Designing Secure Cryptographic Accelerators with
Information Flow Enforcement: A Case Study on AES

Zhenghong Jiang, Hanchen Jin, G. Edward Suh, Zhiru Zhang

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{jz763,hj424,gs272,zhiruz}@cornell.edu

ABSTRACT

Designing a secure cryptographic accelerator is challenging as vul-
nerabilities may arise from design decisions and implementation
flaws. To provide high security assurance, we propose to design
and build cryptographic accelerators with hardware-level informa-
tion flow control so that the security of an implementation can
be formally verified. This paper uses an AES accelerator as a case
study to demonstrate how to express security requirements of a
cryptographic accelerator as information flow policies for security
enforcement. Our AES prototype on an FPGA shows that the pro-
posed protection has a marginal impact on area and performance.

CCS CONCEPTS

« Security and privacy — Hardware security implementa-
tion; Information flow control;

ACM Reference Format:

Zhenghong Jiang, Hanchen Jin, G. Edward Suh, Zhiru Zhang. 2019. Design-
ing Secure Cryptographic Accelerators with, Information Flow Enforcement:
A Case Study on AES. In The 56th Annual Design Automation Conference
2019 (DAC ’19), June 2—6, 2019, Las Vegas, NV, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3316781.3317798

1 INTRODUCTION

In modern system-on-chips (SoCs), cryptography plays an integral
role in protecting the confidentiality and integrity of information.
For example, SoCs may need AES for encrypted data storage and
use RSA/ECC for key exchange in a protected communication.
The extensive use of cryptography has propelled the development
of hardened cryptographic (crypto) accelerators for better perfor-
mance and energy-efficiency. However, the dissimilarities between
accelerators and the increasing design complexity bring challenges
to the security of cryptographic hardware accelerators.

Security vulnerabilities can be introduced into crypto accelera-
tors from various aspects, including design decisions [12], imple-
mentation flaws [6], debug peripherals [10], and even hardware
Trojans [16]. Though numerous efforts have been made to protect
crypto hardware, most of them only focus on specific vulnerabil-
ities [8, 16]. In order to provide high assurance for crypto accel-
erators, we need a methodology that is capable of systematically
checking a broad range of security requirements at design time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317798

In most modern SoCs, crypto accelerators are often shared among
multiple applications/users. For example, multiple users in the cloud
share the same AES accelerator to process encryption requests in
the secure sockets layer (SSL) protocol. However, efficient and se-
cure sharing of an accelerator is not an easy task. The traditional
method of sharing an accelerator at the coarse granularity only
allows one program (user) to use the accelerator at a time. For such
coarse-grained sharing, security protection can largely focus on
interfaces [14]. On the other hand, the coarse-grained sharing limits
performance, especially for deeply-pipelined accelerators, as the en-
tire pipeline must be drained and refilled when switching users. To
improve performance, accelerators need to allow more fine-grained
sharing so that data from different users can be processed inside the
accelerator simultaneously. Unfortunately, the fine-grained sharing
increases the difficulty of data isolation and leads to higher security
risks.

In this paper, we propose to use hardware-level information flow
control (IFC) in designing secure crypto accelerators while sup-
porting fine-grained sharing. Hardware-level IFC systematically
examines information flows in hardware modules and can provide
strong security assurance to hardware implementations at design
time using either a security-typed HDL [13, 23] or information-
flow tracking logic [1, 21]. In the paper, we demonstrate that a
broad range of security requirements of a crypto accelerator can
be expressed as information flow policies and can be systemati-
cally verified using an IFC tool with both low design effort and
low implementation overhead. As a case study, we develop a se-
cure AES accelerator that leverages information flow control to
verify its security requirements. The accelerator is implemented in
a security-typed HDL at RTL, and the implementation is statically
verified to be free of disallowed information flows, including timing
channels. While its security properties are verified at design time,
the accelerator also uses security tags and tracking logic to support
flexible information flow policies at runtime.

The main contributions of this work are twofold:

(1) We show that strong security protection for crypto accelera-
tors can be provided with high assurance using hardware-level
information flow control. The main security requirements of a
crypto accelerator can be expressed as information flow policies
and verified at design time with low overhead.

(2) Using an AES accelerator prototype, we show how to achieve
both security and efficiency together in a crypto accelerator
using a careful combination of design-time and runtime policies.
The runtime policies provide flexibility for the practical usability
while the design-time policies ensure a formal guarantee of
security on the accelerator implementation.

The rest of the paper is structured as follows: Section 2 discusses
some known attacks on AES hardware, describes the threat model,
and introduces the concept of HDL-level information flow control
and nonmalleable downgrading. Section 3 describes the design

Plaintext Key
(128 bits) (128/192/256 bits
Key Expansion
Roundkey[0] i
Roundkeyl[i]
| SubBytes | | SubBytes |
v ¥
[shiftRows | [shiftRows |

MixColumns
Roundkeyl[i]

Roundkey[N]

Ciphertext
(128 bits)

Figure 1: Typical AES encryption flow — Different key length
requires different numbers of computing iterations: N = 10 for
128-bit key, N = 12 for 196-bit key, and N = 14 for 256-bit key.

decisions we made to the proposed AES accelerator, and illustrates
how the main security properties of the accelerator can be expressed
as hardware-level information flow policies. Section 4 presents the
evaluation results from our AES accelerator prototype. Section 5
discusses related work, followed by conclusions in Section 6.

2 PRELIMINARIES

In this section, we first briefly summarize some known attacks on
the AES hardware. Then, we describe the threat model considered
in this paper. In the end, we introduce the concept of HDL-level
information flow control and nonmalleable downgrading that we
used to verify the security of the accelerator implementations.

2.1 Attacks on AES Hardware

AES (Advanced Encryption Standard) is a symmetric block cipher
standard broadly used for encryption/decryption of sensitive data.
AES encrypts a 128-bit plaintext block into a 128-bit ciphertext block
by using a 128/192/256-bit cryptographic key, shown in Figure 1.
A large message can be divided into multiple 128-bit blocks and
fed into the AES engine in sequence. The extensive use of AES has
propelled the development of custom hardware accelerators [17, 22]
for better performance but also makes it a target for malicious
attacks. Considering the prevalence of AES accelerators in SoCs,
we choose it as a representative case study to explain our proposed
protection method without losing generality.

Rather than discovering weaknesses in the AES algorithm, it is
often more profitable to exploit vulnerabilities in its hardware im-
plementations [18]. For example, prior work has demonstrated that
disclosure of internal signals, via implementation flaws or rogue
debug interfaces, can significantly reduce the effort in recovering
secret keys [6, 10]. Moreover, attackers can leverage the side effects
of a hardware implementation to infer secret keys. For example, one
previous attack [12] uses key-dependent execution time of an AES
implementation to infer its secret key. AES accelerators are often
heavily optimized for performance, and the complex optimizations
make designing a secure AES engine a challenging task without a
systematic methodology [2].

2.2 Threat Model

In a typical heterogeneous SoC, multiple user applications can run
on a processor concurrently, which also share crypto accelerators,
DMA engines, and other peripherals. As shown in Figure 2, each
user application has a security label to identify its security privilege
and holds a secret key for encryption/decryption of its private data.

« Security Label

Processor

[tag] L1 Cache

L2 Cache

Figure 2: Modern SoCs running under multiple security lev-
els — Multiple user applications simultaneously share the crypto
accelerators and each user holds a secret key for its data encryp-
tion/decryption.

1 class CacheTags extends Module {

2 val io = IO(new Bundle {

3 val we = Input(Bool(), Label (public, trusted))
4 val way = Input(UInt(1.wW), Label (public, trusted))
5 val tag_i = Input(UInt(19.W), Label(public, DL(way)))
6 val index = Input(UInt(8.W), Label (public, trusted))
7 val tag_o = Output(UInt(19.W), Label(public, DL(way)))
8 1

9 val tag_o Reg(Vec (256, UInt(19.W)), Label(public, trusted))
10 val tag_1 Reg(Vec (256, UInt(19.W)), Label(public, untrusted))
11 when (io.we) {

12 when (io.way === 0.U) { tag_0(way) := io.tag_i; }
13 .otherwise { tag_1(way) := io.tag_i; }
14 } .otherwise {

15 when (io.way === 0.U) { io.tag_o := tag_0@(way); }
16 .otherwise { io.tag_o := tag_1(way); 1}
17}

18 }

Figure 3: Cache tags in ChiselFlow description — DL is a de-
pendent label that DL(0) indicates trusted and DL(1) indicates un-
trusted. tag_i and tag_o port switch their integrity levels depend-
ing on which way is selected.

In this paper, we consider an accelerator that is shared at a fine gran-
ularity where it can encrypt data from different users with different
keys concurrently. The fine-grained sharing improves efficiency
but poses a challenge for security. We assume that an adversary
controls one or more applications on the SoC and can attack a
crypto accelerator by misusing the interfaces for the applications.
For example, the adversary may try to infer a secret that belongs
to another security level or maliciously affect the encryption/de-
cryption of another application by observing and manipulating
data at or below his/her security level. The adversary can exploit
implementation flaws or backdoors in an accelerator. The adversary
may also use timing channels, which can be exploited in software.
However, we assume that the adversary has no physical access to
the SoC; therefore, physical attacks, such as fault inject and power
side-channel attacks are not considered.

2.3 HDL-Level Information Flow Control

Information flow control is a security mechanism that provides
security assurance by tracking information flows inside a target
system. It associates a label to each data, monitors the data flowing
from sources to sinks, and ensures that secret data cannot leak to
public for confidentiality or that untrusted inputs cannot contami-
nate trusted data for integrity. HDL-level information flow control
applies IFC to HDL (Hardware Description Language) in order to
provide security assurance for hardware [13]. For example, given
two security labels € and ¢’, if label ¢ is less restrictive than label
', it is written as € £ ¢’. In general, IFC enforces that a signal with

label ¢ cannot be affected by another signal with label ¢’. In other
words, a more restrictive signal cannot influence a less restrictive
signal. ChiselFlow is a newly developed security-typed HDL on
the top of Chisel. Unlike prior security-typed HDLs, ChiselFlow
manages confidentiality and integrity explicitly [7]. It adopts the
2-tuple label format £ = (c, i), where c and i represents confidential-
ity and integrity. Given two labels € and ¢/, £ C¢ ¢’ means ¢’ has
higher confidentiality, and £ £; ¢/ means ¢ has higher integrity.

Besides static security labels, ChiselFlow also supports dynamic
(dependent) labels to enable fine-grained sharing of hardware re-
sources. A signal with a static label belongs to a fixed security level
for its entire lifetime. On the other hand, the security level of a
signal with a dependent label is determined by the value of another
signal. Figure 3 shows a ChiselFlow example of a shared cache tag
module. In the module, the cache is statically partitioned: tag_o
holds trusted data and carries a static label of (public, trusted),
whereas tag_1 holds untrusted data and carries a static label of
(public, untrusted). The tag data input and output have a de-
pendent label of (public, DL(way)), which means their integrity
levels depend on the value of signal way. When way has a value
of 0, the tag input is treated as trusted; it receives data from the
trusted level and writes data to the trusted tag_0. When way has
a value of 1, the tag input is treated as untrusted; it receives data
from the untrusted level and writes data to the untrusted tag_1.
Though the cache tag memory is partitioned, the data input and
output ports are shared among two security levels.

2.4 Nonmalleable Downgrading

Information flow control generally enforces noninterference to pro-
hibit every flow of information that violates the security policy.
Unfortunately, noninterference is known to be too restrictive for
most practical systems. For example, in cryptography, ciphertext
contains information from the crypto key, but is considered safe
and should be allowed to be released to public channels. Therefore,
it is necessary to introduce downgrading to explicitly allow excep-
tions to an information flow policy. Downgrading in confidentiality
is called declassification and downgrading in integrity is called en-
dorsement. Downgrading increases usability but also weakens the
security of IFC. To limit the risk of downgrading, nonmalleable IFC
constrains the use of downgrading in systems [3].

Equation (1) shows constraints for nonmalleable declassification
and endorsement. € and ¢’ are the labels of data before and after
downgrading (), p is the label of the principal (user) perfomring
downgrading. Here, V means projecting confidentiality to integrity
or projecting integrity to confidentiality. Subscript C indicates oper-
ation on the confidentiality dimension of the label while subscript
I indicates operation on the integrity dimension. For example, con-
sider a two-level lattice with two confidentiality levels, public (P)
and secret (S), and two integrity levels, untrusted (U) and trusted
(T). Then, V(P) = U and V(U) = P; (P,U) LU¢c (S,U) = (S,U) and
(P,U) Uy (P,T) = (P,U). The nonmalleable IFC constrains that
data can only be declassified by a sufficiently trusted principal and
data can only be endorsed when the principal can read it. As an ex-
ample, label (S, U) cannot be declassified to (P, U) by an untrusted
user (I(p) = U) because S Z¢ P L V(U).

C) B C(t') when C() Ec C(£) Lic V() "
1(6) & 1(6") when 1(6) ©1 1(¢") Uy V(C(p))

(2]
& Arbiter
§ —
5 Master C%nﬁgu{ation
= Key) egis! ersm
O
;] [T
egister.
& tag Pipelined AES
53 E/D Module
< Input Data
Buffer
tag tag
Output Data i
uffer Debug Peripheral
tag tag

Figure 4: Overview of the proposed AES accelerator — Master
key and configuration registers are associated with fixed security
labels so only a certain users can access the contents; while datapath,
data buffers and registers are associated with hardware tags to
enable fine-grained resource sharing at runtime.

3 INFORMATION FLOW POLICIES IN
CRYPTO ACCELERATORS

While there exist many types of security vulnerabilities, most ex-
ploitable vulnerabilities in practice result in insecure information
flows that violate either confidentiality or integrity. In this section,
we show how to prevent common vulnerabilities with information
flow policies in a crypto accelerator.

3.1 Design Decisions and Vulnerabilities

To validate the effectiveness of the proposed approach in designing
high-performance crypto accelerators, we choose a high-throughput
pipelined architecture that processes one message block per clock
cycle. Moreover, the accelerator is shared among multiple security
levels in a fine granularity for better efficiency. Figure 4 shows the
overview of the proposed AES accelerator.

Prior work has proposed many optimizations that improve the
performance or the power-efficiency of an AES accelerator [22, 24].
However, such high-performance accelerator may have subtle se-
curity flaws unless designed carefully for security. First, pipelined
architecture can introduce timing channels. For example, consider
the case when two users, Alice and Eve, share the pipelined accel-
erator. The latency of Eve’s encryption/decryption depend on the
state of other pipeline stages, which may be processing Alice’s data;
a memory access for Alice may stall the pipeline and delay Eve’s
computation. The dependency can create a covert timing channel
that leaks data from Alice to Eve [20]. Second, scratchpad memory
holding user keys on-chip can introduce another security vulnera-
bility. Figure 5 demonstrates a scratchpad with 64-bit cells, whose
size is designed to be compatible with the host interface. Eve could
leverage a buffer overflow error to override Alice’s key stored in the
adjacent cells if the accelerator does not properly check memory
bounds. Finally, a debug peripheral is another common component
in accelerators that can be misused. Prior work has demonstrated an
attack that exploits an debug peripheral to compromise the secret
key in an AES implementation [10].

3.2 Security Requirements and Information
Flow Policies

Protecting the implementation from exploitable vulnerabilities
(e.g., [5, 12]) is a primary objective of developing a secure AES
accelerator. Table 1 summarizes the major security requirements
and the corresponding information flow policies applied to enforce
the requirements. With formulated information flow policies, IFC

Table 1: Main security requirements for a crypto accelerator and the equivalent information flow policies — For policy types, C
and I represents confidentiality and integrity respectively. For restrictions, key - user indicates any information flows from the key to the
user’s resource is forbidden if the user doesn’t have enough confidentiality. In security lattice, L and T represent fully public and fully
secret for confidentiality, while L and T represent completely untrusted and completely trusted for integrity.

Security | Security Policy | Source Sink Restriction
Assets Requirements Type (object and label) (object and label)
1. A classified key cannot be read . User registers/ key - user
K out by a less confidential user. ¢ Key registers t(key) outputs tuser) if {(key) Zc L(user)
€ys 2. A protected key cannot be modified I User inputs C(user) | Key registers tlkey) user —» key
by a less trusted user. pu yres Yy if L(user) L1 t(key)
3. A classified key cannot be used by . Ciphertext ciphertext —» output
a less trusted user. € Key registers t(key) output L if £(key) Zc V(L(user))
4. A low confidential user cannot read User registers/ plaintext - user
Plaintext | plaintext message from a higher C Plaintext buffer | ¢(pt) f(user) |
confidential user. outputs if £(pt) L €(user)
5. A less trusted user cannot modify . Data buffers/ user » data
data beyond its authority. I User inputs tluser) register {(data) if £(user) Zy {(data)
xCr — user
6. Configuration registers can be Confieuration iijefifc(l:ser)
Configs | read by any users, but only be modified I User inputs l(user) e {(cr) '
. registers as f(user) ¢y T
by the supervisor.
*Sup — cr
as O(sup) Ty T
Key A |[64-bit [ea| [64-bit [eca (Cu) (G U, b
y @ | ()| Plaintext —— AES —— Ciphertext
Key B || 64-bit [es)] | 64-bit e(B)| E/D (L&)
X n [}
Key C |[6a-bit [eco)] [64-bit [ecc)) Key 2:)3 Module %)2 Valid
Cier e Li,
Key D | 64-bit |{’(D)| | 64-bit |£’(D)| -
Figure 6: Information leakage leads to a label error in IFC —

Figure 5: A key scratchpad memory with 512-bit capacity —
Each cell has an associated tag to identify its security level. Any
buffer overwrite or overread error will cause an information flow
violation and will be prevented.

tools, such as ChiselFlow [7] and RTLIFT [1], can be leveraged to
enforce these policies in the target implementation.

3.2.1 Preventing Information Disclosure within an AES Engine. The
Encryption/Decryption (E/D) module is the core component in an
AES accelerator. The E/D module protects plaintext data with the
cryptographic key (encryption) or recovers ciphertext data into a
clear message (decryption). Any disclosure of the key or the plain-
text, caused by implementation errors or intentional backdoors,
will undermine the security of the accelerator and even the entire
system. At design time, a proper information flow policy should
be formulated to rule out these information leakages. For a user
program with label (cy, iy,), its plaintext data should have a label
of (cy, iy) and its secret key also carries a label of (¢, iy,). Here,
¢k %Zc cy and ¢ Ec V(iy). By assigning a higher confidentiality
label to the key, IFC can detect potential vulnerabilities that may
leak the key. Figure 6 shows an example where the implementation
contains a timing channel vulnerability [12]. In the implementation,
the designer annotates the valid signal to be public (L, i) to ensure
that no secret leaks through that signal. On the other hand, the IFC
tool infers that valid should have the label of (cg, i,,) when its tim-
ing depends on the value of the secret key. As (cg, iy,) cannot flow
to (L, iy), this mismatch leads to an error that reflects the leakage

Blue labels are deduced from the implementation in IFC analysis,
while the black labels are specified by designers. A disallowed
mismatch means a potential implementation error.

Key Expansion
(Cw i)

tag tag tag

K1 K2 K10
Key RK(1 j_I_;K(2)|_I_' RK(10)]

A 2 v v Cipher
Plaintext s1 Res(1 2 Res2) S10 «% text

Fi

tag tag tag |° -

(Cu &) Round 1 Round 2 Round 10 |(Lbi)

Pipelined Encryption/Decryption Datapath

Figure 7: Each pipeline stage has a dedicated tag register to
indicate its security level — Data and tag propagate through the
pipeline stages, enabling fine-grained resource sharing at runtime.

from key to valid signal in the implementation. Other information
leaks can be discovered in a similar fashion.

Besides the valid signal, Figure 6 also shows another label error
at the ciphertext output. Because ciphertext contains information
from both plaintext and key, the label of ciphertext should be (¢ Lic
Cu, iy). On the other hand, the designer will consider the ciphertext
as a public output. Consequently, the IFC tool raises an error if the
ciphertext is released to a public channel. However, in practice, the
release of the ciphertext should not compromise the confidentiality

of the key and the plaintext. Therefore, we add the declassification
statement to explicitly allow the ciphertext to be released at the
output of the AES E/D module. As shown in Figure 7, in our AES
engine, the declassification statement is placed at the end of the
pipeline, only the output of the last encryption stage is declassified;
outputting an intermediate result is still prevented by the IFC tool.

In a simple secure AES implementation, the E/D module is treated
as a unit carrying one single security label, which implies that only
one user can use the AES module at a time. To enable fine-grained
sharing, we assign each pipeline stage with an independent security
label; each security label is a dependent type so that the security
level of each pipeline stage can change at the runtime. During the
execution, the data and its label propagate through the pipeline
together. In each clock cycle, a pipeline stage can change its security
level and receive data from another security level. However, if there
can be a mismatch between the data and the security tag in the
implementation, the IFC tool will report a violation at design time.

3.22 Preventing Inappropriate Use of Cryptographic Keys. Even if
an attacker cannot directly obtain the cryptographic key, an inap-
propriate use of the key can still break the security [19]. Therefore,
the proposed AES accelerator prevents a less trusted user from
using a high-confidential key for its encryption/decryption. Let us
use a master key as an example to illustrate how an inappropriate
use of the key is prevented in the proposed accelerator. The master
key carries the label of (T, T), as it is only accessible to the super-
visor. Assume that a regular user (with a label of (¢, iy,)) attempts
to use the master key in encryption, the encrypted message would
have a label of (cg, i,). Then, the AES engine tries to declassify the
encrypted message after the final round in order to output to the
public domain (L). For the encryption with an authorized key, the
declassification will be allowed as ¢ C¢ V(iy,). However, for the
encryption with the master key, ¢ == T so T Z¢ V(iy) and the
declassification will be rejected under the nonmalleable IFC con-
straints. Only the supervisor has high enough integrity to declassify
encryption with the master key.

3.2.3 Preventing Buffer Errors. A buffer error is another threat to
crypto implementations. For example, if the accelerator does not
check the length of a key when storing it into the scratchpad mem-
ory, a buffer overrun error may occur and overwrite other trusted
keys. In order to prevent such errors, our implementation asso-
ciates each memory block with a dedicated tag array as shown in
Figure 5. Each memory cell has a corresponding tag in the tag array
to indicate its security level at runtime. The accelerator checks the
tag before reading data from or writing data to a memory location.
If the tag checking reports a violation, the following write/read
operation will be blocked. For example, consider a case where Eve
sends a request to store her key into the scratchpad memory. The
arbiter accepts the request and configures the cell 1 and 2 with label
{(Eve). Then, Eve writes her key to cell 1 and 2. However, if she
attempts to overwrite cell 3 whose label is £(Alice), the tag check
will fail (€(Eve) Z {(Alice)) and the write will be blocked. The IFC
analysis ensures at design time that the necessary runtime checks
are implemented.

3.2.4 Access Control on Configuration Registers. As the accelerator
is shared among multiple security levels, changes to configuration
registers can affect multiple users. For security, only the supervisor
should be able to modify the configuration registers. To enforce

Roundkey(1)Roun|dkey(2) Roundlkey(10) Stall Stall_req
. —§Lﬂ'pa J_Lsra// _u_sza// .
Plaintext Ciphertext
— S —> S2 > ... —> S10 e

==

Figure 8: High confidential users can stall the pipeline when
the pipeline does not contain data with low confidentiality.

this security policy, we label the configuration registers with (L, T),
indicating that its values are public but should have the highest in-
tegrity. Any writes to the configuration registers from unprivileged
users will cause an integrity violation.

3.2.5 Preventing Timing Channels in the Datapath Pipeline. In ad-
dition to information flows through signal values, timing channels
can also be used to leak sensitive information. In the AES accelera-
tor, we found that the fine-grained sharing of the datapath could
introduce a timing channel, as mentioned in Section 3.1. To remove
the timing channel, we only allow one security level to stall the
pipeline when no pipeline stage has a lower confidentiality level. As
shown in Figure 8, the stall logic determines the lowest confidential-
ity level across all pipeline stages by performing a meet operation
(Uc), which returns the security label with the lower confidential-
ity. When there is a request to stall the pipeline (Stall_req), the
pipeline is stalled only when C(¢(Stall_req)) T C(£(Stall)). The
AES accelerator includes an extra buffer to hold outputs when the
pipeline cannot be stalled when the receiver is not ready to read
the outputs.

3.2.6 Discussion on downgrading. Information flow control en-
forces noninterference between security levels except for the vi-
olations explicitly allowed by downgrading operations. While in-
evitable for practical systems, the downgrading operations repre-
sent weakening of security and there is a question on what is the
security assurance that we can obtain when there exists down-
grading. For a traditional design without IFC analysis, potential
vulnerabilities that can lead to information leakage may exist any-
where in a design. On the other hand, with IFC, potential informa-
tion leakage can only occur through downgrading. Even though
downgrading may be inserted incorrectly and lead to a vulnerabil-
ity, it is much easier for human designers to carefully review the
downgrading operations instead of inspecting the entire design for
potential security vulnerabilities. Moreover, the nonmalleable IFC
further constrains downgrading assignments to ensure that Only
qualified principals can downgrade sensitive data, as illustrated in
Section 3.2.2.

4 EVALUATION

To evaluate our protection scheme, we first built an AES accel-
erator baseline without information flow control. The baseline
contains a deeply-pipelined datapath and a 512-bit key scratchpad.
The pipeline receives one data block each cycle and completes the
encryption of a data block in 30 cycles. The performance of the
baseline accelerator is comparable to the performance of an exist-
ing high-throughput implementation [22]. We then extended the
baseline with security tags and other information flow enforcement
mechanisms, and verified the deisgn with a static IFC to remove

Table 2: Area and performance of the FPGA prototypes —
LUTs: look-up tables, FFs: flip-flops, BRAMs: block RAMs.

Baseline Protected
LUTs 13,275 14,021 (+5.6%)
FFs 14,645 15,605 (+6.6%)
BRAMs 40 44 (+10.0%)
Frequency (MHz) 400 400 (+0.0%)

vulnerabilities. In the current implementation, we use 8-bit the
security tags (4 bits for confidentiality and 4 bits for integrity),
which is compatible with a state-of-the-art information flow en-
forced processor. To study the area and performance overhead, we
implemented the prototype with Vivado 2017.1, targeting a Xilinx
Virtex-7 FPGA device. The prototype implementation achieves a
throughput of 51.2Gbps @ 400 MHz clock frequency.

To implement the secure (protected) AES accelerator, we changed
around 70 lines of the baseline implementation in Chisel. The
changes include annotating signals with security labels, building
runtime checkers, and code transformations to remove vulnerabili-
ties raised by the IFC analysis. All previously-mentioned vulnera-
bilities in the baseline are flagged by ChiselFlow and are addressed
in the protected design. Table 2 shows the FPGA prototype results
for both baseline and protected implementations. Our protection
scheme incurs 5.6% and 6.6% overheads on the number of LUTs and
FFs. The major BRAM overhead comes from two sources; one is
the security tags stored with the on-chip data buffers, and the other
is the extra buffer holding confidential outputs when the pipeline
is stalled. Our protection does not have any impact on the critical
path and the clock frequency.

5 RELATED WORK

Hardware implementation of cryptographic algorithms offers signif-
icantly higher performance and power-efficiency than its software
equivalents. However, most of the hardware implementations only
focus on performance, die area, and power consumption [22, 24],
and do not address potential security concerns. Some efforts tried
to protect the cryptographic accelerators from malicious attacks,
but the resulting principles and techniques focus on specific vul-
nerabilities and do not offer systematic guarantees [4, 8].

In addition to the HDL-based approaches, hardware-level infor-
mation flow control can be performed via dedicated tracking logic,
e.g., gate-level information flow tracking (GLIFT) [21] and register-
transfer-level information flow tracking (RTLIFT) [1]. Given a hard-
ware design, GLIFT derives a dedicate information flow tracking
logic and performs security analysis on it. Designers can either run
static verification at design time or verify the security properties
dynamically at runtime. GLIFT is also used to detect Trojans in
hardware implementations [9]. The primary objective of this work
is to formulate security requirements of a crypto accelerator as
information flow policies. The formulated information flow policies
can then be enforced using either security-typed HDLs or GLIFT.

6 CONCLUSIONS AND FUTURE WORK

Security vulnerabilities imposed by design decisions and other
implementation flaws are threats to hardware cryptographic accel-
erators. In this paper, we propose to design and build cryptographic
accelerators with hardware-level information flow control, which is
capable of systematically checking a broad range of security require-
ments at design time. By expressing main security requirements

as information flow policies, we can formally verify the security
properties of the accelerator at design time with low overhead.

This work demonstrates that hardware-level information flow
control is an effective mechanism in protecting high-performance
crypto accelerators. Currently, the security requirements are man-
ually expressed as information flow policies and enforced in the
accelerator implementation. Automating the formulation procedure
and integrating it into high-level design tools, such as security-
related high-level synthesis [11, 15], will be promising research
directions.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their in-
sightful comments. This research was supported in part by NSF
award CNS1618275, Semiconductor Research Corporation under
Task 2686.001, and DARPA SSITH Award HR0011-18-C-0014.

REFERENCES

[1] A.Ardeshiricham, W. Hu, J. Marxen, and R. Kastner. Register Transfer Level Infor-
mation Flow Tracking for Provably Secure Hardware Design. Design, Automation,
and Test in Europe (DATE), 2017.

[2] L.Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat. Architectures of
Flexible Symmetric Key Crypto Engines-A Survey: From Hardware Coprocessor
to Multi-Crypto-Processor System on Chip. ACM Computing Surveys, 2013.

[3] E.Cecchetti, A. C. Myers, and O. Arden. Nonmalleable Information Flow Control.
ACM SIGPLAN Conf. on Computer and Communications Security (CCS), 2017.

[4] H. Chan, P. Schaumont, and I. Verbauwhede. Process Isolation for Reconfigurable

Hardware. International Journal of Information Security, 2013.

5] N. V. Database. CVE-2014-0160 (Heartbleed). 2014.

] W. Diehl. Attack on AES Implementation Exploiting Publicly-visible Partial

Result. Technical Report, George Mason University, 2017.

[7] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh. HyperFlow: A Processor
Architecture for Nonmalleable, Timing-Safe Information Flow Security. ACM
SIGPLAN Conf. on Computer and Communications Security (CCS), 2018.

[8] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting Private Keys against
Memory Disclosure Attacks Using Hardware Transactional Memory. IEEE Symp.
on Security and Privacy (S&P), 2015.

[9] W. Hu, B. Mao, J. Oberg, and R. Kastner. Detecting Hardware Trojans with
Gate-Level Information-Flow Tracking. Computer, 2016.

[10] Y. Huang and P. Mishra. Trace Buffer Attack on The AES Cipher. Journal of
Hardware and Systems Security, 2017.

[11] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang. High-Level Synthesis with Timing-
Sensitive Information flow Enforcement. Int’l Conf. on Computer-Aided Design
(ICCAD), 2018.

12] F. Koeune and J.-J. Quisquater. A Timing Attack Against Rijndael. 1999.

] X.Li, M. Tiwari, J. Oberg, V. Kashyap, F. Chong, T. Sherwood, and B. Hardekopf.
Caisson: A Hardware Description Language for Secure Information Flow. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI),
2011.

[14] L.E. Olson, J. Power, M. D. Hill, and D. A. Wood. Border Control: Sandboxing
Accelerators. Int’l Symp. on Microarchitecture (MICRO), 2015.

[15] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. TaintHLS: High-Level
Synthesis For Dynamic Information Flow Tracking. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[16] T. Reece and W. Robinson. Analysis of Data-Leak Hardware Trojans in AES
Cryptographic Circuits. Int’l Conf. on Technologies for Homeland Security, 2013.

[17] J. Rott. Intel Advanced Encryption Standard Instructions (AES-NI). Technical
Report, Intel, 2010.

8] B. Schneier. Cryptographic Design Vulnerabilities. Computer, 1998.

[19] R. Stubbs. Classification of Cryptographic Keys. 2018.

] J. Szefer. Survey of Microarchitectural Side and Covert Channels, Attacks, and

Defenses. IACR Cryptology ePrint Archive, 2016.

[21] Tiwari, Mohit and Wassel, Hassan MG. and Mazloom, Bita and Mysore, Shashid-
har and Chong, Frederic T. and Sherwood, Timothy. Complete Information Flow
Tracking from the Gates Up. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

[22] Y. Wang and Y. Ha. High Throughput and Resource Efficient AES Encryption/De-
cryption for SANSs. Int’l Symp. on Circuits and Systems (ISCAS), 2016.

[23] D.Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware Design Language for
Timing-Sensitive Information-Flow Security. Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2015.

[24] X.Zhang and K. K. Parhi. High-Speed VLSI Architectures for the AES Algorithm.
IEEE Trans. on Very Large-Scale Integration Systems (TVLSI), 2004.

