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ABSTRACT

Loop pipelining is an important optimization in high-level synthesis
to enable high-throughput pipelined execution of loop iterations.
However, current pipeline scheduling approach relies on fundamen-
tally inexact heuristics based on ad hoc priority functions and lacks
guarantee on achieving the best throughput. To address this shortcom-
ing, we propose a scheduling algorithm based on system of integer
difference constraints (SDC) and Boolean satisfiability (SAT) to ex-
actly handle various pipeline scheduling constraints. Our techniques
take advantage of conflict-driven learning and problem-specific spe-
cialization to optimally yet efficiently derive pipelining solutions. Ex-
periments demonstrate that our approach achieves notable speedup
in comparison to integer linear programming based techniques.

1 INTRODUCTION

As loops abound in high-level software programs, loop pipelining
is an important optimization in high-level synthesis (HLS) because
it allows different iterations of a loop to be overlapped during exe-
cution in a pipelined parallel fashion. Typically enabled by modulo
scheduling [5], loop pipelining creates a static schedule for a single
loop iteration so that the same schedule can be repeated at a constant
initiation interval (II). Because II dictates the achieved throughput of
the pipeline, minimizing the II is considered the foremost objective
of pipeline scheduling.

While II determines the amount of parallelism, it is inherently
limited by inter-iteration dependence (i.e., recurrence) between op-
erations in different loop iterations. Figure 1(a) shows the data flow
graph (DFG) of a loop that we will referred to throughout this paper.
A static schedule for a single iteration is shown in bold in Figure 1(b).
Due to the inter-iteration load-after-store dependence (indicated by
the dashed arrow in Figure 1(a)) between v5 and vy, a subsequent
iteration must start at least two cycles after the current iteration as
shown in Figure 1(b). Any shorter II causes a dependence violation.

In addition to recurrence, II is also constrained by the available
number of resources. Because the schedule for different loop itera-
tions overlap in time, sufficient resources must be allocated to en-
able parallel execution of operations across iterations. As shown in
Figure 1(b), the pipeline execution with II=2 requires at least two
memory read ports. If the same schedule targets II=1, at least three
read ports are required due to the overlap among load operations.

Because modulo scheduling is not trivial in the presence of both
recurrence and resource constraints, there exist a set of heuristics to
efficiently solve the problem. For example, iterative modulo schedul-
ing [12] applies a list scheduling like heuristic with backtracking and
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Figure 1: An example modulo scheduling problem — (a) DFG
of the loop to be scheduled. (b) Static schedule for a single
iteration is shown in bold. Pipeline executes by repeating the
same static schedule with an IT of 2 cycles.

has been adapted for loop pipelining in HLS [3]. However, state-of-
the-art HLS tools typically employ the more versatile heuristic based
on system of integer difference constraints (SDC) to naturally handle
operation chaining and various hardware-specific constraints [4, 15].
SDC-based modulo scheduling is rooted in a linear programming
formulation and can globally optimize over constraints that can be
represented in the integer difference form, including both intra- and
inter-iteration dependences. Notably however, resource constraints
cannot be exactly modeled within an SDC formulation. As a result,
SDC-based modulo scheduling resorts to incremental scheduling
of resource-constrained operations on top of SDC to heuristically
legalize the schedule under resource constraints. Because resource
constraints are not handled exactly, SDC-based modulo scheduling
lacks guarantee on achieving the optimal II.

To address this problem, we propose a modulo scheduling for-
mulation that couples SDC with Boolean satisfiability (SAT) to ex-
actly handle both timing and resource constraints for HLS pipelining.
Similar to unpipelined scheduling with joint SDC and SAT [8], our
proposed approach exploits the efficiency of SDC while leveraging
the scalability of SAT to quickly prune away infeasible schedule space
and derive an optimal modulo schedule. However, modulo scheduling
requires a modified SDC and SAT formulation (Section 3) and calls
for a different problem-specific specialization technique (Section 4).
Our specific contributions are as follows:

(1) We propose a joint SDC and SAT formulation to exactly encode
both resource and timing constraints for HLS pipelining.

(2) We develop an optimal algorithm based on conflict-driven learn-
ing to efficiently solve the modulo scheduling problem.

(3) Weleverage problem-specific specialization to reduce the problem
size and further achieve improved scalability.

2 PRELIMINARIES

A typical HLS tool employs a software compiler (e.g., LLVM, GCC)
to compile the input software program into a control data flow graph
(CDFG). Within this CDFG, subgraphs corresponding to loops to
be pipelined are extracted for modulo scheduling, while the rest are
synthesized with unpipelined scheduling techniques [6]. In this paper,
we focus on the following HLS modulo scheduling problem:



Given: (1) A loop represented by a CDFG with intra- and inter-
iteration dependences. (2) A set of scheduling constraints which may
include resource, latency, and relative timing constraints.

Objective: Generate a modulo schedule that minimizes the I while
satisfying all given constraints.

Each operation in the CDFG is associated with a value that indi-
cates the combinational delay of the operation. These delays are used
to chain operations into the same cycle based on the target clock pe-
riod of the problem. In Figure 1(a), we label the combinational delays
for the four distinct types of operations in the graph. These delays are
used during scheduling to satisfy the clock period constraint denoted
in Figure 1(b). Unlike intra-iteration dependence edge, each inter-
iteration dependence edge is associated with a distance indicating the
number of loop iterations between the occurrences of the dependent
operations. In Figure 1(a), the inter-iteration dependence edge in dash
has a distance of 1 indicating that vy of the next iteration depends
on vs of the current iteration.

In addition, the problem consists of resource constraints in the
form of a resource model containing a set of different resource types
(e.g., memory port, floating point multiplier). There exist a finite
number of resources of each type in the resource model. If an opera-
tion requires any resource from the resource model to execute, we
call this operation a resource-constrained operation. For example, the
schedule in Figure 1(b) is derived based on a resource constraint of
two memory read ports (as indicated), which allows at most two load
operations in each cycle.

A modulo scheduling solution assigns each operation i to a time
step t; which indicates the cycle at which the operation executes. Due
to the modulo nature of the scheduling from overlapping different
iterations, each time step t; corresponds to a (modulo) time slot s;,
where s; = t;%II. For the bolded schedule in Figure 1(b), store oper-
ation vs is scheduled in the third time step (t5 = 2) with no other
operations. However, it is assigned to the first time slot (s5 = 0) along
with loads from v; and v, and addition from v3. While there can be
as many time steps as needed, there can be at most IT time slots. A
modulo reservation table (MRT) indicates the number of each type of
resource used by all operations scheduled in each time slot. A feasible
modulo scheduling solution requires an MRT in which no resource
is oversubscribed in any time slot.

Because modulo scheduling is generally NP-hard under both re-
source and recurrence constraints, many heuristics such as itera-
tive modulo scheduling [12] have been proposed to quickly derive
a solution with a small II. There also exist enumeration-based ap-
proaches [1] to exactly solve the problem. Given the state of the field,
we focus on describing the best known heuristic and exact modulo
scheduling techniques in Sections 2.1 and 2.2.

2.1 SDC-based Formulation

In general, SDC-based scheduling [7] declares a variable ¢; to de-
note the clock cycle (time step) at which operation i in the CDFG is
scheduled. Timing constraints, such as dependence and cycle time
constraints, can then be represented exactly as the differences of
these variables. To handle data dependence for modulo scheduling in
particular, SDC creates the following difference constraint

tj — tj < Il - Distjj — Ly (1)

where L;; is the minimum latency between operation i and j, and
Dist;j is the distance of the dependence. To schedule the DFG in Fig-
ure 1(a), for example, we impose the constraint ty — t4 < 0 to honor
the intra-iteration dependence between vy and v4. This ensures that
vy is scheduled no earlier than vy. Note that an intra-iteration de-
pendence corresponds to a dependence distance Dist;; = 0 in the
constraint in Eq. (1). Similar constraints are constructed for other

intra-iteration data dependence edges. For the inter-iteration depen-
dence in Figure 1(a), we impose the constraint t5 —typ < II—1, where IT
is the II currently being targeted. Intuitively, this constraint imposes
a deadline for the schedule time of v5 relative to the schedule time
of vy beyond which vs from the current iteration will not execute
in-time to produce results needed by v of the following iteration.

To honor the target clock period Tz, SDC identifies the max-
imum critical combinational delay D(ccp(v;, vj)) between pairs of
operations v; and v; and impose the difference constraint in Eq. (2)
to ensure pairs of operations whose critical delay exceeds the target
clock period are scheduled in different cycles.

ti—tj<-1 \'4 (’Ul',’Uj) 3 D(ccp(vi,vj)) > Terk (2)

For our example in Figure 1(a), we impose t3 — t5 < —1 to separate
v2 and v5 into different cycles because the critical combinational
path from v2 to v5 exceeds the target clock period of 5ns. Similar
constraints are imposed between vy and vs as well as v and vs.

While timing constraints can be handled naturally in SDC, resource
constraints are difficult to represent even heuristically because the
non-linearity of the MRT requires that operations using the same
resource must not only be scheduled in different time steps but also in
different time slots. As a result, simple partial ordering constraints in
the form of t; — t; < —1 used to produce resource-abiding schedules
in unpipelined SDC scheduling [7] fail to honor the complete set of
resource constraints in the case of modulo scheduling. To handle
resource constraints, SDC-based modulo scheduling [4, 15] rely on
stepwise legalization of the non-resource-constrained SDC schedule
against the MRT to heuristically derive a solution, resulting in no
guarantee on optimality.

2.2 ILP-based Formulation

In place of heuristics, integer linear programming (ILP) can be ap-
plied to exactly model the modulo scheduling problem. Eichenberger
and Davidson [9] leverages binary variable a; , to indicate whether
operation i is scheduled in time slot r in order to encode the modulo
schedule. Timing and resource can then be constrained with this
variable. Oppermann et al. [11] improves upon the resource handling
capability of Eichenberger and Davidson by using binary variables to
represent resource and time slot overlap instead of the actual modulo
schedule. In particular, they propose to use binary overlap variable
€ij to denote whether operation i’s resource instance index is strictly
less than j’s index, and y1;; to denote whether operation i is executed
in a time slot strictly earlier than the time slot of j. These binary vari-
ables are in turn constrained with resource index variable r;, which
denotes the index of resource instance used by operation i, and time
slot variable s;, which denotes the modulo time slot of operation i, as
in Eichenberger and Davidson. Given these constraints on the consis-
tency of variables €;j, y1;, i, and s;, resource constraints are satisfied
by ensuring that every pair of operations (i, j) use difference resource
instances, or are scheduled at different time slots as followed:

€ij +€ji + pij + i = 1 ®3)

Even though the ILP formulations handle all constraints exactly

and can return a schedule that satisfies a specific II given enough

time, ILP is in general NP-hard and difficult to scale. ILP also requires

significantly more variables than SDC for encoding the same problem
and is too general to exploit problem-specific properties.

3 JOINT SDC AND SAT FORMULATION

Given the tradeoff between scalability and quality in the comparison
between SDC and ILP in Section 2, we propose a modulo scheduling al-
gorithm that integrates SDC and SAT to exactly handle various types
of constraints and optimally solve the modulo scheduling problem.
Borrowing the idea of unpipelined scheduling with joint SDC and
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Figure 2: Overall structure of our modulo scheduler.

SAT [8], our proposed formulation leverages SDC to naturally handle
timing constraints and SAT to exactly encode resource constraints.
As shown in the high-level diagram in Figure 2, our modulo sched-
uler is composed of a conflict-based SAT solver coupled with a graph-
based SDC solver in a conflict-driven learning loop. On the left, we
have a SAT solver that takes advantage of conflict-based search (de-
tailed in Section 3.1) to propose, what we referred to as, modulo or-
derings that satisfy resource constraints imposed by the MRT. These
modulo orderings are converted into difference constraints in SDC
and inserted into the SDC problem. On the right, we have an SDC
solver that takes advantage of graph-based traversal (detailed in
Section 3.2) to check the feasibility of the modulo orderings. Any
infeasibility is encoded as a conflict clause in SAT and added to the
SAT problem. Given the practical scalability of SAT and the efficiency
of SDC, our solver iterates between SAT and SDC (described in Sec-
tion 3.3) until a feasible solution is found or proven to be non-existent.

3.1 Resource Constraints in SAT

To handle resource constraints, we declare binding variable B;j to
denote whether operation i is bound to resource instance k. B;j is
true if operation i is bound to resource instance k. By constraining the
binding variables with the SAT clause } i Bjx = 1 Vi, we can ensure
that each resource-constrained operation is assigned to exactly one
resource instance and that no resource is oversubscribed. With the
binding variables, it follows that sharing variable R;; can be derived
to denote whether operation i is sharing the same resource instance
with operation j as followed:

Rij= \/ (Bix A Bjr) 2)
keT,

where T, denotes resource instances of type p. R;; is true if both
operations i and j are bound to the same resource instance.
Pipeline scheduling prohibits two operations i and j that share the
same instance of resource from being scheduled in the same modulo
time slot. In other words, t; — t; # kII V k € Z, which translate
to a disjunctive set of constraints kII < t; —t; < (k + 1)II and
kII < tj — t; < (k + 1)II. Therefore, we introduce modulo ordering
variables O;_, j i to represent these constraints as follows:
Oijk=True = (k—DII <s;—sj<kIl VkeZ (5)
Oj_,j,k = False — 0 (6)
As shown in Eq. (5), assigning O;_, ; ¢ to true maps to the difference
constraint where operation i must be scheduled in an earlier cycle
than j. Furthermore, their distance must be greater than kII and less
than (k + 1)II cycles, which means that they are separated apart by k
[I-intervals. As shown in Eq. (6), assigning O;_, ; ;. to false maps to an
empty set of constraints, indicating that it is not necessary to impose
any partial ordering between operations i and j because the particular
resource binding does not require any partial ordering. Note that k
can be bounded by the length of any non-modulo schedule or the
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Figure 3: SDC constraints and corresponding SDC constraint
graph — (a) Timing constraints in SDC. (b) SDC constraint graph.

lengths of recurrence cycles. Here we use T to denote the bounded
space of k. Ultimately, O;—;; is derived from modulo orderings as:

Oij = Z Oinjk <1 7)
keT
As shown in Eq. (7), O;—j is true if operation i is scheduled before j,
and they are not in the same time slot.
Given the mapping between SAT and SDC, the following clauses
are included to connect the the sharing variables with the modulo
ordering variables:

Rij = (0imj V 0ji) ®)

_‘(Oi—>j A Oj—>i) (9)

Eq. (8) indicates that if operations i and j share the same resource

instance, operation i must be scheduled either in an earlier cycle or in

a later cycle than operation j, but certainly not in the same time slot.

Eq. (9) ensures that operation i cannot be simultaneously scheduled
both in an earlier cycle and later cycle than j.

3.2 Timing Constraints in SDC

Timing constraints in SDC can be conveniently represented using
a constraint graph in which each variable maps to a node and each
constraint maps to an edge in the graph. Figure 3(a) shows the set
of intra-iteration dependence, inter-iteration dependence, and cycle
time constraints in SDC form for our example. These constraints
map to the nodes and edges in the constraint graph in Figure 3(b).
For each constraint in the integer difference form t; — t; < Cyj, the
constraint graph includes an edge of weight C;; from node j to i. For
clarity, note that we have omitted the weights for zero-weight edges.

With this graph-based representation, we can easily derive a feasi-
ble schedule, either as soon as possible (ASAP) or as late as possible
(ALAP) schedule, by solving a single source shortest path problem.
In addition, we can conveniently detect infeasibility of the difference
constraints by the presence of negative cycle in the graph. For exam-
ple, adding the SDC constraint fo—t; < —1 to the system in Figure 3(a)
induces the dashed edge from ¢; to #( in Figure 4, creating a negative
cycle (shown in bold) that indicates the system is infeasible.

3.3 Conflict-Driven Learning

As shown in Figure 2, SAT and SDC work closely in a loop to handle
both resource and timing constraints exactly and efficiently. For each
iteration, SAT makes a proposal of modulo orderings that satisfy
resource constraints in Eq. (4), (7), (8), and (9) by determining a sat-
isfiable assignment for the modulo ordering variables O;_, ; . SDC
constraints used to enforce resource constraints are created based
on the mapping in Eq. (5) and appended to the SDC graph. SDC
checks the feasibility of the updated graph and returns any feasible
solution as the schedule if the graph is feasible. If the graph is in-
feasible, SDC instead returns the modulo ordering edges involved
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Figure 4: One iteration of conflict-driven learning.

in the negative cycle that causes the infeasibility. The infeasibility
is encoded as conflict clause and appended to the SAT problem. In
future iterations, SAT will no longer propose any modulo ordering
that violates any previously added conflicts. The solver iterates until
a feasible solution is found or the SAT search space is exhausted.
While there may be multiple feasible solutions, our solver returns
the earliest encountered feasible schedule.

Figure 4 illustrates a single iteration of the conflict-driven learning
process with our target II=2. In this iteration, assume that SAT
proposes a modulo ordering that assigns variable Og—2,o to true,
which enforces that operation 0 is scheduled before 2, and that the
two operations are less than one II apart. The two corresponding
SDC constraints are shown on the left. SDC then adds the edges (in
dash) corresponding to these constraints to the graph and detects a
negative cycle (in bold) that involves one of the two newly added
edges. The involvement of this edge in the negative cycle results in the
conflict clause on the left, which prevents any modulo ordering with
operation 0 scheduled before 2 and within one II apart. SAT will then
continue onto the next iteration with a different proposal that satisfies
resource constraints but does not involve this previously infeasible
edge. As you can see, SAT learns from previously infeasible edges in
each iteration to prune the search space. We leverage negative cycle
to keep the generated SAT conflict clauses as short as possible because
shorter conflicts are able to prune out more of the search space in SAT
and result in faster convergence of the solver. If the search space is
completely pruned out before finding a feasible solution, the problem
is infeasible for the particular II. Otherwise, the problem is feasible
where the shortest path solution serves as the feasible schedule.

3.4 Optimization

While we take advantage of conflict-driven learning to derive a mod-
ulo schedule that satisfies a particular II, we optimize for the best
II by starting with a lower bound value for the IT and incrementing
it one at a time until the II is feasible or an upper bound value has
been reached. Because this is a conventional optimization technique
typically employed by HLS tools [3, 6], our conflict-driven learning
algorithm is generally applicable regardless of the approach used to
establish such upper and lower bounds on I

4 GRAPH-BASED PROBLEM REDUCTION

In general, the graph to be modulo scheduled can be partitioned into
acyclic and cyclic subgraphs. The acyclic subgraphs contain only
forward edges, while the cyclic subgraphs contain backward edges
in addition forward edges. Because resource constraints essentially
delay the execution of resource-constrained operations, resource
constraints may cause violation with timing constraints imposed by
backward edges. Due to the interaction between backward edges
and resource constraints, exactly scheduling the cyclic subgraphs in
the presence of resource constraints constitutes the “hard” aspect
of the modulo scheduling problem. Subgraphs that are acyclic or
not constrained by resource can be scheduled efficiently and exactly
with heuristics. Based on this observation, we propose to further
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Figure 5: Illustration of graph-based problem reduction — (a)
C is a complex component that is scheduled first. (b) Final schedule.

accelerate the performance of exact modulo scheduler by reducing
the complexity of the exact modulo scheduling problem to that of
exactly scheduling the cyclic resource-constrained subgraphs.

To enable graph reduction, we rely on the strongly connected com-
ponent (SCC) algorithm [14] to partition the graph into cyclic and
acyclic components. This results in a directed acyclic graph (DAG)
of the SCCs of the input graph. Some SCCs form a trivial subgraph
consisting of only a single node, while others form a non-trivial sub-
graph consisting of multiple nodes. Those with multiple nodes must
be cyclic. We refer to cyclic SCCs with resource-constrained nodes
as complex subgraphs and cyclic SCCs with no resource-constrained
nodes as basic subgraphs. In Figure 5(a), component C is a complex
subgraph because it contains resource-constrained memory opera-
tion. Otherwise, it would have been categorized as a basic subgraph.
Because they are single nodes, v1, v2, and v3 each constitutes a trivial
subgraph regardless of whether they are resource-constrained.

We combine all basic subgraphs without connections between
them into a basic supergraph. This basic supergraph can be solved
exactly with SDC-based modulo scheduling because there is no re-
source constraint. The scheduling solution of this basic supergraph
will satisfy all timing constraints imposed by the edges within the
supergraph. Similarly, we combine all complex subgraphs without
connections in between into a complex supergraph. However, due to
the interaction between timing constraints (from backward edges)
and resource constraints, this complex supergraph must be solved
with an exact technique such as our proposed joint SDC and SAT
modulo scheduling algorithm detailed in Section 3. The solution of
the complex supergraph will satisfy all timing constraints imposed
by edges in the supergraph as well as the resource constraints of the
modulo scheduling problem. Regardless of basic or complex super-
graph, the schedule generated serves as a relative schedule that we can
use later to commit the final schedule. Operations satisfy the relative
schedule as long as the relative time positions at which operations
execute remain unchanged. For example, the relative schedule in
Figure 5(a) is satisfied as long as the store and addition operations
are executed one cycle after the load operation.

To motivate our subsequent procedure in Algorithm 1 for commit-
ting the final schedule based on the relative schedules of basic and
complex supergraphs, we identify several interesting properties of
the different types of subgraphs. Due to space limitation, we provide
an informal proof of each property to illustrate the main ideas. Here
tG (i) denotes the schedule time of operation i in the relative schedule,
and t(i) denotes the schedule time in the committed schedule.

PROPERTY 1. Given any time step T and a relative schedule
{tG(i),Vi} of a basic subgraph G, committing every operation i to
time step t(i) = T + tg(i) satisfies all timing constraints imposed by G.



The relative time positions between operations remain the same in
the committed schedule {#(i), Vi} as in the original relative schedule
{tc(i), Vi} for G. Because the original relative schedule satisfies all
timing constraints imposed by G, the committed schedule must also
satisfy all timing constraints imposed by G.

PROPERTY 2. Given any time step T and a relative schedule
{tg(i), Vi} of a complex subgraph G, there exists an integer constant
6 : 0 < 8 < II such that committing every operation i to time step
t(i) = T + tg(i) + S satisfies all timing constraints of the subgraph as
well as the time slot assignment imposed by the relative schedule.

Assume that the operations are first committed as in Property 1.
If the time slot assignments are satisfied, we have obtained a com-
mitted schedule that satisfies both timing constraints and time slot
assignments. If the time slot assignments are not satisfied, we can
repeatedly increase the time steps of all operations simultaneously
by one cycle until the time slot assignments are satisfied. Due to the
modulo nature of the schedule, we must be able to find a schedule that
satisfies the time slot assignments within II cycles. Any schedule we
commit also satisfies the timing constraints of the subgraph because
we increase the time steps of all operations by the same constant
number of cycles § and maintain their relative positions in time.

For example, if we would like to commit the relative schedule in
Figure 5(a) for T = 1, the load for vy will be committed to #(0) = 1 if
& = 0. This commits vy to time slot 1, violating vg’s being scheduled
in time slot 0 in the relative schedule. Therefore, the entire relative
schedule must be delayed by one cycle to accommodate the time slot
assignments. With § = 1, vy, v5, and v4 will be committed to £(0) = 2,
t(5) = 3, and t(4) = 3, where both timing constraints between these
operations and their time slot assignments are satisfied.

PROPERTY 3. Given any time step T and that the complex supergraph
of the problem has been scheduled and committed to the MRT, the single
operation i in each trivial subgraph G can always be committed at some
time step t(i) : T < t(i) < T + II without violating resource constraints.

A trivial subgraph contains a single operation. If the operation
is not constrained by resource, committing it at any time step will
not violate resource constraints. If the operation is constrained by
resource, there must be some slot with available resource in the MRT
for the operation to be scheduled because enough II slots should have
been pre-allocated to satisfy resource constraints. Because a single
resource-constrained operation can be scheduled in any time slot in
the MRT, committing it will not violate any resource constraints.

In Figure 5, assume vy, vs, and v4 have been committed to slots
0, 1, and 1, respectively, after relatively scheduling the complex sub-
graph C. Further assume that v; is then schedule to #(1) = 0, which
corresponds to slot 0. With these operations committed, all read port
resources in slot 0 of the MRT are subscribed. Because of this, v2 must
be committed to #(2) = 1 and slot 1 because slot 0’s read ports have
been fully subscribed. However, there must be available resource
in slot 1 for vy because the minimum resource-constrained II of 2
requires at least two modulo time slots in the MRT, each with two
read ports available.

Based on the above properties, any operation i in subgraphs (re-
gardless of type) can always be scheduled at some time step £(i) > T,
given a reference time T, without violating timing constraints within
the subgraphs or resource constraints of the modulo scheduling prob-
lem. Therefore, we can traverse the subgraphs (SCCs) in a topological
order (because the graph of SCCs form a DAG) and commit the op-
erations in each SCC to the earliest possible time step (i.e., ASAP).
Dependence between subgraphs (manifested by forward edges) de-
termines the earliest time step for which operations in each subgraph
can be scheduled. If we consider this earliest time step as T in the

Algorithm 1 ExactModuloSchedulingWithGraphReduction(II)

: Partition the graph into its SCCs
: Compute relative schedule for basic supergraphs with SDC
: Compute relative schedule for complex supergraphs with exact method
: Update MRT for scheduled resource-constrained nodes
: for each component in topologically sorted order of SCCs do
if component is a basic subgraph then
Schedule ASAP based on relative schedule
else if component is complex subgraph then
Schedule ASAP based on relative schedule while satisfying time slot assignment
10:  else if component is single resource-constrained node then
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11: Schedule ASAP at time slot with available resource

12: Update MRT for newly scheduled resource-constrained node
13:  else

14: Schedule ASAP

15:  endif

16: end for

17: if Any above step is infeasible then II is infeasible end if

previous properties, operations in the subgraph can be committed
based on those properties from this reference time step. Committing
subgraphs in topological order ensures that timing constraints be-
tween subgraphs, all of which must be forward edges, are also fully
satisfied. Our exact modulo scheduling algorithm with graph-based
problem reduction is listed in Algorithm 1.

In our algorithm, Line 7 commits operations in a basic subgraph to
the final schedule based on Property 1 to satisfy timing constraints,
while Line 9 commits operations in a complex subgraph to the final
schedule based on Property 2 to ensure that both timing and resource
constraints are honored. If the subgraph turns out to be a single
resource-constrained node, Line 11 commits the operation, based on
Property 3, to the earliest possible time step whose corresponding
time slot has available resource remaining in the MRT. If the subgraph
is a single node that is not constrained by resource, it can be scheduled
ASAP as shown in Line 14. Our algorithm is essentially an ASAP
scheduling scheme subject to resource availability and any prior
relative assignment of time steps (of basic and complex subgraphs)
and exact assignment of modulo time slots (of complex subgraphs).
Figure 5(b) shows the committed schedule for scheduling the graph in
Figure 5(a) with Algorithm 1. Note that our graph reduction technique
is generally applicable to any exact modulo scheduling techniques,
including ILP.

5 EXPERIMENTS

We implement our modulo scheduler in C++, interfaced with the
Lingeling SAT solver [2]. We execute our scheduler on an Intel Xeon
CPU running at 2.5GHz and evaluate it on a set of 350 benchmark
loops from popular HLS benchmark suites CHStone [10] and Mach-
Suite [13]. For experiment purpose, we further classify the bench-
marks into trivial, easy, and challenging benchmarks to better evaluate
the benefit of our proposed approach. In particular, trivial benchmarks
contain no complex component in the graph. Given our graph-based
problem reduction technique, these benchmarks do not require exact
modulo scheduling to be solved optimally. Therefore, they are not
included in our runtime evaluations to avoid skewing the results. For
the other benchmarks, we compare the runtimes of our joint SDC
and SAT scheduler, with and without graph reduction, against those
of state-of-the-art commercial ILP solver CPLEX running the best
known ILP-based modulo scheduling formulation [11] (described in
Section 2.2). For convenience, we use ILP and SDS+ to refer to the
two scheduling techniques, but qualify each technique with Default
or Reduced to indicate whether graph reduction has been applied.
Figure 6 summarizes the runtime speedup of SDS+ on easy bench-
marks, which contain complex subgraphs but can solved by Default
ILP in less than one second. Each bar represents the runtime speedup
against Default ILP for one benchmark. Benchmarks are ordered
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Figure 6: Runtime evaluation on easy loops — Default ILP’s run-
times are less than one second. Each color represents the additional
speedup achieved over the previous solver against Default ILP.

by increasing Default ILP runtime. Each color represents the addi-
tional speedup achieved over the previous solver configuration. For
example, black bar shows the runtime speedup of Reduced ILP over
Default ILP, while black and light gray together show the speedup of
Default SDS+ over Default ILP. Black, light gray, and gray together
indicate the speedup of Reduced SDS+ over Default ILP. Figure 6
shows that SDS+, with or without reduction, is consistently more
competitive than ILP, with or without reduction. While simply apply-
ing the graph-based reduction technique on ILP leads to some degree
of speedup, applying SDS+ achieves speedup that grows faster as the
difficulty of the problem increases. In addition, Reduced SDS+ can
achieve more than one order of magnitude speedup from Default ILP
for the most difficult cases in this plot.

In Table 1, we evaluate the runtimes of more challenging loops,
which contain complex subgraphs and require more than one second
of ILP time. The loops are sorted by the total number of operations
before reduction. However, the exact relationship between various
metrics and speedup depends on the graph topology and the interac-
tion between resource-constrained nodes and cyclic subgraphs. SDC
and SAT complexity is determined by the number of operations in
accordance to Section 3. Overall, while Reduced ILP provides mar-
ginal speedup from Default ILP, SDS+ (with and without reduction)
is able to significantly widen the speedup gap for almost all the loops.
With graph reduction, Reduced SDS+ is especially competitive on
the more difficult loops like JPEG19 and ADPCM2, achieving over two
orders of magnitude of speedup. For JPEG23, Reduced ILP’s speedup
is noticeable because graph reduction decreases the total number of
operations by around 86% and the number of resource-constrained
operations by 50%. As a result, SDS+ gives no further benefit on top
of Reduced ILP in this case. On the other hand, Reduced ILP reaps
negligible benefit for JPEG87 because the graph contains a long re-
currence cycle that encapsulates all resource-constrained operations.
SDS+’s performance in this case shows that SDS+ is able to handle
constraints more efficiently. Noticeably, Reduced SDS+ is able to solve
ADPCM1 and DFSIN1 for which both ILP and Reduced ILP time out.

While runtime is not strictly proportional to node count, the ILP-
based formulations become difficult to solve as the total number of op-
erations increases beyond 400 or the number of resource-constrained
nodes goes beyond 50. In these cases, SDS+ demonstrates improved
scalability by combining the efficiency of SDC and SAT. Although the
ILP formulation by Oppermann et al. [11] used in our experiments has
demonstrated improved resource handling capability than previous
formulations, it is still more susceptible to scalability issues because
both timing and resource constraints are encoded as ILP constraints,
which are NP-hard to solve. Instead, SDS+ handles the timing aspect
of the problem using polynomial-time SDC and leaves the resource
aspect to SAT. In addition, our reduction technique can help prune out
nodes to further alleviate scalability issues. For JPEG19 and ADPCM2,
graph reduction helps ILP become manageable.

’ Benchmark ‘ #0ps ‘ Reduced ‘ Default ‘ Reduced Default Reduced
#Ops ILP ILP SDS+ SDS+

FFT_STRIDED2 84/18 24/18 4.29 1.11 (3.86x) 0.804 (5.33x) 0.091 (47.1x)
JPEG23 135726 18/13 2.30 0.190 (12.1x) | 0.294 (7.82x) | 0.029 (79.3x)
JPEG18 175/ 23 114 /23 8.60 3.03 (2.84x) 0.512 (16.7x) 0.529 (16.2x)
MD_GRID7 300 / 50 298 /50 7.14 3.06 (2.33x) 0.285 (25.1x) 0.257 (27.8x)
JPEGS7 380737 | 370737 713 6.71 (1.06x) | 0.642 (11.1x) | 0.361 (19.7%)
JPEGI9 T76765 | 465765 TO 397 (-2.27%) | 3.41(>264%) | 2.35 (>383%)
JPEG17 942793 | 615768 156 961 (1.62x) | 729 (21.4x) | 6.93 (22.5%)
ADPCM2 7107114 | 295780 TO 562 (>1.60%) TO 2.01 (-448%)
ADPCM1 7777108 | 4667102 TO TO 311 (>28.9%) | 11.0 (>75.6%)
DEFSIN1 2651 /74 115/74 TO TO TO 606 (>10.0x)

Table 1: Runtime evaluation for more challenging loops —
#0ps shows the total number of operations and number of resource-
constrained operations before graph reduction. Reduced #0ps shows
the same numbers after graph reduction. TO indicates timeout after
15 minutes or 10x SDS+ runtime, whichever is greater.

6 CONCLUSIONS

Current pipelining approach relies on fundamentally inexact heuris-
tics with ad hoc priority functions that provide no guarantee on
achieving the best throughput. To address this problem, we propose
a new modulo scheduling algorithm that combines the efficiency
of SDC and scalability to SAT to exactly handle various pipelining
constraints. In addition, we identify problem-specific opportunity
to further accelerate the performance of our modulo scheduler. Our
work aims to improve the scalability of exact modulo scheduling and
redefine the tradeoff between scalability and quality.
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