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Abstract—The recent proliferation of human-carried mobile
devices has given rise to mobile crowd sensing (MCS) systems,
where a myriad of data requesters outsource their sensing tasks
to a crowd of workers via a cloud-based platform. In order to in-
centivize participation, requesters typically compensate workers
with specific amount of payments. Clearly, setting an appropriate
task price is critical for a requester to attract enough worker
participation without unnecessary expenses. Therefore, we in-
vestigate the problem of task pricing in MCS systems with multi-
requester price competition, and also dynamically arriving workers.
Task pricing in such scenario is challenging, because of each
requester’s incomplete information about the others, uncertainty
of future information, etc. So as to address these challenges, we
use Markov game to model requesters’ competitive task pricing,
and Markov correlated equilibrium (MCE) as the solution concept.
We propose that the platform uses the social cost-minimizing
MCE to coordinate requesters’ prices, which is self-enforcing, and
optimizes the system-wide objective of social cost. Technically,
we propose a computationally efficient algorithm to compute an
approximately optimal MCE. Furthermore, through extensive
performance evaluation, we show numerically that our algorithm
yields close-to-minimum social cost in very short running time.

1. INTRODUCTION

The recent proliferation of increasingly capable mobile
devices (e.g., smartphones, smartwristbands, smartwatches)
with a wide variety of on-board sensors (e.g., accelerometer,
gyroscope, compass, camera, GPS) has given rise to mobile
crowd sensing (MCS), a novel sensing paradigm which out-
sources the collection of large scale sensory data to a crowd
of participants, namely (crowd) workers. Thus far, applications
of crowd sensing [1, 2] have pervaded almost every aspect of
our everyday life, including smart transportation, environment
monitoring, urban sensing, healthcare, and many others.

In a typical MCS system, multiple data requesters who
want to collect sensory data from the public crowd post their
sensing tasks (e.g., estimating the traffic speeds of certain road
segments, monitoring the noise levels of specific geographic
areas) via a platform, which is typically a cloud-based central
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server. The platform usually collects and may process to a
certain degree workers’ sensory data. Together with the tasks
to be executed, in order to incentivize worker participation,
each requester also posts a price which specifies the amount
of payment a worker will get by carrying out her tasks.

Needless to say, setting an appropriate price is critical
to each requester, as an excessively high price will incur
unnecessary expenses, whereas a price that is too low will
possibly cause a requester to lose the price competition against
others, and eventually fail to attract participants. Therefore, in
this paper, we investigate the problem of task pricing in MCS
systems, where multiple data requesters compete against each
other to attract worker participation. More specifically, we
study realistic dynamic MCS systems, where workers arrive
dynamically in an online manner. We next elaborate upon the
challenges of task pricing in such scenario.

The first challenge comes from the fact that a requester typi-
cally has incomplete information about other requesters. When
a rational requester makes her pricing decision, not only does
she have to consider factors regarding herself, such as how
many sensing tasks she holds, and how time-sensitve her tasks
are, but also will she take into account how other requesters
set their prices, so that she could win the price competition
without setting her price too high. However, in practice, a
requester only knows the factors that affect her own price, but
rarely has enough information about others’. Therefore, under
such incomplete information, selecting a reasonable task price
would be rather challenging for a requester.

Besides, uncertainty of the future also adds to a requester’s
challenges in deciding her task price. Different from a static
MCS system studied in a plethora of existing literature [3—
12] where requesters make one-shot pricing decisions, in a
dynamic MCS system, a requester will have to select prices
that not simply maximize her immediate utility, but more
importantly maximize her long-term utility considering steps
into the future. However, what will happen in the future is
usually rather stochastic. On one hand, it is hard to predict
the exact number of workers arriving in future time instances.
On the other hand, as aforementioned, it is already very
challenging to consider other requesters’ pricing behaviors
at the current time instance, let alone those in the future.
Therefore, unpredictability of the future makes it even more
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challenging for requesters to set appropriate task prices.

Considering the challenge brought by incomplete infor-
mation, we take the role of the platform, which typically
has global information of all the requesters that register on
it, including the numbers of tasks held by them, the time-
sensitiveness of their tasks, and many others. As an entity that
has access to system-wide information, the platform is thus
much more suitable than the requesters themselves to decide
the task prices. Therefore, more accurately put, the objective
of this paper is to investigate how the platform could decide
reasonable task prices for the data requesters in MCS systems
with multi-requester competition and dynamic worker arrival.

In order to fully capture the influence of stochastic future
information on how requesters set their prices, we model the
dynamic task pricing among them as a Markov game [13],
where at any time instance each requester aims to propose the
price that maximizes her long-term cumulative utility. Below,
we would like to shed some light on how we address the
various challenges on formulating and solving the Markov
game among requesters.

To begin with, we meticulously design the states of the
Markov game and requesters’ utility functions so as to capture,
to the greatest extent, requesters’ pricing behaviors in practice.
Besides, choosing a proper solution concept for the formulated
Markov game is also highly critical and non-trivial. In line
with our objective of deciding reasonable prices for requesters,
we adopt Markov correlated equilibrium (MCE) as the targeted
solution. Simply put, an MCE is a probability distribution over
the space of requesters’ possible price choices which satisfies
the self-enforcing property [14]. Such property ensures that if
the platform suggests requesters to set their prices as the ones
sampled from an MCE, only by setting her price as suggested,
could each requester maximize her utility. Finally, although
there might be multiple MCE’s for a Markov game, we are
specifically interested in computing the one that minimizes the
social cost, which is computationally intractable in general.
Such issue on computational complexity is also addressed
by us through carefully splitting the overall Markov game
into several smaller games with much fewer requesters, while
ensuring an approximately minimum social cost.

In summary, we primarily make the following contributions
in this paper.

o We solve the problem of task pricing in dynamic MCS
systems with both multi-requester price competition and
dynamic worker arrival.

e We address the various arising challenges (e.g., incom-
plete information, future uncertainties) by realistically and
meticulously modeling the problem as a Markov game,
and utilizing Markov correlated equilibrium, which is self-
enforcing, to decide requesters’ prices.

o« We show that computing the social cost-minimizing MCE
is computationally intractable in general, and we design a
computationally efficient algorithm to compute an MCE that
approximately minimizes the social cost.

II. RELATED WORK

The set of literature most relevant to this paper are the
suite of incentive mechanisms designed to stimulate worker
participation in MCS systems [3-12, 15-30]. Among them,
[3-12] focus on static MCS systems, where workers and
requesters arrive all at once, and there is only a single data
requester (usually represented by the central platform). Specif-
ically, these works investigate contest design [3], quality-aware
mechanisms [4-8], cooperation among service providers [16],
distributed task selection [17], network effect [11], as well as
many other issues related to incentivizing worker participation.
Although MCS systems with dynamic worker arrivals have
been studied in [21-28], these works consider the scenario
with only one data requester, as well. Furthermore, [16—19]
study incentive mechanism design in multi-requester, but static
MCS systems.

Different from most of the existing work, this paper tackles
the problem of task pricing in dynamic MCS systems with both
multi-requester price competition and dynamic worker arrivals.
Note that similar problem settings have been considered in
[15, 20, 29]. However, in contrast to this paper, [15] applies
specifically in proximity-based MCS systems, where workers
have to be physically in the close vicinity of requesters to
execute their tasks, and task prices in [20, 29] are decided
without considering requesters’ long-term cumulative utilities.

III. PRELIMINARIES
A. System Overview

The MCS system studied in this paper consists of a cloud-
based platform, a set of K requesters, denoted as R =
{r1,--+,rx}, and a crowd of participating workers. Each
requester r; holds NN; sensing tasks, which in practice could
potentially belong to different types that require different
knowledge, expertise, or even sensing devices from workers.
For example, road sensing (e.g., traffic speed estimation,
pothole detection) could only be executed by drivers that carry
mobile devices in their vehicles, and air quality monitoring by
pedestrians with specific kinds of air quality sensors.

Based on such observation, we assume that requesters hold
a total number of W types (i.e., type 1, 2, ---, W) of tasks,
and a type-w task can only be executed by a type-w worker.
Furthermore, we use [V; ,, to denote the number of type-w
tasks held by requester r;, R,, the set of requesters that hold
type-w tasks, N; the vector containing all N;,,’s such that
ri € Ry Obviously, . cr Niw = Ny and Uy Ry, =
R, and we let N = Zi:n R N; denote the total number of
tasks held by requesters in an MCS system.

In this paper, we consider both static MCS systems where
workers arrive all at once, and dynamic MCS systems where
workers arrive dynamically in an online manner. The primary
goal of this paper is to study how the platform, as an entity who
has access to system-wide information, could set reasonable
prices for requesters in dynamic MCS systems. However, as
models, solutions, and analyses for static MCS systems serve
as preliminaries for and shed lights upon their counterparts in
dynamic MCS systems, they are also discussed in this paper.
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B. Static MCS System

1) System Model: In our model of a static MCS system,
there are overall M workers arriving at the system all at once,
out of which the number of each type-w workers is M,,. Each
requester r; posts a price p;, which is the amount of payment
that a worker gets for executing one of the requester’s tasks.
We adopt the following discrete choice model given in [31]
to characterize workers’ task selection behaviors.

Definition 1 (Task Selection Probability). Given p.,, which
denotes the vector of prices proposed by requesters in the set
R, the probability that a type-w worker chooses a task from
requester r; € R, is defined as

exp(ai,wpi — biw)
Zj:'r'jERw exp(ajvaj - bja'w)’

where a; ., and b; ., for each r; € R, are positive parameters.

ei,w (pw) = (])

As indicated by [31] that parameters a; ,,’s and b; ,,’s could
be estimated using statistics of workers’ historical choices,
we thus assume them to be known by the platform. Such
discrete choice model perfectly captures workers’ task selec-
tion behavior in various aspects. On one hand, the probability
0; .. (Ppw) monotonically increases with p;, which conforms to
the intuition that the higher the price a requester proposes,
the more likely that her tasks will be chosen by workers. On
the other hand, Equation (1) incorporates the randomness in
workers’ task selection caused by factors (e.g., age, gender)
other than prices which could also affect their choices.

In this paper, we consider that requesters hold delay-
sensitive tasks (e.g., traffic speed estimation, air quality mon-
itoring), and thus a penalty will be incurred to a requester if
any of her tasks is not chosen by participating workers. We
let a; > 0 be the penalty to requester r; for one unallocated
task. Next, we define a requester’s cost in Definition 2.

Definition 2 (Requester’s Cost in Static MCS System). Given
P, the vector of prices proposed by all requesters, requester
r;’s overall expected cost can be defined as

Cilp)= Y ¢(mvp)< > min{muw, Niw}pi

meM; w:r; ER
+ (Ni,w - Z min{my, Ni,w}))
wWitEGy,

where M; = [[,..,cr 10,1, My} is the space com-
prised by the product of each set {0,1,---  M,} such that
ri € Ru, and ¢(m,p) = [Ty er, () (0iw(Pw)) ™ (1-
Gi_,w(pw))Mwimw denotes the probability that task selection
profile m € M, happens under price vector p.

By Definition 2, a requester’s cost consists of the payments
to workers who execute her tasks, as well as the penalty
incurred by the unallocated tasks.

2) Game Theoretic Model: As given in Definition 2, the
cost of a requester depends on all requesters’ prices, and thus,
her pricing decision will inevitably be affected by others’.

Therefore, we use a static (one-shot) non-cooperative game
with requesters as the players and their prices as the actions to
characterize requesters’ pricing behaviors. In this game, each
requester r; aims to choose a price p; that minimizes her own
cost C;(pi, p—i), while considering other requesters’ prices
p—i = (p1, "+ yPi—1,Pit1,  * ,PK ). We refer to such game
as static pricing (SP) game in the rest of this paper.

An individual requester r; usually knows her own parame-
ters N; and «;, but rarely those of the others. It is thus hard
for her to decide her price due to such incomplete information.
However, the platform typically has global information about
all requesters’ parameters, as it can require them to provide
such information at the time of registration. Thus, we take the
role of the platform, and study how the platform could set
reasonable prices for the requesters. To achieve this end, we
adopt correlated equilibrium (CE) defined in Definition 3.

Definition 3 (Correlated Equilibrium). Let P be the set of
prices that requesters could propose, which is assumed to be
discrete and finite with size P, and (-) be a probability distri-
bution over space PX. Then, 7 (-) is a correlated equilibrium
(CE) of the SP game, iff for each r; € R and price p;, p}; € P,

> wpep-) (Cilpip-d) = Cilphp-)) < 0. (o)

p_.€ePK-1

By Definition 3, a CE «(+) is a probability distribution over
the space of requesters’ price combinations. It satisfies that if
the platform samples a price vector p = (p;, p—;) from m(-),
and suggests requesters to set their prices according to p, only
by setting her price as p; could each requester r; minimizes her
cost given that other requesters take p_; as their prices. Due
to such self-enforcing property, we propose to set requesters’
prices using the price vector sampled from a CE. Apparently,
there could be multiple CE’s that satisfy the polytope defined
by Inequality (2). Considering the system-wide performance,
we are specifically interested in the CE that minimizes the
expected social cost.

Definition 4 (Social Cost). Given a CE w(-), an SP game’s
expected social cost is ) px 7(P) (X, er Ci(P))-

To summarize, in MCS systems, we aim to compute the CE
of the SP game which minimizes the expected social cost.

C. Dynamic MCS Systems

1) System Overview: As shown in Figure 1, in a dynamic
MCS system, we discretize the time line into multiple time
slots, denoted as t = 0,1,---,7, and workers arrive dy-
namically in an online manner (workers’ Step @), @), ©®). In
order to simplify presentation', we assume that worker arrival
follows a Bernoulli process with parameter A. That is, in each
time slot, with probability A there is one worker arrival, and
with probability 1 — X there is no worker arrival. We also
assume that a worker belongs to type w with probability fi,,.

'Our models and solutions can be generalized to cases with more compli-
cated worker arrival processes, which however introduce unnecessary compli-
cations in presentation. Thus, we only consider Bernoulli arrival process.
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Fig. 1: Framework of a dynamic MCS system (where circled numbers
represent the order of the events).

Instead of a one-shot price, each requester proposes a price
in each time slot (requesters’ Step @), @), ®). Her task is then
selected according to the same probabilistic model as given
in Definition 1. Requesters also hold delay-sensitive tasks in
dynamic MCS systems, and any unallocated task at time slot
T will incur a penalty «; to requester ;.

2) Game Theoretic Model: In such dynamic setting, we use
the following Markov game, which we refer to as dynamic
pricing (DP) game and define in Definition 5, to characterize
requesters’ pricing behaviors.

Definition 5 (Dynamic Pricing Game). A dynamic pricing

(DP) game is a Markov game with the following components.

o Player: A DP game has the set of requesters R as players.

o State: A DP game has a series of states (ny,na, -+ ,ng,t),
where t denotes the current time slot, and n; denotes the
vector containing the number of each type of requester r;’s
unallocated tasks at time t. We let n = (ny,ng, - ,ng),
and N = (Ny,Ng, - |Ng). Thus, a DP game starts at
state (N, 1), and terminates at any state such that t = T
which is referred to as a terminal state.

e Action: At any state, each requester r;’s action is the task
price p; that she proposes.

o State transition: In a DP game, requesters’ joint action
profile p and workers’ task selection jointly affect state
transition. We let T, denote the set of requesters that have
type-w unallocated tasks at state (n,t). At any state such
that t € {0,1,--- , T —1}, state transition follows the prob-
abilistic model such that for each (i, w) with r; € Ry NZy,

Pr[(ni,w -1, nf(i,w)vt + 1)|(l‘l, t), p] = )\Hwei,w(pw),

and otherwise we have

w
Prl(nt + 1)](0,),p] =1=> " > Mwwbiw(pw),
w=14:r;ERwNLy
where n_; ., denotes the vector obtained by excluding the
element n; ,, from n.
o Immediate cost: At every state, after requesters propose
their prices p, each requester r; will experience an imme-
diate cost such that for each t € {0,1,--- | T — 2},

Ci((n/v t+ 1)7 (1’1, t),pi) = Z (ni,w - nfi,w)piv

w:r; ERw

and for t =T — 1,

(', T),m,T —1),p)) = > ﬁmw—%wm+%w%)
wir; ERw

As given in Definition 5, the state of a DP game captures
the various aspects that affect requesters’ pricing decisions,
including the number of remaining tasks n, and the current
time slot index ¢. Intuitively, a requester may want to increase
her price, if she still has a large number of unallocated tasks
near the end of the time line. Under our assumption that
requesters are fully rational, at any state, a requester will
propose the price that minimizes her cumulative expected cost
from the time slot onwards. As in an SP game, we also propose
to use CE to coordinate requesters’ prices. However, the CE
adopted in our DP game is the Markov correlated equilibrium
(MCE) defined in Definition 6.

Definition 6 (Markov Correlated Equilibrium). Ler 7 (:|-) be
a conditional probability distribution over space P condi-
tioned on the state of a DP game. Then, 7(+|) is a Markov
correlated equilibrium (MCE), iff at each non-terminal state
(n,t), and for each r; € R, and price p;, p} € P,

> w(pipil@,0) (Ci((n 1), pi o) -
p_i€PK-L

3)
C’L‘ ((1’17 t)7p;;7 p—z)) < 0»

where Ci((n, t), p) denotes requester r;’s cumulative cost
from state (n,t) to the terminal states (i.e., states witht = T).
Fort € {0,1,--- , T — 2}, we define C;((n,t),p) as

mejyp)=§:HKﬁJ+&”@JLﬂ(q«ﬁﬁ+1%@¢)m)

+ Z m(p'|( t+1))Ci((n', t + 1),p’))7

p'ePK
and for t =T — 1, we have that
Ci((n,Tf 1)7p)
:ZPr[(n’,T)’(n,T — 1),p]cz-((n’,T), (n, T — 1)7pi).

Similar to the static case, at each state of a DP game, the
platform samples a price vector p from the MCE = (-|-), and
suggests requesters to set their prices according to p. We
have inherently assumed in Definition 6 that, at each state,
requesters will take the platform’s pricing suggestions due to
the CE condition. Again, similar to the SP game, the platform
is interested in calculating the MCE that minimizes the social
cost, which is defined in Definition 7, at every state.

Definition 7 (Social Cost in DP Game). Given an MCE 7 (-|-)
of a DP game, at any state (n,t), the expected social cost is
represented as ) pi 7(pl(n,t)) (Z'L’:nER Ci((n,1), p))

To summarize, in dynamic MCS systems, our goal is to

calculate the MCE of the DP game which minimizes the
expected social cost at every state.
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IV. TASK PRICING IN STATIC MCS SYSTEMS

In this section, we present our formal mathematical for-
mulation for computing the social cost-minimizing CE in SP
games, as well as our solution methods and the corresponding
analyses.

A. Problem Formulation

As discussed in Section III-B, we model requesters’ task
pricing in a static MCS system as an SP game. Next, we
formulate the problem of calculating the CE that minimizes
the social cost, which we refer to as the SP-CE problem, as

the following linear optimization program.
SP-CE Problem:

min Z 7r(p)<

peEPK

}:czmv )

7 €ER

sty ﬂ@mp—ﬂ(CApmp—U

p_iePE-1

— Ciphp-i)) SO,V €R, pi, HHEP,  (5)
> wp) =1, ©6)
pePK

(p) > 0, ¥p € PX. (7

The SP-CE problem has continuous non-negative variables
m(p) for each p € PX, and all the other parameters of an
SP game that are involved in this formulation are a priori
known by the platform, and thus are treated as constants.
As indicated by Objective Function (4), the goal of this
optimization program is to minimize the expected social cost
defined in Definition 4. In terms of the constraints, Constraint
(5) is exactly the CE condition given in Definition 3, and
Constraint (6) and (7) ensure that any feasible solution 7(-)
to the SP-CE problem is a probability distribution.

Obviously, SP-CE is a linear programming problem, which
can be solved in time that is polynomial in the problem’s input
size using existing methods [32], including the interior-point,
simplex, and ellipsoid algorithm?, which we will collectively
refer to as ISE algorithms in the rest of the paper. As we
will show in the following Lemma 1, directly solving the SP-
CE problem with current methods will incur excessively high
computational complexity.

Lemma 1. ISE algorithms have exponential computational
complexity in the number of requesters K for the SP-CE
problem.

Proof. As aforementioned, the SP-CE problem has 7(p) for
each p € P¥ as variables. Thus, the number of variables of
the problem is P¥. Furthermore, Inequality (5) corresponds to
K P? constraints, and Inequality (7) is defined on each variable
7(p), and thus corresponds to PX constraints. Therefore, the
SP-CE problem has overall O(PX) constraints.

2 Although there exist other solution methods for linear programming, we
will treat the interior-point, simplex, and ellipsoid algorithm as state-of-the-art
approaches, because they already have good enough performance.

As indicated in [32], ISE algorithms have polynomial com-
putational complexity with respect to the number of variables
and constraints of a linear program. However, in the SP-CE
problem, as we have discussed in the previous paragraph, the
number of variables and constraints are both in the order
of O(PX), which grow exponentially with the number of
requesters. Therefore, existing solution methods have expo-
nential computational complexity for the SP-CE problem in
terms of the number of requesters K. O

In practice, there are typically a large number of requesters
in an MCS system, and thus existing linear programming
solution methods, which have exponential computational com-
plexity in the number of requesters are not suitable for the
SP-CE problem. Next, in Section IV-B, we propose our own
method for solving the SP-CE problem in a computationally
efficient manner.

B. Computationally Efficient Solution Method

Our intuition of removing the exponential relationship
between the computational complexity and the number of
requesters is to divide the SP game into several smaller games,
each of which has much fewer requesters. Specifically, we
break the SP game into W sub-static pricing (SSP) games®,
out of which SSP game w for each w € {1,2,--- , W} has the
set of requesters R, as the players, and each requester r; in
the game has N; ,, tasks to be executed. Thus, based on such
definition, requester r; belongs to every SSP game w such that
r; € R, and in each SSP game that the requester belongs to,
she proposes a separate price to compete with other requesters
in the same SSP game.

In each SSP game w that requester r; participates in, she
has a cost

M,
Oi,w (pw) = Z (M, Pw)<min{mw, Ni,w}pi,w + oy (Ni,w
My, =0
— min{mw, Ni,w}))7
where we use ¢(mu.puw) = (3") (Biw(Pw))™ (1 ~
Moy =1y

9i7w(pu,)) to denote the probability that m,, out of
the M,, type-w workers choose requester r;’s tasks.

Then, in each SSP game w, the social cost minimization
problem, referred to as the SSP-CE(w) problem, is defined as
the following linear program, where K, = [R.,| and p_(; .,
denotes the price vector obtained by removing the element

Piw from Puw-
SSP-CE(w) Problem:

min Z Ww(pw)<

puwEPKw

s.t. >

P—(i,w)EPKw—1

Ci,'u) (p;l,unpf(i,w))) <0, v’f’i € RUM Piws p{i,w € P: (9)

> QM@MO ®)

T €ERw

Tw (p’i,’wv pf(z,w)) (CZ,IU (pi,w7 pf(z,w)) -

3Note that the concept of sub-static pricing game is not exactly the same
with that of a subgame defined in traditional game theory literatures [14].
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Z 71'w(l:)w) =1, (]0)
PwEPEw
Tw(pw) > 0, Vpuw € PEw. (11)

The SSP-CE(w) problem is the exact counterpart of the
SP-CE problem with a smaller number of requesters. Thus,
we will skip the detailed explanation of this linear optimiza-
tion program, but point out that the objective of the SSP-
CE(w) problem is to solve the CE m,(-) of SSP game w
that minimizes the game’s social cost. Next, we introduce
in Algorithm 1 our computationally efficient CE calculation
(CE2C) algorithm.

Algorithm 1 takes as inputs all constants that are needed
to represent each SSP-CE(w) problem, and solves each
problem using any of the ISE algorithms (line 2). Finally,
the algorithm returns the CE m,(-) for each SSP game
w (line 3). Although the CE returned by the CE2C algo-
rithm (71 (+), 7w2(+), -+, 7w (-)) will be different from the one
obtained by solving the SP-CE problem directly with ISE
algorithms, we will demonstrate numerically in Section VI
that the two CE’s yield approximately the same social cost in
practice. Next, in Theorem 1, we analyze the computational
complexity of the CE2C algorithm given in Algorithm 1.

Algorithm 1: CE2C Algorithm
Input: Instances of each SSP-CE(w) problem for each SSP
game w € {1,2,--- W}
Output: (1 (), ma(-), - 7w (-)):
1 foreach w =1,2,--- W do
2 solve the SSP-CE(w) problem for SSP game w using
any of the ISE algorithms to obtain 7, (+);
3 return (m1(), m2(), -

s mw (+);

Theorem 1. On the CE2C algorithm’s computational com-
plexity, we have the following two results:

e The CE2C algorithm has a polynomial computational com-
plexity in the number of requesters K and the number of
price choices P, under the assumption that the number
of SSP games W is polynomial in K, and the maximum
number of requesters in each SSP game, denoted as K* =
maxXye(1,2,...,w} Kw is much less than K.

e The CE2C algorithm’s computational complexity does not
depend on M,,’s, N; .,’s, Ni’s, M, as well as N.

Proof. In each SSP-CE(w) problem, there are PXw variables,
and O(P%w) constraints. Thus, the computational complexity
of using any ISE algorithm to solve an SSP-CE(w) problem
is polynomial in P. Due to our assumption that the maximum
number of requesters in each SSP game, denoted as K™ is
much less than K, and by our analysis given in the proof of
Lemma 1, any ISE algorithm could be treated as having a
constant computational complexity with respect to K.
Furthermore, as the main loop of Algorithm 1 is executed
for each w € {1,2,--- ,W}, and W is assumed to be
polynomial in K, the overall computational complexity of the
CE2C algorithm is polynomial in the number of requesters
K and the number of price choices P. Furthermore, it is
fairly obvious that the number of iterations, and the size of

the optimization problem to be solved in each iteration do not
depend on the number of tasks and workers, and thus related
parameters including the M,,’s, N;,,’s, N;’s, M, and N do
not affect the algorithm’s computational complexity. O

In many real-world scenarios, there are only a small number
of requesters, usually no greater than 3, in each set R,,. For
example, in most countries, there are usually no more than
3 dominating map services (e.g., Google, Baidu, and Gaode
maps), and thus the number of requesters interested in real-
time traffic congestion information is typically less than 3.
This justifies our assumption in Theorem 1 that K* <« K.
Furthermore, although the computational complexity of the
CE2C algorithm is exponential in K™, it can still be regarded
as computationally efficient, because K* could typically be
treated as a small constant integer less than or equal to 3.

V. TASK PRICING IN DYNAMIC MCS SYSTEMS

In this section, we present our formulation for computing
the social cost-minimizing MCE, as well as our computation-
ally efficient solution method.

A. Problem Formulation

As discussed in Section III-C, we model requesters’ task
pricing in a dynamic MCS system as a DP game. To further
simplify our presentation, we use s = (n,¢) to denote a state
of a DP game. Next, we formulate the problem of calculating
the MCE that minimizes the social cost at state s, which we
refer to as the DP-MCE(s) problem, as the following linear
optimization program.

DP-MCE(s) Problem:

mngjﬂp@(EjQ@mO

pePK P, €ER

s.t. Z 7(pi, p-ils) (Ci(s,pi, P-i)

p_EPE-L

— Cils,pp—i)) S0, ¥ri € R, pi, pLEP, (13)

(12)

> w(pls) =1, (14)
pePE
n(pls) >0, Vp € PK. (15)

Similar to the SP-CE problem, the DP-MCE(s) problem
has 7(p|s) for each p € PX as variables, and all the other
parameters of a DP game used in this formulation are assumed
to be known constants. The goal of this optimization program,
as indicated by Objective Function (12), is to minimize the
cumulative social cost from time slot t onwards, and Constraint
(13), (14), and (15) ensure that any feasible solution to the
DP-MCE(s) problem is an MCE at state s.

Next, in Lemma 2, we show that the social cost-minimizing
MCE of a DP game is computationally intractable to calculate.

Lemma 2. The computational complexity of calculating the
social cost-minimizing MCE of a DP game is exponential in
the number of requesters K.
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Proof. 1t is obvious that the above linear programming prob-
lem DP-MCE(s) for each state s has O(PX) variables and
constraints, respectively. Therefore, computing a DP-MCE(s)
problem using any of the ISE algorithms will take an expo-
nential time in terms of the number of requesters K.
Furthermore, computing the social cost-minimizing MCE
of a DP game will inevitably involve solving the DP-MCE(s)
problem at each state s of the DP game. However, based on
our definition, a DP game has Q(2%) states, and calculating
the MCE that minimizes the social cost thus has an exponen-
tial computational complexity with respect to the number of
requesters K. O

B. Computationally Efficient Solution Method

Because of Lemma 2, we design a computationally efficient
method for solving the social cost-minimizing MCE. Enlight-
ened by the method to reduce the computational complexity
of deriving the social cost-minimizing CE of an SP game, we
also take the approach of splitting the overall game into several
smaller games with fewer numbers of requesters. Specifically,
we break a DP game into W sub-dynamic pricing (SDP)
games4. The set of players for each SDP game w is R,
and each requester 7; in SDP game w holds IV, tasks to
be executed at time slot ¢ = 0. Based on such definition,
the overall worker arrival process could be separated into W
independent processes, such that each SDP game w has a
Bernoulli worker arrival process with parameter Afi,,.

In an SDP game w, a state is defined as (n,,t), where
n,, denotes the vector containing the number of unallocated
tasks that belong to all requesters in SDP game w at time
slot ¢t. Furthermore, an SDP game w has the following
probabilistic state transition model such that at any state with
t€{0,1,---,T—1}, and for each (i, w) with r; € Ry, N L,

Pr[(ni,w - la N_(;w), t+ 1)}(11117’ t)a pw] = )‘Mwei,w (pw)a
and otherwise we have

Pr[(n,,t+ 1)|(nu,,t),pw] =1-

>

1, ERWwNLy,

)\/J/wei,w (pw)7

where we abuse the notation a little, and use n_; ,,) to denote
the vector obtained by excluding the element n; ,, from n,,. At
every state of an SDP game w, for each ¢t € {0,1,--- ,T—2},
each requester r; will experience an immediate cost such that

Ci,w ((n’/w7 t+ 1)7 (nwa t)7pi,w> = (ni7w
and fort =T —1,
Ci((n;v7T)7 (nw7T - 1)7pi,w) = (ni,w

Our definitions of each SDP game w’s MCE, denoted as
7w (-|-), and a requester r;’s cumulative cost from any state
(ny,t) onwards, denoted as Ci7w((nw,t), pw), are the same
as Definition 6 except that we substitute the state transition
probability and the immediate cost function as those of SDP

/
= N ) Piws

/ /
- ni,w)piyw + T @i

4 Again, the concept of sub-dynamic pricing game is also different from the
traditional definition of a subgame [14].

game w. Thus, we omit the detailed definitions of them,
and directly provide our formal mathematical formulation of
calculating the social cost-minimizing MCE of SDP game w
at each state s, = (n,,, t) as the following linear optimization

program, which we refer to as the SDP-MCE(s,,) problem.
SDP-MCE(s,,) Problem:

> > ci,w@w,pw))

pwEPKw i, ER

sit. >

pf(iﬂu)G'Pwal
= Ciou (30 Ph s P (10) ) S 0,974 € R, pi Ph oy € P, (17)

> (18)

pwEPKw
7w (Puw|sw) > 0, Vpw € PKw,

min Tw (Pw|Sw) < (16)

Tw (pi,wv P—(i,w) |S’w) (Ci,w (swapi,uu pf(iﬂw))

Tw (pwlsw) =1,

(19)

We skip again the detailed explanation of the SDP-MCE(s,,)
problem, because it is a variant of the DP-MCE(s) problem
defined specifically over SDP game w. Based on our definition
of requester r;’s cumulative cost function C’Z-yw((nw,t)7 pw)
in SDP game w, the MCE 7( - |(n,,t)) can be calculated
by incorporating the MCE of related states at time slot ¢ + 1.
Therefore, we adopt the technique of dynamic programming,
and compute the MCE’s backward from ¢t = T — 1. Next,
we present in the following Algorithm 2 our computationally
efficient MCE calculation (MCE2C) algorithm.

Algorithm 2: MCE2C Algorithm

Input: Instances of each SDP-MCE(s,,) problem for each
state s,, with £ =7 — 1 of each SDP game
w e {1727 aW},
Output: (m1(-|), m2(-), -, 7w (-]-));
1 foreach w =1,2,--- /W do
2 foreacht =7 —1,7—2,---,0 do
3 foreach state s,, at time slot ¢ do
4 solve the SDP-MCE(s,,) problem using any of
the ISE algorithms to obtain 7 (+|Sw);
// store the constants for
SDP-MCE(Sw) at time slot ¢t—1

5 store Cj w(Sw, Pw) for each r; € Ruy;
// store the outputs

6 store 7o (+|Sw);

7 return (7r1(-|~),7r2(~|-),~~- 77rW(-|~));

The MCE2C Algorithm given in Algorithm 2 takes as inputs
the instances of each SDP-MCE(s,,) problem for each state
Sw With t = T — 1 of each SDP game w € {1,2,--- ,W}.
In each iteration, it solves each SDP-MCE(s,,) problem using
any of the ISE algorithms (line 4), and it then stores the value
Ci.w(Sw; Pw) for each r; € Ry, (line 5) and 7y, (-|s,,) (line
6) for the computation in the next iteration. Note that the
computation starts from states with ¢ = T — 1, because at
the very beginning only instances for those states are a priori
known. As the iterations proceed, the problem instances for
other states become available, and the corresponding SDP-
MCE(s,,) problems will then be computed accordingly.

As shown in Algorithm 2, our approach of splitting a DP
game into several SDP games could significantly reduce the
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number of states in each game, as well as the size of the
optimization problem corresponding to each state, which is
why our method is fairly computationally efficient. Next, in
Theorem 2, we analyze the MCE2C Algorithm’s computa-
tional complexity. We let N* = max;.,,,cg N; denote the
maximum number of tasks held by requesters.

Theorem 2. [f the number of SDP games W is polynomial
in K, and the maximum number of requesters in each SDP
game K* is much less than K, the MCE2C algorithm has
polynomial computational complexity in K, T, P, and N*.

Proof. In each iteration of Algorithm 2, the computational
complexity is dominated by solving the SDP-MCE(s,,,) prob-
lem, which has O(P%w) variables and constraints. Due to the
assumption that K* is much less than K, we can treat the
computational complexity of computing the SDP-MCE(s,,)
problem with any of the ISE algorithms in each iteration as
polynomial in P and constant with respect to K.
Furthermore, due to the three levels of loops in Algorithm
2, the total number of iterations is O(WT(N K *). Together
with our assumption that the number of task and worker types
W is polynomial in the number of requesters K, we can arrive
at the conclusion that the MCE2C algorithm has polynomial
computational complexity in K, T, P, and N*. O

By Theorem 2, the MCE2C algorithm has a polynomial
computational complexity in almost all of the primary param-
eters of an SDP game, including K, T, P, and N*, except
that it has an exponential computational complexity in K*. As
discussed in Section IV-B, K* is usually practically a small
constant, and thus the MCE2C algorithm could be regarded as
computationally efficient in practice. Next, in Section VI, we
will numerically evaluate the expected cumulative social cost
guaranteed by the MCE’s returned by the MCE2C algorithm.

VI. PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, as well
as the settings and results of our numerical evaluation.

A. Baseline Methods

In the case of static MCS systems, we compare CE2C with
using an ISE algorithm to solve the SP-CE problem. In our
implementation, we use the interior-point algorithm [32], as it
has the lowest theoretical computational complexity among the
three ISE algorithms. Furthermore, we also consider another
baseline method, which returns not the social cost-minimizing
CE, but simply any CE of each SSP-CE(w) problem. We refer
to such baseline method as the ACE method. Similarly, in
the case of dynamic MCS systems, we compare our MCE2C
algorithm with using the interior-point algorithm to solve the
DP-MCE(s) problem at each state s, and the AMCE method
that returns not necessarily the MCE that minimizes the social
cost, but any MCE of each SDP-MCE(s,,) problem.

B. Evaluation Settings

Our evaluation settings are given in Table I and II, where
the set of requesters’ price choices is set as P = {1,20,40},
and K, is chosen uniformly at random from the set {1, 2, 3}.
In Table I, we present our parameter settings for static MCS
systems. We skip the descriptions of the self-explanatory
parts, and primarily explain the following points. Setting I
has relatively small problem sizes, whereas Setting II-V have
larger problem instances. In Setting I and II, we fix the other
parameters and vary the number of requesters, and in Setting
IIT and IV, we vary respectively the number of workers M
and the number of SSP games . Different from Setting I-IV
where each requester r;’s penalty «; is sampled uniformly at
random from [40, 60], in Setting V, we let all requesters have
the same penalty «, and vary o from 50 to 110. Similarly, in
Table II, we present our parameter settings for dynamic MCS
systems, the descriptions of which are omitted, as they are
direct counterparts of the settings in Table I. Moreover, the
optimizations are computed with the GUROBI solver [33].

Beting K [ P [ a [ W [Niw]| M [K,
1 | [7,10] [{1,20,40}][40,60]] 3 11, 5] 18 |[1,3]

1 300, 1200]|{1, 20, 40}| [40,60] | [£7] [10,15] 15W |[1,3]
I 600 [{1,20,40}|[40,60]| [£7] |10, 15][1000, 1600][1, 3]
v 600 [{1,20,40}|[40,60][[100, 250][10, 15]] 15W  |[1,3]
v 600 [{1,20,40}|50, 110] [£7] 10,15 15w |1,3]

TABLE I: Parameter Setting I-V

lSelting[ K [ P [ T [ A [ a; [ w [ Ni,w [Ku,
VI | [2,5] |{1,20,40}] 20 0.8 |[40,60] 3 | [L,3] |[L,3]
VI [[30,120][{1, 20,40} 2K 0.8 |[40,60][[£1[[10,15][[1, 3]
VIT | 40 |{1,20,40}|[60,120]] 0.8 [[40,60]|[£1([10, 15]|[1, 3]
IX | 100 |{1,20,40}] 200 |[[0.4,1.0][[40,60][[ £1[[10,15][[1, 3]
X | 100 [{1,20,40} 200 0.8 |[50,80][[%1][10, 15][[1, 3]

TABLE II: Parameter Setting VI-X

C. Evaluation Results

Our results are shown in Table III-IV, and Figure 2-7. In
Table IV, the time unit is second, and the social costs in Figure
2-5 and Figure 6-7 should be obtained by scaling up the values
in the figures by 1000 and 10000 times, respectively.

[ K] 1SE [ CE2C | ACE | [ K | ISE | CE2C [ ACE |

7 | 1303.2 | 1303.2 | 1601.0 7 | 24.697 | 0.0957 | 0.0938
8 | 1536.2 | 1536.2 | 1845.4 8 | 218.12 | 0.0851 | 0.0727
9 | 1785.6 | 1785.6 | 2095.2 9 | 2048.2 | 0.1227 | 0.0886
10 | 2032.2 | 2032.2 | 2344.1 10 | 24282 | 0.2836 | 0.2774

TABLE TII: Social cost (I) TABLE IV: Running time (T)

Table IIT and IV, as well as Figure 2-5 show our evaluation
results for Setting I-V given in Table I. Specifically, the two
tables correspond to Setting I's results, where ISE refers to
using an ISE algorithm to solve the SP-CE problem. On one
hand, from Table III, we could conclude that CE2C and ISE
have exactly the same social cost, which is much less than that
yielded by ACE. On the other hand, from Table IV, we can
observe that the running time of CE2C is much less than that of
ISE, and approximately the same with that of ACE. Thus, these
two tables indicate that our CE2C algorithm guarantees low
social cost with low computational complexity. In Figure 2-5,
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we consider Setting II-IV that have larger problem instances.
For these instances, ISE is no longer able to terminate within
reasonable time, because, even when K = 10, it already takes
24282s to finish. We observe in the experiments that CE2C
still terminates fairly fast, and, as shown in these 4 figures, it
has much less social cost compared with ACE.

—V— ACE 7 694
2454 —8— CF2C 7)7)7 6.6
62
594
% ssd “YNgnegg

5]
= 521

4 —¥— ACE
—&— CE2C

300 390 480 570 660 750 840 930 1020 1110 1200

K
Fig. 2: Social cost (I)
6.8 110+
6.5 1034

1000 1060 1120 1180 1240 1300 1360 1420 1480 1540 1600

M
Fig. 3: Social cost (IIT)

—7— ACE o
—&— CE2C

Social Cost

100 115 130 145 160 175 190 205 220 235 250

W
Fig. 4: Social cost (IV)

S0 56 62 68 74 80 8 92 98 104 110

Fig. 5: Socia(lx cost (V)

881 —y— AMCE VYV 92 V'V'V-VVVW; —y— AMCE

814 —8— MCE2C T 87 WV‘V’VV_WVV -8~ MCE2C
v"’v 82 ts V.

78 ‘v-vv\?

Z73
]

43

30 39 48 57 66 75 84 93 102 111 120

K
Fig. 6: Social cost (VII)

60 66 72 78 84 90 96 102 108 114 120

T
Fig. 7: Social cost (VIII)

Because of space limit, we omit the evaluation results for
Setting IV, which show that MCE2C ensures a low social
cost in a computationally efficient manner. In Figure 6 and 7,
we consider DP games with larger problem instances. These
figures show that MCE2C invariably ensures much less social
cost than the baseline method AMCE. Again, because of space
limit, figures with evaluation results for Setting IX and X are
omitted, which show similar trends as Figure 6 and 7.

VII. CONCLUSION

In this paper, we study task pricing in multi-requester MCS
systems with dynamically arriving workers. We use Markov
game to model requesters’ pricing behaviors, and Markov cor-
related equilibrium (MCE) as the solution concept. We propose
that the platform uses the social cost-minimizing MCE to
coordinate requesters’ prices, which is self-enforcing, and opti-
mizes the system-wide objective of social cost. Technically, we
propose a computationally efficient algorithm to compute an
approximately optimal MCE. Through extensive performance
evaluation, we show numerically that our algorithm yields
close-to-minimum social cost in very short running time.
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