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Abstract: This study examines the estimation of extreme conditional
quantiles for distributions with Weibull-type tails. We propose two
families of estimators for the Weibull tail-coefficient, and construct an
extrapolation estimator for the extreme conditional quantiles based on
a quantile regression and extreme value theory. The asymptotic re-
sults of the proposed estimators are established. This work fills a gap
in the literature on extreme quantile regressions, where many impor-
tant Weibull-type distributions are excluded by the assumed strong

conditions. A simulation study shows that the proposed extrapolation



method provides estimations of the conditional quantiles of extreme
orders that are more efficient and stable than those of the conventional
method. The practical value of the proposed method is demonstrated

through an analysis of extremely high birth weights.
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1. Introduction

Weibull-type distributions with a common extreme value index at zero form
a rich family of light-tailed distributions, including, for example, the Gaus-
sian, gamma, Weibull, and extended Weibull distributions. As noted in
Beirlant and Teugels (1992), these distributions are conventionally used in
the area of non-life insurance. Recently, de Wet et al. (2016) mentioned that
these distributions may have a wide range of applications in other fields,
such as hydrology, meteorology, and environmental sciences.

There is an extensive body of literature on the analysis of univari-
ate Weibull-type tails, including the works of Berred (1991), Broniatows-
ki (1993), Girard (2004), Gardes and Girard (2005, 2008), Diebolt et al.
(2008), Goegebeur et al. (2010), and Goegebeur and Guillou (2011). In
contrast, few studies have investigated the extremal behavior of Weibull-

type tails under a regression setting. Among those that have, de Wet et



al. (2016) used kernel statistics to estimate the tail coefficient of a Weibull-
type distribution and the extreme conditional quantiles. Gardes and Girard
(2016) focused only on estimating the tail-coefficient of a Weibull-type dis-
tribution, based on a kernel estimator of extreme conditional quantiles. It
is well known that a nonparametric quantile regression (QR) is not stable
on the boundary of the predictor support, and that estimations are chal-
lenging for multiple predictors, owing to the “curse of dimentionality;” see
Daouia et al. (2013). This motivates us to investigate the extremal behavior
of Weibull-type tails under a linear regression setting. To the best of our
knowledge, there is no existing literature on extreme quantile estimations
of Weibull-type tails under linear regression models.

Several studies have examined tail index regressions and extremal quan-
tiles under a regression setup. Assuming Pareto-type distributions that cor-
respond to positive extreme value indices, Wang and Tsai (2009) studied
the tail index regression model by employing the logarithmic function to
link the tail index to the linear predictor. Chernozhukov (2005) considered
the extremal quantiles in a linear regression framework, and derived the
asymptotic properties under three types of tail distributions corresponding
to the extreme value index £ < 0, £ =0, and £ > 0, respectively. However,

for condition R1 to hold, the case £ = 0 is excluded for the simple location-



scale shift model; see Example 3.2 in Chernozhukov (2005). Therefore, the
results in Chernozhukov (2005) are not applicable to general models with
Weibull-type distributions.

In this study, we develop new theory and methods with which to exam-
ine the extremal behavior of Weibull-type tails. We reconsider the impor-
tant condition R1 in Chernozhukov (2005) in order to make it applicable
for Weibull-type tails. Furthermore, we propose two families of estimators
for the Weibull tail-coefficient based on a linear regression of quantiles, and
construct an estimator for the extreme conditional quantiles using the ex-
trapolation method. The proposed estimators do not suffer from the “curse
of dimentionality,” and can be readily applied to a wide range of studies
with multiple predictors.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce the linear QR model, as well as several regularity assumptions that
are needed to establish the asymptotic results of the new method. In Sec-
tion 3, we propose two families of estimators for the Weibull tail-coefficient,
and construct an efficient extrapolation estimator for the extreme condi-
tional quantiles. The asymptotic results of the proposed estimators are
also derived in this section. Miscellaneous issues are discussed in Section

4, including identifying Weibull-type tails, a comparison of the asymptotic



efficiency of different estimators, and the validation of the model and the
technical assumptions. In Section 5, we conduct a simulation study to e-
valuate the finite-sample performance of the proposed estimators, and then
compare the results with those of the conventional method. In Section 6,
we illustrate the usefulness of the new method by using it to examine ex-
tremely high birth weights of live infants born in the United States. All

technical proofs are provided in the online Supplementary Material.

2. Model and assumptions

Let {(X;,Y;),i = 1,...,n} be independent copies of the random vector
(X,Y), where X = (1, X5, ..., X;) is a d-dimensional covariate and Y is a
one-dimensional response variable. For convenience, let X_; = (X5, ..., X)’
denote the covariate X without the first component, X denote the support
of X, and Fy(y|x) be the continuous conditional distribution function of
Y, given X = x. Denote Fy(y|x) = 1 — Fy(y|x) and let gy (7|x) = inf{y :
Fy(y|x) < 7} be the (1 — 7)th conditional quantile of Y, given X = x, also
referred to as the 7th right-tailed conditional quantile.

In this study, we consider the following linear QR model:

qy (7]x) = x'B(7), for all 7 € (0,7y], for some 0 <7y < 1, x € X,

(2.1)



where (7) is a vector of quantile coefficients. For any given 7, 5(7) can be

estimated by

n

~

Blr) =argmin p_ p-(¥i — Xif9), (2.2)
=1

where p.(u) = u{l(u > 0) — 7} is the asymmetric L; “check” function.
Let 7, be an intermediate quantile level in the sense that 7, — 0 and
nt, — 0o. It was shown in Chernozhukov (2005) that at the intermediate
quantile level, the asymptotic normal theory still holds for B (7,) and, hence,
for the conventional conditional quantile estimator g, (7 |x) = x'3(r,) of
¢y (Tn|x). Our main interest is the estimation of conditional quantiles at
the extreme quantile level ¢, — 0, which satisfies ¢, — 0 and In,/In7,
— Kk € (1,00) as 7, — 0. This allows 1, to go to zero at an arbitrarily
fast rate; see Section 4.3. Therefore, the corresponding quantile gy (¢, |x)
is further in the right tail and more extreme than gy (7,|x). In such a
case, the conventional quantile estimator g, (¥n|x) := x'B(1,) for gy (¢n|x)
is often unreliable, owing to the sparsity of data in the extreme tails. As
a result, obtaining precise estimates of the extreme quantiles remains a
challenging task. Extreme value theory provides a valuable mathematical
tool for solving this problem.

In this paper, we propose studying the linear QR model in (2.1) with

Weibull-type tails using extreme value theory. To start with, let u be a



random variable with the survival function F,(z) := P(u > z) and the
upper endpoint s* = co. Without loss of generality, we assume that F,(-)
is continuous, differentiable, and strictly decreasing. Recall that F,, has a

Weibull-type tail if there exists 8 > 0 such that, for all { > 0,

. InF,(¢z)
lim —————=
z—o0 In Fy(2)

=l (2.3)
The parameter 6 is also referred to as the Weibull tail-coefficient; this con-
trols the tail behavior such that a larger value of # results in a slower
decay of F, to zero. Weibull-tailed distributions cover a wide class of
light-tailed distributions in the Gumbel maximum domain, including the
Gaussian (0 = 1/2), exponential, gamma, logistic (¢ = 1), and Weibull
distributions; see Section 4.3 for a more specific discussion.

For convenience, we denote the cumulative hazard function by H,(z) :=
—1In F,(2), and the quantile function by q,(7) := F,;1(7) = H; *(In(1/7)),
for all 7 € (0,1). By (2.3), H,(-) is a regularly varying function, with index
1/6: that is,

H,(¢2)

lim Ho(s) ¢? for all ¢ > 0, (2.4)

which we denote by H,(-) € RV«(1/60). Note that (2.4) also holds locally

uniformly on ¢ > 0. By Proposition 0.1 in Resnick (1987), we have H,(-) €



RV (0). Hence, there exists a slowly varying function [(+), such that

H ' (2) = 2°(2), for z > 0, (2.5)

u

where [(-) satisfies that lim, ., {((2)/l(z) = 1, for all ¢ > 0. In addition, be-
cause H,(z) is differentiable so that H,'(z) is differentiable, we can obtain
that 0H, '(2)/0z € RV (0 — 1).

Throughout the paper, we use a(t) ~ b(t) to represent a(t)/b(t) — 1
when t tends to a constant or to infinity. To establish the asymptotic results
of the estimators proposed in Section 3, we require the following regularity

assumptions.

(C1) There exists a bounded vector 3, € R? and a survival function F,
of the Weibull-type tail with tail-coefficient 6, such that (i) U =
Y — X'f,, with sj; = oo; and (ii) Hy(z|x) ~ K(x)H,(z) uniform-
ly on x € X as z 1 sj;, where s;;, = inf {y  Fy(ylx) < O} is the upper
endpoint, and Hy(z|x) = —In Fy(2|x), with Fy(2|x) being the con-
ditional survival function of U, given X = x. Furthermore, Fy (z|x)
is assumed to be continuous and strictly decreasing with respect to z,

and K (-) > 0 is a continuous bounded function on the support X'.

(C2) For any k € (0,1) U (1,00), Hy' (= In(k7)|z) /Hy' (=InT|z) — 1 ~

@lnk/InT as 7 — 0.



(C3) X is a compact set in R?, and E(XX') is a positive-definite matrix.

(C4) Under (C1) — (C3), we assume that

OH;' (—InT|x) N OH ' (—InT/K(x))
or or

uniformly on x € X.

(C5) The slowly varying function I(-) in (2.5) satisfies the following: (i)
there exist a constant ¢ < 0 and a regularly varying function b(z) €
RV (0) by (2.3.8) in de Haan and Ferreira (2006), and b(z) — 0 as

2z — 00, such that locally uniformly on A > 1,

l<)\Z) = z 0] as 7z (0. ¢]
i (45) = 6D (14 o) a5 o

where D,()\) = ff‘ tetdt; (i) I(z) = cexp{ [ e(t)/tdt}, where ¢ > 0

and ¢ : (0,00) — R is a continuous function, with £(¢) — 0 as t — oo.

Remark 1. Condition (C1) implies that for any x € X, the conditional
cumulative hazard function Hy(-|x) and the univariate cumulative hazard
H,(-) are tail equivalent up to a constant. Under (C1), for large z, we can
write Hy(z|x) = K(x)H,(2)(1 + a(z|x)), where a(z|x) — 0 as z — oo

uniformly on x € X. Noting too that H,'(-) € RV (0), we thus have

) —InT

~ H- (—In7/K (%)), (2.6)
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and H,'(~In7/K(x)) ~ H '(—In(kT)/K(x)) as 7 — 0, for any k €
(0,1) U (1,00). This leads to Hy'(— In(k7)[x) ~ H;'(—In(k7)/K(x)) and
H;'(—In(k7)|x) ~ H;'(—InT|x). Condition (C2) further assumes that
H;' (—In(k7)|x)/H;' (= InT|x) — 1 and flnk/InT are asymptotically e-
quivalent; that is, they converge to zero at the same rate. The rationality

of (C2) is discussed in Section 4.3.

Conditions (C1), (C3), and (C4) can be regarded as adaptations of
conditions R1—R3 in Chernozhukov (2005) to Weibull-type tails. Condition
(C5)(i) is essentially the same as that in de Wet et al. (2016) and Girard
(2004). The latter is the second-order condition on [(-), with the second-
order parameter p < 0 that controls the convergence rate of I(A\z)/I(z)
toward one. The closer p is to zero, the slower is the convergence rate.
Hence, condition (C5)(i) plays a crucial role in deriving the asymptotic
results of our proposed estimators. Condition (C5)(ii) is essentially the
same as condition (A.2) in Gardes and Girard (2016), which is a special
case of the Karamata representation; see Theorem B.1.6 in de Haan and
Ferreira (2006) for regularly varying functions. The function £(-) in (C5)(ii)

determines the speed of the convergence of the slowly varying function [(-).
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3. Proposed estimators

In this section, we propose an extrapolation estimator for extreme condi-
tional quantiles. We also develop two types of estimators for the Weibull
tail-coefficient based on the regression quantiles.

For ease of notation, we denote qy(7|x) = Fj;'(7]x), for all 7 € (0,1).

By (2.6) and condition (C1), we have
gy (7]x) = qu (7]x) + x' B, = q, (Tl/K(X)) (1+a(r) + x'B,,

for some a(7) — 0 as 7 — 0. Therefore,

w (s Tl/K(x)) _ (s7|%) 4u (TI/K(X)) —1—=0
’ qy (7[x) qu ((s7)1/E9) ’

for all s >0 as 7 — 0.

3.1 Estimation of extreme conditional quantiles

Let 7 € (0,1) be sufficiently small. Then, by (2.5) and similar arguments
to those used in the proof of Lemma 2 in Gardes and Girard (2016), for

any given s € (0, 1], we have

Qu (ST)l/K(x) N
Ingy (s7|x) — Ingy (7]x) =1n< qi (71/K(X))) +In 1+ w (s, 7/

1 H ' (=In(s7)/K(x)) ) (o /K9
1 (Hul (—In(7)/K (x)) ) +in 14w (s, )]

=0 [In_o(s7) —In_o(7)] + T (s, 7|x), (3.1)
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where In_5(z) := In[ln(1/2)] and T'(s, 7|x) = In[l(— In(s7)/K(x))/l(— In(7)

/K (x))] +In[1 + w(s, 7/5®))] — 0 as 7 — 0. Then, for any s € (0, 1],

av (s71%) (1n<s¢>)9 o (3.2)

qy (T]x) InT

Suppose 6, is some consistent estimator of 6 (see Section 3.2). Then, we

can estimate gy (1,|x) by the following extrapolation estimator:

G (Un]X) = G (70|%) (In 0/ In 7,)"" (3.3)

where G, (7.|x) = X/3(7,), and B(r,) is defined in (2.2) at the intermediate

quantile level 7,,.

3.2 Estimation of the Weibull tail-coefficient

In this section, we propose several estimators for the Weibull tail-coefficient
6. For any given r € (0,1), let s; = 77! for j = 1,...,J, where J is a
positive integer. By (3.1) and the fact that In(1 + u) ~ uw as u — 0, it

follows that

Ingy (sj417|x) — Ingy (s;7|x) — {%} 0 —0,asT—0.

Let x € X be a given covariate vector. Based on the conventional con-

ditional quantile estimation at the intermediate quantile levels, namely,

~

Gn(s;Tn|x) = x'B(s;7), for j =1,...,J, we can construct a weighted esti-
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mator of #, as follows:

A In(1/7, R
Opp (x) = ﬁ Zw] NGy, (Sj417n|X) — In gy, (5570]%)],

where {wj}j:_f is a sequence of nonnegative weights summing to one. The
estimator én p(x) follows a similar spirit to the refined Pickand estimator
introduced in Daouia et al. (2013) for the conditional extreme value index.

Similarly to Daouia et al. (2013), we consider two special cases of

0,.p(x). The first case uses constant weights wy = -+ = wy_1 = 1/(J — 1),
yielding

A In(1/7,) ) .

¢ = 1 —1 :

In the second case, we consider linear weights w; = 2(J — 7)/{(J — 1)J},
for j=1,...,J — 1, which results in

2In(1/7,)
J(J—1)In(1/r)

J—1
O p (%) = Z [In Gy (s57alx) — In Gy, (70[x)] -
j=1

For comparison, we also introduce an estimator analogous to that pro-

posed in Gardes and Girard (2016):
A In(1/7,) d

Onr (x) = == " [In Gy (8570]%) — I Gy (Ta]x)] (3.4)
Z In(1/s;) /=1

where {s; : 0 < s; < --- < s; <1} is a decreasing sequence. The estimator

~

0,1 (x) is an adaptation of the Hill estimator (Hill, 1975) for univariate
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heavy-tailed data; see also Daouia et al. (2011) and Wang et al. (2012) for

Hill-type estimators under a regression setup.

~

Remark 2. From a theoretical point of view, we can use 6,(x) to esti-
mate the coefficient 6 at any given x € X'. However, given the sample data
{x;}7,, our experience suggests that 6, (X), with X = 327 | x,/n, is often
more stable than 6, (x) when x is not in the centroid of the design space.
This is mainly because there are often more data around X, and the con-
ventional conditional quantile estimator at x is less susceptible to quantile

crossing issues; see Koenker (2005, Chap. 2.5).

3.3 Asymptotic results

Here, we establish the asymptotic results of the proposed estimators. Through-

out, we assume that 7, — 0 and n7,, — oo as n — co. For any s > 0, define

i (o) = VT 1/7) (2070,

qy (8Tn|X)
Let % and < denote “convergence in distribution” and “equality in distri-
bution,” respectively.
We first present the asymptotic joint distribution of the random vector

(Gn(s1]x), ..., @n(ss]x)), for any given x € X and a positive sequence s; €

(0,1], for j=1,...,J.



3.3  Asymptotic results1s

Theorem 1. Suppose conditions (C1)—(C5) hold. For allx € X, if 1, — 0

as n — 0o, such that nt, — oo, then

(G (511%) -+ G (571%)) 5 (Goo (51]%) - - -+ oo (5]%)) £ N(0, Zy ),

where (Zqx))s = 0*(xX'Ux)H %(x)(max(s;, s;)) ", for j, i/ =1,...,J,
0 = 9,'9xQy', 9x = E(XX/), Qy = E[(H (X)) 'XX/], and H(x) =

(K (px)/ K (x)]°, with px = E(X).

Theorems 2 and 3 present the asymptotic results of the two proposed
Weibull tail-coefficient estimators: the Pickand-type estimator én p(x), and

the Hill-type estimator én 1 (x) with x € X being a given design vector.

Theorem 2. Suppose conditions (C1) — (C5) hold. Let s; = 7', for
j=1,...,J, wherer € (0,1). For any x € X, if \/n7, max (1/In(1/7,),

|b(1n(1/7’n))|) — 0, and \/n7,In(1/7,) max;—y J|W(Sj7Tn1/K(X))’ — 0,

then
N (én,p(x) — 9) 4 N(0, (Inr) 2W'S W),
where W = (wg — wy, ..., wj—1 —wj, ..., wy_1 —wy)', with wy =wy; = 0.

Theorem 3. Suppose conditions (C1) — (C5) hold. Let 1 = s; > s9 >
- > s; > 0 be a positive decreasing sequence. For any x € X, if

VT In(1/7,) max;_y s @ (s;, 7,/ 5| = 0 and /n7, max (1/In(1/7,),
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|b(1n(1/7’n))|) — 0, then

Vit (D) = 0) 5 N (0,0, H-2(00 (x'01%).

where

Ay = (Z J—7)+1}/s] — ) (Zln (1/s;) ) : (3.5)

j=1

For the Hill-type estimator, in practice, we can choose s; = 1/j, as in
Daouia et al. (2011). Consequently, A; = J(J —1)(2J —1)/(61n*(J!)). In
this case, A; is a convex function of J, and is minimized at J = 9, with
Ag = 1.245. Throughout the paper, we use énH(x) with the “optimal”
tuning parameters s; = 1/j and J = 9.

Finally, we establish the asymptotic normality of the proposed extrapo-
lation estimator for the extreme conditional quantitle, ¢, r(1,|x), based on
an asymptotically normal tail-coefficient estimator én, which can be either

the Pickand- or the Hill-type.

Theorem 4. Suppose conditions (C1) — (C5) hold, and k, := Inv,/InT,
— k€ (1,00) asn — oo. Let 0, be an estimator of 0 satisfying /mr, (6, —0)
4 N(0,03), with o > 0. Then, for any x € X, if \/n7, max{|b(In(1/7,))],

|0 (Y /T, T KON} = 0, we have

N (@n,Ewn\x) _ 1) 4 N(0, 02)

In Rn qQy (wn ’X) o
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4. Miscellaneous issues

4.1 Identifying Weibull-type tails

The expression in (3.1) suggests that if the conditional distribution of Y
has a Weibull-type tail, then In(gy (7|x)) will be approximately linear in
In_o(7), with slope 0. Motivated by this, we consider a graphical tool to
check the assumption of Weibull-type tail for the conditional distribution
of Y. Specifically, given the sample data {(x;,v;)}I,, we can obtain the
conventional estimator ¢,(7;|X) at the sample mean x for a grid of small
quantile levels 7q,...,7,,. Then, we can draw a quantile plot by plotting
In(g,(7j/x)) against In_o(7;), with j = 1,...,m. If the distribution has
a Weibull-type tail, the points should lie roughly on a straight line. The
graphical diagnosis at one design point, X, is reasonable, because condition
(C1) implies that, for any x, x' € X, z — Hy(z|x) and z — Hy(z|x') are
tail equivalent up to a constant. The above steps are described in further

detail in the case study in Section 6.

4.2 Comparison of asymptotic variances

Theorem 4 suggests that the estimation accuracy of the proposed extreme

quantile estimator ¢, g(1,|x) depends heavily on that of the Weibull tail-
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15

10

Figure 1: Plots of §%, 0%, and 37 against the Weibull tail-coefficient 6.

coefficient estimator. Define 6p = W'SW /(Inr)?, with 3, = 6*/(r’7t v
ri'=1), for j, 7' = 1,...,J, and 0y = A 0% By Theorems 3 and 4, we
have WS, oW /(Inr)? = [(x'x)/H?*(x)]dp and A 0*(x'Qx)/H?(x) =
(X' x)/H?(x)]0y. Therefore, to compare the asymptotic variances of
émp(x) and én,H(x), it suffices to compare dp and dy, where both are
quadratic functions of §. For convenience, denote 0% and &% as special
cases of dp for constant and linear weights, respectively, and d3; as a spe-
cial case of 5 with the “optimal” tuning parameters s; = 1/j and J = 9.
For the Pickand-type estimators, we select the tuning parameters J and

r by searching over J = {2,3,...,10} and R = {0.01,0.02,...,0.99}, re-
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spestively, to identify the optimal pair that gives the smallest p. Figure
1 shows that the three Weibull tail-coefficient estimators have similar effi-
ciency for small # € (0,0.5], but that for larger 6, ,, 5 and éfhp tend to be

more efficient than ¢, .

4.3 Model validation

In this section, we show that conditions (C1) and (C2) are very general,
and that they cover a wide range of conventional regression models as spe-
cial cases. We also present several important Weibull-type distributions
that fulfill the conditions in (C5). For illustration, we first present two

conventional regression models that satisfy condition (C1).

(M1) Consider the location shift model
Y =X'B + u,

where u is independent of X, and the survival function F,(-) of u has a
Weibull-type tail. This model is a special case of (C1), where X', =
X8, U =Y —X'f =u, and K(x) = 1, given X = x. Moreover,
Fy(z|x) = F,(2), for any z € R, such that Hy(z|x) ~ K(z)H,(2)

uniformly on x € X as z — oc.
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(M2) Consider the heteroscedastic model
Y =X+ (X¢)u,

where the scale function x’¢ > 0, for any X = x € X', v is independent
of X, and the survival function F,(-) of u has a Weibull-type tail. It

is easy to see that
Fyl(r|X) = X'+ (X'€) F (7).
Then, for X', =X'fand U =Y — X' = (X'§) u, we have

Hy(z]x) = —InP ((x')u > z|x)
= H, ((le)_l Z)

~ (€)1, (2),

as z — 0o, by (2.3). Thus, condition (C1) is satisfied, with K (x) =

(x'€)1/9 for any x € X.

Next, we present some important Weibull-type distributions as exam-

ples that satisfy condition (C5).

(E1) Let u follow the Gaussian distribution N(u,0?), with o > 0.
We have H;'(z) = 2'/21(z), and an asymptotic expansion of I(-) as

o Inz
T3,

I(2) = V20 +0(1/z).
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(E4)

This leads to § = 1/2, p = —1, ¢ = V20 exp(—1/4), and b(z) =

e(z) =Inz/(4z).

Let u follow the gamma distribution I'(S, o), with «, 5 > 0.
We have the density function f(z) = B°T!(a)z*'exp(—pBz), and

HY(2) = 2l(z), with

u

if a =1,

==

I(z) =

+osthz 4L O(1/z) ifa#1,

@[

This leads to 0 = 1, p = =1, c = exp(a —1)/3, and b(z) = &(z) =

(1—a)lnz/z.

Let u follow the Weibull distribution W(a, A), with a, A > 0.
We have the density function f(z) = (a/\)(z/A)* texp(—(z/\)%),
H;'(z) = A2V, and I(z) = A, for all z > 0. This leads to 6 = 1/a,

p=—00,c=A\ and b(z) =¢(z) = 0.

Let u follow the extended Weibull distribution EW («, 8), with o« > 0

and S € R.

The survival function of u is given by F,(z) = r(z) exp (—z%), where
7(:) € RV (B). In addition, H;'(z) = 2¥/*I(z), with

I(2) =1+ gln?z +0(1/2).
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This leads to 0 = 1/a, p = —1, ¢ = exp (f/a?), and b(z) = (z) =

—B(nz)/(a?z).

(E5) Let u follow the modified Weibull distribution MW (), with a > 0.
Let V.~ W(a,1) and u = VInV. Thus, H;'(2) = 2/%(2), with
[(z) =alnz. Thisleads to § = 1/, p=0, c = o, and b(z) = ¢(2) =

1/Inz.

In what follows, we show that (C2) holds for both the location shift
model (M1) and the heteroscedastic model (M2) with Weibull-tailed errors.

By (2.5) and (C5), and after some calculation, we have that

H'(— In(kr)) 0lnk

H '(—In7) Y

as 7 — 0. (4.1)

Note that H;;'(—In7|x) = H; (= InT), for any 7 € (0,1) in (M1). Thus, it
is clear that condition (C2) holds under (M1). Second, by H'(—In7|x) =
(x'€)H,'(—In7) and x'¢ > 0 in (M2), it is easy to check that condition
(C2) is also fulfilled under (M2) by using (4.1).

To verify the conditions required in Theorems 1—4, we need to deter-
mine the appropriate rates of 7,, and 1,,. Specifically, we need that as n —
/Ky

00, T, satisfies 7,, = 0, n7, — 00, /17, In(1/7,) max;—y__y|w(s;j, Tn

— 0, and \/n7, max {1/ In(1/7,), |b(In(1/7,))|, | @/, 7 <)} = 0,

for all x € X. The condition n7, — oo implies that 7, should be of a larger
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order than 1/n. In Propositions 1 and 2, provided in the online Supple-
mentary Material, we show that under both the location shift model (M1)
and the heteroscedastic model (M2), 7, = ko(Inlnn)/n, for some constant
ko > 0, is suitable for all five Weibull-type tail distributions in (E1) — (E5).
Then, a reasonable choice of 1, is ¥, = ki /n'™ or kyInn/n**! for some
ki1 > 0 and v > 0, leading to k, = Inv¢,/In7, - 1+v > 1 as n — oo.
This implies that any conditional quantile gy (¢,,|x) with order higher than
qy (Ta|X) can be estimated effectively by our extrapolation method, because
the rate of v, = ki /n'™ or kyInn/n"™! — 0 as n — oo can be arbitrarily

fast, given a suitable v.

5. Simulation study

In this section, we conduct a simulation study to assess the finite-sample
performance of the proposed extreme quantile estimator. Consider the fol-

lowing data-generating process:

(X1 + Xi2) Vi

Yi=1+Xi + Xio + Xig + 5 5

1=1,...,n,

where {X;;}7, are independent and identically distributed (i.i.d.) random
variables from the uniform distribution U(0, 1), for j = 1,2,3, and {V;},
are generated from the following five Weibull-type distributions: N(0,9),

with 6 = 0.5; W(5,1), with 6 = 0.2; W(1,1), with # = 1; MW(2/3), with
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6 = 1.5; and MW(1/2), with § = 2. In each case, the true conditional
quantile of Y is gy (¢n|x) = 1+ 21 + 29 + 23 + (21 + 22) Fy 1 () /2, for
n € (0,1) and x = (1, 21, 29, x3)". We consider n = 1000 in the simulation
study, and repeat the simulation 200 times for each case.

Our focus is the estimation of the extreme conditional quantiles gy (¢, |x),
where 1, = 1/n'™ with v = 0.01 (resulting in v,, = 0.001). For compar-
ison, we consider the conventional QR estimator ¢, (¢,|x) = x’ B (¢n), and
three variations of the proposed extreme conditional quantile estimator,
Q:;E(¢n|x), q::£(¢n|x), and ¢, i (¢n|x), based on the tail-coefficient estima-

tors HA;’“P(X), 0. o(x), and émH(f{), respectively. Here, x = (1,7, Ty, T3)'

with 7, = R™' 2% 2, for j = 1,2,3, and {z,}%, (R = 100) are drawn
randomly from U(0, 1).

To examine the sensitivity of the proposed estimators to the choice
of 7,, we let 7, = ko(Inlnn)/n, and plot the RMISE versus ko € [2,30]
in Figure 1 of the online Supplementary Material. Here, the RMISE is
defined as the square root of the mean integrated squared error between
a conditional quantile estimator and the truth gy (1,|x), integrated over
x and across 200 simulations. Figure 1 yields the following observations.

For the Gaussian, Weibull(5,1), and Weibull(1,1) distributions with small

. . . Pl . . .
or modest tail-coefficients, the estimator ¢, is more sensitive to the choice
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of ko, and is generally more efficient than the conventional QR estimator
for ky € [2,10]. However, the estimators (25:}% and ¢’ are more efficient
than the QR estimator, in general, for ky € [2,20]. On the other hand, for
the MW(2/3) and MW(1/2) distributions with larger tail-coefficients, the
estimator d::}E appears to be more efficient than cji’% and qA}L{?E, and all three
are clearly more efficient than the QR estimator across kg € [2, 30].

The tuning parameter kg plays a similar role to the threshold value in
the extreme value literature; that is, it balances the bias and the variance,
and has to be properly chosen. Several methods exist for choosing the
threshold-type tuning parameter; see Caeiro and Gomes (2016) for a review
on this topic. In practice, we choose ky by adapting the procedure in Neves
et al. (2015) based on path-stability. Specifically, in our simulation study,
we regard the path of the tail-coefficient estimation as a function of k.
Then, we choose the smallest value of kg within [2, 30], starting from which,
the estimation § becomes most stable.

Table 1 summarizes the RMISE of the conventional QR estimator and
the three extrapolation estimators based on 7, = ko(Inlnn)/n, with ko
chosen by the path-stability procedure. The Hill-type estimator and the
Pickand-type estimator with constant weights perform similarly, and both

are clearly more efficient than the QR estimator across all five distributions
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considered. The Pickand-type estimator with linear weights performs best
for the two MW distributions, which have larger tail-coefficients, but the
method is less efficient than the other two extrapolation estimators for
distributions with a tail-coefficient # < 1. These observations support the

theoretical comparison in Section 4.2.

6. Analysis of birth weights

To illustrate the usefulness of the proposed methods, we study the effects of
various behaviors of pregnant women on extremely high quantiles of birth
weights of live infants born in the United States. It is well known that a
low birth weight is associated with many health problems. On the other
hand, a high birth weight can also have serious adverse effects on both
maternal and child health. For example, a baby born with an excessively
high birth weight may be at increased risk at birth of injuries, respiratory
distress syndrome, low blood sugar, jaundice, and long-term health risks
such as type-2 diabetes, childhood obesity, and metabolic syndrome; see,
for instance, Aye et al. (2010) and Mohammadbeigi et al. (2013).

We use the June 1997 Detailed Natality Data published by the Nation-
al Center for Health Statistics, which contains the birth weights of 31912

infants born to black mothers. We let the response Y be the birth weights
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in grams, and consider eight covariates: X, is a binary variable indicating
whether the mother was married; X5 indicates whether the infant is a boy;
X3 represents the mother’s age (mean 26); X4, X492, and X3 indicate
whether the mother had no prenatal visit, visited for the first time in the
second trimester, and visited for the first time in the third trimester, re-
spectively; X5 denotes the mother’s education level (0 for less than high
school, 1 for high school, 2 for some college, and 3 for college graduate);
X indicates whether the mother smoked during pregnancy; X; represents
the average daily number of cigarettes per day the mother smoked; and Xy
denotes the mother’s weight gain during pregnancy (mean 29 pounds). The
same data set was also analyzed in Abreveya (2001), Koenker and Hallock
(2001), and Chernozhukov and Ferndndez-Val (2011). However, the former
two focused on analyzing typical birth weights in the range between 2000
and 4500 grams, and the latter examined extremely low birth weights in the
range between 250 and 1500 grams. In contrast, we focus on the extremely
high quantiles of birth weights, over 4500 grams.

Let X = (1, X1, Xo, X3, X2, X41, X420, Xu3, X5, ..., Xg, X2)T, where X3,
X2 and Xg, X2 are centered at zero. We consider the following linear quan-
tile regression model: gy (7|X) = X'5(7), 7 € (0, 1).

To examine whether the conditional distribution of Y has a Weibull-
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type tail, we follow the suggestion in Section 4.1 and plot In(g, (7|X)) against
In_5(7) for 7 € {0.01,0.0095 , ...,0.001} in Figure 2. The plot suggests that
there is a strong linear relationship between In(g,(7]X)) and In_»(7). Hence,

our proposed method is appropriate for analyzing the data. Similarly to the

feel A [2]
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Figure 2: Diagnosis of the Weibull-type tail for the birth-weight data.

simulation study, we choose J and r by following the grid search method
discussed in Section 4.2, and let 7,, = ko(Inlnn)/n. Figure 3 shows the
path of the three tail-coefficient estimators against kg € [2,100]. Note
that we exclude ky = 1, because this results in a small 7,, such that the
tail-coefficient is estimated to be zero. Using the path-stability procedure

in Neves et al. (2015), the adaptive kg is chosen as 45, 63, and 40 for
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éfhp(i), éhp (), and 0, (), respectively, and the corresponding estimates
are 05 (%) = 0.225, 0}, ,(x) = 0.166, and 0, ;(x) = 0.247, respectively.
Figure 3 shows that the path of éfﬁ, (x) is relatively more stable than those
of 0!, (%) and 6,1 (X) when ko € [40, 100].

Figure 4 plots the estimated extremely high conditional quantiles of
the birth weights of baby girls and boys born to black mothers, of the
average profile, from the conventional QR and the proposed extrapolation
estimators against the percentile level 100(1 — ,), where 1, = k;/n
with k; € {0.1,0.2,...,0.9,1,2,...,50}, and from the three extrapolation
estimators based on éfhp(fc), é}up(i), and 6, 11(X), denoted by EC, EL, and
EH, respectively.

The following observations are derived from Figure 4. First, the esti-
mates from the conventional QR method are not monotonically increasing
with the quantile level, whereas such monotonicity is ensured by the extrap-
olation estimators. Second, for 100(1 — ,,) ranging over [99.8588, 99.9576],
both the QR and the extrapolation estimators suggest that the quantiles of
the birth weights of boys are higher than those of girls. However, for ex-
tremely high percentiles 100(1 — ¢,,) > 99.9831, the QR estimates suggest
an opposite relationship, namely, that girls have higher birth weights than

boys. This result is surprising, because we often found that male infants
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Figure 3: Three estimators of the Weibull tail-coefficient 6 versus kg for the

high birth weight.

are heavier than female infants, in general. Based on the QR, the 99.98th
percentile of the birth weight of an infant girl born to an average mum is es-
timated to be 5269.218 grams, and the 99.99th percentile is estimated to be
5674.657 grams. Further investigation shows that these high estimates from
the QR are mainly affected by one infant girl who has an extremely high
birth weight of 6776 grams, and was born to a mother whose first prenatal
visit was during the second trimester. In contrast, the proposed estimators
are based on extrapolations from the (1 —1,)th quantile and, thus, are less

susceptible to the extreme measurements of individual subjects.
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Figure 4: Estimation of the extremely high conditional quantile of the birth
weights of baby girls and boys born to black mothers of the average profile,

using the conventional QR and three extrapolation estimators.

Supplementary Material

The online Supplementary Material includes four sections. In Section
S1, we provide seven lemmas that are needed to derive the asymptotic re-
sults of the proposed estimators. In Section S2, we provide two propositions
that are used in Section 4.3. Technical proofs of all four theorems are pre-
sented in Section S3. In Section S4, we present Figure 1, which plots the

RMISE of different estimators versus kj for the simulation study.
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Table 1: The root mean integrated squared errors of different estimators of
qy (V¥n]x), with ¥, = n=1% and n = 1000. Values in parentheses are the
standard errors. ¢, is the conventional quantile regression estimator, and
QEZEC , (jngl, and (j}f’E are the extrapolation estimators based on the Pickand-
type tail-coefficient estimators with constant and linear weights, and the

Hill-type tail-coefficient estimator, respectively. For the extrapolation es-

timators, 7, = ko(Inlnn)/n, where ko is chosen using the path-stability

procedure.

Distribution QE:EC di’é Ing Gn
N(0,9) | 0.6143 | 0.8067 | 0.6260 | 0.7753
(0.0194) | (0.0189) | (0.0184) | (0.0233)

W(5,1) | 0.0344 | 0.0423 | 0.0342 | 0.0392
(0.0009) | (0.0009) | (0.0008) | (0.0012)

W(1,1) | 0.6892 | 0.8264 | 0.6921 0.8712
(0.0168) | (0.0178) | (0.0172) | (0.0329)

MW (2/3) | 11.264 8.394 11.150 17.041
(0.5043) | (0.4223) | (0.4736) | (0.8208)

MW(1/2) | 54.730 | 39.437 | 52.879 | 84.043
(1.6219) | (1.4245) | (1.4677) | (3.9583)
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