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Abstract: This study examines the estimation of extreme conditional

quantiles for distributions with Weibull-type tails. We propose two

families of estimators for the Weibull tail-coefficient, and construct an

extrapolation estimator for the extreme conditional quantiles based on

a quantile regression and extreme value theory. The asymptotic re-

sults of the proposed estimators are established. This work fills a gap

in the literature on extreme quantile regressions, where many impor-

tant Weibull-type distributions are excluded by the assumed strong

conditions. A simulation study shows that the proposed extrapolation
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method provides estimations of the conditional quantiles of extreme

orders that are more efficient and stable than those of the conventional

method. The practical value of the proposed method is demonstrated

through an analysis of extremely high birth weights.
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1. Introduction

Weibull-type distributions with a common extreme value index at zero form

a rich family of light-tailed distributions, including, for example, the Gaus-

sian, gamma, Weibull, and extended Weibull distributions. As noted in

Beirlant and Teugels (1992), these distributions are conventionally used in

the area of non-life insurance. Recently, de Wet et al. (2016) mentioned that

these distributions may have a wide range of applications in other fields,

such as hydrology, meteorology, and environmental sciences.

There is an extensive body of literature on the analysis of univari-

ate Weibull-type tails, including the works of Berred (1991), Broniatows-

ki (1993), Girard (2004), Gardes and Girard (2005, 2008), Diebolt et al.

(2008), Goegebeur et al. (2010), and Goegebeur and Guillou (2011). In

contrast, few studies have investigated the extremal behavior of Weibull-

type tails under a regression setting. Among those that have, de Wet et
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al. (2016) used kernel statistics to estimate the tail coefficient of a Weibull-

type distribution and the extreme conditional quantiles. Gardes and Girard

(2016) focused only on estimating the tail-coefficient of a Weibull-type dis-

tribution, based on a kernel estimator of extreme conditional quantiles. It

is well known that a nonparametric quantile regression (QR) is not stable

on the boundary of the predictor support, and that estimations are chal-

lenging for multiple predictors, owing to the “curse of dimentionality;” see

Daouia et al. (2013). This motivates us to investigate the extremal behavior

of Weibull-type tails under a linear regression setting. To the best of our

knowledge, there is no existing literature on extreme quantile estimations

of Weibull-type tails under linear regression models.

Several studies have examined tail index regressions and extremal quan-

tiles under a regression setup. Assuming Pareto-type distributions that cor-

respond to positive extreme value indices, Wang and Tsai (2009) studied

the tail index regression model by employing the logarithmic function to

link the tail index to the linear predictor. Chernozhukov (2005) considered

the extremal quantiles in a linear regression framework, and derived the

asymptotic properties under three types of tail distributions corresponding

to the extreme value index ξ < 0, ξ = 0, and ξ > 0, respectively. However,

for condition R1 to hold, the case ξ = 0 is excluded for the simple location-
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scale shift model; see Example 3.2 in Chernozhukov (2005). Therefore, the

results in Chernozhukov (2005) are not applicable to general models with

Weibull-type distributions.

In this study, we develop new theory and methods with which to exam-

ine the extremal behavior of Weibull-type tails. We reconsider the impor-

tant condition R1 in Chernozhukov (2005) in order to make it applicable

for Weibull-type tails. Furthermore, we propose two families of estimators

for the Weibull tail-coefficient based on a linear regression of quantiles, and

construct an estimator for the extreme conditional quantiles using the ex-

trapolation method. The proposed estimators do not suffer from the “curse

of dimentionality,” and can be readily applied to a wide range of studies

with multiple predictors.

The remainder of this paper is organized as follows. In Section 2, we in-

troduce the linear QR model, as well as several regularity assumptions that

are needed to establish the asymptotic results of the new method. In Sec-

tion 3, we propose two families of estimators for the Weibull tail-coefficient,

and construct an efficient extrapolation estimator for the extreme condi-

tional quantiles. The asymptotic results of the proposed estimators are

also derived in this section. Miscellaneous issues are discussed in Section

4, including identifying Weibull-type tails, a comparison of the asymptotic
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efficiency of different estimators, and the validation of the model and the

technical assumptions. In Section 5, we conduct a simulation study to e-

valuate the finite-sample performance of the proposed estimators, and then

compare the results with those of the conventional method. In Section 6,

we illustrate the usefulness of the new method by using it to examine ex-

tremely high birth weights of live infants born in the United States. All

technical proofs are provided in the online Supplementary Material.

2. Model and assumptions

Let {(Xi, Yi), i = 1, . . . , n} be independent copies of the random vector

(X, Y ), where X = (1, X2, . . . , Xd)
′ is a d-dimensional covariate and Y is a

one-dimensional response variable. For convenience, let X−1 = (X2, . . . , Xd)
′

denote the covariate X without the first component, X denote the support

of X, and FY (y|x) be the continuous conditional distribution function of

Y , given X = x. Denote F̄Y (y|x) = 1 − FY (y|x) and let qY (τ |x) = inf{y :

F̄Y (y|x) ≤ τ} be the (1− τ)th conditional quantile of Y , given X = x, also

referred to as the τth right-tailed conditional quantile.

In this study, we consider the following linear QR model:

qY (τ |x) = x′β(τ), for all τ ∈ (0, τU ], for some 0 < τU < 1, x ∈ X ,

(2.1)
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where β(τ) is a vector of quantile coefficients. For any given τ , β(τ) can be

estimated by

β̂(τ) = arg min
β∈Rd

n∑
i=1

ρτ (Yi −X′iβ), (2.2)

where ρτ (u) = u{I(u > 0) − τ} is the asymmetric L1 “check” function.

Let τn be an intermediate quantile level in the sense that τn → 0 and

nτn → ∞. It was shown in Chernozhukov (2005) that at the intermediate

quantile level, the asymptotic normal theory still holds for β̂(τn) and, hence,

for the conventional conditional quantile estimator q̂n(τn|x) = x′β̂(τn) of

qY (τn|x). Our main interest is the estimation of conditional quantiles at

the extreme quantile level ψn → 0, which satisfies ψn → 0 and lnψn/ ln τn

→ κ ∈ (1,∞) as τn → 0. This allows ψn to go to zero at an arbitrarily

fast rate; see Section 4.3. Therefore, the corresponding quantile qY (ψn|x)

is further in the right tail and more extreme than qY (τn|x). In such a

case, the conventional quantile estimator q̂n(ψn|x) := x′β̂(ψn) for qY (ψn|x)

is often unreliable, owing to the sparsity of data in the extreme tails. As

a result, obtaining precise estimates of the extreme quantiles remains a

challenging task. Extreme value theory provides a valuable mathematical

tool for solving this problem.

In this paper, we propose studying the linear QR model in (2.1) with

Weibull-type tails using extreme value theory. To start with, let u be a
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random variable with the survival function F̄u(z) := P(u > z) and the

upper endpoint s∗u = ∞. Without loss of generality, we assume that F̄u(·)

is continuous, differentiable, and strictly decreasing. Recall that F̄u has a

Weibull-type tail if there exists θ > 0 such that, for all ζ > 0,

lim
z→∞

ln F̄u (ζz)

ln F̄u(z)
= ζ1/θ. (2.3)

The parameter θ is also referred to as the Weibull tail-coefficient; this con-

trols the tail behavior such that a larger value of θ results in a slower

decay of F̄u to zero. Weibull-tailed distributions cover a wide class of

light-tailed distributions in the Gumbel maximum domain, including the

Gaussian (θ = 1/2), exponential, gamma, logistic (θ = 1), and Weibull

distributions; see Section 4.3 for a more specific discussion.

For convenience, we denote the cumulative hazard function by Hu(z) :=

− ln F̄u(z), and the quantile function by qu(τ) := F̄−1u (τ) = H−1u (ln(1/τ)),

for all τ ∈ (0, 1). By (2.3), Hu(·) is a regularly varying function, with index

1/θ: that is,

lim
z→∞

Hu(ζz)

Hu(z)
= ζ1/θ, for all ζ > 0, (2.4)

which we denote by Hu(·) ∈ RV∞(1/θ). Note that (2.4) also holds locally

uniformly on ζ > 0. By Proposition 0.1 in Resnick (1987), we have H−1u (·) ∈
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RV∞(θ). Hence, there exists a slowly varying function l(·), such that

H−1u (z) = zθl(z), for z > 0, (2.5)

where l(·) satisfies that limz→∞ l(ζz)/l(z) = 1, for all ζ > 0. In addition, be-

cause Hu(z) is differentiable so that H−1u (z) is differentiable, we can obtain

that ∂H−1u (z)/∂z ∈ RV∞(θ − 1).

Throughout the paper, we use a(t) ∼ b(t) to represent a(t)/b(t) → 1

when t tends to a constant or to infinity. To establish the asymptotic results

of the estimators proposed in Section 3, we require the following regularity

assumptions.

(C1) There exists a bounded vector βr ∈ Rd and a survival function F̄u

of the Weibull-type tail with tail-coefficient θ, such that (i) U =

Y − X′βr, with s∗U = ∞; and (ii) HU(z|x) ∼ K(x)Hu(z) uniform-

ly on x ∈ X as z ↑ s∗U , where s∗U = inf
{
y : F̄U(y|x) ≤ 0

}
is the upper

endpoint, and HU(z|x) = − ln F̄U(z|x), with F̄U(z|x) being the con-

ditional survival function of U , given X = x. Furthermore, F̄U(z|x)

is assumed to be continuous and strictly decreasing with respect to z,

and K(·) > 0 is a continuous bounded function on the support X .

(C2) For any k ∈ (0, 1) ∪ (1,∞), H−1U (− ln(kτ)|x) /H−1U (− ln τ |x) − 1 ∼

θ ln k/ ln τ as τ → 0.
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(C3) X is a compact set in Rd, and E(XX′) is a positive-definite matrix.

(C4) Under (C1)− (C3), we assume that

∂H−1U (− ln τ |x)

∂τ
∼ ∂H−1u (− ln τ/K(x))

∂τ
uniformly on x ∈ X .

(C5) The slowly varying function l(·) in (2.5) satisfies the following: (i)

there exist a constant % ≤ 0 and a regularly varying function b(z) ∈

RV∞(%) by (2.3.8) in de Haan and Ferreira (2006), and b(z) → 0 as

z →∞, such that locally uniformly on λ ≥ 1,

ln

(
l(λz)

l(z)

)
= b(z)D%(λ) (1 + o(1)) , as z→∞,

where D%(λ) =
∫ λ
1
t%−1dt; (ii) l(z) = c exp{

∫ z
1
ε(t)/tdt}, where c > 0

and ε : (0,∞)→ R is a continuous function, with ε(t)→ 0 as t→∞.

Remark 1. Condition (C1) implies that for any x ∈ X , the conditional

cumulative hazard function HU(·|x) and the univariate cumulative hazard

Hu(·) are tail equivalent up to a constant. Under (C1), for large z, we can

write HU(z|x) = K(x)Hu(z)(1 + α(z|x)), where α(z|x) → 0 as z → ∞

uniformly on x ∈ X . Noting too that H−1u (·) ∈ RV∞(θ), we thus have

H−1U (− ln τ |x) = H−1u

(
− ln τ

K(x)
(
1 + α

(
H−1U (− ln τ |x) |x

)))

∼ H−1u (− ln τ/K(x)), (2.6)
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and H−1u (− ln τ/K(x)) ∼ H−1u (− ln(kτ)/K(x)) as τ → 0, for any k ∈

(0, 1) ∪ (1,∞). This leads to H−1U (− ln(kτ)|x) ∼ H−1u (− ln(kτ)/K(x)) and

H−1U (− ln(kτ)|x) ∼ H−1U (− ln τ |x). Condition (C2) further assumes that

H−1U (− ln(kτ)|x)/H−1U (− ln τ |x) − 1 and θ ln k/ ln τ are asymptotically e-

quivalent; that is, they converge to zero at the same rate. The rationality

of (C2) is discussed in Section 4.3.

Conditions (C1), (C3), and (C4) can be regarded as adaptations of

conditions R1−R3 in Chernozhukov (2005) to Weibull-type tails. Condition

(C5)(i) is essentially the same as that in de Wet et al. (2016) and Girard

(2004). The latter is the second-order condition on l(·), with the second-

order parameter ρ ≤ 0 that controls the convergence rate of l(λz)/l(z)

toward one. The closer ρ is to zero, the slower is the convergence rate.

Hence, condition (C5)(i) plays a crucial role in deriving the asymptotic

results of our proposed estimators. Condition (C5)(ii) is essentially the

same as condition (A.2) in Gardes and Girard (2016), which is a special

case of the Karamata representation; see Theorem B.1.6 in de Haan and

Ferreira (2006) for regularly varying functions. The function ε(·) in (C5)(ii)

determines the speed of the convergence of the slowly varying function l(·).
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3. Proposed estimators

In this section, we propose an extrapolation estimator for extreme condi-

tional quantiles. We also develop two types of estimators for the Weibull

tail-coefficient based on the regression quantiles.

For ease of notation, we denote qU(τ |x) = F̄−1U (τ |x), for all τ ∈ (0, 1).

By (2.6) and condition (C1), we have

qY (τ |x) = qU (τ |x) + x′βr = qu
(
τ 1/K(x)

)
(1 + α(τ)) + x′βr,

for some α(τ)→ 0 as τ → 0. Therefore,

$
(
s, τ 1/K(x)

)
=
qY (sτ |x)

qY (τ |x)

qu
(
τ 1/K(x)

)
qu ((sτ)1/K(x))

− 1→ 0,

for all s > 0 as τ → 0.

3.1 Estimation of extreme conditional quantiles

Let τ ∈ (0, 1) be sufficiently small. Then, by (2.5) and similar arguments

to those used in the proof of Lemma 2 in Gardes and Girard (2016), for

any given s ∈ (0, 1], we have

ln qY (sτ |x)− ln qY (τ |x) = ln

(
qu
(
(sτ)1/K(x)

)
qu (τ 1/K(x))

)
+ ln

[
1 +$

(
s, τ 1/K(x)

)]
= ln

(
H−1u (−ln(sτ)/K(x))

H−1u (−ln(τ)/K(x))

)
+ ln

[
1 +$

(
s, τ 1/K(x)

)]
= θ [ln−2(sτ)− ln−2(τ)] + T (s, τ |x) , (3.1)
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where ln−2(z) := ln[ln(1/z)] and T (s, τ |x) = ln[l(− ln(sτ)/K(x))/l(− ln(τ)

/K(x))] + ln[1 +$(s, τ 1/K(x))]→ 0 as τ → 0. Then, for any s ∈ (0, 1],

qY (sτ |x)

qY (τ |x)
−
(

ln(sτ)

ln τ

)θ
→ 0. (3.2)

Suppose θ̂n is some consistent estimator of θ (see Section 3.2). Then, we

can estimate qY (ψn|x) by the following extrapolation estimator:

q̂n,E (ψn|x) = q̂n(τn|x) (lnψn/ ln τn)θ̂n , (3.3)

where q̂n(τn|x) = x′β̂(τn), and β̂(τn) is defined in (2.2) at the intermediate

quantile level τn.

3.2 Estimation of the Weibull tail-coefficient

In this section, we propose several estimators for the Weibull tail-coefficient

θ. For any given r ∈ (0, 1), let sj = rj−1, for j = 1, . . . , J , where J is a

positive integer. By (3.1) and the fact that ln(1 + u) ∼ u as u → 0, it

follows that

ln qY (sj+1τ |x)− ln qY (sjτ |x)−
{

ln(1/r)

ln(1/τ)

}
θ → 0, as τ → 0.

Let x ∈ X be a given covariate vector. Based on the conventional con-

ditional quantile estimation at the intermediate quantile levels, namely,

q̂n(sjτn|x) = x′β̂(sjτn), for j = 1, . . . , J , we can construct a weighted esti-
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mator of θ, as follows:

θ̂n,P (x) =
ln(1/τn)

ln(1/r)

J−1∑
j=1

ωj [ln q̂n (sj+1τn|x)− ln q̂n (sjτn|x)] ,

where {ωj}J−1j=1 is a sequence of nonnegative weights summing to one. The

estimator θ̂n,P (x) follows a similar spirit to the refined Pickand estimator

introduced in Daouia et al. (2013) for the conditional extreme value index.

Similarly to Daouia et al. (2013), we consider two special cases of

θ̂n,P (x). The first case uses constant weights ω1 = · · · = ωJ−1 = 1/(J − 1),

yielding

θ̂cn,P(x) =
ln(1/τn)

(J − 1) ln(1/r)

[
ln q̂n

(
rJ−1τn|x

)
− ln q̂n (τn|x)

]
.

In the second case, we consider linear weights ωj = 2(J − j)/{(J − 1)J},

for j = 1, . . . , J − 1, which results in

θ̂ln,P(x) =
2 ln(1/τn)

J(J − 1) ln(1/r)

J−1∑
j=1

[ln q̂n (sjτn|x)− ln q̂n (τn|x)] .

For comparison, we also introduce an estimator analogous to that pro-

posed in Gardes and Girard (2016):

θ̂n,H (x) =
ln(1/τn)
J∑
j=1

ln(1/sj)

J∑
j=1

[ln q̂n (sjτn|x)− ln q̂n (τn|x)] , (3.4)

where {sj : 0 < sJ < · · · < s1 ≤ 1} is a decreasing sequence. The estimator

θ̂n,H(x) is an adaptation of the Hill estimator (Hill, 1975) for univariate



3.3 Asymptotic results14

heavy-tailed data; see also Daouia et al. (2011) and Wang et al. (2012) for

Hill-type estimators under a regression setup.

Remark 2. From a theoretical point of view, we can use θ̂n(x) to esti-

mate the coefficient θ at any given x ∈ X . However, given the sample data

{xi}ni=1, our experience suggests that θ̂n(x̄), with x̄ =
∑n

i=1 xi/n, is often

more stable than θ̂n(x) when x is not in the centroid of the design space.

This is mainly because there are often more data around x̄, and the con-

ventional conditional quantile estimator at x̄ is less susceptible to quantile

crossing issues; see Koenker (2005, Chap. 2.5).

3.3 Asymptotic results

Here, we establish the asymptotic results of the proposed estimators. Through-

out, we assume that τn → 0 and nτn →∞ as n→∞. For any s > 0, define

q̃n (s|x) =
√
nτn ln (1/τn)

(
q̂n(sτn|x)

qY (sτn|x)
− 1

)
.

Let
d−→ and

d
= denote “convergence in distribution” and “equality in distri-

bution,” respectively.

We first present the asymptotic joint distribution of the random vector

(q̃n(s1|x), . . . , q̃n(sJ |x)), for any given x ∈ X and a positive sequence sj ∈

(0, 1], for j = 1, . . . , J .
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Theorem 1. Suppose conditions (C1)−(C5) hold. For all x ∈ X , if τn → 0

as n→∞, such that nτn →∞, then

(q̃n (s1|x) , . . . , q̃n (sJ |x))′
d−→ (q∞ (s1|x) , . . . , q∞ (sJ |x))′

d
= N(0,Σq(x)),

where (Σq(x))j,j′ = θ2(x′Ω1x)H−2(x)(max(sj, sj′))
−1, for j, j′ = 1, . . . , J ,

Ω1 = Q−1H QXQ−1H , QX = E(XX′), QH = E[(H(X))−1XX′], and H(x) =

[K(µX)/K(x)]θ, with µX = E(X).

Theorems 2 and 3 present the asymptotic results of the two proposed

Weibull tail-coefficient estimators: the Pickand-type estimator θ̂n,P (x), and

the Hill-type estimator θ̂n,H(x) with x ∈ X being a given design vector.

Theorem 2. Suppose conditions (C1) − (C5) hold. Let sj = rj−1, for

j = 1, . . . , J , where r ∈ (0, 1). For any x ∈ X , if √nτn max
(
1/ ln(1/τn),

|b(ln(1/τn))|
)
→ 0, and

√
nτn ln(1/τn) maxj=1,...,J |$(sj, τn

1/K(x))| → 0,

then

√
nτn

(
θ̂n,P(x)− θ

)
d−→ N

(
0, (ln r)−2W ′Σq(x)W

)
,

where W = (w0 − w1, . . . , wj−1 − wj, . . . , wJ−1 − wJ)′, with w0 = wJ = 0.

Theorem 3. Suppose conditions (C1) − (C5) hold. Let 1 = s1 > s2 >

· · · > sJ > 0 be a positive decreasing sequence. For any x ∈ X , if

√
nτn ln(1/τn) maxj=1,...,J |$(sj, τn

1/K(x))| → 0 and
√
nτn max

(
1/ ln(1/τn),
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|b(ln(1/τn))|
)
→ 0, then

√
nτn

(
θ̂n,H(x)− θ

)
d−→ N

(
0,ΛJH

−2(x)θ2 (x′Ω1x)
)
,

where

ΛJ =

(
J∑
j=1

[{2(J − j) + 1}/sj]− J2

)(
J∑
j=1

ln (1/sj)

)−2
. (3.5)

For the Hill-type estimator, in practice, we can choose sj = 1/j, as in

Daouia et al. (2011). Consequently, ΛJ = J(J − 1)(2J − 1)/(6 ln2(J !)). In

this case, ΛJ is a convex function of J , and is minimized at J = 9, with

Λ9 = 1.245. Throughout the paper, we use θ̂n,H(x) with the “optimal”

tuning parameters sj = 1/j and J = 9.

Finally, we establish the asymptotic normality of the proposed extrapo-

lation estimator for the extreme conditional quantitle, q̂n,E(ψn|x), based on

an asymptotically normal tail-coefficient estimator θ̂n, which can be either

the Pickand- or the Hill-type.

Theorem 4. Suppose conditions (C1) − (C5) hold, and κn := lnψn/ ln τn

→ κ ∈ (1,∞) as n→∞. Let θ̂n be an estimator of θ satisfying
√
nτn(θ̂n−θ)

d−→ N(0, σ2
θ), with σ

2
θ > 0. Then, for any x ∈ X , if √nτn max{|b(ln(1/τn))|,

|$(ψn/τn, τn
1/K(x))|} → 0, we have

√
nτn

lnκn

(
q̂n,E(ψn|x)

qY (ψn|x)
− 1

)
d−→ N(0, σ2

θ).
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4. Miscellaneous issues

4.1 Identifying Weibull-type tails

The expression in (3.1) suggests that if the conditional distribution of Y

has a Weibull-type tail, then ln(qY (τ |x)) will be approximately linear in

ln−2(τ), with slope θ. Motivated by this, we consider a graphical tool to

check the assumption of Weibull-type tail for the conditional distribution

of Y . Specifically, given the sample data {(xi, yi)}ni=1, we can obtain the

conventional estimator q̂n(τj|x̄) at the sample mean x̄ for a grid of small

quantile levels τ1, . . . , τm. Then, we can draw a quantile plot by plotting

ln(q̂n(τj|x̄)) against ln−2(τj), with j = 1, . . . ,m. If the distribution has

a Weibull-type tail, the points should lie roughly on a straight line. The

graphical diagnosis at one design point, x̄, is reasonable, because condition

(C1) implies that, for any x, x′ ∈ X , z 7→ HU(z|x) and z 7→ HU(z|x′) are

tail equivalent up to a constant. The above steps are described in further

detail in the case study in Section 6.

4.2 Comparison of asymptotic variances

Theorem 4 suggests that the estimation accuracy of the proposed extreme

quantile estimator q̂n,E(ψn|x) depends heavily on that of the Weibull tail-
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Figure 1: Plots of δcP , δ
l
P , and δopH against the Weibull tail-coefficient θ.

coefficient estimator. Define δP = W ′ΣW/(ln r)2, with Σj,j′ = θ2/(rj−1 ∨

rj
′−1), for j, j′ = 1, . . . , J , and δH = ΛJθ

2. By Theorems 3 and 4, we

have W ′Σq(x)W/(ln r)2 = [(x′Ω1x)/H
2(x)]δP and ΛJθ

2(x′Ω1x)/H
2(x) =

[(x′Ω1x)/H
2(x)]δH . Therefore, to compare the asymptotic variances of

θ̂n,P (x) and θ̂n,H(x), it suffices to compare δP and δH , where both are

quadratic functions of θ. For convenience, denote δcP and δlP as special

cases of δP for constant and linear weights, respectively, and δopH as a spe-

cial case of δH with the “optimal” tuning parameters sj = 1/j and J = 9.

For the Pickand-type estimators, we select the tuning parameters J and

r by searching over J = {2, 3, . . . , 10} and R = {0.01, 0.02, . . . , 0.99}, re-
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spestively, to identify the optimal pair that gives the smallest δP . Figure

1 shows that the three Weibull tail-coefficient estimators have similar effi-

ciency for small θ ∈ (0, 0.5], but that for larger θ, θ̂n,H and θ̂ln,P tend to be

more efficient than θ̂cn,P .

4.3 Model validation

In this section, we show that conditions (C1) and (C2) are very general,

and that they cover a wide range of conventional regression models as spe-

cial cases. We also present several important Weibull-type distributions

that fulfill the conditions in (C5). For illustration, we first present two

conventional regression models that satisfy condition (C1).

(M1) Consider the location shift model

Y = X′β + u,

where u is independent of X, and the survival function F̄u(·) of u has a

Weibull-type tail. This model is a special case of (C1), where X ′βr =

X′β, U ≡ Y − X′β = u, and K(x) = 1, given X = x. Moreover,

F̄U(z|x) = F̄u(z), for any z ∈ R, such that HU(z|x) ∼ K(x)Hu(z)

uniformly on x ∈ X as z →∞.
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(M2) Consider the heteroscedastic model

Y = X′β + (X′ξ)u,

where the scale function x′ξ > 0, for any X = x ∈ X , u is independent

of X, and the survival function F̄u(·) of u has a Weibull-type tail. It

is easy to see that

F̄−1Y (τ |X) = X′β + (X′ξ) F̄−1u (τ).

Then, for X′βr = X′β and U ≡ Y −X′β = (X′ξ)u, we have

HU(z|x) = − ln P ((x′ξ)u > z|x)

= Hu

(
(x′ξ)

−1
z
)

∼ (x′ξ)
−1/θ

Hu (z) ,

as z → ∞, by (2.3). Thus, condition (C1) is satisfied, with K(x) =

(x′ξ)−1/θ, for any x ∈ X .

Next, we present some important Weibull-type distributions as exam-

ples that satisfy condition (C5).

(E1) Let u follow the Gaussian distribution N(µ, σ2), with σ > 0.

We have H−1u (z) = z1/2l(z), and an asymptotic expansion of l(·) as

l(z) =
√

2σ − σ

23/2

ln z

z
+O(1/z).
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This leads to θ = 1/2, ρ = −1, c =
√

2σ exp (−1/4), and b(z) =

ε(z) = ln z/(4z).

(E2) Let u follow the gamma distribution Γ(β, α), with α, β > 0.

We have the density function f(z) = βαΓ−1(α)zα−1 exp(−βz), and

H−1u (z) = zl(z), with

l(z) =


1
β

if α = 1,

1
β

+ α−1
β

ln z
z

+O(1/z) if α 6= 1.

This leads to θ = 1, ρ = −1, c = exp (α− 1)/β, and b(z) = ε(z) =

(1− α) ln z/z.

(E3) Let u follow the Weibull distribution W(α, λ), with α, λ > 0.

We have the density function f(z) = (α/λ)(z/λ)α−1 exp(−(z/λ)α),

H−1u (z) = λz1/α, and l(z) = λ, for all z > 0. This leads to θ = 1/α,

ρ = −∞, c = λ, and b(z) = ε(z) = 0.

(E4) Let u follow the extended Weibull distribution EW(α, β), with α > 0

and β ∈ R.

The survival function of u is given by F̄u(z) = r(z) exp (−zα), where

r(·) ∈ RV∞(β). In addition, H−1u (z) = z1/αl(z), with

l(z) = 1 +
β

α2

ln z

z
+O(1/z).
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This leads to θ = 1/α, ρ = −1, c = exp (β/α2), and b(z) = ε(z) =

−β(ln z)/(α2z).

(E5) Let u follow the modified Weibull distribution MW(α), with α > 0.

Let V ∼ W(α, 1) and u = V lnV . Thus, H−1u (z) = z1/αl(z), with

l(z) = α ln z. This leads to θ = 1/α, ρ = 0, c = α, and b(z) = ε(z) =

1/ ln z.

In what follows, we show that (C2) holds for both the location shift

model (M1) and the heteroscedastic model (M2) with Weibull-tailed errors.

By (2.5) and (C5), and after some calculation, we have that

H−1u (− ln(kτ))

H−1u (− ln τ)
− 1 ∼ θ ln k

ln τ
as τ → 0. (4.1)

Note that H−1U (− ln τ |x) = H−1u (− ln τ), for any τ ∈ (0, 1) in (M1). Thus, it

is clear that condition (C2) holds under (M1). Second, by H−1U (− ln τ |x) =

(x′ξ)H−1u (− ln τ) and x′ξ > 0 in (M2), it is easy to check that condition

(C2) is also fulfilled under (M2) by using (4.1).

To verify the conditions required in Theorems 1−4, we need to deter-

mine the appropriate rates of τn and ψn. Specifically, we need that as n→

∞, τn satisfies τn → 0, nτn → ∞,
√
nτn ln(1/τn) maxj=1,...,J |$(sj, τ

1/K(x)
n )|

→ 0, and
√
nτn max

{
1/ ln(1/τn), |b(ln(1/τn))|, |$(ψn/τn, τ

1/K(x)
n )|

}
→ 0,

for all x ∈ X . The condition nτn →∞ implies that τn should be of a larger
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order than 1/n. In Propositions 1 and 2, provided in the online Supple-

mentary Material, we show that under both the location shift model (M1)

and the heteroscedastic model (M2), τn = k0(ln lnn)/n, for some constant

k0 > 0, is suitable for all five Weibull-type tail distributions in (E1)− (E5).

Then, a reasonable choice of ψn is ψn = k1/n
1+ν or k1 lnn/nν+1, for some

k1 > 0 and ν > 0, leading to κn = lnψn/ ln τn → 1 + ν > 1 as n → ∞.

This implies that any conditional quantile qY (ψn|x) with order higher than

qY (τn|x) can be estimated effectively by our extrapolation method, because

the rate of ψn = k1/n
1+ν or k1 lnn/nν+1 → 0 as n→∞ can be arbitrarily

fast, given a suitable ν.

5. Simulation study

In this section, we conduct a simulation study to assess the finite-sample

performance of the proposed extreme quantile estimator. Consider the fol-

lowing data-generating process:

Yi = 1 +Xi1 +Xi2 +Xi3 +
(Xi1 +Xi2)Vi

2
, i = 1, . . . , n,

where {Xij}ni=1 are independent and identically distributed (i.i.d.) random

variables from the uniform distribution U(0, 1), for j = 1, 2, 3, and {Vi}ni=1

are generated from the following five Weibull-type distributions: N(0, 9),

with θ = 0.5; W(5, 1), with θ = 0.2; W(1, 1), with θ = 1; MW(2/3), with
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θ = 1.5; and MW(1/2), with θ = 2. In each case, the true conditional

quantile of Y is qY (ψn|x) = 1 + x1 + x2 + x3 + (x1 + x2)F̄
−1
V (ψn)/2, for

ψn ∈ (0, 1) and x = (1, x1, x2, x3)
′. We consider n = 1000 in the simulation

study, and repeat the simulation 200 times for each case.

Our focus is the estimation of the extreme conditional quantiles qY (ψn|x),

where ψn = 1/n1+ν , with ν = 0.01 (resulting in ψn = 0.001). For compar-

ison, we consider the conventional QR estimator q̂n(ψn|x) = x′β̂(ψn), and

three variations of the proposed extreme conditional quantile estimator,

q̂P,cn,E(ψn|x), q̂P,ln,E(ψn|x), and q̂Hn,E(ψn|x), based on the tail-coefficient estima-

tors θ̂cn,P(x̄), θ̂ln,P(x̄), and θ̂n,H(x̄), respectively. Here, x̄ = (1, x̄1, x̄2, x̄3)
′

with x̄j = R−1
∑R

s=1 xsj, for j = 1, 2, 3, and {xsj}Rs=1 (R = 100) are drawn

randomly from U(0, 1).

To examine the sensitivity of the proposed estimators to the choice

of τn, we let τn = k0(ln lnn)/n, and plot the RMISE versus k0 ∈ [2, 30]

in Figure 1 of the online Supplementary Material. Here, the RMISE is

defined as the square root of the mean integrated squared error between

a conditional quantile estimator and the truth qY (ψn|x), integrated over

x and across 200 simulations. Figure 1 yields the following observations.

For the Gaussian, Weibull(5,1), and Weibull(1,1) distributions with small

or modest tail-coefficients, the estimator q̂P,ln,E is more sensitive to the choice
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of k0, and is generally more efficient than the conventional QR estimator

for k0 ∈ [2, 10]. However, the estimators q̂P,cn,E and q̂Hn,E are more efficient

than the QR estimator, in general, for k0 ∈ [2, 20]. On the other hand, for

the MW(2/3) and MW(1/2) distributions with larger tail-coefficients, the

estimator q̂P,ln,E appears to be more efficient than q̂P,cn,E and q̂Hn,E, and all three

are clearly more efficient than the QR estimator across k0 ∈ [2, 30].

The tuning parameter k0 plays a similar role to the threshold value in

the extreme value literature; that is, it balances the bias and the variance,

and has to be properly chosen. Several methods exist for choosing the

threshold-type tuning parameter; see Caeiro and Gomes (2016) for a review

on this topic. In practice, we choose k0 by adapting the procedure in Neves

et al. (2015) based on path-stability. Specifically, in our simulation study,

we regard the path of the tail-coefficient estimation as a function of k0.

Then, we choose the smallest value of k0 within [2, 30], starting from which,

the estimation θ̂ becomes most stable.

Table 1 summarizes the RMISE of the conventional QR estimator and

the three extrapolation estimators based on τn = k0(ln lnn)/n, with k0

chosen by the path-stability procedure. The Hill-type estimator and the

Pickand-type estimator with constant weights perform similarly, and both

are clearly more efficient than the QR estimator across all five distributions
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considered. The Pickand-type estimator with linear weights performs best

for the two MW distributions, which have larger tail-coefficients, but the

method is less efficient than the other two extrapolation estimators for

distributions with a tail-coefficient θ ≤ 1. These observations support the

theoretical comparison in Section 4.2.

6. Analysis of birth weights

To illustrate the usefulness of the proposed methods, we study the effects of

various behaviors of pregnant women on extremely high quantiles of birth

weights of live infants born in the United States. It is well known that a

low birth weight is associated with many health problems. On the other

hand, a high birth weight can also have serious adverse effects on both

maternal and child health. For example, a baby born with an excessively

high birth weight may be at increased risk at birth of injuries, respiratory

distress syndrome, low blood sugar, jaundice, and long-term health risks

such as type-2 diabetes, childhood obesity, and metabolic syndrome; see,

for instance, Aye et al. (2010) and Mohammadbeigi et al. (2013).

We use the June 1997 Detailed Natality Data published by the Nation-

al Center for Health Statistics, which contains the birth weights of 31912

infants born to black mothers. We let the response Y be the birth weights
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in grams, and consider eight covariates: X1 is a binary variable indicating

whether the mother was married; X2 indicates whether the infant is a boy;

X3 represents the mother’s age (mean 26); X4,1, X4,2, and X4,3 indicate

whether the mother had no prenatal visit, visited for the first time in the

second trimester, and visited for the first time in the third trimester, re-

spectively; X5 denotes the mother’s education level (0 for less than high

school, 1 for high school, 2 for some college, and 3 for college graduate);

X6 indicates whether the mother smoked during pregnancy; X7 represents

the average daily number of cigarettes per day the mother smoked; and X8

denotes the mother’s weight gain during pregnancy (mean 29 pounds). The

same data set was also analyzed in Abreveya (2001), Koenker and Hallock

(2001), and Chernozhukov and Fernández-Val (2011). However, the former

two focused on analyzing typical birth weights in the range between 2000

and 4500 grams, and the latter examined extremely low birth weights in the

range between 250 and 1500 grams. In contrast, we focus on the extremely

high quantiles of birth weights, over 4500 grams.

Let X = (1, X1, X2, X3, X
2
3 , X4,1, X4,2, X4,3, X5, . . . , X8, X

2
8 )T , whereX3,

X2
3 and X8, X

2
8 are centered at zero. We consider the following linear quan-

tile regression model: qY (τ |X) = X′β(τ), τ ∈ (0, 1).

To examine whether the conditional distribution of Y has a Weibull-
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type tail, we follow the suggestion in Section 4.1 and plot ln(q̂n(τ |x̄)) against

ln−2(τ) for τ ∈ {0.01, 0.0095 , . . . , 0.001} in Figure 2. The plot suggests that

there is a strong linear relationship between ln(q̂n(τ |x̄)) and ln−2(τ). Hence,

our proposed method is appropriate for analyzing the data. Similarly to the

− τ

τ

Figure 2: Diagnosis of the Weibull-type tail for the birth-weight data.

simulation study, we choose J and r by following the grid search method

discussed in Section 4.2, and let τn = k0(ln lnn)/n. Figure 3 shows the

path of the three tail-coefficient estimators against k0 ∈ [2, 100]. Note

that we exclude k0 = 1, because this results in a small τn such that the

tail-coefficient is estimated to be zero. Using the path-stability procedure

in Neves et al. (2015), the adaptive k0 is chosen as 45, 63, and 40 for
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θ̂cn,P(x̄), θ̂ln,P(x̄), and θ̂n,H(x̄), respectively, and the corresponding estimates

are θ̂cn,P(x̄) = 0.225, θ̂ln,P(x̄) = 0.166, and θ̂n,H(x̄) = 0.247, respectively.

Figure 3 shows that the path of θ̂cn,P(x̄) is relatively more stable than those

of θ̂ln,P(x̄) and θ̂n,H(x̄) when k0 ∈ [40, 100].

Figure 4 plots the estimated extremely high conditional quantiles of

the birth weights of baby girls and boys born to black mothers, of the

average profile, from the conventional QR and the proposed extrapolation

estimators against the percentile level 100(1 − ψn), where ψn = k1/n
1.01

with k1 ∈ {0.1, 0.2, . . . , 0.9, 1, 2, . . . , 50}, and from the three extrapolation

estimators based on θ̂cn,P(x̄), θ̂ln,P(x̄), and θ̂n,H(x̄), denoted by EC, EL, and

EH, respectively.

The following observations are derived from Figure 4. First, the esti-

mates from the conventional QR method are not monotonically increasing

with the quantile level, whereas such monotonicity is ensured by the extrap-

olation estimators. Second, for 100(1−ψn) ranging over [99.8588, 99.9576],

both the QR and the extrapolation estimators suggest that the quantiles of

the birth weights of boys are higher than those of girls. However, for ex-

tremely high percentiles 100(1 − ψn) > 99.9831, the QR estimates suggest

an opposite relationship, namely, that girls have higher birth weights than

boys. This result is surprising, because we often found that male infants
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θ

θ

θ

Figure 3: Three estimators of the Weibull tail-coefficient θ versus k0 for the

high birth weight.

are heavier than female infants, in general. Based on the QR, the 99.98th

percentile of the birth weight of an infant girl born to an average mum is es-

timated to be 5269.218 grams, and the 99.99th percentile is estimated to be

5674.657 grams. Further investigation shows that these high estimates from

the QR are mainly affected by one infant girl who has an extremely high

birth weight of 6776 grams, and was born to a mother whose first prenatal

visit was during the second trimester. In contrast, the proposed estimators

are based on extrapolations from the (1−ψn)th quantile and, thus, are less

susceptible to the extreme measurements of individual subjects.
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ψ ψ

ψ

Figure 4: Estimation of the extremely high conditional quantile of the birth

weights of baby girls and boys born to black mothers of the average profile,

using the conventional QR and three extrapolation estimators.

Supplementary Material

The online Supplementary Material includes four sections. In Section

S1, we provide seven lemmas that are needed to derive the asymptotic re-

sults of the proposed estimators. In Section S2, we provide two propositions

that are used in Section 4.3. Technical proofs of all four theorems are pre-

sented in Section S3. In Section S4, we present Figure 1, which plots the

RMISE of different estimators versus k0 for the simulation study.



Extremal linear quantile regression with Weibull-type tails 32

Acknowledgments

This research was partly supported by the National Natural Science

Foundation of China grants No.11671338 and No.11690012, the National

Science Foundation (NSF) grant DMS-1712760, the IR/D program from

the NSF, and the OSR-2015-CRG4-2582 grant from KAUST. The authors

thank the editor, the associate editor, and two referees for their constructive

comments. Any opinion, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily

reflect the views of the NSF.

References

Abreveya, J. (2001). The effects of demographics and maternal behavior on the distribution of

birth outcomes. Empirical Economics 26, pp. 247–257.

Aye, S. S., Miller, V., Saxena, S. and Farhan, M. (2010). Management of large-for-gestational-

age pregnancy in non-diabetic women. The Obstetrician and Gynaecologist 12, pp. 250–256.

Beirlant, J. and Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance:

Mathematics and Economics 11, pp. 17–29.

Berred, M. (1991). Record values and the estimation of the Weibull tail-coefficient. Comptes

Rendus de l’Académie des Sciences, Série I: Mathématique 312, pp. 943–946.
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Table 1: The root mean integrated squared errors of different estimators of

qY (ψn|x), with ψn = n−1.01 and n = 1000. Values in parentheses are the

standard errors. q̂n is the conventional quantile regression estimator, and

q̂P, cn,E , q̂P, ln,E, and q̂Hn,E are the extrapolation estimators based on the Pickand-

type tail-coefficient estimators with constant and linear weights, and the

Hill-type tail-coefficient estimator, respectively. For the extrapolation es-

timators, τn = k0(ln lnn)/n, where k0 is chosen using the path-stability

procedure.

Distribution q̂P, cn,E q̂P, ln,E q̂Hn,E q̂n

N (0, 9) 0.6143 0.8067 0.6260 0.7753

(0.0194) (0.0189) (0.0184) (0.0233)

W(5, 1) 0.0344 0.0423 0.0342 0.0392

(0.0009) (0.0009) (0.0008) (0.0012)

W(1, 1) 0.6892 0.8264 0.6921 0.8712

(0.0168) (0.0178) (0.0172) (0.0329)

MW(2/3) 11.264 8.394 11.150 17.041

(0.5043) (0.4223) (0.4736) (0.8208)

MW(1/2) 54.730 39.437 52.879 84.043

(1.6219) (1.4245) (1.4677) (3.9583)
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