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ABSTRACT

Photosensor oculography (PSOG) is a promising solution for
reducing the computational requirements of eye tracking
sensors in wireless virtual and augmented reality platforms.
This paper proposes a novel machine learning-based solu-
tion for addressing the known performance degradation of
PSOG devices in the presence of sensor shifts. Namely, we
introduce a convolutional neural network model capable
of providing shift-robust end-to-end gaze estimates from
the PSOG array output. Moreover, we propose a transfer-
learning strategy for reducing model training time. Using a
simulated workflow with improved realism, we show that
the proposed convolutional model offers improved accuracy
over a previously considered multilayer perceptron approach.
In addition, we demonstrate that the transfer of initialization
weights from pre-trained models can substantially reduce
training time for new users. In the end, we provide the dis-
cussion regarding the design trade-offs between accuracy,
training time, and power consumption among the considered
models.
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« Human-centered computing — Virtual reality; - Hard-
ware — Power estimation and optimization; Simulation and
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1 INTRODUCTION

Evidenced by increasing adoption within commercial head-
sets, eye-tracking (ET) technology offers notable potential
for improving the user-experience in virtual and augmented
reality (VR/AR) environments. The visual system is one of
our main tools for interacting with the surrounding environ-
ment, so ET empowers a natural dimension of human com-
puter interaction (HCI). This capability is crucial to provide
accessibility for disabled individuals who are unable to use
traditional input modalities. Real-time ET may also be used
to deploy foveated rendering which produces high-quality
content only near the point of gaze [7]. This strategy can
decrease power consumption or preserve the same amount
of it but improve the rendering quality.

The specific traits of each subject’s oculomotor system, eye
shape, periocular features etc., were proved to have great po-
tential for biometrics and health assessment applications. In
the lab environment, it is possible to build an eye movement-
based biometrics system with an equal-error rate (EER) of
less than 3% [6]. The main advantage of such a system is that
there is no known way to spoof it, which is not the case for a
fingerprint sensor or facial recognition system. With respect
to health assessment, the detection of various diseases and
states, including schizophrenia, mild traumatic brain injury,
intoxication and fatigue, have been demonstrated using eye
movement signals.

ET sensors in current VR headsets utilize video-based ocu-
lography (VOG) technology. VOG illuminates the eye using
a set of infrared (IR) emitters, captures reflections using an
IR camera, and estimates gaze location using image process-
ing techniques. VOG sensors offer a robust, non-invasive ET
solution, and are integrated within the majority of stand-
alone ET devices. High-quality VOG systems for laboratory
use may be engineered to achieve tremendous performance,
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including sampling rates up to 2000Hz, along with spatial
accuracy and precision scores of less than 0.5° and 0.05° of
the visual angle, respectively (EyeLink 1000 Plus, [10]). VOG
sensors within current VR headsets, such as FOVE VR and
HTC Vive with third-party add-ons from SMI or PupilLabs,
are restricted in sampling rate to 250Hz, and have less than
1.0° spatial accuracy. Moreover, requirements of form fac-
tor and available processing power, prohibits using VOG in
wireless headsets like Google Daydream or Samsung Gear
VR.

Photosensor oculography (PSOG) [14] offers a promising
solution for addressing the aforementioned limitations of
VOG devices. By capturing the IR reflection from the eye
using only a sparse grid of IR detectors, PSOG dramatically
reduces computational requirements and promotes increased
sampling rate. Unfortunately, the performance sensitivity
of PSOG devices to sensors shift poses new challenges. As
mentioned in [11], the shift of more than 0.5mm result in
more than 1.0° spatial accuracy degradation. Usual VR appli-
cations, such as gaming, social interaction or learning in a
simulated environment, will not be possible without chang-
ing facial expressions, repositioning the head, or moving
freely. During any of these activities, slight headset shifts are
likely to occur, so viable ET solutions must exhibit robustness
to sensors shift.

This study advances the development of shift-robust PSOG
ET sensors with accuracy on par with existing VOG solu-
tions for wired VR headsets. We expand the literature by
evaluation of a convolutional-neural-network (CNN) utilized
together with transfer learning to build a calibration map-
ping in the presence of simulated sensor shifts. Moreover,
our work improves upon previous studies based on synthetic
data by using actual eye images of multiple subjects obtained
from a custom eye-tracker.

2 PRIOR WORK

Eye tracking sensors for wireless VR headsets must exhibit
sufficient sampling frequency, spatial accuracy, etc., to sup-
port emerging applications, while minimizing power con-
sumption. Although alternative sensing modalities have re-
cently been suggested for use in wireless VR headsets, such as
a smartphone camera sensor [2], PSOG is especially promis-
ing due to its ability to provide quality tracking at high
sampling frequencies. Traditional PSOG systems illuminate
the eye using IR emitters, and then capture reflections us-
ing an array of IR receiving sensors. Li et.al demonstrated
a prototype which eliminates the emitter requirement by
utilizing the screen light, has 10Hz sampling frequency and
achieved 6.3° within-subject accuracy. While promising, the
very limited performance of the system restricts applicability
to basic touchless interaction [9].
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PSOG exploits the varying IR reflectivity of different eye
components, such as the pupil, iris, sclera, etc. As the eye
rotates within the globe during gaze shifts, intensities of
reflections captured by IR sensors are perturbed, thereby
providing the source for estimating gaze location. PSOG
designs are distinguished according to both physical param-
eters of the IR transceiver hardware, along with the signal
processing techniques used to map sensors output to the
estimated gaze location. The recent review of the various
PSOG array designs can be found in [12]. For purposes of our
current work, we focus solely on signal mapping techniques
using a simulated workflow. This section is restricted to de-
scribing the limitations of two recent publications which
have motivated our current work.

While PSOG offers a promising alternative for meeting
the performance requirements of next-generation VR solu-
tions, sensitivity to hardware shifts limits practical viability.
Two recent approaches have been proposed to address this
limitation. Rigas et al. suggested a fused sensing modality
known as Hybrid PS-V [11]. In this approach, gaze estimates
formed using a high-speed (1000Hz) PSOG component are
fused with low-speed VOG (5Hz) sensor output to improve
spatial accuracy in the presence of sensor shifts. The authors
simulated a 2x2 grid of IR receivers using reflectivity esti-
mates obtained from synthetic images of a close eye region.
Eye position was inferred from simulated PSOG outputs by
a simple deterministic mapping. Due to the decreased VOG
sampling rate, the proposed architecture was estimated to
consume only 15mW of power, a reduction of several orders
of magnitude versus commercially-available VOG-only sys-
tems operating at the same sampling frequency (e.g. EyeLink
1000). Spatial accuracy of less than 1.0° of the visual angle
was achieved in the presence of sensor shifts in the range of
+2mm. The main drawbacks of this approach are brief spike
artifacts in the output eye signal during sensor movement
phase and up to 200ms latency of the correction system. Ad-
ditionally, the reliance upon an additional tracking modality
may prove infeasible for resource-constrained environments.
Finally, the work uses synthetically generated eye images
for a single artificial subject, which greatly inhibits inference
regarding generalization.

To eliminate the VOG requirement, Zemblys et al. utilized
machine learning to achieve shift-robustness [15]. MLP was
used to build the mapping between the PSOG output and
gaze location. Model hyper-parameters were determined em-
pirically using a standard grid-search procedure. The authors
evaluated different sensor placements and found that 3x5
rectangular grid works best. The best setup found has spa-
tial accuracy of 0.48° of the visual angle for sensor shifts in
the range of +1.75mm. However, it is characterized by the
same limitations of the previous work with respect to the
utilization of a single-model synthetic data source. It is still
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not clear how well those approaches will work when applied
to real images and diverse eye traits. Moreover, the machine
learning models explored are not well-suited to capture the
inherent spatial dependencies of PSOG outputs, compared
to the convolutional architectures considered herein.

Our work addresses the limitations of these two studies
by considering more advanced machine learning techniques
on data gathered from real recordings of different subjects.

3 METHODOLOGY

Equipment

A custom ET solution introduced in [1] was used for data
collection. This system was used in place of standard com-
mercial solutions, such as EyeLink 1000, due to the failure
of that equipment to save images obtained by the VOG sen-
sor. The custom solution offers an additional advantage in a
research environment, as it is highly reconfigurable (i.e.: eas-
ily replaceable IR emitters, camera, and chin-rest) and uses
open-source software. To collect data used in this work, the
system uses an 850 nm IR illuminator, ThorLabs DCC1545M
camera, and a hot mirror and chin-rest from EyeLink 1000.
The camera recorded monocular images with a resolution of
348x640 pixels at 120 fps. The screen to display stimulus was
installed 500mm away from the chin-rest. It has a resolution
of 1280x1024, and physical size of 374x300mm, affording
a target range of +19.1° (horizontal) and +16.7° (vertical)
degrees of visual angle. All computations were performed
using a workstation with the following specifications: Intel
Core 17-6700K CPU, 16GB RAM, Nvidia GTX 970 GPU.

Data

Figure 1: One IR frame from the data set

Random horizontal and vertical step-stimulus saccade
task was used to collect data from 23 subjects. Every sub-
ject’s record consists of the set of images and respective
eye-movement signal file. Each line of this file contains a
timestamp, and corresponding horizontal and vertical gaze
estimates expressed in degrees of the visual angle. If for some
reason eye-tracker was not able to infer eye gaze at the spe-
cific timestamp, (i.e: during blinks, etc.), the corresponding
line is filled with NaNs. Moreover, by inspecting frequency
histograms of eye gaze positions, it was detected that some-
times eye-tracker reports values far outside of the screen

range (probably, just before or right after a blink). To account
for that, every eye gaze position outside of the +20° range
either horizontally or vertically is filtered out.

As shown in Figure 1, an angular marker was attached
to each subject’s nasal bone area in order to account for
slight head movements during recording as described below.
This approach was unsuccessful for Subject 9, resulting in
removal from the data set.

Preprocessing

To begin preprocessing, potential head-movements were
estimated by tracking the position of the angular marker
throughout each image sequence on a per-subject basis. The
marker’s position was manually found in the first frame.
Then, the location of it was updated by searching in a nearby
region centered around the previous point. This estimated
shift is hereby denoted as Ahead.

In prior work using synthetic eye images, sensor shifts
were simulated by moving the position of a virtual camera
within Blender. As our data was collected using a real IR
camera with a fixed position, this approach was not possible.
To simulate shifting, a cropping strategy was employed on
the captured image as follows. By taking a picture of a ruler
it was determined that 0.5mm corresponds to about 4 pixel
shift for our hardware setup. In this study, we test the range
of £2mm shift with 0.5 mm step which results in +16 pixels
shift with 4 pixels step. Let Acam denote the simulated shift.
Then for each image, the top-left corner of a cropping rec-
tangle is positioned at start + Ahead + Acam, where start is
determined manually for each recording so that for no shift
and neutral eye position case the eye in the cropped image
will be located in the center of PSOG sensor receptive field.

PSOG output is simulated using the exact same approach
asin [15]. The sensor simulated by a set of receptive windows
aligned in a 3x5 rectangular grid. Each window consists of
121x121 pixels , with mirror padding employed if it runs out
of the image. To reflect the angular reception loss observed
in a photosensor, each window is convolved with a Gaussian
kernel with 0 mean and 1/4 of the window size as standard
deviation. The average pixel intensity over the whole win-
dow after convolution is considered as the corresponding
photosensor’s raw output.

The entire preprocessing pipeline is depicted in Figure 2.

Machine learning

The prior machine learning study used a multilayer percep-
tron (MLP) model to learn the mapping from raw photosen-
sor outputs to eye gaze position. The two-dimensional array
of outputs (in our case, 3x5) is flattened to a one-dimensional
vector to form the MLP input. This representation does not
preserve spatial information, which may limit the power of
this approach. CNN is a natural solution for addressing this
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Figure 2: Preprocessing pipeline:

(1) Account for head movements, then shift and crop.

(2) For each cropped image, simulate PSOG sensor output
(for each detection window one standard deviation of
the gaussian kernel is depicted).

(3) Save raw sensor output with corresponding eye gaze
position.

limitation, as spatial information is maintained throughout
the initial convolutional layers. For comparison purposes,
we benchmark a CNN model against a comparable MLP
architecture.

In practice, the amount of training data available will be
restricted to what can be obtained during calibration, which
may limit the performance of the learned map. To expand the
pool of available training data, we propose a transfer learning
approach, where network weights are initialized through
training over a large pool of other subjects. We hope that
this approach (hereby denoted as the "fine-tune" approach)
will allow layers of the pre-trained network to learn features
that are general for eye movements across subjects. By fine-
tuning this model for the specific subject using calibration
data, we expect faster convergence and improved accuracy
versus training using randomly initialized weights (hereby
denoted as the "from-scratch” approach). Note that for both
architectures only fully-connected layers were fine-tuned .

We use data whitening followed by PCA that keeps compo-
nents which explain more than 99% of variance for MLP archi-
tecture. To preserve spatial information, only data whitening
is used for CNN architecture.

To assess the validity of the "fine-tune" approach, we par-
titioned available data into testing and training sets using
an idea similar to k-fold cross-validation. Namely, the whole
set is split into following 6 batches (subject’s ids are listed):
[1,2,3,4]; [5,6,7,8]; [10, 11, 12, 13]; [14, 15, 16, 17];
[18,19,20]; [21, 22, 23];. Then, each batch is separately con-
sidered as a testing set, with the remaining batches used for
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training and validation purposes. For the "from-scratch" ap-
proach, training and testing sets are obtained by partitioning
data for each individual subject

Hyper-parameters for both MLP and CNN architectures
were determined using a grid search approach. Two setups
were investigated reflecting the varying use-cases of the
sensor. Namely, while we are most interested in embedded
VR applications, we also seek to investigate unconstrained
performance for stand-alone implementations. We hereby
denote these two scenarios of interest as low-power and
high-power setup, respectively.

According to [3], a network with the same size of layers
shows comparable performance to the case of a network
with layers of varying size but the same overall number of
parameters. We use this finding to simplify the grid search
procedure. Instead of having a separate number of neurons
for each fully-connected layer or number of filters for each
convolution layer , we can describe the whole MLP network
with two parameters: L— number of layers with N neurons in
each; and the whole CNN network with four values: L¢on,—
number of convolution layers, each of depth D, L fe— number
of fully-connected layers with N neurons in each. Note that
for all CNN layers, a 3x3 kernel size with a stride of 1 is
used, with a zero padding to preserve filters size ("same’ in
Keras terms). The same designations and assumptions about
a convolutional layer will be used throughout this section.
Each combination of parameters listed below composes the
preliminary grid search space for the specific setup:

e Low-power setup, MLP architecture:
L from [3,4,5,6]:
N from [16,20,24,28,32]

e Low-power setup, CNN architecture:

Leony from [1,2,4]:
D from [4,8,16]:
L¢c from [3,4,5]:
N from [16,20,24,28,32]
e High-power setup, MLP architecture:

L from [3,4,5,6]:
N from [16,32,48,64,96]

e High-power setup, CNN architecture:

Leony from [1,2,4]:
D from [4,8,16]:
Lye from [3,4,5]:
N from [16,32,48,64,96]

The number of operations performed during the inference
directly influences the power consumption of the system.
As an additional restriction, the upper-limit for architecture
complexity was set in accordance to resources available on
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the destination hardware. We use the same estimation of
the power consumption of a neural network, as in [15] -
the number of floating point operations per second (FLOPS)
needed to do the forward pass. Multiplications only are taken
into account. We use following formulas to approximate
FLOPS complexity for:

e MLP architecture:
MLProps = f(l’ Nin, nl) + f(nina ni, 712) + ...+

(1)
f(nL—l, nr, nout)

where n;— number of neurons in i-th layer,

(nin, 1), (Noys» 1) - dimensions of the input and output

vectors respectively, and:
f(x,y,2) = 2xyz — xz
In our case, when the size of the input vector depends

on the PCA result, the number of neurons 7 is the same
for all layers and L > 2, this simplifies to:

MLPt10ps = f(1,npca,n) + f(npca, n,n)+
(L-2)* f(n,n,n)+ f(n,n,2)

e CNN architecture:
CNNriops =m*(1+ Dy + ...+ Dr_,,,-1)+

f(lanflattemnl)+f(nflattensn1,n2)+ .t (3)
f(anc—la anc’ nout)

where m— multiplications needed for convolution of
one filter, D; depth (number of filters) of i—th con-
volution layer and last convolution layer flattened to
Nfiarten neurons. f and n; declared the same as above.
In our case, when input vector is 3x5, depth D is the
same for all convolution layers, the number of neurons
n is the same for all fully-connected layers and L¢. > 2,
this simplifies to:

CNNriops = 135+ 135 % D (Leonw — 1)+
f(1,15 % D,n) + f(15 * D, n, n)+ (4)
(Lfe = 2)* f(n,n,n) + f(n,n,2)

Raspberry Pi3 is chosen as the baseline for the low-power
setup, as it is a widely available and low-cost embedded
solution. It is able to deliver 0.084 to 6.165 GFLOPS, and
has power consumption of 16 — 1200 MFLOPS per watt, de-
pending on the task. We pick the highest restriction, i.e. the
lower-bound of the performance range. Taking into account
that the system should be able to operate on 1000Hz, for
the low-power setup the limitation on the neural network
complexity is set to 0.084 MFLOPS. This translates to an es-
timated power consumption range from 70mW to 5.25W for
the low-power setup. Knowing this limitation and using 2, 4,
we can determine whether a specific architecture from the
grid-search is inside our range of interest. Modern nVidia
GPU, such as nVidia GTX 970, is able to deliver 122 GFLOPS.

)

It is far more than required by the most complex network
from the grid search space, so we do not put any additional
restriction on the high-power setup.

Statistical analysis

In the following statistical analysis, we use the term "archi-
tecture" to denote neural network architecture tested: either
MLP or CNN; and "approach” to talk about whether corre-
sponding architecture is fine-tuned or trained from scratch.

We perform statistical analysis to determine if observed
spatial accuracies could have occurred by chance. To accom-
plish this goal, the effect of architecture and approach was
tested using Analysis of Variance (ANOVA). Mean estimates
for each combination of architecture and approach were cal-
culated. The significant interaction effect was followed up by
a series of post-hoc paired comparisons, which were adjusted
for multiple comparisons using the method of Scheffe [13].
A conventional alpha level of 0.05 was used to determine
statistical significance.

Implementation

We use Keras 2.2.4 framework for Python 3.6.7 with Ten-
sorFlow 1.12 as the backend. All error bars are created with
Plotly 3.4, statistical analysis of the results is done with SAS
University Edition. Neural networks visualization is done
with 'NN-SVG’ [8]. The data set and codebase snapshot are
available on TxState Digital Library !. The up-to-date code-
base is available on GitHub. 2

4 RESULTS
Model selection

To utilize available data during the grid search as much as
possible, it was split into 75% of train and 25% validation sets,
without test part. Architectures with the best performance
on the validation set are:

o Low-power, MLP: Dense( 24 ) x 4, < 0.074 MFLOPS 3

e Low-power CNN: Conv2D(4)x2 + Dense(20)x4,
0.083 MFLOPS

e High-power MLP: Dense( 96) x 5, < 5.595 MFLOPS 3

e High-power CNN: Conv2D(16)x 2 + Dense(96) x5,
9.766 MFLOPS

Layers names follow Keras’ naming convention, here:
Conv2D(D ) x L means L convolution layers in a row, each
with D filters; Dense( N ) x L means L fully-connected layers
in a row, each with N neurons. Each architecture is visualized
in Figure 3

Ihttps://digital library.txstate.edu/handle/10877/7955
Zhttps://github.com/pseudowolfvn/psog_nn/tree/etra2019

3The upper limit is provided due to the different number of components
left after PCA for different subjects
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Figure 3: Neural network architectures used

Training process details

To explore variability in training performance with respect to
initial condition, training was repeated 10 times for random
initial values. This was done since Keras does not allow users
to achieve reproducible results by fixing a seed value. We
use Adam with Nesterov momentum [5] as the optimization
algorithm. The learning rate is set to 0.001, epsilon to 1078,
and all other parameters to the default values. Eye-tracker
output is used as a ground-truth. The discrepancy between
the model output and ground-truth is measured with mean-
squared loss. To prevent over-fitting, the early-stopping [4]
technique is used. The training process ends as soon as the
lowest validation loss have not improved for the specified
number of steps (patience parameter in Keras). For the "fine-
tune" approach, models are pre-trained with batch size of
2000 and patience of 100. Data is split into several batches as
described in the Machine learning subsection. Every batch is
individually considered as the test set, with remaining data
split into 80%/20% for train and validation sets, respectively.
For both the "fine-tune" approach and for the training "from

scratch”, batch size is set to 200, and patience to 50. The only
available data to build a map between photosensors output
and eye gaze of the specific subject is gathered during the
calibration procedure. To resemble the small amount of such
data, a 24%/6%/70% train, validation and test split is used for
both approaches. Note that the spatial distribution of gaze
locations for the train split is different from calibration data.
The attempt to address this issue is made in the Discussion
section.

Testing results analysis

For both setups, Figure 4 shows error bars that represents
the mean and one standard deviation of the spatial accuracy
on the test set obtained for 10 repetitions of training for each
combination of architecture and approach for all subjects.
As can be seen, the best spatial performance is 0.67° and
0.55° for the low-power and high-power setup respectively.
This observation is supported by the paired comparisons in
Table 1b (high-power: Table 1d). For high-power setup, it
is achieved with CNN architecture retrained from scratch
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Figure 4: Spatial accuracy error bars

for each subject. Nevertheless, for low-power setup of CNN
architecture the performance of the "from scratch" approach
isn’t significantly different from the "fine-tune" one (p =
0.29). Additional evaluation is provided in the Discussion
section to pick the best approach.

In Table 1a we present F-tests of the effect of architec-
ture, approach, and their interaction for the low-power setup
(high-power: Table 1c). The statistically significant inter-
action means that the effect of approach depends on the
architecture and vice versa. Table 1b presents the post-hoc
paired comparisons for all combinations of architecture and
approach for the low-power setup (high-power: Table 1d).

5 DISCUSSION

The time needed to enroll a new user is of critical impor-
tance for consumer-grade devices. The most time consuming
step for our approach is model training using calibration
data. While fine-tuning model weights should reduce train-
ing time, results from the main evaluation demonstrated
negligible difference. One possible explanation for this effect
was the use of a small batch size. To analyze this, we trained
CNN architecture of the low-power setup only one time for
each subject with two batch sizes: 200 and 2000. Means (+
one standard deviation) of resulting time and accuracy for
both values are listed in Table 2. Though for batch size of 200
two approaches seems indistinguishable, it can be seen that
a higher batch size can drastically improve training time but
on the cost of decreased spatial accuracy. Despite training
from scratch being more accurate, it is up to 1.9 times slower,
so we pick "fine-tune" approach as the best overall one.
Moreover, this approach combined with a bigger batch size
seems much more promising in terms of getting reasonable
training time on the embedded platform. The proper evalu-
ation of time complexity on actual hardware with possible
optimization applied should be done in the future work.
Our work has following limitations: sensor shifts sim-
ulated by cropping, simulated photosensors output, and a
random split of the whole recording into training and testing
set. While the first two should give a close approximation to

Table 1: Statistical analysis. Groups 1, 2, 3, 4 stands for
’MLP: fine-tune’,”"MLP: from scratch’,’CNN: fine-tune’, "CNN:
from scratch’ combinations of ’architecture: approach’ re-
spectively.

(a) Low-power setup, Tests of Fixed Effects

Effect NumDF DenDF F Value Pr>F
arch 1 33.2 18.56 0.0001
appr 1 872 519.91 <.0001

arch*appr 1 872 402.01  <.0001

(b) Low-power setup, Differences of LS Means

Ne Group A Group B Estimate Standard Error DF tValue AdjP
1 1 2 -0.1344 0.004434 872 -30.30 <.0001
2 1 3 0.1922 0.05930 334 324 0.0151
3 1 4 0.1836 0.05930 334 3.10 0.0229
4 2 3 0.3266 0.05930 334 551 <.0001
5 2 4 0.3180 0.05930 334 536 <.0001
6 3 4 -0.00863 0.004434 872 -1.95 0.2863

(c) High-power setup, Tests of Fixed Effects

Effect Num DF DenDF F Value Pr>F
arch 1 36.3 15.20 0.0004
appr 1 872 156.57 <.0001

arch*appr 1 872 602.26 <.0001

(d) High-power setup, Differences of LS Means

Ne Group A GroupB Estimate Standard Error DF tValue AdjP
1 1 2 -0.08497  0.003243 872 -26.20 <.0001
2 1 3 0.1345 0.04898 36.5 2.75 0.0573
3 1 4 0.1620 0.04898 36.5 3.31 0.0124
4 2 3 0.2194 0.04898 36.5 4.48 0.0002
5 2 4 0.2470 0.04898 36.5 5.04 <.0001
6 3 4 0.02758 0.003243 872  8.51 <.0001

Table 2: Low-power setup, CNN training time analysis

Batch size Fine-tune (time/acc)

200

From scratch (time/acc)

69.84 + 21.07sec (0.72 £ 0.17°)  65.64 + 20.13sec (0.67 + 0.13°)

2000 9.15 + 4.5sec (1.07 £ 0.3°) 17.45 + 3.48sec (0.77 + 0.14°)
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results obtained using actual hardware, the later one does
not reflect a real-case scenario where only calibration data is
available to train on. Unfortunately, the custom eye-tracker
did not allow us to obtain the map between frames and eye-
position signal during calibration. Fortunately, the grid of
points used as stimuli for the random saccades task contains
a subset similar to the calibration grid. We exploited this
observation, training the model only on samples that have
euclidean distance no more than 35 pixels from any point
from the "calibration" grid (points 1, 3, 5,9, 11,13, 17,19, 21
in Figure 5). For most subjects, the data is unevenly spread
around "calibration” points, providing very limited coverage
for some of them (an example of such data is depicted in
Figure 5a). For some subjects the distribution is much better,
as depicted in Figure 5b. This limitation cannot be fixed using
an increased distance threshold, as it will lead to more points
being added that were not fixations of interest. To get more
reliable results, proper calibration data should be collected.

Eye-tracking has numerous potential applications in VR.
Our study demonstrates adequate accuracy at sufficiently
low power consumption to support general touchless inter-
action. However, it is still not clear how well this approach
preserves specific features in the eye-signal that are essential
for biometrics and health assessment. To verify the feasibility
of our design for all possible VR applications, the fabrication
and assessment of actual hardware is required.

6 CONCLUSION

In this paper, we evaluated the PSOG-based eye-tracking
sensor for portable VR headsets. Among all tested neural
network architectures and approaches for calibrating the
system to each new subject’s eye traits, fine-tuning of convo-
lutional neural network works best. This combination was
tested as two setups: with limited power consumption for
embedded devices, and with no such restriction aiming for
the best spatial accuracy.

The first setup can be used to implement the system on
portable hardware platforms that already exist, with high
sampling frequency of 1000 Hz and spatial accuracy of 1.07°
(taking into account performance and model training time
trade-off). The second setup shows the potential of the pro-
posed system for current wired hardware, because it main-
tains higher sampling frequency with better spatial accuracy
of 0.55°. Both setups are robust to sensor shifts.

In summary, the proposed CNN architecture and fine-
tuning training approach improved spatial accuracy and
accelerated convergence versus benchmark techniques.
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(a) Subject 6. Spatial accuracy on testing samples:

(1) Low-power setup: 1.61°
(2) High-power setup: 1.4°
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(b) Subject 8. Spatial accuracy on testing samples:

(1) Low-power setup: 1.03°
(2) High-power setup: 0.85°

Figure 5: Examples of: (a) bad, (b) good split of data into blue
training and red validation + testing samples that should
reflect calibration procedure. Circles represents 35px area
around "calibration" points
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