition (Fig. 5F, U = 3389, p < 10-4). This again can be 418 
attributed to the fact that the instantaneous measures do not account for whether the oscillation 419 
is present in the signal, and so these estimates can be biased by aperiodic portions of the 420 
signal. These aperiodic portions of the signal will have an average frequency corresponding to 421 
the power-weighted average frequency component in the frequency band of interest (in this 422 
case alpha, 6-14 Hz). Like real neural signals, the power in these simulated signals decreases 423 
as a function of frequency, and so, the power-weighted average frequency during an aperiodic 424 
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segment would lie somewhere below 10 Hz, the midpoint of the defined oscillation frequency 425 
band of interest. This means that, using traditional Hilbert approaches, the prevalence of an 426 
oscillation may confound an apparent change in frequency. In contrast to the instantaneous 427 
frequency measure, there was no difference in the cycle-by-cycle frequency estimates 428 
measured in the “baseline” and “more bursts” conditions (Fig. 5G, U = 769, p = 0.45). 429 
 430 

[Insert Figure 5 here] 431 
 432 
Cycle-by-cycle analysis of motor cortical beta oscillations in Parkinson’s Disease 433 
In addition to simulated data, we applied the cycle-by-cycle approach to analyze motor cortical 434 
electrocorticography recordings. We have previously shown that motor cortical beta oscillations 435 
are “sharper” in patients with Parkinson’s disease (Cole et al. 2017; Jackson et al. 2019), and 436 
that this sharpness is decreased with deep brain stimulation (DBS) treatment (Cole et al. 2017) 437 
or dopaminergic medication (Jackson et al. 2019). The current “peak-trough asymmetry” 438 
measure was designed to measure the same intuitive sense of “sharpness” reported in the 439 
previous studies, but it differs in that it is computed as a temporal ratio, as opposed to  440 
differences in voltages (Fig. 1F, see Methods). This new metric is used because the previously-441 
used “sharpness asymmetry” intrinsically, and undesirably, scaled with amplitude. 442 
 443 
Fig. 6A-B show recordings from an example subject before and during DBS. In this subject, 444 
DBS decreased the amplitude (Fig. 6C), and period (Fig. 6D), of beta oscillations, but did not 445 
affect their rise-decay symmetry (Fig. 6E). Across the patient population (N=23), there was no 446 
consistent effect of DBS on amplitude (Wilcoxon Signed Rank test, W = 84, p = 0.10), period (W 447 
= 90, p = 0.14), or rise-decay asymmetry (W = 102, p = 0.27). However, DBS did elongate the 448 
relative peak time in the example subject (Fig. 6F), and consistently caused the beta oscillations 449 
to become more peak-trough symmetric (Fig. 6G, W = 71, p = 0.019), consistent with the 450 
previously published sharpness ratio results (Cole et al. 2017). Note that peak-trough 451 
asymmetry here is measured as the difference from a symmetric oscillation, such that 0 452 
represents equal duration peaks and troughs, and 0.1 represents an oscillation in which the 453 
average cycle was 60% peak or 60% trough (i.e., 0.6 - 0.5 = 0.1 and 0.4 - 0.5 = -0.1). This was 454 
done because the polarity was not consistent across recordings. 455 
 456 

[Insert Figure 6 here] 457 
 458 
Discussion 459 
Here we have presented a novel framework and technique for analyzing the properties of 460 
oscillations in neural signals. This cycle-by-cycle analysis approach is complementary to, and 461 
offers advantages when used in addition to, conventional approaches based solely on the 462 
Fourier and Hilbert transforms. Our method offers an alternative, and arguably more intuitive, 463 
estimate of an oscillation’s amplitude and frequency on a cycle-by-cycle basis. These estimates 464 
are incorporated in the same framework that has previously been used to estimate rise-decay 465 
symmetry (Cole et al., 2017). We have expanded this framework to offer a novel peak-trough 466 
symmetry measure, which quantifies the “sharpness” of an oscillatory waveform. Using 467 
empirical recordings from human patients, we showed this symmetry measure differentiates 468 
between treatment conditions. Further, using simulated data we showed that our new amplitude 469 
and frequency estimates can be more sensitive and specific than conventional techniques. 470 
 471 
This technique offers further analytic possibilities, beyond what is demonstrated in this paper. In 472 
addition to comparing distributions of cycle features from separate recordings (e.g., DBS on vs. 473 
DBS off), cycles can be analyzed in an event-related manner to examine the effects of task 474 
conditions or correlates to behavioral responses, such as reaction time, or physiological 475 
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features such as local spiking (Cole and Voytek, 2018). This framework additionally allows for 476 
studying the temporal dynamics by which oscillatory features change over time, similar to 477 
studies looking at changes to oscillatory power or frequency. Further, if a signal contains 478 
multiple oscillations of interest, then the analysis can be run multiple times using distinct 479 
frequency bands. Additionally, the oscillatory detection algorithm allows for quantifying features 480 
of oscillation presence, such as burst duration or burst rate, that may correlate meaningfully to 481 
experimental parameters. 482 
 483 
Caveats of cycle-by-cycle analysis and comparisons to existing methods 484 
Like Fourier-based analysis, there are also caveats of this cycle-by-cycle technique that need to 485 
be considered to minimize confounds. In a recent manuscript, we showed that cycle features 486 
are significantly autocorrelated for the rodent hippocampal theta rhythm (Cole and Voytek 487 
2018). Because of this autocorrelation, it is therefore invalid to treat each cycle as independent 488 
in statistical tests. This is a similar caveat to trial-wise analyses, in which consecutive trials are 489 
often not independent. To bypass this issue and assess significance within a recording, the 490 
recording can be split into multiple non-overlapping segments, and a statistical test can be 491 
performed on a metric of each segment (e.g., mean difference in rdsym between conditions A 492 
and B). 493 
 494 
It is also important to keep in mind that these cycle features are likely not independent of one 495 
another. For instance, the higher amplitude hippocampal theta rhythms tend to have shorter 496 
periods and are more rise-decay asymmetric and peak-trough asymmetric (Cole and Voytek 497 
2018). Therefore, these features may capture physiologically redundant information. To tease 498 
apart some interdependencies, multiple features could be incorporated into a model to predict a 499 
condition or behavior of interest (e.g., general linear model or logistic regression), and the 500 
unique contribution of each feature can be assessed. For example, if oscillatory amplitude is 501 
greater in condition A vs. B, and amplitude is correlated with symmetry, then we will also 502 
observe that symmetry differs between conditions. However, a multidimensional model could 503 
detect whether symmetry contains any additional information beyond that provided by 504 
amplitude. 505 
 506 
Because extrema localization is nontrivial, caution is necessary when performing analyses that 507 
consider the precise times of peaks and troughs. For example, an aperiodic process could delay 508 
the algorithm’s trough localization, and so if a neuron fires most at the trough, it will appear that 509 
it fires at an earlier phase when the decay period is artificially elongated. However, a rat’s 510 
position could be better decoded using extrema interpolation compared to the conventional 511 
Hilbert transform-based method (Belluscio et al. 2012). If it is difficult to filter the signal to 512 
achieve reasonable extrema localization and symmetry fidelity, then the oscillation may not be 513 
suitable for cycle-by-cycle analysis. For example, it is likely not reasonable to analyze the beta 514 
frequency band in the visual cortex because the presence of this rhythm is usually not evident in 515 
the time series, whereas alpha is prominent. 516 
 517 
Hyperparameter selection is another notable challenge, but it is not a new one nor unique to 518 
oscillation parameterization. Setting thresholds for defining oscillation presence may require 519 
parameter tuning to achieve sensible classification. That said, visual inspection confirmed that 520 
the same hyperparameter settings worked reasonably across the simulations and experimental 521 
data analyzed here. Hyperparameters are not only present in the current method, but other 522 
oscillation detection methods benefit from tuning amplitude thresholds and filter lengths 523 
because they will significantly impact the results (Feingold et al. 2015). We recommend that the 524 
user runs the analysis with multiple hyperparameter choices to test the robustness of their 525 
results. 526 
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 527 
A key feature of the oscillation detection method used here is that it does not need to set an 528 
amplitude threshold to define oscillatory periods, as is the case for previously published 529 
algorithms for oscillatory burst detection (Hughes et al. 2012; Feingold et al. 2015; Watrous et 530 
al. 2017). This makes the current oscillation detection algorithm especially suitable for detecting 531 
oscillators that may occur at both small and large amplitudes, or that may vary greatly in 532 
stationarity between recordings. In contrast, using an amplitude threshold based on scaling the 533 
median oscillatory power (Feingold et al. 2015) inherently defines an upper limit on the fraction 534 
of the signal that can be classified as oscillatory. This may not be suitable, for example, in a set 535 
of hippocampal recordings in which theta oscillations can be present in more than 50% of the 536 
recording. 537 
 538 
Other complementary tools exist for extracting information from neural signals that Fourier-539 
based analyses do not concisely capture. Matching pursuit is a tool for decomposing a signal 540 
using a dictionary of functions, and has been used to analyze transient components of brain 541 
signals (Ray et al. 2003; Chandran et al. 2016). However, this approach has only so far been 542 
applied with a basis of Gaussian-modulated sinusoids, and it is nontrivial to decide how to 543 
parametrize the output to compare experimental conditions. Another approach, empirical mode 544 
decomposition (EMD), decomposes signals without forcing a basis function, such as the 545 
sinusoidal basis assumed in Fourier-based approaches (Liang et al. 2005; Pittman-Polletta et al. 546 
2014). However, applications of EMD in neural signals have been limited by critical issues such 547 
as “mode mixing” in which an oscillation of interest is split among multiple components, and 548 
difficulty in identifying analogous components across different recordings (Park et al. 2013). 549 
More complicated methods have been developed to help partially overcome these issues, but 550 
EMD has rarely been applied to neural signals beyond providing features for machine learning 551 
algorithms (Diez et al. 2009; Orosco et al. 2009; Bajaj and Pachori 2012). 552 
 553 
Few analysis techniques have been designed specifically for characterizing the time-domain 554 
waveform shape of brain oscillations. Characterizations of oscillation waveform shape have 555 
mostly been limited to locating peaks and troughs and quantifying the relative durations of rises 556 
and decays. In the hippocampal gamma oscillation, for example, the amplitude of a cycle is 557 
positively correlated with the period of the subsequent cycle, which has been interpreted as 558 
reflecting synaptic excitation being counterbalanced by proportional inhibition (Atallah and 559 
Scanziani 2009). The asymmetry of hippocampal theta oscillations have been characterized by 560 
the relative durations of the rise and decay periods, and is correlated to memory and spatial 561 
representation (Belluscio et al. 2012; Dvorak and Fenton 2014; Trimper et al. 2014; Amemiya 562 
and Redish 2018). Because of its notable asymmetry, researchers studying hippocampal theta 563 
have designed an alternative instantaneous phase estimate that involves identifying extrema in 564 
each cycle (Siapas et al. 2005; Belluscio et al. 2012). Additionally, two algorithms were recently 565 
developed to extract the waveform of the prominent oscillation in a neural signal (Gips et al. 566 
2017; Jas et al. 2017), but these approaches do not capture changes in waveform shape within 567 
a recording. 568 
 569 
Instantaneous and cycle-by-cycle measure comparison 570 
In addition to its ability to quantify waveform symmetry, we believe that the cycle-by-cycle 571 
framework’s measures of amplitude and period also offer an advantage over current, widely-572 
used methods for estimating instantaneous amplitude and frequency. An important step in 573 
computing instantaneous amplitude is convolution with a kernel of the frequency of interest. This 574 
means that the amplitude measure at any given point in time is actually computed using data 575 
from several cycles around that point (depending on the filter length). Because convolution is a 576 
linear operation, it is not specifically sensitive to oscillatory amplitude, but it will be strongly 577 
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biased by non-oscillatory sharp transients. Instantaneous frequency, derived from instantaneous 578 
phase, is similarly based on this convolution, and fluctuates within a cycle due to the cycle’s 579 
temporal dynamics. However, when applied to a relatively stationary nonsinusoidal oscillation 580 
(e.g., hippocampal theta) this will cause fluctuating within-cycle frequency estimates, which do 581 
not actually reflect a change in the theta frequency, but rather reflects its sawtooth-like 582 
waveform. In addition, these approaches conflate periodic and aperiodic activity because every 583 
moment in the signal is assumed to represent an oscillation. As we demonstrated in simulation, 584 
conflating these two processes introduces noise. Perhaps an even more pernicious concern is 585 
one caused by the non-random, 1/f-like relationship between neural frequency and power, 586 
wherein event-related changes in the aperiodic signal—as has recently been demonstrated 587 
(Podvalny et al. 2015; Gao et al. 2017)—which can be mischaracterized as changes in 588 
instantaneous frequency. 589 
 590 
In contrast to the widely used instantaneous measures, the time-resolved estimates of 591 
amplitude and period (frequency) using cycle-by-cycle estimates are more direct and intuitive 592 
measurements of the oscillation. Specifically, the amplitude measures the mean rise and decay 593 
voltages, and the period is computed as the time between consecutive peaks of a cycle in a 594 
putative oscillation. This method does not over-promise temporal resolution that it cannot 595 
reliably account for, and it is robust to issues that plague instantaneous measures such as 596 
sharp transients and nonsinusoidal waveforms. Additionally, we showed that the cycle-by-cycle 597 
measures of amplitude and frequency are more robust and better at differentiating these 598 
properties in simulated oscillations (Figs. 4,5). Specifically, instantaneous measures of both 599 
amplitude and frequency are biased by the proportion of the signal in which the oscillation is 600 
present, so this could underlie some past reports of changes in instantaneous amplitude and 601 
frequency. 602 
 603 
There is some empirical precedence for analyzing individual cycles of brain rhythms. Adrian and 604 
Matthews (1934) studied the evolution of a gamma oscillation in response to injury to the cortex 605 
of a cat. Initially, they observed rhythmic transient discharges, which gradually became more 606 
frequent and broad, producing a more sinusoidal-like rhythm. They interpreted the initial 607 
transients as bursts of activity by a few local neurons, and that this activity spread out as the 608 
transient discharges merged into a quasi-sinusoid. Therefore, each cycle could be considered 609 
as a “packet” of neural activity that can be characterized distinctly from the previous and 610 
subsequent cycles using a cycle-by-cycle analysis framework. This view of each cycle as an 611 
informative physiological unit differs substantially from modern work on oscillations. 612 
 613 
It is important to note that the specific methods and approaches we introduce here may not be 614 
the final best approaches, but they are a step toward more careful parameterization of the 615 
signals of interest. As we showed, without more careful parameterization, it is easy to conflate 616 
one physiological process—such as increased burst probability—with another entirely different 617 
process of oscillation amplitude change. Because our package is open source, the methods can 618 
be refined as new physiological data are collected, and as simulations are refined. For example, 619 
the cycle-detection approach introduced here is but one of many, and future studies may show 620 
that one approach performs best for one class of data, while a second approach performs best 621 
for another. Software modularity promotes flexibility in the light of new data. In addition, because 622 
we quantify how the bycycle approach is susceptible to noise, some low-pass filtering is 623 
necessary to balance time-domain extrema localization with noise transient confounding. Future 624 
approaches to denoise the data, perhaps through dynamic removal of the aperiodic signal, 625 
might prove more effective. Finally, although we only covered four cycle features in this paper 626 
(amplitude, period, rise-decay symmetry, and peak-trough symmetry), additional features can 627 
be designed and easily added to this workflow, such as monotonicity of the flanks or gamma 628 
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power (Lopes-Dos-Santos et al. 2018). This modularity is important because we do not know 629 
which features optimally characterize the physiology of waveforms. It is clear that no one feature 630 
is sufficient—for example rdsym=0.5 for both sinusoids and triangle waves—thus several cycle 631 
features are parameterized to better classify waveforms. 632 
 633 
In summary, we have demonstrated a novel approach to analyzing neural oscillations using a 634 
cycle-by-cycle framework. This technique has advantages over conventional approaches that 635 
rely solely on Fourier-based techniques, including its ability to characterize oscillatory waveform 636 
symmetry and its inherent detection of whether an oscillation is present in the data or not. We 637 
additionally demonstrate its application on an experimental dataset of Parkinson’s disease 638 
recordings and a simulated dataset with a simulated event-related alteration of alpha oscillation 639 
features. This method is well suited to analyze not only motor cortical beta rhythms, but any 640 
oscillation that is prominent in the raw data, such as the mu rhythm, visual cortical alpha, 641 
hippocampal theta, visual cortical gamma, thalamocortical spindles, cortical slow oscillation, and 642 
respiratory rhythms. While this open-source analysis framework is unique in its focus on 643 
oscillatory symmetry, it is also complementary to conventional analysis of oscillatory amplitude 644 
and period, and, as such, should be a standard part of the neural oscillation analysis toolbox. 645 
 646 
 647 
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Figure Legends 833 

Figure 1. Approach for decomposing a neural signal into individual cycles. A: Example 834 
raw field potential recording from the CA1 layer of rat hippocampus. B: The raw signal is 835 
lowpass filtered at 40 Hz (4 times the oscillation frequency) to remove high frequencies while 836 
preserving underlying theta waveform shape. C: Zero-crossings are found after the signal has 837 
been bandpass filtered in the theta frequency range (4-10 Hz). D: Peaks and troughs are found 838 
in the lowpass filtered signal by finding the relative maxima and minima between the zero-839 
crossings found in the theta-filtered signal A. E: Flank midpoints are determined by locating the 840 
time points at which the voltage is halfway between the adjacent peak and trough voltages. 841 
These points denote the boundaries between peak and trough. F: Demonstration of features 842 
computed for a single cycle. The amplitude of the cycle is defined as the average voltage 843 
difference between the trough and adjacent peaks (blue lines). The period is defined as the time 844 
between consecutive peaks (red and orange lines together). The rise-decay symmetry is 845 
computed as the fraction of the period that the cycle is in the rise phase (orange line). Similarly, 846 
the peak-trough symmetry is defined as the relative amount of a cycle (both green lines 847 
together) is comprised of the time between the rise midpoint and the subsequent decay 848 
midpoint (i.e., the peak, light green line). G: Table showing the values of each cycle feature for 849 
each cycle. Each row corresponds to a single cycle whose trough occurs in A-E at the time 850 
indicated by the “trough time” column. 851 
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 852 

Figure 2. Comparison of two simulated signals using a cycle-by-cycle approach. A-F: Two 853 
neural signals were simulated for 1000 seconds each. The first signal A was composed of a 854 
nonstationary oscillation (B) and aperiodic noise (C). The second signal D is simulated with a 855 
slightly larger oscillation (E) that is more asymmetric (rise shorter than decay) and slightly less 856 
aperiodic noise (F). G-J: Distributions of cycle features comparing the signals in A (black) and D 857 
(red). Compared to signal A, the cycles in D are generally (G) larger in amplitude, (H) have the 858 
same period, (I) are more asymmetric with a shorter rise, and, (J) are equally peak-trough 859 
symmetric. This shows, using ground-truth simulations, that the cycle-by-cycle approach 860 
successfully discriminates signals along the appropriate dimensions that differ. 861 
 862 
Figure 3. Accuracy of measured cycle features in simulated signals with noise. A-B: Two 863 
simulated neural signals with relatively large amounts of noise (A, SNR = 0.32) and relatively 864 
low amounts of noise (B, SNR = 3.2). The ground-truth oscillation that was simulated (gray) is 865 
compared to the simulated “recording” used to compute cycle features (black). These simulated 866 
recordings are the result of adding noise to the ground-truth oscillation followed by application of 867 
a 40 Hz lowpass filter to aid in extrema localization. Note that this recovered oscillatory signal 868 
has substantial differences compared to the generated oscillation due to corruption from the 869 
added noise, particularly in A. C-E: Comparison between measured and ground-truth cycle 870 
features for the signal plotted in A. Each dot corresponds to 1 cycle for its measured and true C 871 
amplitude, D period, and E rise-decay symmetry. F-H: Same as C-E except for the signal 872 
plotted in B. Note the stronger correlations between measured and ground-truth cycle features. 873 
I: Average measurement error of individual cycle features for simulated signals with SNR 874 
ranging from 0.1 to 10. 875 
 876 
Figure 4. Comparison of amplitude measurement methods on simulated event-related 877 
data. A: Three different event-related oscillatory changes were simulated for an event occurring 878 
at 0.0 seconds: (1, black) a “baseline” condition in which 10 Hz oscillations were randomly 879 
added to the data after a simulated event onset; (2, red) a “higher amplitude” condition in which 880 
the oscillations were 10% larger than in the “baseline” condition, and; (3, blue) a “more bursts” 881 
condition wherein oscillations were more common than the other conditions. While 1 example 882 
trial for each condition is shown, 100 trials were simulated for each condition. B: Event-related 883 
instantaneous amplitude profiles, using conventional approach of filtering and the Hilbert 884 
transform, were averaged across the three trial types in A. C: Same as B, but amplitude was 885 
estimated using the cycle-by-cycle approach. Amplitude estimates were binned at 100 ms 886 
intervals. D: Same as C, but showing the probability of an oscillation being detected for each 887 
condition, binned at 100 ms intervals. Note that this measure is not a standard output for 888 
conventional analyses. E-F: Distributions of the average E instantaneous amplitude and F cycle 889 
amplitude between 500 ms and 1000 ms for each trial in the “baseline” (black) and “higher amp” 890 
(red) conditions. Note that the instantaneous amplitude measure did not significantly 891 
differentiate the amplitude across these two conditions (p = 0.10). In contrast, the cycle-by-cycle 892 
amplitude estimate accurately shows that the amplitude is greater in the “higher amp” condition 893 
compared to the “baseline” condition (p < 10-5). G-H: Similar to E-F but showing the difference in 894 
amplitude distributions between the “baseline” (black) and “more bursts” (blue) conditions. Note 895 
that the instantaneous amplitude estimates are larger in the “more bursts” condition (p < 10-7), 896 
while the cycle-by-cycle amplitude estimate is relatively unchanged (p = 0.37). 897 
 898 
Figure 5. Comparison of frequency estimation methods on simulated event-related data. 899 
A: Three different event-related oscillatory changes were simulated for an event occurring at 0.0 900 
seconds: (1, black) a “baseline” condition in which 10 Hz oscillations were randomly added to 901 
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the data after a simulated event onset; (2, red) a “faster” condition in which the oscillations were 902 
simulated at 11 Hz, and; (3, blue) a “more bursts” condition wherein oscillations were more 903 
common than in the other conditions. While 1 example trial for each condition is shown, 100 904 
trials were simulated for each condition. B: Event-related instantaneous frequency profiles, 905 
using conventional approach of filtering and the Hilbert transform, were averaged across the 906 
three trial types in A. C: Same as B, but frequency was estimated using the cycle-by-cycle 907 
approach. Frequency estimates were binned at 100 ms intervals. D-E: Distributions of the 908 
average D instantaneous frequency and E cycle-by-cycle frequency estimate between 500 ms 909 
and 1000 ms for each trial in the “baseline” (black) and “faster” (red) conditions. Note that both 910 
the instantaneous and cycle-by-cycle frequency measures differentiated these conditions (p < 911 
10-4). Also note that the cycle-by-cycle frequency distributions were accurately around 10 Hz for 912 
the “baseline” condition and 11 Hz for the “faster” condition, while the instantaneous frequency 913 
measures were often estimated to be lower than the ground-truth simulation. F-G: Similar to D-E 914 
but showing the difference in frequency distributions between the “baseline” (black) and “more 915 
bursts” (blue) conditions. Note that the instantaneous frequency estimates are higher in the 916 
“more bursts” condition (F, p < 10-4), while the cycle-by-cycle frequency estimate is 917 
appropriately unchanged (G, p = 0.45). 918 
 919 
Figure 6. Changes in motor cortical beta oscillation shape with deep brain stimulation 920 
(DBS) treatment of Parkinson’s disease. A-B: Motor cortical electrocorticography recordings 921 
from one subject A, before, and B, during, DBS.C-F: Comparison of C amplitude, D period, E 922 
rise-decay symmetry, and F peak-trough symmetry of beta oscillations in the same subject 923 
before (black) and during (red) DBS. G: Comparison of peak-trough asymmetry of beta 924 
oscillations before and during DBS. This value is computed as the absolute difference between 925 
the peak-trough symmetry and 0.5 (equal peak and trough duration). Each dot represents one 926 
subject. The diagonal line represents the same peak-trough asymmetry before and during DBS. 927 
These results replicate previous work showing that peak-trough asymmetry is reduced during 928 
DBS treatment in most patients, in this case using methods that focus only on recording 929 
segments in an oscillation. 930 
 931 
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