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Abstract. Recently there has been interest in the physical properties of dark matter axion
condensates. Due to gravitational attraction and self-interactions, they can organize into
spatial localized clumps, whose properties were examined by us in refs. [1, 2]. Since the
axion condensate is coherently oscillating, it can conceivably lead to parametric resonance of
photons, leading to exponential growth in photon occupancy number and subsequent radio
wave emission. We show that while resonance always exists for spatially homogeneous con-
densates, its existence for a spatially localized clump condensate depends sensitively on the
size of clump, strength of axion-photon coupling, and field amplitude. By decomposing the
electromagnetic field into vector spherical harmonics, we are able to numerically compute
the resonance from clumps for arbitrary parameters. We find that for spherically symmet-
ric clumps, which are the true BEC ground states, the resonance is absent for conventional
values of the QCD axion-photon coupling, but it is present for axions with moderately large
couplings, or into hidden sector photons, or from scalar dark matter with repulsive inter-
actions. We extend these results to non-spherically symmetric clumps, organized by finite
angular momentum, and find that even QCD axion clumps with conventional couplings can
undergo resonant decay for sufficiently large angular momentum. We discuss possible astro-
physical consequences of these results, including the idea of a pile-up of clump masses and
rapid electromagnetic emission in the sky from mergers.
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1 Introduction

It is essential to obtain clues of physics beyond the Standard Model. Since there is currently
no evidence of new physics at colliders, including the LHC, we can turn to astrophysics and
cosmology for possible clues. One definite example of new physics is the need for dark matter
to comprise the bulk of the matter in the universe in order to be compatible with a range of
astronomical observations, including CMB, large scale structure, galaxies and galactic halos,
etc [3]. There are a range of dark matter candidates, though currently there is no evidence
for any of them. For example, the popular example of WIMP dark matter implies dimension
4 coupling to Standard Model particles via W or Z boson exchange. Yet there is currently
no evidence for this coupling from a range of direct and indirect experiments, even though



experiments have probed a significant part of parameter space where such WIMPs could
easily have been detected by now.

Another popular dark matter candidate is the QCD axion [4-7]. It is a gauge singlet
(pseudo)-scalar arising from the spontaneous breaking of a Peccei-Quinn (PQ) symmetry,
introduced as a possible solution to the strong CP problem [8-10]. The axion’s (approxi-
mate) shift symmetry prevents it from having dimension 4 couplings to the Standard Model
particles, making it very difficult to detect. On the other hand, it is expected to couple
to the Standard Model via higher dimension operators. In particular, it should couple to
photons via the dimension 5 operator AL ~ g,y ¢ E - B. Current constraints imply that
the dimensionful coupling gq, is quite small, though it may still have a value compatible
with the QCD axion as a solution to the strong CP problem. For minimal axion models
Gay ~ 0/ fq, where o is the fine structure constant and f, is the PQ breaking scale. In
order for the QCD axion’s abundance to not over-close the universe, the PQ scale should
typically be f, < 102 GeV (although this bound can be relaxed depending on the details of
inflation [11]). Hence the coupling gq~ cannot be arbitrarily small. Such a coupling may lead
to measurable effects. This axion-photon coupling is usually exploited to try to detect axions
in ground based experiments, such as the ADMX experiment [12, 13], in which dark matter
axions move through a large magnetic field to produce a cavity photon. However, such effects
have not currently been observed, though a detection is plausible in upcoming years.

It is therefore very important to explore possible consequences of this axion-photon
coupling in other contexts; in particular, in astrophysical settings. In this paper we will
investigate the possible consequences of this coupling on the behavior of small scale axion
dark matter substructure. On small scales, axions can gravitationally thermalize leading
to a type of Bose-Einstein condensate (BEC) [14, 15]. This condensate does not possess
long-range order, as it is driven by attractive interactions: gravity and self-interactions A ¢*
with A < 0 [16]. Instead the condensate is a spatially localized clump. The properties of
these BEC clumps were analyzed in ref. [1] where we mapped out branches of stable and
unstable solutions, finding that there is a maximum mass and a minimum radius for stable
solutions. In ref. [2] we extended this analysis to BECs with angular momentum, finding
that the maximum mass and minimum radius are both increased with angular momentum.

Since the condensate is a coherently oscillating axion field, it can potentially lead to
parametric resonance of the electromagnetic field from the axion-photon coupling, leading
to an output of coherent radio waves. The phenomenon of parametric resonance is an im-
portant phenomenon in physics. One of the most striking consequences of this phenomenon
is the drastic decay of the oscillating inflaton field into daughter fields at the first stage of
reheating, known as preheating [17, 18]. Other related work includes the study of photon
propagation in a homogeneous cold axion field (and axion-like particles) in the presence of an
external magnetic field [19]. The subject of the present paper is the study of the possibility of
parametric resonance of photons in the context of localized dark matter axion clumps; other
related work includes refs. [20-22].

To put this in context, we begin by considering homogeneous condensates (this may
describe the behavior in the very early universe [23, 24], although it quickly fragments [25]). In
the homogeneous case the equation of motion for the electromagnetic field becomes diagonal
in k-space and organizes into a standard type of Matheiu equation. This is amenable to the
standard techniques of Floquet theory. In this homogeneous case the resonance is always
present regardless of the strength of the coupling or the axion field amplitude (although the
strength of the resonance is proportional to the product of these parameters).



We then turn to our primary interest of possible resonance from the spatially localized
clump condensate. In this case the equation of motion of the electromagnetic field couples
all of its k-modes to one another since the axion clump breaks translation invariance. For
spherically symmetric axion clumps, we decompose the electromagnetic field into vector
spherical harmonics, and focus on the channel {l,m} = {1,0} by simplicity, leaving a more
complete analysis for future work. For spatially wide axion clumps, which is the regime of
most physical interest, we are able to entirely integrate out the angular dependence in the
problem, leaving an effective 1-dimensional (radial) problem for the electromagnetic field’s
mode functions. This takes the form of an integro-differential equation in k-space, involving
the convolution of the axion’s 1-dimensional Fourier transform with the electromagnetic field’s
mode functions. We are able to readily solve this integro-differential equation numerically
using a generalization of the Floquet theory to obtain the Floquet exponents. We find
that unlike the homogeneous case, the presence of the resonance depends sensitively on the
clump’s field amplitude, axion-photon coupling, and spatial width. For typical values of the
QCD axion-photon coupling ga ~ «/ f, the resonance is shut-off for spherically symmetric
clumps. However, for atypically large couplings gq, 2 1/f. the resonance is present for a
range of clump masses and radii. Such a large coupling may be present in unconventional
QCD axion models as well as coupling to hidden sector photons or from axion-like particles.
We show that an excellent criteria for resonance is that the homogeneous Floquet exponent
is greater than the escape rate of photons (roughly the inverse diameter of the clump), so as
to make Bose-Einstein statistics effective. Finally, we consider resonance from non-spherical
axion clumps organized by angular momentum. In this case we find that the resonance into
photons is enhanced relative to the case of spherically symmetric clumps, as the radius of
the clump is increased. For sufficiently large angular momentum we find that resonance is
possible even for QCD axions with typical photon couplings.

We then discuss possible astrophysical consequences of our findings. In particular, we
point out that large mass clumps could rapidly emit electromagnetic radiation, leading to
a reduction in mass until eventually the resonance is shut-off and the clump mass becomes
conserved. This predicts a build up of clump masses concentrated at a single mass determined
purely in terms of fundamental constants. Furthermore, we point out that clump mergers
could suddenly produce radiation in the universe today.

The outline of this paper is as follows: in section 2 we review some essentials of axion
and electromagnetic field theory. In section 3 we discuss the simple case of resonance from
a homogeneous condensate. In section 4 we examine in detail the case of resonance from
spherically symmetric condensate clumps. In section 5 we discuss the general condition for
resonance. In section 6 we discuss the effect on resonance from the effective photon mass.
In section 7 we extend the above analysis to non-spherical condensate clumps organized
by angular momentum. In section 8 we discuss possible astrophysical consequences of our
results. Finally, in appendix A we include some additional formulae.

2 Axions and photons

The basic dynamics of the QCD axion has been discussed in many papers. Here we only
recap some essential features. The reader is referred to our previous papers [1, 2] for more
details.



2.1 Axion field theory

The axion ¢ is a pseudo Goldstone boson associated with a spontaneously broken PQ sym-
metry. QCD instantons generate a small but non-zero potential V for ¢. As a dark matter
candidate, its occupancy number is expected to be huge, and so it is well described by clas-
sical field theory if a suitable ensemble averaging is performed [26]. If we expand around the
CP preserving vacuum ¢ = 0, the potential has only even powers of ¢ as follows

A
V(¢):%m§¢2+@¢4+.... (2.1)

Since we shall only be interested in the non-relativistic regime for axions, we shall focus on
field configurations where ¢ is small and so we shall only need to track these leading terms.
The specific values of the mass mg and quartic coupling A are model dependent. For the
standard QCD axion, its mass is given in terms of the up and down quark masses, pion mass,
pion decay constant, and PQ symmetry breaking scale f, as

2,2
MyMmq  fims

my = o ema? 2 (2.2)
while the quartic coupling A is given by
m2
A= —'yf—g <0, (2.3)

where v is an O(1) pre-factor. It is v = 1 in the standard dilute instanton gas approximation
in which the axion potential is a simple cosine and v = 1 — 3m,mg/(my, + mg)? ~ 0.3 in a
more precise calculation [27]. (For repulsive self-interactions, we write A = +-~ mi/ f2>0,
keeping ~ positive.)

As we discussed in refs. [1, 2] the stable axion clump solutions are non-relativistic. These
solutions are gravitationally bound clumps, or Bose stars (and related to miniclusters [28]),
and their behavior is influenced by the self-interaction from the above ~ X ¢* term. In this
non-relativistic regime we can re-write the real axion field ¢ in terms of a complex Schrodinger

field v as follows
1

\/ 2m¢
where 1 is taken to be slowly varying in time. The axion field’s oscillation frequency is
approximately given by mg, but there are small corrections provided by .

The dynamics of 1 is given by the following standard non-relativistic Hamiltonian that
respects the Galilean symmetry [1, 16]

o(x,t) = [e‘imd)tw(x, t) + emoty*(x, t)] , (2.4)

Hnr = Hkin + Hint + ngav 5 (2'5)
where
1
Han = 5 [ 2 v0"-vo, (2.6)
2m¢
Hut = 15z [ do0?, (2.7)
16 mg
Gm2 * * / /
ngav = — ¢ /de/d%ﬂ/} (XW (X W(X)QP(X), (2.8)
2 |x — x/|



are the kinetic energy Hiyiy, self-interaction energy Hing, and gravitational energy Hgray terms,
respectively. (See ref. [29] for an investigation into the leading relativistic corrections.)

In this non-relativistic regime, particle number changing processes are suppressed. Asso-
ciated with this, the above Hamiltonian carries a global U(1) symmetry 1) — 1) e associated
with a conserved particle number

N = /d% P (x)h(x) . (2.9)

The axion condensate is specified by a fixed number of particles N. For the true BEC this
corresponds to the state of minimum energy at fixed N, which is spherically symmetric.
While another type of BEC corresponds to the state of minimum energy at fixed N and
angular momentum L, which is non-spherical.

2.2 Axion-photon interaction

Even though in the non-relativistic limit of axions there is a conserved particle-number,
there can still unavoidably be particle number changing processes from coupling to photons.
The axion-photon decay channel runs through the chiral anomaly in which a fermion loop
connects the axion with two photons. The Lagrangian density for the electromagnetic field
is given by
1 g ~

Lon = =3 Fu k" - %gf)FWF“”, (2.10)
where F* is the dual of the electromagnetic field strength tensor F* = %5‘“’0‘5 Fop and gqy
is the axion-photon coupling constant. We can parameterize the axion-photon coupling g,

in terms of a dimensionless coupling 8 and the PQ scale as

B
ga'y—ﬁa

(2.11)
where  is model dependent.
In conventional QCD axion models [30-32] the coupling is given by

g= 28 (2.12)

o2m’
where

(2.13)

3

K_E 2\ 4+z+w
N l+z+w’

Here « is the fine structure constant, z = m,/my, and w = my/ms. The E and N quan-
tities correspond to the electromagnetic and color anomalies related to the axion field. The
ratio E/N is present in models in which quarks and leptons carry both Peccei-Quinn and
electrical charges. For instance, E/N = 0 (K ~ —1.95) in the standard KSVZ [33, 34] model
because the new exotic heavy quark fields which carry the Peccei-Quinn charge do not carry
electromagnetic charge. By contrast, E/N = 8/3 (K ~ +0.72) in the DFSZ [35, 36] or grand
unified models because the given family of quarks and leptons carry both kind of charges. So
in conventional QCD axion models K is an O(1) number, leading to 8 = O(10~2). However,
in unconventional axion models, § can be larger than the above estimates and can even be
O(1) in some exotic scenarios. In fact if we allow coupling to hidden sector photons, there is



considerable freedom in the possible values of § as it is essentially unconstrained by experi-
ment. So in this paper we shall explore a range of values for 5 including small to moderately
large values. Finally, for ease of notation, we send g,y — |gay| as only its magnitude is of
significance here.

We work with a quantized four vector potential A* = (Ao, A) in a classical background
given by the axion field. We vary the above Lagrangian Lgj; with respect to AM to obtain
the Heisenberg equation of motion. For simplicity, we work in Coulomb gauge V- A =0. We
self-consistently assume the axion field is slowly varying in space, which it must be within
the non-relativistic approximation, and drop gradients of ¢. Then the equation of motion for
the 2 propagating degrees of freedom of the photon A can be written as

A~ V2A + g,,V x (06 A) = 0. (2.14)

In this expression we have moved the axion field 0;¢ inside the spatial derivative Vx as we
are neglecting gradients of the axion field. It is useful to write it in this form to make it
manifest that we are in Coulomb gauge, as every term’s divergence clearly vanishes. Then
Fourier transforming to k-space, the final term becomes a convolution

w . - A3k’ R

Ay + kQAk + gay ik X /(27_‘_)3 O A =0. (2.15)
Note that even though we are dropping gradient terms compared to time derivatives of ¢,
ie., |Vo¢| < |0:¢| in the non-relativistic limit of axions, the spatial structure of ¢ can still be
very important, as we explore in the upcoming sections.

3 Homogeneous condensates

Since the axion field will undergo coherent oscillations in the classical field limit, we wish
to explore possible parametric resonance into photons. As the simplest possible treatment
of this behavior, let us begin by treating the axion field as homogeneous (also see refs. [23,
24]). In general such a configuration is unstable to collapse from gravity and attractive self-
interactions, which ultimately try to drive a homogeneous condensate towards condensate
clump solutions with short range correlations [16]. This more realistic situation will be studied
in detail in the next sections. Ignoring that for now, we treat the axion as homogeneous
and oscillating periodically in its potential. For small field amplitudes the oscillations are
approximately harmonic

B(t) = ¢ cos(wot), (3.1)

where the amplitude of oscillation is ¢g and to an excellent approximation the frequency is
wo = M.

Then the equation of motion for the electromagnetic modes decouple in k-space to
become

jk + k2 Ay — Gaywo Posin(wot) ik x A =0. (3.2)

We express the Fourier transform of the vector potential as

Ak(t) = 3 |ar @ si() +af, irsi®)] | (3.3)
A==+



where € y—+ and si(t) correspond to vectors for circular polarization and the mode function,
respectively, and ax  and le( y are annihilation and creation operators. Noting that tkxey \ =
k €k », the polarizations decouple and the mode functions sk(t) satisfy the classical equations
of motion

Sk + [k:2 — Gay wo k o sin(wo t)] sk =0. (3.4)

This is a special form of the Hill’s equation, known as the Mathieu equation, which describes
an oscillator with a periodic pump of frequency w?(t) = wi(t + T), where T' = 27wy is the
period of oscillations of the condensate. We rewrite eq. (3.4) as

Sk + w,%(t)sk =0, (35)
where w?(t) = A+ Bsin(wpt) with A and B coefficients given by

A=k, (3.6)
B = —gay ¢o kwo - (3.7)

Note that the coupling between the mode function and the axion field depends on k. As
we will analyze in detail in the following subsection, the periodicity of wy(t) may lead to
parametric resonance for modes with certain values of k.

3.1 Small amplitude analysis

The above Mathieu equation can be readily solved numerically; as we will do in the next
subsection. For now we can provide a precise analytical result by operating in the small
amplitude regime, where the pumping term is relatively small, correcting the free theory
behavior of the electromagnetic field by a relatively small amount. It is well-known that in
the parameter space of the Mathieu equation there is a band structure of unstable (resonant)
and stable regions (for standard textbooks about Mathieu equation and parametric resonance
see refs. [37-39]). While stable regions correspond to oscillatory solutions, unstable regions
correspond to exponentially growing solutions. In general, solutions of eq. (3.5) can be written
in the characteristic form

s1c(t) = Pi(t)e!t + Py (—t)e Het (3.8)

where the parameter py is called the Floquet exponent and Py(t) is a periodic function of
time. When the Floquet exponent has a real part, the resonance phenomenon occurs. In the
regime of small amplitude or weak coupling of (k/wo) > (gay®0/2), we have a spectrum of
narrow resonant bands equally spaced at k% ~ (n/2)?w? for n = 1,2,3,.... The width of the
resonance band and the Floquet exponent both decrease as increasing n. The exponential
growing solutions for the mode function within the n-th resonant band, sy o exp(,u,(cn) t),

are associated with an exponential growth of the occupation numbers, ny(t) o exp(2,u,(€n) t),
which can be seen as particle production.

In the small amplitude regime it is useful to expand the solution for the mode function,
eq. (3.8), as a harmonic expansion as follows

se(t) = et (3.9)



where the frequencies are summed over integer multiplies of half the natural (wg/2) frequency
and —oo < w < oo. For small amplitudes, the functions fw(t) are slowly varying. Inserting
this expansion into the Hill’'s equation and dropping the f, term, we obtain

Aiw () + 2(A — W) fut) — i B [fowy (t) — fusay ()] = 0. (3.10)

The lowest frequencies w = +wp/2 are dominant in the first instability band. Dropping all
higher harmonics in eq. (3.10), we obtain a coupled pair of differential equations for the
lowest frequency modes as

d| fa@) |
dt| f_ 0 & m
Following standard matrix theory, the behavior of this system is determined by exponentials
~ exp (£uxt), where the growth rate py, corresponds to the (positive) eigenvalue of the above

matrix. Solving eq. (3.11), and using the expressions for A and B, egs. (3.6, 3.7), we obtain
the growth rate

2
Wo _;B
A— 13

L8 ape (3.11)

fwo(t)] _

2 1.2 42 k2 wf )2
ar K 05 ( B 4)

— — . 3.12
M 4 wg ( )

Since the resonance occurs for real Floquet exponents, edges of this instability band are given
by values of k at which the Floquet exponent becomes zero. The left and right hand edge
are readily found to be

kl/ e = ig ggﬂ/ w(% QS(Q) + Gay Wo ¢0
r,edge 4 16 4 ,

(3.13)

where the minus (plus) sign holds for the left (right) hand edge. The width of the first
instability band is therefore proportional to the axion-photon coupling constant gq- as

Jary wWo o
Ak = kr,edge - kl,edge = CWT .

The center of the band k* = (wo/2)y/1 + g2,$5/2 can be approximated as k* ~ mg/2 for
small amplitudes, which corresponds to an approximate effective frequency for the mode

function, eq. (3.5), given by wi(t) = k*[1 — gay ¢o sin(met)]. At the limit of weak cou-
pling, the center of band k* agrees with the familiar perturbative decay process ¢ — v + 7,
which enforces this wavenumber by simple kinematics. However, the perturbative picture
does not include effects from Bose-Einstein statistics when a state considerably increases its
occupancy number and so the perturbative rate does not depend on the number of particles
produced earlier. The standard perturbative decay, I'(¢p — v+ ) = (gfwmi) /(647) , is
highly suppressed by the square of the axion-coupling constant. By contrast, at small but
finite amplitudes, Bose-Einstein statistics allows for exponential growth with the correspond-
ing maximum Floquet exponent uj; given by

(3.14)

* Gay M ¢0
pi T (3.15)

where we have used an “H” subscript to indicate that this result is only valid for the ho-
mogenous case.



Let us slightly exit the first instability band and enter to the adjacent stable regions in
the band structure by considering a value ki = k; Jr.edge + 0k, where the minus (plus) sign
holds for K cdge (Kredge)- In this case the Floquet exponent in eq. (3.12) becomes imaginary
and the mode function, eq. (3.8), merely oscillates with an approximate effective frequency
given by wy_ (t) ~ Wy /7 edie (t)£dk, where the minus (plus) sign holds for kjedge (Kredge)- Note
that the condition for small amplitude always ensures the reality of the effective frequency.

In principle, we could continue our analysis and focus on the second instability band, in
which the leading harmonics are w = twy, which is connected to ¢+ ¢ — v+~. However the
dominant contribution comes from the first band as the higher order processes are suppressed
at small amplitude. Also, let us comment on backreaction. As the electromagnetic field
energy increases due to resonance, it draws energy away from the axion field. This is a
higher order process and is beyond the scope of the present paper. However the leading
order resonant behavior suffices to capture the basic physical process.

3.2 Numerical analysis

We can also solve eq. (3.5) exactly using Floquet theory. Following the standard Floquet
method, we consider the following orthogonal set of initial conditions for the pair (s, $k)

Sk o 10
() +12= () (3.16)

Then numerically evolve the system using eq. (3.5) through one period T' = 27 /wqg of the
axion pump field, which maps this initial 2 x 2 identity matrix 1o to a new 2 x 2 matrix Ms.
Then through P periods, the system will evolve to Mg . Hence the behavior is dictated by
the 2 eigenvalues xj of the matrix Mg, with Floquet exponents given by pp = In xx/T.

The results are plotted in figure 1. This shows the contour plot of the real part of
the Floquet exponent as a function of wavenumber k& and physical amplitude ¢g. We have
set gay = 0.4,/7/ f, for illustrative purposes, though more conventional values for the QCD
axion are gqy = O(1072)/ f,. The first instability band starts at k = m/2, and its structure
agrees well with teh above analytical approximation in eq. (3.12). Higher instability bands
start at integer multiples of k£ = mgy/2.

4 Spherically symmetric clump condensates

We now turn to the physically important case of condensates that are spatially localized
rather than merely homogenous as studied in the previous section. Gravity will inevitably
cause a homogeneous condensate to fragment into an inhomogeneous field configuration;
locally this leads to the formation of BEC clumps. When gravity is dominant these are
so-called Bose stars. The self-interactions ~ A ¢* can also play an important role too, and
generically we shall refer to the solutions as “clumps”. When A < 0, as is expected for the
QCD axion, this additional attraction can make the clump collapse under some conditions.
There is an additional solution branch for highly dense clumps, known an “axitons” [40],
which are very short lived as they radiate semi-relativistic axions, and will not be our focus
here. (See ref. [41] for a recent investigation into their properties.)
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Figure 1. Contour plot of the real part of Floquet exponent u, describing parametric resonance
of photons from a homogeneous condensate, as a function of wavenumber k and physical amplitude
¢o. We plot ¢¢ in units of f, and k & py in units of mg. We have set gq, = 0.4/ f, to illustrate the
behavior, although in conventional QCD axions g,, = O(1072)/f, (see eq. 2.12) which would give
narrower resonance bands.

4.1 Clump profile

The true BEC ground state is guaranteed to be spherically symmetric and will be discussed
in this section. (See the next section for non-spherical BEC’s with angular momentum.)
These spherically symmetric clumps were studied in detail by us recently in ref. [1] (other
work includes refs. [42, 43]) and we recap their important features briefly here.

The non-relativistic Schrodinger field ¥ can be written as

Y(rt) = W(r)e trt, (4.1)

where W(r) describes the radial profile of the clump and p describes the correction to the
frequency. In ref. [1] we determined U(r) exactly numerically. We also discussed several
approximate forms for ¥. One form that was found to be highly accurate was to take ¥(r)

to be a sech function
3N
U(r) = 3 sech(r/R) (sech ansatz), (4.2)

where R sets the effective radius of the solution and plays the role of a variational parameter.
By inserting this into eq. (2.5) and integrating, one finds the following form for the energy

N GmiN*  \N?
H(R) = —-b 4.3
T R YRR (4.3)
where in this sech ansatz we have coeficients
12 4 72 6(12¢(3) — 72) 72 —6
a= 62 b= - , c= g (4.4)

~10 -



Attractive Self-Interactions A <0 Repulsive Self-Interactions A >0
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Figure 2. Clump radius R as a function of particle number N for spherically symmetric clumps in
the sech profile approximation (which is known to be very accurate from ref. [1]). We plot R in units
of m;15’1/2 and N in units of |A\|~'6~Y/2. Left panel: attractive self-interactions A < 0, leading to
an upper blue stable branch and a lower red unstable branch. Right panel: repulsive self-interactions
A > 0, leading to an upper blue stable branch only.

By extremizing the Hamiltonian with respect to R at fixed N one finds equilibrium
solutions. For attractive interactions A < 0 there are 2 branches of solutions, which are
plotted in the left panel of figure 2; the upper blue branch are stable solutions and will be
the focus of our investigation here, while the lower red branch are unstable solutions and will
be ignored here. In this case there is a maximum number in the clump given by

No_a 1 1012
T VBhe MV AWVG

and a minimum radius on the stable branch of Ry, = /3 ¢/b/(myV§), where the dimen-
sionless quantity J is defined as

(4.5)

2 2
_Gmy _Gla (4.6)
Al gl
In fact § sets the characteristic squared-speed of particles in the clump and is very small
for usual parameters of the QCD axion in which f, < 1/v/G is expected. For repulsive
interactions A > 0 there is only 1 branch of solution, which is plotted in the right panel of
figure 2; it is stable and will also be studied here. In this case there is no maximum number.

The corresponding relativistic field ¢ is given by exact harmonic oscillations in this
non-relativistic regime of the form

o(r,t) = ®(r) cos(wo t), (4.7)
where the radial profile is
2
O(r)=,/— VU 4.8
)=\ ¥, (43)

and the oscillation frequency is wo = mg + p ~ mg. This can possibly lead to resonance of
the electromagnetic field as we now examine.
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4.2 Vector spherical harmonic decomposition

In order to examine possible resonance, let us return to eq. (2.14) for the equation of motion
of the electromagnetic field. Since the axion field is spherically symmetric ¢ = ¢(r,t), but
radially dependent, the usual 3-dimensional Fourier transform to eq. (2.15) is not the most
efficient way to proceed as the vector structure remains complicated. Instead it is convenient
to exploit the spherically symmetry of the axion field and re-organize the system into an
effective 1-dimensional problem.

However, we cannot merely assume that the quantized vector potential A is spherically
symmetric as this would only allow for longitudinal modes. These are forbidden for massless
photons and are manifestly removed in Coulomb gauge V - A = 0. Instead, even though we
will be interested in spherical waves, we need to allow for angular dependence in the vector
potential. To proceed, we perform a vector spherical harmonic decomposition of A as follows

3 ~
Ax,t) = /(gﬂé’g lz [a(k) Wtm (e, )M (k, x) — b(k) win (k, £) N (k, ) —I—h.c.] . (4.9)

where the “vector spherical harmonics” My, and N, are defined in terms of the scalar
spherical harmonics Y, = Y1 (6, ¢) and spherical Bessel functions j; as

igilkr) [im ~ O0Ym .
M (k, %) = Myl — Cmgl 4.10
1m (K, %) 0+ 1) sing 1 90 ¥ ( )
Ni (k, x) = %v X M (k, %) . (4.11)

where r = |x| is radius, 6 is polar angle, and ¢ is azimuthal angle. All the above quantities
are taken to be functions of only the magnitude of the wavevector k = |k| since we are
interested in spherical waves. The two scalar functions vy, (k, t) and wyy, (k, t) are the electro-
magnetic mode functions. Naturally there are two independent mode functions as there are
two polarizations of electromagnetic waves. Note that in addition to eq. (4.11) we also have
the inverse relation My, = —i V x Ny, /k; together this guarantees that V-My,, = V-N),, =0
as required by Coulomb gauge.

By inserting this decomposition into eq. (2.14) and again neglecting gradients of the
axion field, the equations of motion for the mode functions v, and wy;, are

3k . ) .
/(277)3 Z [ (’Ulm + k“vim — 1K gary 8t¢w1m) My,
Ilm

- (wlm + kzwlm +ik Gary O Ulm) Nlm} =0, (4.12)

which in principle can be solved numerically. However for an arbitrary sum over {l,m}, this
is quite complicated.

4.3 Resonance channel

We expect that several values of {l, m} contribute in the classical equation of motion for the
mode functions of the vector potential, eq. (4.12). Here we focus on the channel {{ =1,m =
0} by simplicity and we leave a more complete analysis for future work.
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By focussing then on v1¢ and wyg, with all other mode functions set to zero, we can
explore this channel for resonance. We can readily write out the individual vector components
(7,6,¢) of eq. (4.12) for ] =1 and m = 0 giving

d3k i1 (k
/(2 )3 [W10 + k® w1g + 1 k Gay Orp v10) .71](“17“) Yio =0 (7 component), (4.13)
T
ek - 9 . . i .
/(27r)3 [Ulo + k% vio — 1k gay Os@ ww] Ji(kr)Y11e7 =0 (¢ component). (4.14)

There is a similar equation for the 0 component, but it is automatically satisfied once the
# and ¢ equations are satisfied. This is because we are in Coulomb gauge V-A = 0, which
reduces the system to only two independent equations.

Consider the radial component eq. (4.13). We substitute ¢ = ®(r) cos(wpt) and mul-
tiply the expression by Y75 j1(k’r) k' and integrate the whole expression over space [d>z.
This gives

0
ok, t)+k? wio(k,t) — lga'y wo k' sin(wp t)/dk k2 v1o(k, t)/dr r? ®(r) ji(kr) j1(k'r) =0,
s

(4.15)
where we have used the orthogonality property of the spherical Bessel functions
o(k — K
/dr r2 g (kr) (k' r) = 7r(2[€2) ) (4.16)

to simplify the first two terms in eq. (4.15).

The third term in eq. (4.15) appears complicated, however we can simplify its form by
the following method. Even though our system is actually 3-dimensional, the spherically
symmetry of the axion field means that we can represent the axion’s spatial profile ®(r) by
a 1-dimensional (real) Fourier transform ®;4(k)

O(r) = / % cos(kr) 1a(k) . (4.17)

We re-express the product of the spherical Bessel functions by the identity

1 k+k'
ED) 1K ) = S /|k | s Pk + K2 — K. (4.18)

By inserting this into the third term in eq. (4.15) we can now carry out the [dr integral using

/ drr sin(K'r) cos(kr) = ~2 82,, [3(k + k") + 8k~ k)] (4.19)

and then performing the [ dk integral to obtain

. . 1 k+k' 8 _
/dr r2®(r) ji(kr) j1 (K r) = T /k v dk" (k* + k" — k:"2)6k//<1>1d(k:") . (4.20)

In order to evaluate this integral, we recall that we are interested in axion field configu-
rations that are slowly varying in space. So their Fourier transforms are concentrated around
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k" = 0. For example, for the sech ansatz of eq. (4.2) the 1-dimensional Fourier transform is

also a sech function
~ 3N kR
@ pr— — . .
1a(k) =1/ & sech < 5 > (sech ansatz) (4.21)

For large radius R this is concentrated near small values k ~ 1/R < mg, which is required
for the non-relativistic approximation of the axion to be valid.

In this large R regime (and allowing for general profiles, rather than only the sech) the
integral in eq. (4.20) can be evaluated by taking k? + k> — k"2 ~ k? + k’? in the integrand
giving

drr? ®(r) jy(kr) jy (K ~Eiﬂ£ré k—k)— @k + K 4.22
Gkr) 1K r) ~ g | Bua(k = K) = @k +K)| . (4.22)

Now the resonance occurs when the wavenumbers satisfy k ~ k' ~ wo/2 =~ mg/2. In this
regime we can ignore the second term in eq. (4.22) as it is exponentially suppressed for
R > 1/my. Inserting this result into eq. (4.15) (and interchanging k with k) we obtain

dk’

’Lblo(k, t) + k> ’wlo(l{?, t) — igm wo k sin(wg t)/2ﬂ_ ’Ulo(k‘/) (i)ld(k — k‘/) =0. (4.23)

A similar line of reasoning goes through for the angular component eq. (4.14), leading to

dk’' ~
1'}10(16‘, t) + k‘g Ulo(k, t) + ’L'ga7 wo k sin(wo t)/2 wlo(k‘/) (I)ld(k — k‘/) =0. (4.24)
s
This pair of coupled equations for the mode functions v1g and wig can be studied numerically.

A self-consistent resonant solution is obeyed by
wio(k,t) = tiviog(k,t), (4.25)

which reduces the system to a single scalar differential equation and is effectively 1-
dimensional. This is much more tractable than the general 3-dimensional form mentioned
earlier in eq. (2.15).

4.4 Numerical method

In order to compute the resonance structure numerically, we need to generalize the Floquet
theory used earlier in section 3.2. Since all the k-modes are now coupled to each other, we
discretize our 1-dimensional k-space as

k=2 ez, (4.26)

L

where L is the size of the integration box which should be taken to be much larger than the
size of a clump, i.e., L > R. This means we now have a set of coupled oscillators with a
sinusoidal time dependent coupling.

Recall that in the homogenous case, as discussed in section 3, the resonance occurred
for wavenumbers k ~ wq/2 ~ mg/2. Since we are considering wide axion clumps, this general
idea will persist with k& ~ wy/2 = my/2 in the vicinity of the resonance. So we take a finite
set of wavenumbers, say K values, that surround mg/2. To perform the generalized Floquet
analysis, we consider a column vector of length K of mode functions #79 whose elements
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Figure 3. The maximum real part of Floquet exponent p;, describing parametric resonance of
photons from a spherically symmetric clump condensate, as a function of axion-photon coupling gq~ .
We plot p* in units of m¢\/3 and g, in units of \f / fa. Left panel: attractive self-interactions A < 0

with N = 8 in red, N = 9.2 in blue, and N = Nyax ~ 10.12 in green, where N = N/(|]\|V/5). Right
panel: repulsive self-interactions A > 0 with N =10 in red, N = 20 in blue, and N = 40 in green.

corresponds to each k-value. We then form a 2K x 2K matrix of initial conditions which
spans the complete space of solutions for the mode functions as

(310> S Log = <3K 2K> . (4.27)
Y10 / initial K +K

We then numerically evolve this set of coupled equations through one period T = 27 /wy
of the axion oscillation to obtain a new matrix Mag. Then, as we mentioned earlier in the
homogenous case, the behavior is controlled by the 2K eigenvalues x of the matrix Myg, with
Floquet exponents = In x/7". These are not labelled by wavenumber anymore, as Fourier
modes do not diagonalize the system. Nevertheless we can report on the maximum Floquet
exponent p* which will dominate at late times.

4.5 Numerical results

We have numerically determined the maximum Floquet exponent p* for this system for
various choices of axion-photon coupling gq, and for various parameters of the axion clump
specified by its radius R and particle number N. Operating in the sech approximation;
physical clumps have a simple relationship between radius and number that we recapitulated
earlier in section 4.1 and summarized in figure 2. We will focus on the stable blue branch
here. This allows us to eliminate radius R in favor of particle number N.

In figure 3 we show our results for the Floquet exponent as a function of axion-photon
ga~ for 3 fixed values of the axion number IV for the clump solution. For the case of attractive
self-interactions A < 0, recall there is a maximum axion number of Nyax ~ 10.12/(|\|V/9).
So we choose values of N < Npa.x. In the case of repulsive interactions we can choose
larger values for IV as there is no maximum. We have measured the coupling gq- in units of
VIA/me = \/7/ fa, Where v is the O(1) number that we mentioned in eq. (2.3) associated
with the details of the axion potential; for the conventional QCD axion its preferred value is
v~ 0.3.

In figure 4 we show our results for a complementary analysis. Here we plot the Floquet
exponent as a function of number N for 3 fixed values of the axion-photon coupling gq.
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Figure 4. The maximum real part of Floquet exponent p;, describing parametric resonance of
photons from a spherically symmetric clump condensate, as a function of clump number N. We plot
p* in units of myv/§ and N in units of |N|7Y/257Y/2. Left panel: attractive self-interactions A < 0
with Jq, = 0.8 in red, go,, = 1 in blue, and g, = 1.5 in green, where Goy = gay fa/\/7- Right panel:
repulsive self-interactions A > 0 with g, = 0.6 in red, g,y = 0.8 in blue, and g, = 1 in green.

For the QCD-axion with A < 0 and v = 0.3, we see from figure 3 left panel that when
the axion clump has maximum particle number, we need the coupling to be greater than a
minimum value

9ay > Yary,min = ?O , with 5.~ 0.3, (4.28)
a

in order to have parametric resonance. In conventional QCD axion models, we expect g,y =
O(1072)/ fa, so this would not be satisfied and there would be no resonance. On the other
hand, for unconventional axion models, or for couplings to hidden sector photons (e.g., see
ref. [45]), this condition may be satisfied, leading to resonance. Alternatively, for repulsive
self-interactions (e.g., see ref. [46]) there always exists sufficiently large N to achieve resonance
for any gq, (unless gq is extremely small, in which case the required N may be so large our
non-relativistic approximations will eventually breakdown).

5 General criteria for clump resonance

It is essential to notice a very big difference between the behavior of the Floquet exponent
in the homogeneous condensate case of section 3 and in the spatially localized clump case of
section 4. In the homogenous case, there always exists a non-zero maximum Floquet exponent
pyr, regardless of how small the axion-photon coupling g, is. Its value is proportional to
Jary (see eq. (3.15) and figure 1), and so long as g4 is non-zero, then p* will be non-zero too,
and there will be some resonance.

On the other hand, for a localized clump, as we saw in figures 3 & 4, the (real part of
the) maximum Floquet exponent p* becomes strictly zero below a critical coupling g4, or
below a critical particle number N.

There is in fact a very good physical reason for this. Imagine replacing the local clump
condensate with central amplitude ¢g by the corresponding homogenous field configuration
with the same amplitude ¢g. If the width of the clump is very large, then the homogenous
Floquet rate uj; should approximate the clump Floquet rate p*. On the other hand, if the
width of the clump (= 2 R) is sufficiently small, then a produced pair of photons will escape
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the clump quicker than the time it would take for the next photon pair to be produced. In
this case, Bose-Einstein statistics are ineffective as there are never more than O(1) occupancy
number of photons within the clump to induce exponential growth, so the resonance will be
shut-off leading to p* = 0 (it can still decay perturbatively into photons at the standard
quantum decay rate of I'(¢p — ) = ggv m‘; /(64 1), which is much longer than the age of
the universe for reasonable parameters of the QCD axion [47]). So the physical condition
for parametric resonance to occur is that the homogenous growth rate uj; ~ goy me ¢o/4 is
greater than the photon escape rate pesc = 1/(2 R)

W > Mesc, (resonance condition) . (5.1)

For earlier work on this idea see ref. [48] where this criteria was originally discovered in the
context of resonant scalar fields (also see ref. [49]) and see refs. [20—22] which discussed this
in the context of the axion-photon resonance.

Furthermore, an excellent approximation to the growth rate from a localized clump is
found to be the following

,LL* ~ {H}i[ — HMesc » N:H > hesc (52)
0, P < Hesc -

In the case of the above spherically symmetric clump configurations, the homogenous rate
Wi & Gay Mg G0 /4 is evaluated by taking the amplitude as

) 3N
b0 = \/;\1}07 with ¥y = \/; (sech ansatz) . (5.3)

We have confirmed the accuracy of this by computing both the exact numerical result for p*
according to the prescription of section 4 and this approximation for p*, finding very close
agreement. This approximate formula for ©* is both very physical and very easy to evaluate,
so we can use it in the next section to describe more complicated situations.

6 Effective photon mass

In the previous sections we have considered massless photons. However, this picture is only
rigorous in vacuum. In the not-quite-empty space of the interstellar medium, photons acquire
an effective mass equal to the plasma frequency according to [44]

o Amane Ne

— — 6.4 x 10712 eV)? 6.1
“p Me 0.03cm—3( % ¢ ) ’ (6.1)

where m. and n. correspond to the mass and number density of the free electrons, respec-
tively. In the very early universe, the number density of free electrons is so high that this
photon plasma frequency is very high. This forbids resonance since the above decay processes
¢ — v+ becomes kinematically forbidden. However, in the late universe, once clumps have
formed, the number density of free electrons decreases. For the typical halo value today
of ne ~ 0.03cm™3, we see that the plasma frequency is much smaller than the axion mass
mg ~ 107° eV, and so the process is easily kinematically allowed.

However, since we need to consider the fact that the electrons are spatially inhomoge-
neous, as they are moving in the galactic halo. To parameterize this we can write the plasma
frequency as wy(t) =~ wy, f(t), where f(t) is a non-periodic time dependent function of O(1).
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To estimate the size of this effect, let us ignore the spatial structure for the moment, and
focus on this new time dependence. The important fact is that if f(¢) is non-periodic then it
could jeopardize the parametric resonance which relies on the existence of an (approximately)
periodic pump. The modified equation of motion for the mode function s is approximated as

Sk + [k‘Q + wg(t) — Gay wo k o sin(wp t)] sk =0. (6.2)
In the small amplitude regime, the main contribution to the resonant process comes from the
first instability band at k &~ (wo/2). So, taking wo &~ mg, k ~ (mg/2), fo ~ 6 x 1011 GeV,
and mg ~ 1075 eV, we find that the ratio of the non-periodic plasma term to the periodic

axion term is

w2

P _ —4
PR O(1077). (6.3)

Hence the plasma mass corrections are expected to be negligible, indicating that our above
massless photon approximation is reasonable. Further analysis of this topic may be useful.

7 Clump condensates with angular momentum

In ref. [2] we studied BECs with non-zero angular momentum. We found that such clumps
have a larger maximum particle number (for attractive self-interactions) and therefore these
types of clumps may be better for achieving resonance as the field amplitude will also be
larger. We investigate this possibility here.

7.1 Non-spherical clump profile

As we did in ref. [2], we take the field profile to factorize into a radial profile ¥(r) and a
single spherical harmonic Y, as follows

Y(x,t) = \/E\IJ(T‘) Yim (0, ) e trt (7.1)

(note that the italic indices {l,m} here refer to the axion field, and not to be confused with
the non-italic indices {l,m} that referred to the electromagnetic field in section 4.2). This
ansatz is not exact since non-linearities will couple different spherical harmonics, but it will
suffice for our purposes here. The corresponding angular momentum is

L = (0,0, Nm), (7.2)

(with N = 47 [° dr r?|¥(r)?|) and evidently only depends on the spherical harmonic number
m and not [. As we showed in ref. [2], states that minimize the energy at fixed particle number
N and fixed angular momentum L, = N m occur for [ = |m/|, which we shall focus on.

Following ref. [2] we note that the above sech profile that we used for the spherically
symmetric case is not as accurate for states with non-zero angular momentum. In particular,
the equation of motion demands that the field around » = 0 has the form W¥(r) = ¥, 7! —
%\115 rit2 4 ... A very useful approximate form of the solution that obeys this property and
is known to be quite accurate numerically, is to take the profile to a modified Gaussian

N !
U(r) = m (%) e/ (2R?) (modified Gaussian ansatz) , (7.3)

where the (variational) radius R can now be a function of {l,m}.
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By inserting this into the Hamiltonian eq. (2.5) and integrating we find a generalization
of eq. (4.3) which allows for non-zero angular momentum
N G'mg N? A N2

2mg R? ~bim R + Cim mi R3

H (R) = Qqy (7.4)
In this modified Gaussian ansatz the form of a; is simple, but the exact forms of by, and ¢,
are complicated and are reported in the appendix. It suffices to report on their approximate
values for high angular momentum |m| =1

l Inl 1 .
a1 5, b 03361 == e T (high |m| =1). (7.5)

For attractive self-interactions A < 0 there is once again a maximum number of allowed
particles in a clump, which is a generalization of the spherically symmetric result in eq. (4.5)

to
a 1 10.52(3/2

V3 cim [AVE  (Inl)V/4

Since Npax is rapidly increasing with [ the field amplitude is quite large and therefore there
is an increased chance of resonance into photons which we explore in the next subsection.

Nonae = (high |m| = 1). (7.6)

7.2 Approximate treatment of clump resonance

For a non-spherically symmetric clump configuration in principle we should return to the
full equation of motion for the photon (2.14) in order to compute its behavior. However,
the problem is now fully 3-dimensional and we cannot reduce it to an effective 1-dimensional
problem as we did in section 4.3 when we studied spherically symmetric clumps. Although
such a problem may still be doable numerically, it suffices to utilize the important result
established in section 5, where it was explained that the condition for resonance is that the
maximum homogenous Floquet exponent p7; is larger than the effective escape rate piesc. We
expect this basic idea carries over to non-spherical pump configurations, and so we shall use
that idea in this section.

Firstly, we need to determine the maximum homogeneous Floquet exponent p};. Recall
that it is proportional to the field’s amplitude ¢g as (1j; = gay Mg ¢0/4. The field amplitude
is given by the following generalization of eq. (5.3) to include a spherical harmonic

¢o = \/T‘I’omylmk)- (7.7)
me

Here the maximum value or amplitude ¥y of the modified Gaussian occurs at a radius of

r = V1 R with value

v N b with f fe ! (high 1) (7.8)
= —_— , Wl = =~ s 1 . .

0 R3 : 2r(l+3)!  (2m)3/4V1 &

Also the maximum value |Y},,|o of the spherical harmonic with | = |m| occurs at a polar

angle of = m/2 with value

"
Vi Yiglo = YELEDE V2 i =), (79)

o)y T gi/A
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For attractive self-interactions (which is expected for axions) the best possibility for
resonance is when N is taken to its maximum value Ny given above in eq. (7.6), with a
corresponding (minimum) radius Rumin = /3 cm/bim/(mgV/3). By taking N — Npyax and
evaluating the above expression for ¥ we find the following form for the maximum Floquet
exponent of the corresponding homogeneous condensate

i~ 5.8 VI(In)Y* Go myVs, (N = Nipax; high [m|=1), (7.10)

where ga”/ = Yay fa/ﬁ'

Secondly, we need to determine the effective escape rate of the photons piesc. As we
explained in section 5 this is set by the inverse width of the axion clump. For a simple
spherically symmetric clump, like the sech function we studied earlier, this is clearly piese ~
1/(2R), where R is the argument of the sech function. However for these non-spherical
clumps there are potentially several complications. In particular, the radial profile is not
peaked around 7 = 0 for non-zero . Instead it is peaked around R, = v/ R. In fact the
modified Gaussian becomes an ordinary Gaussian with a shifted peak at large [ as

N —(r—R.)2/R2 .
\I/(T’) ~ me ( Rp) /R N (hlgh l), (711)

Notice that its full width in this radial direction is still of the order w, ~ 2 R.

Also, the angular dependence provided by the spherical harmonic is somewhat non-
trivial. For [ = |m| the spherical harmonic is Y}, (6, ¢) = e**!%(—sin 0)!|Yjn|o. Then when
we form the real field ¢ we obtain

o(r,0,0,t) = /77”2% VAT Ym0 ¥ (r) (—sin ) cos(wot £ 1), (7.12)

We see that the azimuthal angle ¢ acts as a phase-shift of the periodic oscillations in time.
This does not appear to appreciably alter the coherence of the pump field, and so we anticipate
that it does not affect the resonant structure appreciably. On the other hand, the dependence
on the polar variable 6 implies that the field is peaked at § = 7/2 with a full width half
maximum of

Af =2cos™! (e_% ln2) : (7.13)

For | — 0 this recovers A = 7, while for large [ it decreases as Af ~ 2,/2In2/l. This
implies that the full width in this polar direction is wp ~ A R,/ ~ 2 R (using R, = VI R),
which is of the same order as w,.

Hence, although it is not exact, we can estimate the effective width of the clump as
simply ~ 2 R and so we take the escape rate as pesc = 1/(2 R) as we did in the spherically
symmetric case. For attractive self-interactions, we again take N — Npax and we obtain

frose = 3.5 (In Y4 mgv/§, (N = Nyay; high |m| =1). (7.14)

Using the approximate formula for the maximum Floquet exponent p* from section 5 as
p* ~ Max{p}; — fesc, 0} we have evaluated this for [ = 0,1,...,50 and plotted the result in
figure 5 (we have computed these quantities exactly rather than just using the high |m| =1
approximations).
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Figure 5. The maximum real part of Floquet exponent p;, describing parametric resonance of
photons from a clump condensate as a function of its angular momentum |m| = I. We plot x* in units
of m¢ﬁ. This is for attractive self-interactions with N = Npyax. Here g,y = 0.1 in red, g, = 0.15 in
blue, and g, = 0.55 in green, where Joy = gay fa/\/7-

Since p}; in eq. (7.10) grows with angular momentum |m| = [ faster than pes in
eq. (7.14) does, it becomes easier to achieve resonance for BECs of higher angular momentum.

In fact by equating puj; = ftesc, we can determine the minimum axion-photon coupling
ga~y that will allow at least some clumps (namely those with N &~ Npax) to undergo para-
metric resonance into photons. We plot this in figure 6. In both figures 5 & 6 the I = 0 value
is obtained from our previous spherically symmetric analysis using the sech profile, while
for I > 1 we use the modified Gaussian profile discussed here. For high angular momen-
tum, the minimum axion-photon coupling that can achieve resonance is easily found from
egs. (7.10, 7.14). By taking v = 0.3 we obtain

0.3
9ay > Yary,min = &, with .~ —=, (N = Npax; high |m|=1). (7.15)
Ja Vi
Hence in order to achieve resonance with conventional values of g,, for the QCD axion
Gay = O(1072)/ f,, we need rather large angular momentum of |m| =1 > O(10?).

8 Astrophysical consequences and discussion

We have seen that under certain conditions, parametric resonance of axion clump conden-
sates into photons is possible. Suppose that the axion-photon coupling g, is greater than
the minimum value discussed above. This will lead to an exponential growth in the electro-
magnetic field. (Even though quantum fluctuations in the initial electromagnetic field should
ensure that the field has an initial non-zero value, we can also consider that axion clumps in
the galactic halo are immersed in a bath of several electromagnetic radiations coming from
astrophysical sources and the CMB. In any case, there should be no inconvenience so that
both quantum effects and real photons act as seeds for exponential growth over time.) The
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Figure 6. The minimum axion-photon coupling g, that is necessary in order to have resonance from
a clump condensate as a function of its angular momentum |[m| = [. We plot g, in units of \/7/ fa.
This is for attractive self-interactions with N = Nyjax.

photon occupancy number then increases from small to much larger values, which implies
that the final output is an essentially classical electromagnetic wave. We can estimate the
time-scale for this growth for typical values of the QCD axion. When pu}; is somewhat larger
than fiesc, we can just use the homogenous formula estimate p* ~ pj; = gayme ¢o/4. Let
us consider the true BEC ground states, which are spherically symmetric. For N ~ Npax
(attractive self-interactions) this rate is on the order

(1* ~ 15 gy famg Vo = 5mgVe, (8.1)

where in the last step we have used our earlier result gq f, > 0.3 for resonance. For the QCD
axion the expected value of § = G f2/v is very small. As an example, for f, ~ 6 x 101! GeV,
we have § ~ 5 x 10715, For an axion mass of Mg ~ 10~° eV, this gives a growth time-scale of
7 =1/p* <2 x 10 *sec. This is a very short time-scale for an astrophysical process. There
are two possible consequences of this, which we now discuss.

8.1 Clump mass pile-up

After the QCD phase transition in the early universe, the axion field begins red-shifting. After
some time this means its field amplitude is sufficiently small that it appears to not satisfy the
conditions for resonance. However, in the later universe, once gravitational interactions be-
come appreciable the axion field can potentially undergo gravitational thermalization forming
these clumps throughout the universe. Suppose the axion-photon coupling g, is appreciable.
Then as the axion clumps are forming, some of them will achieve a sufficiently large mass
and hence field amplitude that they can undergo parametric resonance into photons. Such
clumps would then quickly lost energy into electromagnetic radiation, causing the clump’s
mass to decrease. This would continue until the clump’s field amplitude is sufficiently small
that the resonance is shut-off. As we showed earlier, there exists a critical value for reso-
nance. Figure 4 shows that for a fixed value of the axion-photon coupling, there is a critical
number N, that allows for resonance. So if the clump begins with number N > N, it will
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Figure 7. Clump radius R as a function of clump number N for spherically symmetric clumps with
attractive self-interactions A < 0. We have taken the axion-photon coupling to be oy = gary fo/\/7 = 2
here. For any clumps on the stable blue branch with number N > N, they will resonantly produce
photons, lose mass, and pile-up at the critical value N, ~ 3.7/(|\|V/9).

radiate into photons, losing mass until M — N.mg and the resonance will stop. We il-
lustrate this idea in figure 7 where we describe spherically symmetric condensate clumps
With Joy = gay fa/\/7 = 2, Which corresponds to a critical number N, ~ 3.7 /(|]A|V§). We
have used green arrows to indicate that for initial numbers larger than this, they will flow
towards lower values, leading to a pile-up at a unique value indicated by the green circle. It
is interesting to note that this critical mass M. = N.mg is determined purely in terms of
fundamental constants. If such a pile-up of masses were detected it would be a clear signature
of the axion model.

8.2 Electromagnetic emission in the sky

The above idea is focussed on resonant processes that would presumably have occurred in the
distant past when the axion clumps first form. However we can imagine a scenario where the
process is still occurring. Consider a pair of clump condensates, each with number Ny and
Ny with N1 < N, and Ny < N,, where N, is the minimum number required for resonance.
Now suppose that these clumps happen to merge together in the late universe. If the total
number Nyt = N1+ Ny > N, (which is plausible given the pile-up near N, mentioned above)
then resonance will suddenly begin to occur, driving the total towards Ny, — N.. This
would lead to a sudden significant emission of electromagnetic radiation in the galaxy. The
corresponding electromagnetic output would be a narrow line near the resonant wavelength
of Apar = 27w /wo ~ 4m/mg. For an axion mass of mg ~ 107% eV, this is a radio wave line
Agar ~ 107 m.

Now the typical mass of a clump is on the order ~ 10~!! M, which is comparable to the
moon’s mass. If the merger took place, an amount of energy comparable to M ¢? equivalent
of the moon’s mass would be emitted into the galaxy. While this may be a small amount
of energy compared to, say, a typical supernovae explosion and may be a slower process, it
is possible that it would occur more frequently if these axion clumps comprise a significant
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fraction of the dark matter of the universe. However we leave an estimate of the merger rate
and corresponding detection viability for future work.

8.3 Outlook

In this work we have explored a possible novel consequence of the axion model, in which
gravitationally bound axion clumps can form and, under certain conditions, can undergo
parametric resonance into electromagnetic radiation. For conventional values of axion-photon
coupling this is impossible to achieve for an ordinary axion with attractive self-interactions
in its BEC ground state. However it can occur for a condensate of sufficiently large angular
momentum. Furthermore, it can occur for atypically large axion-photon coupling ge, 2
1/ fa, as well as for couplings to hidden sector photons in which the coupling is essentially
unconstrained, as well as for scalars with repulsive self-interactions since there is no maximum
clump mass in this case.

It would be interesting to further explore possible theoretical realizations of these more
general possibilities (e.g., see refs. [45, 46]) and to compare this to existing bounds on the
axion. It would also be worthwhile to explore possible hints of the above ideas of a clump
mass pile-up and of these sudden electromagnetic emissions. It is especially important to
numerically compute the clump abundance and merger rate. Such possible astrophysical
consequences of axions and axion-like-particles is an interesting direction that may help to
unravel the nature of dark matter.
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A Hamiltonian with angular momentum

The effective Hamiltonian for states of non-zero angular momentum eq. (7.4) is specified by
the following coefficients in the modified Gaussian ansatz

_3+2
-2,

2l
bim =Y Cim(I') Ji(1'), (A.2)
I'=0

(A1)

aj

2l
im = 2D S o )61, (A3)

- 13
22l+ 27 [(l + %)']2 I'=0

Here the coefficients Cj,,, (1) are the Wigner 3-j symbols

Chm(ﬂ)::(2l+])2<é g é)2<_l . >2, (A.4)

mO0 m
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and the coefficients J;(I’) are related to hypergeometric functions as follows

20+ )20+ 5,14+ 5214+ 555, 1)

J(I") =
(B+20+1)[(L+ )2
G IV 4+ S — 1+ 3 o920+ 50— + 1,0 L 42 -1)] A5)
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