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Abstract The Arctic Ocean is experiencing profound environmental changes as the climate warms.
Understanding how these changes will affect Arctic biological productivity is key for predicting future
Arctic ecosystems and the global CO, balance. Here we use in situ gas measurements to quantify rates of
gross oxygen production (GOP, total photosynthesis) and net community production (NCP, net CO,
drawdown by the biological pump) in the mixed layer in summer or fall from 2011 to 2016 in the Beaufort
Gyre. NCP and GOP show spatial and temporal variations with higher values linked with lower
concentrations of sea ice and increased upper ocean stratification. Mean rates of GOP range from 8 & 1 to
54+ 9 mmol O,-m~%-d”! with the highest mean rates occurring in summer of 2012. Mean rates of NCP
ranged from 1.3+ 0.2 to 2.9 + 0.5 mmol O,-m™2-d™". The mean ratio of NCP/GOP, a measure of how
efficiently the ecosystem is recycling its nutrients, ranged from 0.04 to 0.17, similar to ratios observed at
lower latitudes. Additionally, a large increase in total photosynthesis that occurred in 2012, a year of
historically low sea ice coverage, persisted for many years. Taken together, these data provide one of the
most complete characterizations of interannual variations of biological productivity in this climatically
important region, can serve as a baseline for future changes in rates of production, and give an intriguing
glimpse of how this region of the Arctic may respond to future lack of sea ice.

Plain Language Summary The Arctic Ocean is changing rapidly because of global climate
change. Sea ice is declining, with the Arctic expected to be ice-free in the summer by the middle of this
century. The effect of these environmental changes on the marine carbon cycle is poorly known. In this
study, rates of marine photosynthesis and net carbon dioxide drawdown in the summer or fall of 2011-2016
show that ice concentration was the largest environmental predictor of biological productivity, with
smaller sea ice concentrations leading to increased rates of photosynthesis and thus likely to higher carbon
dioxide drawdown. Additionally, a large increase in total photosynthesis that occurred in 2012, a year of
historically low sea ice coverage, persisted for many years. An alternative hypothesis for the large increase in
photosynthesis in 2012 is that the data in 2011 were collected before the onset of summer stratification
(time when mixed layer depth gets very shallow), whereas data for all subsequent years were collected after
this increase in stratification had occurred.

1. Introduction

Profound environmental changes are occurring in the Arctic, one of the regions experiencing the effects

of global warming most severely. Sea ice is melting, with sea ice in recent years consistently being 2 stan-

dard deviations below the previous 30-year mean. In particular, all 10 lowest Arctic September sea ice

extents compared to the past several decades were measured in the last 10 years (Petty et al., 2018) and

the Arctic is expected to be ice-free in summertime by the middle of this century (Jahn et al., 2016).

Additionally, terrigenous input is increasing (Abbott et al., 2016), the seawater is freshening (Carmack

et al., 2016), and temperatures are warming (Boisvert & Stroeve, 2015). Stratification is expected to
increase (Nummelin et al., 2016), which should lead to increased light regimes but lower levels
of nutrients.
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The Arctic Ocean is currently a disproportionately large carbon sink for its area (Bates et al., 2011) but the
fate of the Arctic Ocean as a carbon sink as the environment changes is highly uncertain, in part because
the response of autotrophic and heterotrophic communities to the changes is not well known. Due to the
recent and drastic declines in sea ice extent in the Arctic Ocean, studies have suggested that the once
light-limited environment could host larger phytoplankton blooms that could lead to more primary produc-
tion and therefore a greater uptake ofcarbon (Slagstad et al., 2015). Moreover, an additional fall phytoplank-
ton bloom in the Arctic Ocean, where there is normally only an annual spring bloom, could have profound
implications on biological productivity and the carbon cycle (Ardyna et al., 2014). These changes in the tim-
ing of blooms are also suspected to alter the zooplankton community and their grazing pressures on phyto-
plankton (Jiet al., 2013).

However, nutrients also play an important role in phytoplankton growth and primary productivity
(Tremblay et al., 2015) and an increasingly stratified upper ocean and a growing microbial community
due to increased light penetration could deplete the nutrient supply in the Arctic Ocean (McLaughlin
& Carmack, 2010) and thus lead to less CO, drawdown (Cai et al., 2010). Additionally, the existence of
phytoplankton blooms under the sea ice (Arrigo et al., 2012) suggest that an ice-free Arctic Ocean could
possibly lead to a decrease in overall productivity as the under-ice habitats would be diminished if the sea
ice disappears too early in the season. In short, the uncertainty in the fate of the Arctic Ocean as a carbon
sink calls for accurate measurements of biological productivity over different years and times in order to
improve understanding on how environmental factors are affecting rates of biological
productivity currently.

Gross primary production refers to the total rate of photosynthesis. When measured by tracking changes in
oxygen, a product of photosynthesis, the rate is called gross oxygen production (GOP) to account for the fact
that some production of oxygen could be due to the Mehler reaction or other noncarbon fixing processes
(Juranek & Quay, 2013). Net community production (NCP) equals the rate of photosynthesis minus auto-
trophic and heterotrophic respiration and thus is a measure of the net amount of CO, drawn down by the
biological pump as modulated by the Revelle factor. On long enough spatial and temporal scales, net com-
munity production equals export production (Estapa et al., 2015). In this study, we used the gas tracer triple
oxygen isotopes and O,/Ar to measure in situ rates of GOP and NCP at more than 30 locations in the
Beaufort Gyre region of the Canada Basin each year, over a period of six years. The Canada Basin is one
of the Arctic's most oligotrophic regions (Varela et al., 2013).

GOP and NCP calculated from the gas tracers provide an exponentially weighted average of production over
approximately the previous 6 to 20 days (Teeter et al., 2018). The rates are only for the mixed layer and thus
will not include any production occurring in the region between the bottom of the mixed layer and the bot-
tom of the euphotic zone. The Arctic has large subsurface chlorophyll maxima, and this method unfortu-
nately will not quantify production associated with the subsurface chlorophyll maxima. Thus, the rates
presented in this paper are a lower bound for total NCP and GOP. A nitrate uptake study has shown that
although having high chlorophyll, the subsurface chlorophyll maximum is responsible for very little produc-
tion in the Canada Basin (Ardyna et al., 2013; Varela et al., 2013). Additionally, the rates of primary produc-
tion in the Beaufort Sea/Canada Basin were generally uniform with depth (Varela et al., 2013), suggesting
that even if the total rates of production reported here underestimate the total integrated production, as is
likely, they probably do so by similar amount across the stations. Thus, the patterns (spatial and temporal)
and the connections to environmental variables (such as ice cover) are likely similar whether total GOP and
NCP is considered or whether only mixed layer GOP and NCP are examined.

Data from three approximately monthlong summer cruises (2011,2012, and 2013) as well as three approxi-
mately monthlong fall cruises (2014, 2015, 2016) allow a glimpse of interannual and seasonal variability in
productivity and also the response ofthe carbon cycle in this region of the Arctic to a variety of environmen-
tal conditions. The 2011 cruise was before the onset of summer stratification, whereas the 2012 and 2013
cruises were also in the summer but two weeks later and thus after the summer increase in stratification
had occurred. A variety of chemical and physical measurements, such as the nutrients silicate, phosphate
and nitrate, temperature, and salinity, were made concurrently with the production rates. The years studied
encompass the year of lowest sea ice extent in the Arctic (2012) when the sampling grid was almost ice free as
well as years with relatively more total ice (2013 and 2014).
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2. Materials and Methods

2.1. Cruise Description

All samples were collected on the CCGS Louis S. St-Laurent as part of the Joint Ocean Ice Study/Beaufort

Gyre Observing System cruises. The cruises took place in summer in 2011, 2012, and 2013 and in fall in

2014, 2015, and 2016 between 70 and 81°N and 131°W to 176°W. See Table S1 for a listing of exact dates
of each cruise. Exact sample locations are shown in Figure 1.

2.2. Gas Tracers

Seawater was collected from the surface (z< 6 m) 12-L Niskin bottle on a 24-bottle CTD rosette at stations on
the cruises and directed into preevacuated and prepoisoned with mercuric chloride custom-made 500-mL
sampling flasks (Emerson et al., 1999). The bottles were brought to Woods Hole Oceanographic
Institution where they were drained of seawater, and the oxygen and argon gas contained in the sample
was analyzed on a custom-built triple oxygen isotope processing line attached to a Thermo Fisher 253 iso-
tope ratio mass spectrometer (Barkan & Luz, 2003; Stanley et al., 2015). Reproducibility based on duplicate
samples taken throughout the six years of the program of 3’0 was 0.02%o, 8'%0 was 0.01%o, A'” was 5 per
meg, and 80,/Ar was 0.8%o. All data are available from the NSF Arctic Data Center. These analytical uncer-
tainties propagate into an approximately 10% uncertainty in the estimates of GOP and 1% uncertainty in the
estimate of NCP.

2.3. GOP and NCP Calculations

Rates of mixed layer GOP were calculated from the 'O and 8'%0 according to the steady state equation (6)
of Prokopenko et al. (2011), with photosynthetic end-member determined from the measured 5'%0-H,O on
samples from the same cruise (Manning et al., 2017), assumption that '"A excess of seawater = 0 and using
other constants as stated in Manning et al. (2017). On the few samples that 5'*0-H,O was not available,
8'%0-H,0 was estimated from a relationship with salinity from all the measured samples from that year.
Including the measured 8'%0-H,O is important in the Arctic—neglecting it can lead to errors of up to 50%
(Manning et al., 2017). Varying the '"AA excess of seawater by 8 per meg (2 standard deviations of the global
average (Luz & Barkan, 2010)) changes the GOP estimate by 5—6% on average (Manning et al., 2017). The
combined error in the calculations excluding the contribution from gas transfer velocity is 12% for GOP.
NCP was calculated from O,/Ar from the bottle samples, according to Hendricks et al. (2004). The equations
used to calculate NCP and GOP assume steady state and negligible mixing across the base of the mixed layer.
Given the very strong stratification in this region, the latter assumption is reasonable. The correction equa-
tions described in Nicholson et al. (2014) in combination with vertical profiles collected at a subset of the sta-
tions were used to confirm that contributions from vertical entrainment and mixing were less than 1% of the
calculated rates of production.

The steady state assumption is more nuanced given that the production in the marginal ice zone especially
may not be in steady state. However, recent work has shown that when steady state is assumed, the gas
tracer-derived NCP rates are giving a production rate that is exponentially averaged over several residence
times of the gas tracer in the system (Teeter et al., 2018). Since ventilation is the main process affecting these
gases, the residence time can be estimated by dividing the mixed layer depth by the gas transfer velocity.
Therefore, residence times are shorter in the summer when the mixed layers are very shallow. The residence
times in the summer were a few days and in the fall were one to two weeks. Thus, the rates presented here
represent the production in the Beaufort Gyre exponentially averaged over a time scale of days in the sum-
mer cruises and weeks in the fall cruises.

For both NCP and GOP calculations, gas transfer velocities were calculated by multiplying a gas transfer
velocity calculated based on a quadratic function of wind speed (Stanley et al., 2009) multiplied by the open
water fraction (1 — sea ice concentration; Islam et al., 2016). The total gas transfer velocity was calculated as
a weighted average of the sea ice scaled gas transfer velocities going back 60 days from the sample collection
date (Reuer et al., 2007). Gas transfer velocities in open water have uncertainties of approximately 15 to 20%
(Ho et al., 2011; Stanley et al., 2009; Wanninkhof, 2014). In partially ice-covered waters, gas exchange could
be enhanced by up to 40% (Loose et al., 2014; Lovely et al., 2015) but parameterizations that take these pro-
cesses into account are not well established and there is much debate as to whether the open water fraction
(Butterworth & Miller, 2016; Prytherch et al., 2017) or the enhanced turbulence model is correct (Fanning &
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Figure 1. Rates of gross oxygen production (GOP), integrated from the surface to the depth of the mixed layer, in the
Beaufort Gyre region of the Canada Basin in the (a—c) summer of 2011, 2012, and 2013 and (d—f) fall of 2014, 2015, and
2016.

Torres, 1991; Loose et al., 2017). Thus, the uncertainty in the gas transfer calculation is by far the largest
source of uncertainty in the GOP and NCP estimates.

2.4. Ancillary Data

Sea ice concentration was extracted from the Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
Data (Cavalieri et al., 1996) using two functions written by Chad Greene (Greene, 2016) and then interpo-
lated to specific station coordinates.

Stratification index N? was calculated from the TEOS-10 Matlab function gsw_Nsquared which is based on
the 48 term equation for the buoyancy Brunt-Vaisala frequency squared. Calculations were based on buoy-
ancy gradient between the surface and 50 m for the CTD data. Additionally, in order to look at stratification
before the cruise started, N* was calculated from profiles obtained by ice-tethered profilers (ITPs) in the
region (Krishfield et al., 2008; Toole et al., 2011). The Ice-Tethered Profiler data were collected and made
available by the Ice-Tethered Profiler Program based at the Woods Hole Oceanographic Institution
(http://www.whoi.edu/itp). For the ITP data, since the profilers' shallowest depth was 10 m, the gradient
was calculated between 10- and 50-m depth. When calculations were made for N* based on the gradient
between the surface and 25 m, the correlations discussed in the above manuscript were very similar.

Nutrients, namely, silicate and phosphate, were analyzed using a three-channel Technicon Auto Analyzer
(Barwell-Clarke & Whitney, 1996). The precisions for silicate and phosphate were 0.15 and 0.01
mmol/m®, respectively. Nitrate was almost always undetectable in the surface measurements of the
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Table 1

similar plot had all but 4 data points lying on the 1:1 line and the slope was
1.01 = 0.002. Thus, the productivity results were very similar no matter
which technique was used to calculate the mixed layer depth.

3. Results
3.1. Gross Oxygen Production

At most locations, GOP in the Beaufort Gyre region ofthe Canada Basin is low, with the mean values (within
a cruise) being slightly lower than GOP in the subtropical gyres (Juranek & Quay, 2005,2013; Luz & Barkan,
2009) and much lower than GOP in the Southern Ocean (Reuer et al., 2007), where it has been measured
using the same triple oxygen isotope technique. However, mixed layer GOP varied substantially throughout
the region each season, suggesting large spatial variability (Figure 1) within our sampling grid. In some years
(2012, 2013, 2014), larger values clustered in certain locations within the sampling grid, whereas in other
years, there was no apparent pattern to the spatial variability. In particular, within a cruise, rates varied from
near 0 to over 60 mmol O,'m*-d”' (the maximum values depend on the year). Because of the large spatial
variability within each sampling season, notched box and whisker plots offer a concise way to viewing both
the spatial and the interannual variability in calculated rates of production. Figure 2a shows that mean GOP
within the sampling grid for a given cruise increased dramatically (factor of 7) in 2012 compared to 2011
(Table 1). GOP remained much higher than 2011 for the remainder ofthe time series but gradually decreased
each year after 2012 (Figure 2a). In particular, by 2016, mean GOP was only twice the 2011 value. Notably,
these rates do not show much seasonal difference with rates from the fall cruises being near equal to the
summer cruises (except for 2011). However, the rate of GOP divided by the depth of the mixed layer (calcu-
lated using a density criterion of 0.1-kg/m? difference from surface) which gives a measure of how much
photosynthesis is occurring in a cubic meter of water (hereafter called
volumetric GOP), shows a marked difference with summer GOP on a
volumetric basis being larger than fall GOP (Figure Sla and Table S2).

Mean Rates of GOP and NCP Tntegrated Over the Mixed Layer for Eacl However, because mixed layers are so much deeper in the fall, the total

Cruise (in units of mmol O,-m™2-d”!) and the Mean Ratio of NCP/GOP, ; GOP integrated over the mixed layer is similar in both seasons.
Measure of the Biological Pump Efficiency

e GOP NCP NCP/GOP 3.2. Net Community Production

2011 8 (1) 14(02) 0.17 (0.03) Mixed layer NCP also varied substantially throughout the region each sea-
2012 54 (9) 2.9 (0.5) 0.11 (0.02) son (Figure 3), with some years (2011, 2013, and 2014) having higher
2013 40 (9) 1.4(0.3) 0.04 (0.01) values in the southern portion of the sampling grid and some years show-
2014 31(5) 1.3(0.2) 0.05(0.01) ing no apparent pattern. A notched box and whisker plot (Figure 2b) again
20 S50 23 (0) BT (01672) show an increase in productivity rate in the very low ice year of 2012. This
2016 18 (3) 1.8(0.3) 0.15 (0.03)

time, the increase is smaller, however, than in the case of GOP (twofold

Note. One-sigma standard errors given in parentheses.

increase in mean rate). Additionally, rates of NCP in several subsequent
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Figure 3. Rates of net community production (NCP), integrated from the surface to the depth of the mixed layer, in the
Beaufort Gyre region of the Canada Basin in the (a—c) summer of 2011, 2012, and 2013 and (d—f) fall of 2014, 2015, and
2016.

years (2013,2014,2016) are similar to that in 2011, unlike in the case of GOP when a new level seemed to be
reached starting in 2012. For NCP, the highest rates occurred in 2012 and 2015. While 2012 had low sea ice
extent, 2015 was a year of more typical sea ice cover (Figure S2a). Additionally, 2016 also had low sea ice
extent but did not have significantly higher NCP than the years with higher sea ice extent of 2011, 2013,
and 2014. Similarly to GOP, the total rate of NCP in the mixed layer is similar in the summer and fall
cruises. However, if one considers the volumetric rate, then NCP is larger in the summer than in the fall
due to deeper mixed layers in the fall (Figure S1b and Table S2). The NCP rates calculated here from 2012
agree well the mean NCP (4.9 mmol O,-m~>-d™") calculated from diel cycles of dissolved oxygen and
pCO, from ice tethered profilers records in a similar location and timeframe (Islam et al., 2017).

3.3. Biological Pump Efficiency: the NCP/GOP Ratio

The ratio of NCP to GOP is a measure of the efficiency of the biological pump. Higher ratios imply an eco-
system that is inefficient and thus “leaky” with respect to carbon—a larger proportion of the carbon is
exported instead of being cycled through the microbial loop. Mean ratios of NCP/GOP vary from 0.05 to
0.17, with some ratios reaching as high as 0.6 depending on the location and year. Year 2011 has the largest
and most variable rates of NCP/GOP (Figure 2c). The ratio of NCP/GOP decreased significantly in 2012 com-
pared to 2011. Ratios are lowest in 2013 and 2014, the years with the highest sea ice extent. Notably, nearly
all the ratios have values that are similar to what has been observed in lower latitudes (Juranek & Quay,
2013) but lower than what has been observed in some polar field programs (Goldman et al., 2015) and in
some Arctic modeling studies (Slagstad et al., 2015).
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Table 2

Adjusted R? Values from Multilinear Regressions of the Response Variable

3.4. Interannual Variability in Environmental Setting

(GOP, NCP, NCP/GOP) and the Two Predictor Variables of (1) Year (as a  1he ice concentration, stratification index N, nutrient levels, mixed layer
Categorical Variable) and (2) the Environmental Variable Listed depth, and wind speeds varied both within a cruise and from year to year.

Additional Predictor

Response Variable Notched box and whisker plots of these variables are shown in Figure S2

and spatial variability within each year are shown in Figures S4—S7. Ice

Environmental Variable Gop NCP NCP/GOP concentration was lowest in 2012 when virtually the whole sampling grid
Ice concentration 0.30 0.30 0.12 was completely ice free. The year with next lowest ice concentration was
N’ (stratification) 0.23 0.21 0.10 2016. Highest ice concentrations were observed in 2013 and 2014. The
ls)%‘ 8;31 gg (_)'09 summer cruises (2011, 2012, and 2013) all had higher stratification indices
N}ixtad e dlastin 024 023 0.07 N? and deeper mixed layers than the fall cruises (2014, 2015, and 2016).
Day of year 0.23 0.17 0.13 The nutrients phosphate and silicate were similar in most of the years,
Wind speed 0.20 0.18 0.12 showing not much seasonal change, with the exception that silicate had
None (only year) 0.22 0.17 0.10 significantly lower concentrations in 2011 and that phosphate had signif-

Note. All values listed are significant (p < 0.05, N = 191). Values in bold  icantly higher concentrations in 2013 and 2014. Nitrate was undetectable
are larger than the multilinear regression with the same response variable  in the surface waters in all the years. Winds were variable from year to

but only with year as a predictor variable.

year, showing no definitive seasonal patterns with highest wind speeds
being observed in 2012 and 2015.

4. Discussion

4.1. Multilinear Regression Analysis

In order to elucidate connections between environmental variables and rates of productivity, multilinear
correlations were calculated between GOP or NCP and an environmental variable (ice cover, stratification
index, Brunt Vaisala frequency N?, phosphate, silicate, mixed layer depth, wind speed, or day of year), using
year as an interacting categorical variable. The latter is because it is possible that a pattern of environmental
variable versus rate does not appear within a specific cruise due to spatial variability but is still important for
explaining variability on an interannual basis. Adjusted R values (adjusted to take into account the increase
in R? simply due to the complexity of the model increasing) of significant correlations are listed in Table 2
and complete coefficients for all the multilinear regressions are listed in Table S3. Including time since ice
melted as a variable or including salinity as a predictor variable did not strongly influence the goodness of
fit nor did using volumetric rates as response variables (Table S3). Plots of NCP and GOP versus selected
environmental variables (ice cover, N* and phosphate) show that GOP and NCP are significantly (p <
0.05) but weakly negatively correlated to ice concentration and are generally positively correlated to N*
and phosphate (Figure 4), although in some individual years, there are negative correlations with N* (e.g.,
2011,2014, and 2015). The ratio NCP:GOP is significantly, but weakly, correlated with ice cover, wind speed,
and day of year.

One drawback ofusing year as a categorical variable, however, is that some of the observed correlations may
simply be due to the connection between year and rate, rather than due to the environmental variable. Thus,
the adjusted R values were compared to a correlation between GOP (or NCP or NCP/GOP) and year (as
categorical variable) and in Table 2, values in bold correspond to multiple linear correlations in which
including the environmental variable increases the goodness of fit. This was the case for GOP for ice concen-
tration, POy, SiOy4, and mixed layer depth; for NCP for ice concentration, N2, PO,, SiO,, and mixed layer
depth; and for NCP/GOP for ice concentration, day of year and wind speed.

Regressions calculated with volumetric GOP and NCP (Tables S4 and S5) show similar values to those cal-
culated with mixed layer integrated GOP and NCP, with the exception of there being a much larger correla-
tion coefficient with mixed layer depth than there is in the case of the aerial rates. Shallower mixed layer
depths can lead to the phytoplankton spending more time in a higher light regime, and thus, there is indeed
a physical basis for the strong correlation shown. However, the correlation may not be as significant as it
appears because the mixed layer depth was used directly to calculate the volumetric rate.

Multilinear regressions were also calculated using NCP as a response variable and GOP as a predictor vari-
able in order to test the hypothesis that the amount of NCP is controlled in large part by the amount oftotal
photosynthesis occurring. Perhaps unsurprisingly, the correlations between NCP with GOP were stronger
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Figure 4. Property-property plots of (a) GOP and ice concentration, (b) NCP and ice concentration, (¢) GOP and stratifi-
cation index N2, (d) NCP and stratification index N2, (e) GOP and phosphate, and (f) NCP and phosphate. Colors reflect
the different years in which data were collected. Lines are simple linear regressions for data solely within that year.

than between NCP and any of the environmental variables (with year as a categorical variable: adjusted R? =
0.51, p < 0.01; without year as categorical variable: R? = 0.37, p < 0.01). These correlations became even
stronger if ice was included as an additional predictor variable (adjusted R? = 0.60,p < 0.01).

Multilinear regressions using two environmental variables to predict rates of NCP or GOP were also calcu-
lated and the strongest correlations were found between GOP with ice cover and phosphate as predictor vari-
ables (adjusted R?=0.31,p < 0.01) and between NCP with ice cover and N? as predictor variables (adjusted
R? = 0.34, p < 0.01). Additionally, simple linear correlations were also calculated between each one of the
three response variables (GOP, NCP, and NCP/GOP) and one environmental variable (ice cover, N%, PO,,
Si0,4, mixed layer depth, day of year, and winds). With the exception of the correlation between NCP and
ice cover (R? = 0.22), all the R? values were small but they were significant in several cases (Table S4).

4.2. Principal Component Analysis

In order to further explore the possible causes for the observed variance in NCP and GOP, a principal com-
ponent analysis was performed. A principal component analysis between NCP, GOP, ice concentration, N2,
phosphate, and silicate reveals that the first three factors explain 80% of the variance. Loadings of each vari-
able on the factors are in Table S6. Factor 1, which explains 41% of the total variance in the data, includes
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Figure 5. Biplot of (a) factors 1 and 2 and (b) of factors 1 and 3 of the PCA analysis described in the text. NCP and GOP
cluster closely in the first plot, signifying their strong relationship with each other. Ice concentration is negatively related
to NCP and GOP. In the second biplot, ice and NCP are negatively related and N? and GOP cluster together.

negative loadings of ice, and positive loadings of GOP, NCP, N and silicate. Factor 2 which explains 24% of
the total variance includes positive loadings of GOP, NCP, and phosphate and negative loadings of N°, and
silicate. Interestingly, N* and GOP and NCP show the same sign loading on factor 1, suggesting that an
increase in stratification leads to overall higher productivity, but the opposite sign loading on factor 2.
Given that the nutrients more strongly load on factor 2, this may be showing that the increase in
stratification reduces the amount of nutrients available and thus also has a negative effect on production.
A biplot of factors 1 and 2 (Figure Sa) shows that NCP and GOP are closely linked with ice cover being
negatively related to them. A biplot of factors 1 and 3 (Figure 5b) suggests that N* is closely related to
GOP and that NCP and ice extent are inversely related.

4.3. Sea Ice Extent and NCP and GOP

Perhaps the largest change in environmental conditions in the Arctic is the dramatic loss of sea ice with frac-
tional ice coverage now routinely below the previous 30-year average (Stroeve et al., 2012). Several observa-
tions from the data presented here support the conclusion that a decrease in sea ice will likely increase GOP
and to a lesser extent NCP in this region of the Arctic, at least until nutrients become scarce. First, the most
significant correlations found between any environmental variable and NCP or GOP are between sea ice
concentration and NCP or between sea ice concentration and GOP. This is true whether the ice concentra-
tion from the day of measurement is used or whether a weighted ice concentration (similar weighting
scheme as is used in gas exchange) is used. Additionally, this is true if the entire data set is considered, or
just the summer cruises or just the fall cruises. The correlation between sea ice and GOP is weaker if just
the fall cruises are considered than if just the summer cruises are considered, perhaps because by fall, nutri-
ents are starting to become limiting and thus decreased sea ice, although leading to more light penetration,
can only boost productivity so far. The correlation between ice extent and NCP is similar for the summer
cruises and fall cruises. However, even though correlation with ice extent is the strongest of any of the envir-
onmental correlations, correlation does not imply causation and additionally, the correlation with ice extent,
including year as an interactive, categorical variable, still can only explain up to 30% of the variance in GOP
and NCP.

The factor loadings in the PCA point also to a negative relationship between GOP and sea ice concentration
and between NCP and sea ice concentration. It is interesting that ice had the seemingly largest effect on GOP
and NCP of'the environmental forcings considered (i.e., nutrients, stratification, winds) even in this region of
the Arctic, which is known to be one of the most oligotrophic regions. Some studies have theorized that a
lack of sea ice may not lead to higher production because nutrients will become limiting (Carmack &
McLaughlin, 2011; Tremblay et al., 2015; Wassmann, 2015). This study was too short to be able to determine
ifthat is the case but at least in the time frame studied, it seems that even though Canada Basin is very low in
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nutrients, production is increasing as sea ice extent decreases and that productivity is more sensitive to sea
ice extent than to nutrient concentration.

The loss of all sea ice in the sampling grid in 2012 may have been a tipping point for GOP. Notably, mean

GOP increased by a factor of 7 during the extremely low sea ice summer of 2012 (compared to summer of
2011). Although GOP slowly decreased in subsequent years, it remained above the 2011 level. What is the
reason for this dramatic change? One possibility is that it has to do with the amount of multiyear sea ice.
Since nearly all the ice in the sampling grid melted in the summer 0f2012 (the sampling was extended north-

ward that year in order to sample at some partially ice-covered stations), the ice in 2013 may have been pri-
marily first year ice, which is known to have different optical properties than multiyear ice (Katlein et al.,

2015; Light et al., 2015). However, since much of the sea ice in the Canada Basin is advected from the
Canadian Archipelago, the springs and summers of 2013 and 2014 may have actually had larger fractions
of multiyear sea ice than 2011 (Howell et al., 2016; Tooth & Tschudi, 2018), suggesting that some other envir-
onmental or biological factor must be responsible for the shift in GOP to higher values starting in 2012. It will
be intriguing to see whether GOP increases sharply again if/when there is another summer with sea ice as
low as 2012.

Unfortunately, we have no data before 2011 and thus we cannot unequivocally prove that the cause for the
dramatic increase in GOP between 2011 and 2012 is a result of the loss of sea ice. Indeed, a second reasonable
hypothesis is that it is not that 2012 has unusually high GOP that persisted for many years but rather that
2011 has much lower GOP than the other years because the cruise in 2011 was approximately two weeks ear-
lier and was before the summer increase in stratification (see section 4.4 for more details on this argument).
Very little in situ data exist for primary productivity rates in the Beaufort Gyre, and thus, we were not able to
use other in situ data to determine if'the step change observed in our data between 2011 and 2012 is observed
elsewhere. Remote sensing algorithms have been applied in the Arctic; Arrigo and Van Dijken (Arrigo & van
Dijken, 2015) show only a modest increase in net primary production rates between 2011 and 2012 in the
Canada Basin. The remote sensing technique, however, only estimates productivity at the very surface of
the ocean, does not work through clouds, and misses under ice blooms, and previous work has shown that
the triple oxygen isotope technique and remote sensing algorithm do not agree well in the Canada Basin
(Stanley et al., 2015).

Increased GOP corresponding to decreased ice concentration can be explained by a decrease in ice leading to
an increase in light penetration and thus an increase in photosynthesis. In the surface ocean, in the summer-
time when mixed layers are shallow, the mixed layer production is less likely to be light limited than produc-
tion at deeper depths within the euphotic zone. Nonetheless, light penetration is decreased by sea ice cover
(Nicolaus et al., 2012) and thus low light still could be reducing productivity in the partially sea ice-covered
regions (during the summer 2013 cruise, sea ice concentrations were as high as 80% at some stations).
Additionally, an alternative hypothesis as to why the decreased sea ice concentration could lead to an
increase in production is that submesocale dynamics are increased when there is little or no sea ice
(Mensa et al., 2018) but depressed under sea ice (Mensa & Timmermans, 2017; Timmermans et al., 2012).
Since the region has very low nutrients within the mixed layer, perhaps when sea ice cover is decreased,
more nutrients are delivered through submesoscale motions and thus GOP increases.

It is less intuitive to understand why NCP is negatively correlated with sea ice concentration. Part of the
reason may be that as GOP increases, heterotrophic and autotrophic respiration also increase to consume
the new organic matter fixed in photosynthesis but the increased respiration does not match the increase
in GOP, leading to an increase in NCP. Indeed, the largest predictor of NCP was GOP, supporting the
above mechanism. Another possibility is that since ice can serve as a habitat for heterotrophs (Boetius
et al., 2015), the loss of sea ice results in a smaller heterotrophic population and thus a larger carbon
export. Third, submesoscale dynamics have been shown in models (Lévy et al., 2012; Resplandy et al.,
2012) and in observations (Estapa et al.,, 2015; Stanley et al., 2017) to likely lead to increased export
and NCP; thus, an increase in submesoscale dynamics resulting from loss of sea ice would likely
increase NCP.

Recent work has highlighted the importance of massive blooms of phytoplankton under sea ice (Arrigo et al.,
2012; Lowry et al., 2018). No such blooms were observed during the cruises for this study, perhaps because
under ice blooms would have occurred earlier in the season than the cruises occurred. Thus, the conclusions
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cruises.

lower levels of nutrients. Light-limited phytoplankton would be quite sen-
sitive, presumably, to loss of sea ice and thus the relationship between
stratification and GOP is consistent with the above observations about
the relationship between sea ice and GOP.

NCP is positively correlated with stratification, in part at least, because of the inherent link between
GOP and NCP. Thus, as explained above, since GOP increases with stratification, so does NCP. NCP
also would increase with increased stratification if the heterotrophic community is more sensitive to
the decrease in nutrients caused by increased stratification than the autotrophic community is. This
would cause a reduction in community respiration and thus an increase in net community production.

It is possible that stratification earlier in the season is more important for determining rates of GOP and
NCP than the stratification at the moment of sample collection. To investigate this, N*> was calculated
from profiles from all ITPs that were in the Beaufort Gyre between 2011 and 2016 (Figure 6). The ITP
missions used here ranged from 0.5 to 3 years, and thus, none of the ITPs provided data for the entire
period. The data show that the 2011 cruise, which occurred approximately two weeks earlier in the year
than the other summer cruises, occurred before the summer increase in stratification, whereas the other
cruises took place after the summer increase in stratification had started. Thus, a hypothesis for the much
smaller GOP observed in 2011 compared to the other years is that it was a result of the timing of the
cruise with respect to onset of stratification. Indeed, there is a strong correlation between seasonal mean
GOP and mean N2, even if the data from 2011 are excluded since the 2011 data is in a different stratifica-
tion regime (R? = 0.64, p = 0.08, Kendall due to small number of samples when comparing means). More
work needs to be done on elucidating the connection between stratification and rates of
primary productivity.

4.5. Nutrients and NCP and GOP

Nitrogen is likely the limiting nutrient in the Canada Basin (Ardyna et al., 2017; Codispoti et al., 2013; Varela
et al., 2013). However, nitrate levels were undetectable (<0.05 mmol/m?®) in almost all surface samples and
thus all analysis presented here is of phosphate and silicate. NCP and GOP were both correlated with
phosphate, with phosphate concentrations predicting 23% of the variance in GOP and 18% of the variance
in NCP when year was used as an interacting categorical variable. Silicate, a nutrient important for
diatoms, explained 24% of the variance in GOP and 22% of the variance in NCP with usually a positive cor-
relation. Notably, within a year, correlations with nutrients were usually not significant and were
sometimes negative.

Notched box and whisker plots (Figure S2) and spatial maps (Figure S5) show that phosphate concentrations
did not differ significantly between the summer cruises and the fall cruises. In the fall, more nutrients may
be accessible because of the deeper mixed layers but also more time has elapsed since the ice has melted and
thus more nutrients may have been consumed. These competing effects may lead to similar overall nutrient
levels. Phosphate concentrations were significantly higher in 2013 and 2014 than in other years. These were
both years with highest ice cover and lowest NCP/GOP. However, the ratio of NCP/GOP is not significantly
correlated with phosphate.
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Nutrients can be brought to the surface following transient mixing due to high wind events. In particular,
during the 2012 cruise, winds were higher than usual (Figures S2 and S6), which may in turn have contrib-
uted to the larger than usual GOP and NCP that year. Indeed in 2012, winds are significantly correlated with
both GOP and NCP (Table S3). Additionally, observations from ice-tethered profiles, in conjunction with the
cruise data, show that near the end ofthe 2012 cruise (on 5 September), a storm was observed with increased
wind speeds, the mixed layer deepened, and some nitrate was detectable within the mixed layer, which could
in turn have led to increased production (Islam et al., 2017). Furthermore, also in 2012, a major gale in the
Arctic occurred just before sampling on the cruise commenced (Parkinson & Comiso, 2013), and thus, the
higher production we observe in 2012 could in part be related to nutrients upwelled during that storm.
Over the entire six-year data set, however, winds have a significant but relatively weak correlation with
NCP and do not show an overall correlation with GOP (Table 2).

Positive NCP is observed throughout all the cruises even though no nitrate was usually detected in the mixed
layer. This situation is similar to the subtropics, where there has been a longstanding conundrum of positive
NCP in summer despite no detectable nitrates (e.g., Michaels et al., 1994). One possible explanation, often
used for the subtropics, is that submesoscale processes may be locally delivering nutrients (Lévy et al.,
2012) that are then consumed by organisms so quickly that nitrate levels are undetectable by regular mea-
surements. A similar process may be happening here—recent work showed prevalent submesoscale
dynamics in the early fall in the Beaufort Gyre (Mensa et al., 2018). Additionally, some of the required nitro-
gen could be supplied by nitrogen fixation, a process that was recently reported to occur in the Arctic Ocean
(Harding et al., 2018; Sipler et al., 2017) or by urea (Varela et al., 2013).

4.6. Community Structure

Even if all the environmental variables considered are used together in a multilinear regression (ice cover,
NZ, phosphate, silicate, mixed layer depth, day of year, winds), only 38% of variance in GOP and 37% var-
iance in NCP is explained. The PCA shows that more of the variance can be explained by a combination
of variables; 40% of the variance in GOP and 46% of the variance in NCP can be explained by the first
three factors. That still leaves a lot of variability that cannot be accounted for by the environmental para-
meters measured. What could be responsible for this variability? Additionally, the factor with the largest
loadings of GOP and NCP in the PCA (factor 5) has very small loadings of the environmental variables,
also suggesting that an unknown parameter is important for explaining the observed variability in GOP
and NCP.

One likely choice for this important unknown is the community structure, that is, exactly which phytoplank-
ton, zooplankton, and bacteria are present each season. It has been shown that community structure is chan-
ging in the Canada Basin (Blais et al., 2017; Li et al., 2009). Unfortunately, we do not have community
structure data associated with the data presented in this study so we cannot assess how changes in commu-
nity structure are affecting variability in GOP and NCP and whether those changes could explain the rest of
the variability that is observed. However, to get a rough idea, we calculated an algorithmic community com-
position estimate using the neural-network-based method of Sauzéde et al. (2015). Sauzeéde et al. trained and
validated a neural network using 896 vertical profiles of pigments and fluorescence representative ofthe glo-
bal ocean (some of which were in the Arctic). We combined their resulting algorithm with in situ fluores-
cence profiles measured on our cruises in order to estimate concentrations of various size classes.
Correlations of GOP and NCP with the algorithm's total chlorophyll, microphytoplankton, nanophytoplank-
ton, and picophytoplankton concentrations were found to be significant (p < 0.05) with R* ranging from 0.05
to 0.4 (Figure S8). GOP and NCP were most strongly correlated with the algorithm's estimate of microphy-
toplankton community, which includes diatoms. Diatoms have been shown to be increasing in the Beaufort
Sea (corresponding to our stations south of 72°N; Blais et al., 2017) but decreasing in the Beaufort Gyre itself
(N of 72°N; Li et al., 2009; Zhuang et al., 2018). Diatoms are expected, in general, to contribute to greater
export since their increased size can lead to more efficient sinking out of the upper ocean. If they are also
contributing to greater photosynthesis, then GOP and NCP would both be positively correlated with the
algorithm's estimate of microphytoplankton concentration (as is seen in Figure S8) but the NCP/GOP ratio
would not be. Indeed, we found stronger relationships between NCP and GOP separately with community
structure parameters than between their ratio and community structure; correlations between the ratios of
NCP/GOP and community components had R*< 0.1 in all cases.
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Figure 7. Schematic of two potential models for the state of productivity in the Canada Basin of the Arctic Ocean.
Phytoplankton (green P) produces more oxygen in optimal conditions of light penetration and excess nutrients. Grazing
pressures (white arrows) from both zooplankton (red Z) and bacteria (purple B)also results in the cycling of nutrients
(black arrows) through the microbial loop. In the first model, productivity is affected greatly by sea ice concentration.
(a) The “base” state in 2011 shows moderate levels of ice and nutrients. (b) During the extreme sea ice loss in 2012,
productivity increases due to greater sunlight penetration. (c) The ice rebounds quickly, leading to smaller productivity
than in 2012, although the ice may be younger than before the melting event. (d) Over time, the ice becomes older and also,
because the cruises are later in the year, nutrients are more limited and productivity decreases. In the second model,
productivity is governed by a seasonal progression. (e) At the start of the summer, before the onset of summer
stratification, productivity is low. (f) Then, once stratification greatly increases, productivity increases as well, perhaps
because the phytoplankton have more time in increased light. (g) In the fall, production decreases slightly as mixed layers
deepen and nutrient levels decrease slightly. Each panel shows a simple schematic of the potential effects of ice
concentration (gray), light penetration (yellow arrows), and nutrient availability (intensity of orange indicates nutrient
levels) based on the six years of data from this study.
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5. Conclusions

Both penetration of light and availability of nutrients likely play a critical role in leading to higher GOP at
various locations. If 2011 is considered a reference for phytoplankton productivity before the dramatic
loss of sea ice in 2012, multiyear ice, although already depleted compared to historic values (Comiso,
2012), may have been a factor in a decreased light availability for phytoplankton in 2011, resulting in sig-
nificantly lower GOP (Figure 7 for conceptual schematic). Conversely, the lower GOP in 2011 may be due
to the cruise occurring earlier in the year compared to the onset of summer stratification. In any case, in
2012, the introduction of more light penetration through the loss of sea ice and the availability of nutri-
ents likely created optimal conditions for phytoplankton production and subsequently for a stronger pro-
portional respiration from zooplankton and bacteria (Figure 7b). In both 2013 and 2014, the availability of
phosphate was relatively high throughout the study area and though sea ice extent on average was high,
the most productive regions were those in which sea ice concentration was low (Figure 7c). Interestingly,
the data from these years yielded similar results to each other, but were from different seasons. Moving
into 2015 and 2016, phosphate concentrations strongly followed the gradient of sea ice extent: relatively
lower in open waters and higher in sea ice covered waters. These results imply that the penetration of
light is a critical factor during the earlier years of this study when nutrients were possibly available in
excess amounts. It is possible that these nutrient levels get depleted and the study area became nutrient
limited over time, as suggested by the results in 2015 and 2016. The overall productivity in those two
years was lower than in 2012 (Figure 7d), likely because these cruises occurred later in the year when
nutrients were depleted and/or because ice concentrations, though lower than in 2011, 2013, or 2014,
were higher than in 2012.

An alternative hypothesis describes the observed productivity rates in terms of a seasonal progression.
In this conceptual model, 2011 has lowest GOP because the cruise occurred before the summer increase
in stratification (Figure 7¢). GOP increased and remained high in 2012 and 2013 because both cruises
were in the summer (Figure 7f) when mixed layer depths were shallow and light was plentiful.
Respiration rates were also high and thus NCP was only slightly higher than earlier in the season in
spite of the increase in GOP. In the fall, GOP decreased slightly as light and nutrients became less avail-
able (Figure 7g). Respiration slowed as well and thus once again NCP remained similar to the
other seasons.

Our data do not definitively suggest which hypothesis is a better representation of productivity dynamics in
the Beaufort Gyre. When considering rates integrated over the depth of the mixed layer (the focus of this
paper), the similarity in NCP and the NCP/GOP ratio between 2013 and 2014 (different seasons) as well
as the fact that the median GOP was similar in 2013—2015 (different seasons) gives slight preference to the
connection with sea ice hypothesis (Figures 7a—7d) rather than the seasonal one (Figures 7e—7g).
However, volumetric rates in NCP and GOP (Figure S1) show a striking seasonal difference and support
the seasonal hypothesis. The differences in NCP and GOP between 2011 and 2012 can be explained equally
well by both hypotheses. Furthermore, the hypotheses are not mutually exclusive since both seasonal timing
and ice concentrations could be important for setting productivity levels.

In summary, the rates of mixed layer GOP and NCP presented in this study from the summers of 2011-2013
and falls of 2014—2016 have demonstrated that there is large spatial and interannual variability in these key
carbon cycle parameters throughout the Canada Basin. In 2012, mean GOP was found to be 7 times greater
than that in 2011. Moreover, following 2012, GOP remained higher than in 2011, which suggests that the
extreme loss of sea ice extent in 2012 may have had a critical effect on primary productivity. NCP was not
found to be significantly different from year to year, which suggests that mixed layer dissolved inorganic car-
bon drawdown has remained about the same seasonally and interannually. Ultimately, while primary pro-
ducers in this area are more photosynthetically productive, the community may respond by efficiently
respiring the increased available carbon.

Together, these results suggest that if the Arctic sea ice continues to melt, the increase in light exposure may
lead to higher productivity by primary producers initially but create a nutrient limited environment over
time. These conclusions are consistent with the mixed layer rates calculated from gas tracer data from these
six years in the Beaufort Gyre area of the Canada Basin but are not definitive predictions for the future state
of'the entire Arctic Ocean nor for what is occurring in water below the mixed layer depth.
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