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We report the first large-acceptance measurement of the beam–spin asymmetry for deuteron photodis-
integration ( �γ d → pn) in the photon energy range 420 < Eγ < 620 MeV. The measurement provides 
important new constraints on the mechanisms of photodisintegration above the � resonance and on the 
photocoupling of the recently discovered d∗(2380) hexaquark.
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Dibaryon
Deuteron photodisintegration
1. Introduction

The deuteron is the simplest nucleus in nature, a bound two-
body system comprising a proton–neutron pair. The most elemen-
tary nuclear reaction process is photodisintegration, where the 
deuteron is disintegrated into its component proton and neutron 
through its interaction with a photon. At low photon energies (a 
few to tens of MeV) such reactions play an important role in nu-
cleosynthesis and stellar burning. At higher photon energies (Eγ >

100 MeV), the process becomes sensitive to the nucleonic and ul-
timately (Eγ > 1000 MeV) quark substructures of the deuteron [1].

More than 50 years ago, it became clear that deuteron pho-
todisintegration can be useful to understand the nucleon–nucleon 
and NN∗ interactions (where N∗ represents an excited state of the 
nucleon) as well as to search for exotic six-quark particles, the so-
called hexaquarks [2]. Despite its importance, the world data set 
for deuteron photodisintegation contains significant gaps in terms 
of photon energy coverage, angular coverage, and particularly in 
measurements of polarization observables. The situation has be-
come more critical following the recent exciting indications for the 
discovery of the first exotic hexaquark – the d∗(2380) with quan-
tum numbers I( J P ) = 0(3+) [3–10]. With such quantum numbers, 
the d∗(2380) can be produced on deuterium with photon beams 
of fairly moderate energy (Eγ ≈ 570 MeV) [11].

The optimal reactions to search for evidence of the d∗(2380)
in photoreactions are γ d → d∗ → dπ0π0 and γ d → d∗ → pn, 
which include the dominant decay branches established in nu-
cleonic beam experiments [12,13]. The isospin selectivity of the 
dπ0π0 final state suppresses backgrounds from conventional nu-
cleon resonances leaving the d∗(2380) as the strongest contribu-
tion [13]. Although weaker suppression of background mechanisms 
is expected for the pn final state, the simpler two-body final state 
is far more amenable to detailed partial wave analysis.

The γ d → dπ0π0 reaction was recently measured by the A2 
collaboration at MAMI [14] and by the Tohoku Collaboration [15]. 
Both measurements gave similar results σ(γ d → d∗ → dπ0π0) ≈
20–30 nb (on top of σ(γ d → dπ0π0) ∼ 15 nb of conventional 
processes). Due to the small cross section and the closeness of 
the d∗(2380) to the reaction threshold, a complete determination 
of the final state, necessary to suppress background in the region 
of the d∗(2380) and reduce systematics, will require further dedi-
cated measurements [16].

The photodisintegration reaction has a higher estimated back-
ground level [13]:

σ(γ d → d∗ → pn)

σ (γ d → pn)
≈ 30 nb

6 μb
≈ 10−2. (1)

However, by exploiting polarization observables together with 
partial-wave analysis, one can reach higher sensitivities to the 
d∗(2380). The possibility exists not only to extract the d∗(2380)
photo-coupling per se, but also to get hints about the d∗(2380)
electromagnetic properties, such as its electric quadrupole mo-
ment, its magnetic octupole moment, etc.

Indeed, the first irregularities in deuteron photodisintegration 
were observed in the 1970s in proton polarization measurements 
d(γ , �p)n [17,18]. It was suggested that the high proton polarization 
(P p ∼ 100%) observed at Eγ ≈ 570 MeV might originate from a yet 
unknown six-quark particle with mass ∼ 2380 MeV and quantum 
numbers I( J P ) = 0(3+), consistent with the d∗(2380) later found 
in nucleon–nucleon scattering experiments. Due to its high spin, 
J Pd∗ = 3+ , the d∗(2380) requires the contribution of higher multi-
poles (E2, M3 or E4) to be photoproduced from a deuteron target 
(I( J P ) = 0(1+)). Its decay to a proton–neutron pair also requires 
high partial waves: according to Refs. [9,10] it proceeds in 90% 
of cases via the 3D3 partial wave (angular momentum L = 2, nu-
cleon spins and L all aligned) or in 10% of cases via the 3G3 partial 
wave (angular momentum L = 4, nucleon spins aligned, spin and 
L anti-aligned). Such high angular-momentum components are ex-
pected to reveal themselves in various polarization observables. If 
true, the d∗(2380) would be the only known exotic multiquark 
system that can be produced copiously in the clean and con-
trolled environment of photo-induced reactions, allowing study of 
the structure of multiquark systems with unprecedented accuracy. 
To verify this assumption we aim to determine a much more com-
plete measurement of polarization observables for the γ d → pn
reaction [19] and the first step in this direction is a measurement 
of the d( �γ , pn) reaction to determine the beam–spin asymmetry, 
�, in the region of the d∗(2380).

2. Experimental details

This experiment took place at the Mainz Microtron (MAMI) 
electron accelerator facility [20] in a total beamtime of 300 hours 
during August 2016. Bremsstrahlung photons, either circularly or 
linearly polarized, were energy tagged (�E ∼ 2 MeV) by the 
Glasgow-Mainz Tagger [21] and impinged on a 10 cm long liquid 
deuterium target. Reaction products were detected by the Crystal 
Ball (CB) [22], a highly segmented NaI(Tl) photon calorimeter cov-
ering nearly 96% of 4π (21◦ < � < 159◦). A 24 element, 30 cm 
long plastic scintillator barrel (PID) surrounded the target to assist 
in charged particle identification [23]. For this experiment, addi-
tional analyzing material for a nucleon polarimeter was placed 
inside the CB, comprising a 2.6 cm thick graphite cylinder cov-
ering � > 12◦ placed in the space between the PID and the Multi 
Wire Proportional Chamber (MWPC) [24]. A further component of 
the polarimeter, a 2.6 cm thick disc-shaped upstream cap covered 
2◦ < � < 12◦ [23]. The polarimeter was not used for this first anal-
ysis but will allow nucleon polarization observables to be extracted 
from the same data set in subsequent analysis (ongoing).

The d( �γ , pn) events of interest contained a proton track and an 
uncharged (neutron) hit. The proton was identified using the corre-
lation between the energy deposits in the PID and CB using �E–E
analysis [23]. The proton identification also required an associated 
charged track in the MWPC. The neutron candidates comprised un-
charged hits in the CB, which did not have any associated MWPC 
or PID signal. The neutron angles were determined using the CB 
hit with production vertex coordinates defined by the intercept 
of the photon beam trajectory and the associated charged (pro-
ton) track. Once candidate proton and neutron tracks were iden-
tified, a kinematic fit was employed to increase the purity of the 
event sample and to improve the accuracy in the determination of 
the reaction kinematics. To fully constrain the kinematics of the 
d(γ , pn) reaction at a given incident photon energy, two kinematic 
quantities are required. The angles of both proton and neutron 
as well as the proton energy are measured, enabling an overcon-
strained kinematic fit analysis. A 10% probability cut was employed 
to select the events of interest. To remove events originating from 
the target cell windows, a z-vertex cut was also imposed. The 
final data sample contains ∼ 5 × 106 events in the range of in-
terest (Eγ ∼ 420–620 MeV). The neutron detection efficiency of 
the CB (∼ 30%) was also determined in a dedicated measurement, 
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Fig. 1. The linear polarization of the bremsstrahlung photon beam as a function of 
photon energy. The coherent edge marks the point where the second derivative of 
the polarization as a function of the energy changes in sign. The vertical (horizontal) 
dashed lines shows accessible range of energies (polarizations) for this experiment.

Ref. [25]. Applying these detection efficiencies in the current anal-
ysis enabled differential cross sections to be extracted, which were 
consistent with previously measured DAPHNE data [26].

A linearly polarized photon beam was employed for 2/3 of the 
experimental run period, with the remainder obtained using an 
unpolarized2 photon beam. The linearly polarized beam was pro-
duced by utilizing a crystalline diamond radiator to produce the 
bremsstrahlung photons from the electron beam [27,28]. System-
atics in the measurement were reduced by periodically switching 
the plane of the linear polarization by 90◦ . Also, the unpolarized 
data were obtained at regular intervals throughout the run pe-
riod. The coherent edge for the linearly polarized photons was 
set at 630 MeV, which provided linearly polarized photons with 
appreciable polarization (14% < Pγ < 47%) over the energy range 
Eγ ∼ 420–620 MeV, see Fig. 1.

3. Determination of the beam–spin asymmetry

The differential cross section for deuteron photodisintegration 
is related to the beam–spin asymmetry, �, by

dσ

d�
=

(
dσ

d�

)
unpol

(1 + Pγ � · cos(2φ)), (2)

where Pγ is the degree of linear polarization of the photon beam 
and φ is the azimuthal angle between the photon polarization 
vector and the reaction plane [29]. For this experiment, the polar-
ization plane of the incident photon beam was periodically flipped. 
The two orientations corresponded to the polarization plane being 
parallel (‖) or perpendicular (⊥) to the laboratory floor. Such an 
arrangement allows the beam–spin asymmetry to be determined 
from a double ratio of the yields in the two polarization directions, 
which is less sensitive to any systematical effects arising from de-
tector acceptance:

Pγ � · cos(2φ) = N(�,φ)‖ − N(�,φ)⊥
N(�,φ)‖ + N(�,φ)⊥

(3)

As a cross check, the asymmetry, �, was also calculated sepa-
rately from the ‖ and ⊥ data, using the unpolarized data to remove 
the effects of detector acceptance. This method gave broadly con-
sistent results with those extracted from the double ratio, with the 
small (order 3%) discrepancies included in the quoted systematic 
uncertainty.

Further systematics were assessed and quantified in the data 
analysis. This included comparison of the results obtained when 
not employing a kinematic fit analysis, variation of the probability 

2 Circularly polarized with equal number of events from both helicities.
Fig. 2. Beam-spin asymmetry (�) results from this experiment (red open circles) 
in comparison with previous results (black crosses) [30–32]. The corresponding 
systematic uncertainties are depicted as shaded bars on the bottom. Energy inde-
pendent (energy dependent) al P2

l fits are shown as solid red (dashed blue) lines 
(see text).

cut (and also the measured quantities employed) in the kinematic 
fit, variation of the range of the proton missing-mass cut,3 and 
variation of the �E–E and vertex cuts. Little sensitivity to the ex-
tracted values of � was observed (typically changes of below 5%). 
The estimated systematic uncertainties were assessed on a bin-by-
bin basis and are presented with our results. An additional 3% sys-
tematic (not included in the bin-by-bin systematics in the figure) 
arises from the method used to determine the degree of photon 
beam polarization.

4. Results

Our beam asymmetry results and estimated systematic uncer-
tainties are presented in Figs. 2 and 3. The new data cover the 
complete range of proton center-of-mass (CM) polar angles for 
photon energy bins from 420 up to 620 MeV, providing the first 
comprehensive measurement of this observable for this photon en-
ergy range. Also shown in Figs. 2 and 3, are the previous world ex-
perimental data [30–32]. For the lowest Eγ = 425 MeV bin where

3 For the case where the analysis was performed without using kinematic fit 
techniques, e.g. see Ref. [23].
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Fig. 3. Same as Fig. 2. The 540–550 MeV bin is empty due to a dead tagger channel.

there are existing data [30], consistent results were obtained over 
the full range of proton angles. Consistency with previous data sets 
is also observed with the sparse data points at higher energies, 
which were obtained in restricted kinematics.

This work provides the first kinematically complete measure-
ment of a polarization observable in deuterium photodisintegration 
above 420 MeV. The new data will provide stringent tests of any 
theory of photodisintegration in this region and, importantly, pro-
vide the first extensive measurement of a polarization observable 
in the region of the d∗(2380).

To quantify the dependence of the asymmetry on photon en-
ergy and polar angle we performed an expansion of our results 
into associated Legendre functions. From a theoretical point of 
view, it has been suggested to decompose not �(�, Eγ ), but rather 
σ1 = �(�, Eγ ) · σ(�, Eγ ) [33] or even σ1/σtot, where σtot is the 
total cross section, to get rid of the s−10 energy dependence of the 
deuteron photodisintegration cross section. We therefore adopt the 
σ1/σtot ansatz, employing the differential cross section and total 
cross section measurements from Ref. [26]4.5 The resulting σ1/σtot

data were fitted using the expansion

4 Note that the cross sections extracted from the current data were consistent 
with these previous measurements.
5 Since both dσ/d� and σtot cross sections are taken from the same Ref. [26]

data, the systematic uncertainties related to the σtot extraction are expected to be 
suppressed.
Fig. 4. The energy dependence of the expansion coefficients al . Black dots corre-
spond to the single-energy solution, red line correspond to the energy-dependent 
solution, and red bands represent the 1σ error band for the energy-dependent so-
lution. The thin vertical grey lines point to the d∗(2380) energy. Dashed red lines 
show results without a d∗(2380) Breit–Wigner contribution.

σ1

σtot
=

7∑
l=2

al P
2
l . (4)

This procedure was carried out using two methods: (i) a single-
energy procedure in which the fit was performed using data from 
each photon energy bin in isolation and (ii) an energy-dependent 
procedure where the expansion coefficients, al , were assumed to 
vary smoothly6 from photon energy bin to photon energy bin. 
To evaluate the possible influence of the d∗(2380) to the pho-
ton energy dependence of the al coefficients we also inserted a 
Breit–Wigner function having a mass M = 2380 MeV, a width 

 = 80 MeV, and arbitrary strength for each al . The extracted co-
efficients using the various ansatz, with and without the modeling
of the d∗(2380) contribution, are presented as a function of photon 
energy in Fig. 4.

In Ref. [34], it is claimed that the strongest d∗(2380) effect 
should be seen in the a6 coefficient. Some weak structure exhibit-
ing a mass and width compatible with the established properties 
of the d∗(2380) is evident in the a6 coefficient. A d∗(2380) contri-
bution from E2 in a product with higher multipoles (E4 or higher) 
is allowed; however, it is expected to be suppressed [35]. The ob-
served rather smooth behavior of a4, where an E2 contribution 
from the d∗(2380) may be expected to manifest, is consistent with 
a very weak E2 excitation of the deuteron into d∗(2380), in fa-

6 To ensure smoothness we have used a Discrete Gaussian Sampling method to 
model a smooth al energy dependence. This comprised 3 Gaussians with centroids 
at 420, 520 and 620 MeV, widths of 100 MeV with arbitrary strength.



M. Bashkanov et al. / Physics Letters B 789 (2019) 7–12 11
vor of M3 excitation, which should manifest itself in a6, but not 
in a4. This result may not be as unexpected as it looks at first 
sight: due to the predicted compactness of the d∗(2380) [36] its 
quadrupole deformation and hence the deuteron to d∗ electric 
quadrupole transition is expected to be small.7 On the other hand, 
the magnetic moment of the d∗(2380) is expected to be large, 
μd∗ ≈ 7.6 μB [36], which should lead to an enhanced magnetic 
octupole transition. The a6 coefficient appears to be the last non-
trivial coefficient for the sampled photon energy range. The a7
coefficient is consistent with zero within our statistical and sys-
tematic uncertainties.

One can also use the formalism from Ref. [37] to evaluate the 
anticipated correlations and signal sizes expected in the various 
Legendre coefficients. Assuming the d∗(2380) is excited via the 
M3 transition only and neglecting the interference effects between 
the d∗(2380) and NN∗-systems (no d∗(2380)–NN∗ interference 
has been previously observed [14,4,9,10,7]), we can write simple 
expressions for the al coefficients, see Eq. (5) (the d∗(2380) con-
tribution to the odd al coefficients appear only as an interference 
with other partial waves are therefore expected to be small).

a2 = 0.375|M3(3D3)|2 + 0.108|M3(3D3)||M3(3G3)|
· cos(δ3D3

− δ3G3
) + 0.391|M3(3G3)|2

a4 = 0.014|M3(3D3)|2 + 0.021|M3(3D3)||M3(3G3)|
· cos(δ3D3

− δ3G3
) + 0.017|M3(3G3)|2

a6 = 0.172|M3(3D3)||M3(3G3)|
· cos(δ3D3

− δ3G3
) + 0.025|M3(3G3)|2 (5)

where the first number corresponds to the multipole transition in 
the initial state and the numbers in brackets correspond to the pn
partial wave in conventional nomenclature (2S+1L J ). The relative 
phases between the 3D3 and 3G3 partial waves are determined to 
be ∼ 4◦ from the AD14 SAID partial wave analysis [10,38]. Using 
|d∗(3D3)|2
|d∗(3G3)|2 = 9 from the same analysis we can simplify the expres-
sion:

a2 = 0.454|M3(3D3)|2,
a4 = 0.023|M3(3D3)|2,
a6 = 0.060|M3(3D3)|2. (6)

In Table 1 we show results where the a6 strength is fixed 
from the data and use the relations (6) to estimate the expected 
strength for other coefficients based on our previous assumptions. 
These estimates are consistent with the experimental data for both 
the a2 and a4 coefficients, giving further indication that the fea-
tures in the data are broadly consistent with that expected from a 
d∗(2380) contribution reached predominantly via M3 excitation. If 
we explicitly impose the relations (6) constrains in the fit (“con-
strained fit”, Table 1), we still observe very similar results for the 
coefficients a2 − a6. Similarly one can evaluate the d∗ contribution 
to the total γ d → pn cross-section using the measured coefficients. 
The obtained value of 4.6 ±1.0% is of similar magnitude to the pre-
liminary value evaluated in Ref. [14].

7 The leading contribution in an E2 transition is expected to arise either from 
D-wave (deuteron) to S-wave �� (d∗(2380)) or S-wave (deuteron) to D-wave ��

(d∗(2380)). The transition from the pn part of the deuteron wave function to the 
six-quark part of the d∗ wave function is prohibited because the photon does not 
carry color charge and cannot change two color bags into one. The transition from 
a six-quark part of the deuteron to a six-quark part of the d∗ wave function via an 
E2 transition should be highly suppressed.
Table 1
d∗(2380) contribution to al .
al fit× 1000 calculated× 1000 constrained fit× 1000

a2 −13.8± 1.6 −17.6± 2.3 −11.7± 2.2
a4 −0.2± 0.5 −0.9± 0.2 −0.6± 0.1
a6 −2.3± 0.3 −2.3± 0.3 −1.7± 0.3

χ2/edf 2.35 2.31

5. Summary

New precise large acceptance data on beam–spin asymme-
try in deuteron photodisintegration have been obtained covering 
the photon energy region 420 < Eγ < 620 MeV. The data will 
be valuable to evaluate the mechanisms of photodisintegration 
above the � resonance, providing strong constraints on the role of 
higher resonances than the �, accessible in this region (N∗(1440), 
N∗(1520), N∗(1535)), as well as NN∗ interactions. These data 
provide the first comprehensive measurement of a polarization 
observable in the region of the d∗(2380). The new data were 
combined with existing cross-section data to perform a simpli-
fied multipole analysis. The simplified analysis indicated that the 
d∗(2380) is likely to be excited predominantly through an M3
transition rather than an E2 transition, which is consistent with 
its proposed compact nature. Upcoming polarization data on P y , 
Cx , Ox would allow a partial-wave analysis to be performed that 
would give further powerful constraints on the possible influence 
of the d∗(2380) hexaquark on deuteron photodisintegration. We 
hope this work will encourage further developments for including 
resonances above the � to enable their study in a well understood 
few-body system.
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