PRIMAL: Power Inference using Machine Learning

Yuan Zhou*", Haoxing Ren', Yanqing Zhang, Ben Keller, Brucek Khailany, Zhiru Zhang*

*Cornell University
{yz882, zhiruz}@cornell.edu

Abstract

This paper introduces PRIMAL, a novel learning-based frame-
work that enables fast and accurate power estimation for ASIC
designs. PRIMAL trains machine learning (ML) models with design
verification testbenches for characterizing the power of reusable
circuit building blocks. The trained models can then be used to
generate detailed power profiles of the same blocks under differ-
ent workloads. We evaluate the performance of several established
ML models on this task, including ridge regression, gradient tree
boosting, multi-layer perceptron, and convolutional neural net-
work (CNN). For average power estimation, ML-based techniques
can achieve an average error of less than 1% across a diverse set
of realistic benchmarks, outperforming a commercial RTL power
estimation tool in both accuracy and speed (15x faster). For cycle-
by-cycle power estimation, PRIMAL is on average 50x faster than a
commercial gate-level power analysis tool, with an average error
less than 5%. In particular, our CNN-based method achieves a 35x
speed-up and an error of 5.2% for cycle-by-cycle power estimation
of a RISC-V processor core. Furthermore, our case study on a NoC
router shows that PRIMAL can achieve a small estimation error of
4.5% using cycle-approximate traces from SystemC simulation.

CCS Concepts

« Computing methodologies — Machine learning; Mod-
eling methodologies; - Hardware — Power estimation and
optimization;
Keywords

Power estimation, machine learning

ACM Reference Format:

Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany,
and Zhiru Zhang. 2019. PRIMAL: Power Inference using Machine Learning.
In The 56th Annual Design Automation Conference 2019 (DAC ’19), June
2-6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3316781.3317884

1 Introduction

Modern VLSI design requires extensive optimization and explo-
ration in a large design space to meet the ever-stringent require-
ments with respect to performance, area, and power. Existing ASIC
CAD tools can provide reasonably accurate area and performance
estimates at register transfer level (RTL) or even behavioral level
with the aid of high-level synthesis (HLS) tools. However, in order

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06....$15.00
https://doi.org/10.1145/3316781.3317884

TNVIDIA Corporation

{haoxingr, yanqingz, benk, bkhailany}@nvidia.com

SystemC
Testbench

RTL SystemC RTL
Testbench Testbench Testbench

RTL Simulation SystemC Simulation RTL Simulation SystemC Simulation
(1-10k cycles/s) (>10k cycles/s) (1-10k cycles/s) (>10k cycles/s)

k2 k2
RTL Simulation or Timed SystemC
Traces Simulation Traces
Traces l

PRIMAL

ML-based
power models
(>1k cycles/s)

Power

(a) Traditional flow. (b) PRIMAL flow.
Figure 1: Conventional ASIC power estimation flow vs. PRI-
MAL — (a) With existing tools, designers must rely on slow gate-
level power analysis for accurate power profiles. (b) PRIMAL trains
ML-based power models for reusable IPs. Using the trained models,
detailed power traces are obtained by running ML model inference
on RTL or timed SystemC simulation traces.

Synthesized
Gate-level
Netlist

Power Analysis
(10s~100s cycles/s)

to achieve power closure, designers must obtain detailed power pro-
files for a diverse range of workloads from different application use
cases or even from different levels of design hierarchy. Currently,
the common practice is to feed gate-level netlist and simulation
results to power analysis tools such as Synopsys PrimeTime PX
(PTPX) to generate cycle-level power traces. Figure 1a depicts a
typical ASIC power analysis flow, which offers accurate estimates
but runs at a very low speed (in the order of 10-100s of cycles per
second). Given the high complexity of present-day ASIC designs,
it can take hours or days to perform gate-level power analysis for
one intellectual property (IP) core under desired workloads.

An alternative is to analyze power above gate level. There exists
a rich body of research on power analysis at RTL or a higher ab-
straction level [3, 4, 6, 7, 14, 20, 21, 23, 24]. These efforts typically
make use of measured constants or simple curve fitting techniques
such as linear regression to characterize the power of a given circuit,
improving the speed of power analysis at the expense of estima-
tion accuracy. For accurate power characterization, many low-level
details of the circuit need to be modeled, including standard cell
parameters, sizing of the gates, and clock gating status of the regis-
ters. Gate-level power analysis uses them to estimate the switching
capacitance and activity factor of each circuit node. However, these
low-level details are unavailable at (or above) RTL by design. It is
also very difficult for simple analytical models or linear regression
models to capture the complex nonlinear relationship between the
register toggles and the total switching capacitance.

To enable fast and accurate high-level power estimation, we
propose PRIMAL!, a learning-based power inference framework
that enables fast and accurate power characterization of reusable
IP cores at RTL or behavioral level. PRIMAL leverages gate-level
power analysis to train machine learning (ML) models on a sub-
set of verification testbenches. These trained models can then be

IPRIMAL stands for power inference using machine learning.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

used to infer power profiles of the same IP core under different
user-specified workloads. Figure 1b illustrates the inference flow of
PRIMAL, which only requires inputs from RTL or SystemC simula-
tion to rapidly generate accurate power estimates (>1k cycles per
second). By greatly reducing the required number of gate-level sim-
ulation cycles, PRIMAL allows designers to perform power-directed
design space exploration in a much more productive manner. The
major technical contributions of this work are fivefold:

« We present PRIMAL, a novel ML-based methodology for rapid

power estimation with RTL or timed SystemC simulation
traces. The trained ML models can provide accurate, cycle-
by-cycle power inference for user workloads even when they
differ significantly from those used for training.
We investigate several established ML models for power esti-
mation, and report trade-offs between accuracy, training effort,
and inference speed. Our study suggests that nonlinear models,
especially convolutional neural nets (CNNs), can effectively
learn power-related design characteristics for large circuits.
We explore feature engineering techniques to construct image
representations from register traces. The constructed features
are used by CNNs for training and inference.
We demonstrate that PRIMAL is at least 50x faster on average
than PTPX for cycle-accurate power estimation with a small
error. Notably, our CNN-based approach is 35x faster than
PTPX with a 5.2% error for estimating power of a RISC-V core.
PRIMAL also achieves a 15x speedup over a commercial RTL
power analysis tool for average power estimation.
Using a NoC router design as a case study, we demonstrate that
PRIMAL can be extended to enable accurate power estimation
for timed SystemC design.
The remainder of this paper is organized as follows: Section 2
surveys related work, and Section 3 presents the overall design
methodology and intended use cases of PRIMAL. Section 4 intro-
duces our feature construction methods. Experimental results are
reported in Section 5. Section 6 gives concluding remarks.

2 Related Work

Power estimation is an extensively studied research topic. Exist-
ing works focus on power estimation from behavioral-level and RTL.
Behavioral-level power estimation provides optimization guidance
early in the design flow. In an earlier work, Chen et al. [7] combine
profiling and simple analytical models to estimate FPGA power
consumption. Later efforts use the HLS tool to perform scheduling
and back-annotation, and rely on RTL power analysis [3], gate-level
power analysis [21], or a per-control-step ML power model [14] for
power estimation.

Compared to behavioral-level analysis, more implementation
details are available at RTL. Earlier works in RTL power estima-
tion use simple regression models, such as linear regression and
regression trees, to characterize small circuit blocks [4, 6, 20]. The
regression models are trained with gate-level power analysis re-
sults. Average power and cycle-by-cycle power of the whole design
can be obtained by summing up the outputs from multiple mod-
els. PrEsto [23] uses linear models to characterize larger modules,
where heavy feature engineering and feature selection are applied
to reduce the complexity of power models. A more recent work
by Yang et al. [24] uses a single linear model to characterize the
whole design. A feature selection technique based on singular value
decomposition (SVD) is applied to reduce model complexity so that
the regression model can be efficiently mapped onto an FPGA. Both
PrEsto and [24] can provide cycle-by-cycle power estimates.

.

Y. Zhou et al.

——User Workload A
e '
Specification Testbenches Characterized [P Power Model
Gate-level Simulation + Mocue
ate-level imulation 5
N . Estimated
Netlist Power Analysis Power Trace A
(_User Workload B)
ML Model “ Design B Signal Trace B
Training \
\ [Power Model |
\
\ -]
Chah; acételnzed Estimated
o Power Trace B

(a) Characterization phase (b) Estimation phase
Figure 2: Two phases of the PRIMAL work flow — Power mod-
els are trained once per module, then used across different work-
loads and in different designs that instantiate the module.

In general, existing RTL power estimation techniques either
model small circuit sub-modules or try to use simple regression
models to characterize the whole design. Sub-module-level model-
ing cannot accurately reflect the power consumption of intermedi-
ate logic, and simple regression models such as linear models are
not a good fit for large, complex designs.

3 PRIMAL Methodology

Unlike previous works, PRIMAL uses state-of-the-art ML models
for fast and accurate high-level power estimation. Our methodol-
ogy can readily be applied to RTL and SystemC power estimation.
Figure 2 shows the two phases of the PRIMAL work flow. The char-
acterization phase (Figure 2a) requires an RTL/SystemC model of
the module, the gate-level netlist, and a set of unit-level testbenches
for training. RTL or SystemC simulation traces and the power traces
generated by gate-level power analysis are used to train the ML
models. The characterization process only needs to be performed
once per IP block. The trained power models can then be used to
estimate power for different workloads as illustrated in Figure 2b.

It is important to note that the training testbenches may be very
different from the actual user workloads. For example, designers can
use functional verification testbenches to train the power models,
which then generalize to realistic workloads. By using state-of-the-
art ML models, PRIMAL can accommodate diverse workloads and
model large, complex circuit blocks. The ML models are trained for
cycle-by-cycle power estimation to provide detailed power profile
and enable more effective design optimization.

In this work we explore a set of established ML models for power
estimation. The classical ridge linear regression model is used as a
baseline. We also experiment with gradient tree boosting, a promis-
ing non-linear regression technique [17]. For linear models and
gradient tree boosting models, we apply principal component anal-
ysis (PCA) [12] to the input data to reduce model complexity and
avoid overfitting. We also study the efficacy of deep learning mod-
els, which are capable of approximating more complex non-linear
functions. Specifically, we experiment with multi-layer perceptron
(MLP) and CNN models for power estimation. MLP contains only
fully-connected network layers and is more compute-efficient than
CNN. However, the parameter count of MLP grows quickly with
respect to the feature size of the design, resulting in overfitting and
training convergence issues. CNNs have shown impressive perfor-
mance in image classification tasks. Since the power of a certain
logic cone is only correlated with a small set of registers, the con-
volutional windows of CNNs are able to gather useful information
if the input images are constructed properly. In addition, thanks
to the structure of convolutional layers, CNN is a more scalable
choice than MLP for large designs since the parameter count of a
CNN does not increase significantly as the input image size grows.

PRIMAL: Power Inference using Machine Learning

edge 0 edge 1 edge 2

T G
c;_rt (<)
D
e T L ©® ©
(a) (b) (©

Figure 3: Simple circuit example with waveform of register
outputs and register connection graph.

Reg-to-pixel channel 0:
mapping non-switching

A BCDE
AlB|C 1]ofo

«co| 1]0]0f0]0] ole[d] [Aa]0
dld|d 0j0f0
e[0] 1]1]0]0]

channel 1: 0->1 channel 2: 10
01 0|10
edge 2 nn 0]0]0 0|00
0fo0 0]0]0

(a) (b)
Figure 4: Basic feature encoding methods — (a) 1D switching
encoding. (b) Default 2D encoding for edge 1 in Figure 3b.

4 Feature Construction

This section describes the feature construction procedure using
the circuit in Figure 3a as an example. Figure 3b shows the register
waveform, where each “edge" in the figure corresponds to a clock
rising edge. We use register switching activities in the simulation
traces as input features, because register switching activities are
representative of the circuit’s state transitions. In addition, there isa
one-to-one correspondence between registers in RTL and gate-level
netlist?. Because we use cycle-accurate power traces from gate-level
simulation as ground truth, the ML models are essentially learning
the complex relationship between the switching power for all gate-
level cells and register switching activities. For clarity we focus on
RTL power estimation in this section, but our feature construction
methods can also be naturally applied or extended to SystemC
power estimation.

Feature Encoding for Cycle-by-Cycle Power Estimation —
For cycle-by-cycle power estimation, we use RTL register and I/O
signal switching activities as input features without any manual
feature selection. Switching activities of both internal registers and
I/O signals are required to capture complete circuit state transitions.
These features can be easily collected from RTL simulation. Because
we are targeting cycle-by-cycle power estimation, each cycle in the
simulation trace is constructed as an independent sample.

A good feature encoding should differentiate between switching
and non-switching events. A concise encoding, which we refer to
as switching encoding, is to represent each register switching event
as a 1, and non-switching event as a 0. For an RTL module with
n registers, each cycle in the RTL simulation trace is represented
as a 1 X n vector. Figure 4a shows the corresponding encoding for
the waveform in Figure 3b. Each vector in Figure 4a represents one
cycle (one clock rising edge to be precise) in the waveform. We use
this one-dimensional (1D) switching encoding for all but the CNN
models. The same feature encoding is used in [24].

In order to leverage well-studied two-dimensional (2D) CNN
models, we create a three-channel 2D image representation for ev-
ery cycle in the register trace. For an RTL module with n registers,

%In cases where retiming with register optimization is used, mapping between RTL
and gate-level registers can be retrieved from the logic synthesis tool.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

After 1st partition

AB ° e Node

______ embedding High-dim. vector

C,D E e |:|'> representation of

nodes

A B e G Dimensionality
R reduction
r 2D map of
é. B nodes
D

After 3rd partition

= = 1st partition &
------- 2nd partition C I
- - 3rd partition

(2) (b)

Figure 5: Graph-based register mapping schemes — (a) Regis-
ter mapping based on graph partitioning. The register connection
graph is recursively partitioned into two parts. Each partition also
divides the map into two non-overlapping parts. (b) Register map-
ping based on node embedding. Node embedding maps each graph
node as a point in high-dimensional space, then dimensionality
reduction techniques project the high-dimensional representations
onto the 2D space. In the generated mapping each register occupies
a unit square whose area is equivalent to one pixel.

we use a [y/n] X [y/n] X 3 image to encode one cycle in the RTL sim-
ulation trace. We use one-hot encoding in the channel dimension to
represent the switching activities of each register: non-switching is
represented as [1, 0, 0], switching from zero to one is represented as
[0,1,0], and switching from one to zero is [0, 0, 1]. We refer to this
encoding as default 2D encoding. Figure 4b shows how we encode
edge 1 of the waveform in Figure 3b. If the total number of pixels
in the image is greater than n, we add padding pixels to the image,
shown as d’s in Figure 4b. These padding pixels do not represent
any register in the module, and they have zero values in all three
channels in our implementation. Every other pixel corresponds
to one register in the module. For this default 2D encoding, the
registers are mapped by their sequence in the training traces. For
example, since in Figure 3b the order of registers is A, B, C, D, and
E, in each channel the top-left pixel in Figure 4b corresponds to A,
the top-right pixel is mapped to C, and the center pixel refers to E.
We observe that this default mapping from registers to pixels is not
completely random. The tool flow we are using would actually clus-
ter most of the registers within a submodule together. As a result,
in our experiments, this default 2D encoding actually preserves a
considerable amount of circuit structural information.

Mapping Registers and Signals to Pixels — In the default 2D
encoding described above, the mapping between registers and pixel
locations are determined by the way the registers are arranged in
the trace file. The amount of structural information that is preserved
is dependent on the tool flow. As a result, this mapping method
cannot guarantee meaningful local structures in the constructed
images. Registers that are mapped to adjacent pixels may not be
correlated or physically connected. CNNs are most effective when
there are spatial relationships in their 2D inputs. Therefore, the
register-to-pixel mapping should reflect the connectivity or physical
placement of the registers. Since the gate-level netlist of the design
is available during the characterization phase, it is possible to use
the outputs of logic synthesis tools to map RTL registers to netlist
nodes. Because we only use register and I/O switching activities,
we ignore all combinational components and only extract register
connection graphs when processing the gate-level netlist. The graph
for the example circuit in Figure 3a is shown in Figure 3c. Each node

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Y. Zhou et al.

Table 1: Benchmark information — We evaluate PRIMAL with a diverse set of benchmark designs. For NoC router and RISC-V core, the
test sets are realistic workloads which are potentially different from the corresponding training set.

Design Description ltfgg::le £o+uIr/1? Gate count PTP)((C;]:f:S‘;Sg)hP ut Training set (# cycles) Test set (# cycles)
qadd_pipe 32-bit fixed point adder 160 838 1250 Random stimulus (480k) Random stimulus (120k)

32-bit fixed point multiplier with

1, 2, or 3 pipeline stages {384, 405, 438}

qmult_pipe{1, 2, 3}

{1721, 1718, 1749}

{144.9, 135.1, 156.3} Random stimulus (480k) Random stimulus (120k)

float_adder 32-bit floating point adder 381 1239 714.3 Random stimulus (480k) Random stimulus (120k)

float_mult 32-bit floating point multiplier 372 2274 454.5 Random stimulus (480k) Random stimulus (120k)

NoCRouter Network-on-chip router for a 5651 15076 447 Unit-level testbenches (910k) Convolution tests (244k)
CNN accelerator

RISC-V Core RISC-V Rocket Core (SmallCore) 24531 80206 45 RISC-V ISA tests (2.2M) RISC-V benchmarks (1.7M)

Table 2: Training time of different ML models

Design PCA Ridge Regression XGBoost MLP CNN
arithmetic units ~10 min ~1 min ~15min ~25min ~3h
NoCRouter ~7h ~15 min ~1h ~15h ~10h
RISC-V Core ~20 h ~30 min ~15h ~7h" ~20h

* Use random 50% training data per training epoch.

in the graph corresponds to one register in the design, and two
nodes are connected if their corresponding registers are connected
by some combinational data path.

We propose two graph-based methods for generating register-to-
pixel mappings, which introduce local structures into the images
according to the structural similarities between nodes. Notice that
the proposed graph-based mapping methods only change the reg-
ister mapping in the width and height dimensions of the image:
we still use the channel-wise one-hot encoding for every register.
Each register’s contribution to each pixel is proportional to the
overlapping area of the register’s occupied region and the pixel.
In other words, with the graph-based encoding methods the pixel
values are non-negative real numbers rather than binary numbers.

The first method is based on graph partitioning, in which the
graph is recursively divided into two partitions of similar sizes, and
the partitions are mapped to corresponding regions in the image
(see Figure 5a). The area allocated for each partition is computed
according to the number of nodes in the partition. The second
method is based on node embedding. Node embedding techniques
map each node in the graph to a point in a vector space, where sim-
ilar nodes are mapped close to each other in the vector space. Our
flow for embedding-based register mapping is shown in Figure 5b.
We use node2vec [10] for node embedding, then apply PCA [12]
and t-SNE [16] to project the vector representations to 2D space.
The resulting 2D vector representations are scaled according to the
image size and indicate the mapping locations of the registers.

5 Experiments

We have implemented our proposed framework in Python 3.6,
leveraging networkx [11], metis [13], and a node2vec package [10].
MLP and CNN models are implemented using Keras [2]. Other ML
models are realized in scikit-learn [19] and XGBoost [8]. We conduct
our experiments on a server with an Intel Xeon E5-2630 v4 CPU
and a 128GB RAM. We run neural network training and inference
on a NVIDIA 1080Ti GPU. The SystemC models of our designs are
synthesized with Mentor Catapult HLS. We use Synopsys Design
Compiler for RTL and logic synthesis, targeting a 16nm FinFET
standard cell library. The RTL register traces and gate-level power
traces are obtained from Synopsys VCS and PTPX, respectively.
Gate-level power analysis is performed on another server with an
Intel Xeon CPU and 64GB RAM using a maximum of 30 threads.

5.1 Benchmarks

Table 1 lists the benchmarks used to evaluate PRIMAL. Our
benchmarks include a number of fixed- and floating-point arith-
metic units from [18]. We also test our approach against two com-
plex designs — a NoC router used in a CNN accelerator and a
RISC-V processor core. The NoC router block is written in Sys-
temC and synthesized to RTL by an HLS tool. The RISC-V core
is an RV64IMAC implementation of the open-source Rocket Chip
Generator [5] similar to the SmallCore instance. We use different
portions of random stimulus traces as training and test sets for the
arithmetic units. For the NoC router and the RISC-V core, we select
functional verification testbenches for training and use realistic
workloads for test. For the NoC router, we test on actual traces
of mesh network traffic from a CNN accelerator SoC. In the RISC-
V experiment, dhrystone, median, multiply, gsort, towers, and
vvadd form the set of test workloads.

5.2 RTL Power Estimation Results

Figure 6 summarizes the results for RTL power estimation. Here
we use RTL register traces as the raw input and apply the feature
construction techniques described in Section 4. Two percent of
the training data is used as a validation set for hyper-parameter
tuning of the ML models. They are also used for early stopping
when training the deep neural networks.

All models except CNNs use the 1D switching encoding, while
CNNss use the 2D image encoding methods introduced in Section 4.
We also experimented with 1D one-hot encoding, where we encode
the switching activity of each register using three binary numbers
as described in Section 4. Since the results with such encoding is
similar with 1D switching encoding, we omit the results due to
space limitations. For ridge regression and gradient tree boosting,
we apply PCA to reduce the size of input features to 256, except for
gadd_pipe which has only 160 features with 1D feature encoding.
We use three-layer MLP models for the arithmetic unit and four-
layer MLP models for the NoC router and the RISC-V core. We
use an open-source implementation [1] of ShuffleNet V2 [15] for
CNN-based power estimation because of its parameter-efficient
architecture and fast inference speed. The v0.5 configuration in [15]
is used for the arithmetic units, while the v1.5 configuration is used
for the NoC router and RISC-V core. The CNN models are trained
from scratch. CNN-default, CNN-partition, and CNN-embedding
in Figure 6 refer to the default 2D encoding, graph-partition-based
register mapping, and node-embedding-based register mapping
methods introduced in Section 4, respectively.

Cycle-by-Cycle Power Estimation Results — We use normal-
ized root-mean-squared-error (NRMSE) as our evaluation met-
ric. Suppose the ground-truth power trace is represented as a n-
dimensional vector y, and the estimated power trace is a vector y

PRIMAL: Power Inference using Machine Learning

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

- O PCA + Linear B PCA +XGBoost EMLP

R 19 | ECNN-default B3 CNN-partition @CNN-embedding |

vl

2 s

z

0 3 :
gadd_pipe gmult_pipel gmult_pipe2 gmult_pipe3 float_add float_mult NoCRouter RISC-V Core Average
(a) Cycle-by-cycle estimation error
5 |r'acomm —EPCA+Unear @PCA+XGBoost |—————— ey ———— }55o————

5 4 EMLP B CNN-default CNN-partition | 53;4, P 32;0 ,,,,,

H = OCNN-embedding |

5 9.9 153 17.5 16.8

962 122 e

£a)

g 15 [S) SN S | IS) I I

< 0 mm Fl | ez = Bz

qadd_pipe gmult_pipel gmult_pipe2 gmult_pipe3 float_add float_mult NoCRouter RISC-V Core Average
(b) Average power estimation error

X 5E+3 O PCA + Linear EIPCA+XGBoost & MLP
'; 5E+2 B CNN-partition @ CNN-embedding

4 -

o 5E+1

=
@ SE+0

3

o
v 5E-1

gadd_pipe gmult_pipel gmult_pipe2 gmult_pipe3

float_add

float_mult NoCRouter RISC-V Core Geomean

(c) Speedup vs. Synopsys PTPX

Figure 6: Performance of different machine learning models on test sets — The ML models used by PRIMAL achieve high accuracy
for both cycle-by-cycle and average power estimation, while offering significant speedup against both Synopsys PTPX and the commercial
RTL power analysis tool (Comm). PRIMAL is also significantly more accurate than Comm in average power estimation.

of the same shape. Then

2y — i)
n

NRMSE =

<l =

As shown in Figure 6a, all ML models can achieve an average
estimation error of less than 5% across our benchmarks. The training
time for each ML model is summarized in Table 2. For small designs,
XGBoost offers competitive accuracy with much less training effort.
CNN models show significant advantage over other ML models
for larger designs like the RISC-V core. Notably, our CNN model
with default 2D encoding achieves an impressive 5.2% error on the
test set, while MLP, XGBoost and Linear model achieves around
8%, 11% and 13% error, respectively. Noticeably, the estimation
error for the RISC-V core is considerably higher than other designs.
Compared with other benchmarks, the RISC-V core contains ~5x
to ~95x more gates but has only five pipeline stages. Each pipeline
stage is significantly more complex and harder to model. In addition,
it is harder to create a comprehensive training set for the models
to approximate a larger design.

Figure 7 compares the estimation of CNN-default and PCA+
Linear with the ground truth power trace. The CNN estimation
fits the ground truth curve more closely. These results demonstrate
the superior capability of deep neural networks in approximating
complex non-linear functions. We observe that the graph-based
register mapping methods do not provide much benefit over de-
fault 2D encoding because of the rich structural information in the
default encoding. In fact, the advanced encodings result in a lower
accuracy on some benchmarks. One possible reason is that with the
graph-based encoding methods, information of multiple registers is
clustered onto a small number of pixels, making it more difficult for
the CNN models to distinguish between high-power and low-power
samples. Essentially, with the 2D encoding methods, we are trying
to figure out the latent space of toggling registers and show it in

4
45 ——Ground Truth 5 ——Ground Truth
CNN-default PCA+Linear
=35 |F————] 35 F———-]
= 1 | % 1
€ | o 1y i
525 \IIJ‘_J_J-'_‘/-_f :—1”“----———:—11-]“‘\1-"- 25 ‘H‘Jl i..}\.‘.‘ ﬂ'-——l‘J'l'M"“ll‘
g T UL "“\"“-““f‘l‘r”“lll [,ll
3 1y !] 1 | ! “,L{‘
015 ! 15 f-———- s i L
-
5 5 - -

0 100 200 300

Figure 7: Ground truth vs. CNN-default and PCA+Linear for
RISC-V — Showing 300 cycles from the dhrystone benchmark.
the two-dimensional space. This problem itself is an interesting
research direction, and we leave it for future work.

Average Power Estimation Results — The average power con-
sumption for a workload can be easily obtained from a cycle-
accurate power trace. We compare the ML-based techniques with a
commercial RTL power analysis tool (Comm). According to Figure 6b,
all of the ML techniques achieve less than 1% average error, while
the commercial tool has an average error of 20%. NoCRouter has
higher error for average power estimation, because the training set
and the test set have very different average power. Interestingly,
while the CNN models achieve similar or higher accuracy compared
with other ML models for cycle-by-cycle power estimation, their
accuracy for average power estimation is slightly worse because
the CNN models tend to consistently overestimate or underestimate
power by a very small margin. This behavior may be caused by
a mismatch in average power between the training and test sets:
the CNN models learn the average power of the training set better,
causing a small yet consistent shift in their estimations for the
test set. The ML models require a significant amount of time to be
trained for complex designs as shown in Table 2. Therefore, the
commercial RTL power analysis tool is still favorable for power
estimation of non-reusable modules.

Speedup— Figure 6¢ presents the speedup of the commercial RTL
power analysis tool and the PRIMAL techniques against Synopsys

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

0 5 20

Wind%)?/v Size
Figure 8: SystemC power estimation accuracy of NoCRouter
vs. window size, using a VGG16 CNN model.

PTPX. Notice that for PRIMAL, the reported speedup is for model
inference only, which is the typical use case. While the commercial
tool is only ~3x faster than PTPX on average, all ML models achieve
much higher estimation speed. Even the most compute-intensive
CNN models provide ~50x average speedup against PTPX. Linear
model, XGBoost and MLP has an additional 8x, 5x and 10x speedup
compared with CNNS, respectively. Note that the linear and gradi-
ent tree boosting models are executed on CPU, while MLP and CNN
inference is performed on a single GPU. As a result, if more efficient
implementations of the ML models and more compute resources are
available, higher speedup can be expected with a modest hardware
cost. For small designs, linear model and gradient tree boosting are
almost always more favorable choices, since the neural network
models do not provide significant accuracy improvement but re-
quire much more compute and training effort. For complex designs
such as the RISC-V core, CNN provides the best accuracy with ~35x
speedup, while other models are faster but less accurate.

5.3 NoC Router SystemC Power Estimation

We use the NoC router design as a case study to demonstrate
the applicability of PRIMAL to SystemC power estimation. We con-
tinue to employ functional verification testbenches as our training
set, and test on 3.5k cycles of chip-level convolution testbenches.
Cycle-by-cycle power estimation may not be applicable to SystemC
designs, because traces that consist of the values of SystemC vari-
ables over time are transaction-accurate rather than cycle-accurate.
For our specific NoC router design, a SystemC variable trace can dif-
fer from the RTL trace by up to seven cycles. Therefore, aside from
cycle-by-cycle power estimation, we also train the ML models to
estimate the average power inside fixed-size time windows. In such
cases, we perform an element-wise sum of the encoded features
inside the time window and use the results for ML model training
and inference. While the SystemC and RTL trace lengths are the
same for our training and test sets, this may not be generally true:
the effect of SystemC trace inaccuracy is sometimes accumulative,
resulting in significant differences in the lengths of SystemC and
RTL simulation traces. Our feature preprocessing technique does
not address this issue, and we leave the question of how to handle
trace length mismatch for future work.

Because SystemC power estimation is more difficult with the non-
constant signal shift, we fine-tune a VGG16 model [22] pre-trained
on ImageNet [9] for window-by-window estimation. Compared
with the ShuffleNet V2 models, VGG16 has more parameters and
larger receptive fields in its convolutional layers, enabling it to
model even more complex functions. The estimation accuracy of
the VGG16 model with different window sizes is shown in Figure 8.
The default 2D encoding is used for this experiment. While the
CNN model performs reasonably well for small window sizes, there
is a clear error decrease when the window size is larger than seven
as the effect of trace inaccuracy is mitigated. When the window
size is larger than 8, the CNN model is able to achieve less than 4.5%

Y. Zhou et al.

error, which is satisfactory in most cases. Nevertheless, the error of
SystemC power estimation remains higher than that of RTL power
estimation because of the trace inaccuracy and the information loss
in the feature construction process.

6 Conclusions

We have presented PRIMAL, a learning-based framework that
enables fast and accurate power estimation for ASIC designs. Using
state-of-the-art ML models, PRIMAL can be applied to complex
hardware such as a RISC-V core, and the trained power models
can generalize to workloads that are dissimilar to the training test-
benches. The ML-based techniques achieve less than 5% and 1%
average error for cycle-by-cycle and average power estimation,
respectively. Compared with Synopsys PTPX, PRIMAL provides
at least 50x speedup across our selection of benchmarks. We also
demonstrate that PRIMAL can be readily extended to SystemC
power estimation through a case study on NoC router.
Acknowledgements

This research was supported in part by NSF Award #1512937
and the Intel ISRA Program. We thank the anonymous reviewers
for providing suggestions and helpful feedback to our work.

References

[1] Keras Implementation of ShuffleNet V2. https://github.com/opconty/keras-

shufflenetV2, 2018.

] Keras: The Python Deep Learning library. https://keras.io/, 2018.

[3] S. Ahuja et al. Power Estimation Methodology for A High-Level Synthesis

Framework. International Symposium on Quality of Electronic Design, 2009.

[4] J. H. Anderson and F. N. Najm. Power Estimation Techniques for FPGAs. Trans-
actions on VLSI Systems, 2004.

[5] K.Asanovi¢ et al. The Rocket Chip Generator. Technical Report UCB/EECS-2016-
17, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, 4 2016.

[6] A.Bogliolo et al. Regression-Based RTL Power Modeling. Transactions on Design
Automation of Electronic Systems, 2000.

[7] D. Chen et al. High-Level Power Estimation and Low-Power Design Space
Exploration for FPGAs. Asia and South Pacific Design Automation Conference,
2007.

[8] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. Proc.
International Conference on Knowledge Discovery and Data Mining, 2016.

[9] J. Deng et al. Imagenet: A Large-Scale Hierarchical Image Database. Conference
on Computer Vision and Pattern Recognition, 2009.

[10] A. Grover and J. Leskovec. node2vec: Scalable Feature Learning for Networks.
International Conference on Knowledge Discovery and Data Mining, 2016.

[11] A.Hagberg et al. Exploring Network Structure, Dynamics, and Function using

NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM

(United States), 2008.

I Jolliffe. Principal Component Analysis. In International Encyclopedia of Statis-

tical Science. Springer, 2011.

[13] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. Journal on Scientific Computing, 1998.

[14] D. Lee et al. Dynamic Power and Performance Back-Annotation for Fast and
Accurate Functional Hardware Simulation. Design, Automation & Test in Europe,
2015.

[15] N. Ma et al. Shufflenet v2: Practical Guidelines for Efficient CNN Architecture
Design. arXiv preprint arXiv:1807.11164, 2018.

[16] L.v.d. Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 2008.

[17] L. Mason et al. Boosting Algorithms as Gradient Descent. Proc. Advances in
Neural Information Processing Systems, 2000.

[18] OpenCores.org. Fixed Point Math Library for Verilog Manual.
https://opencores.org/project/verilog_fixed_point_math_library/manual, 2018.

[19] F.Pedregosa et al. Scikit-Learn: Machine Learning in Python. Journal of Machine
Learning Research, 2011.

[20] S. o. Ravi. Efficient RTL Power Estimation for Large Designs. International
Conference on VLSI Design, 2003.

[21] Y.S. Shao et al. Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator
Enabling Large Design Space Exploration of Customized Architectures. ACM
SIGARCH Computer Architecture News, 2014.

[22] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014.

[23] D.Sunwoo et al. PrEsto: An FPGA-Accelerated Power Estimation Methodology
for Complex Systems. International Conference on Field Programmable Logic and
Applications, 2010.

[24] J. Yang et al. Early Stage Real-Time SoC Power Estimation using RTL Instrumen-
tation. Asia and South Pacific Design Automation Conference, 2015.

=
£,

