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Abstract

We study (massive) spin-2 fluctuations around warped AdS6 solutions with 16 super-

symmetries in type IIB supergravity. We identify two classes of fluctuations which are

universally present for all solutions of this form. The holographically dual operators

have scaling dimensions ∆ = 5 + 3` and ∆ = 6 + 3`, where the integer ` encodes

the R-symmetry charge. They are identified as descendant states in respective BPS

multiplets (the current multiplet for ∆ = 5). We also compute the normalization of

the energy-momentum tensor two-point function and show that it is related to the S5

partition function of the dual 5d SCFTs.



1 Introduction

Supersymmetric conformal field theories (SCFT) in five dimensions exhibit many interest-

ing properties: They are intrinsically strongly coupled in the UV and many have relevant

deformations that flow to non-renormalizable gauge theories in the IR. Generically, they do

not have exactly marginal deformations and no conventional Lagrangian description. These

features are challenging for (perturbative) QFT methods, but the existence and properties

of such theories can be studied using string theory and M-theory [1, 2, 3].

AdS/CFT is a particularly powerful tool to quantitatively study these theories, and

supergravity solutions describing five dimensional SCFTs have been found in type IIA [4, 5, 6]

and type IIB supergravity [7, 8, 9]1. The type IIB solutions were identified with a large class

of SCFTs which are obtained from the conformal limit of (p, q) 5-brane webs [17, 18]. The IIB

supergravity solutions have since been studied and extended. In [21] the S5 partition function

and entanglement entropy for a spherical region where calculated holographically. In [22]

probe (p, q) strings in the supergravity background have been studied. In [19] supergravity

solutions were constructed with punctures and non-trivial SL(2,R) monodromy, and they

were related in a precise way to 5-brane webs with additional 7-branes in [20].

An important part of the basic data of any SCFT is the spectrum of short and long

operators and how they fit into representations of the superconformal algebra. It is well

known that five dimensional superconformal symmetry is a special case, with a unique su-

perconformal algebra F (4) [23, 24, 25]. Recently, the superconformal multiplets of F (4) have

been classified in [26, 27]. On general grounds, it is expected that linearized fluctuations of

the supergravity fields around an AdS vacuum fall into superconformal multiplets, with the

complete spectrum determined by the Kaluza-Klein (KK) reduction. A famous example is

the KK-reduction of type IIB supergravity on its AdS5×S5 vaccum [28, 29] and the relation

to the spectrum of half-BPS operators of N = 4 SYM. The AdS6 solutions of type IIB

supergravity are, however, more complicated: they only preserve half the number of super-

symmetries, the metric is a more involved warped product of AdS6 × S2 over a Riemann

surface, and they involve non-trivial configurations of the axion-dilaton scalar and complex

two-form field. A general analysis of the coupled equations of motion and the resulting KK

spectrum for these warped compactifications is therefore challenging, and we instead focus

on a special class of fluctuations which can be studied by itself.

The structure of the present paper is as follows: In section 2 we briefly review the

type IIB solutions of [7, 8, 9, 19] and their relation to 5-brane webs. In section 3 we study

fluctuations of the metric field which correspond to massless or massive symmetric, transverse

and traceless rank two tensors on AdS6. Crucially, the linearized equation of motion for these

fluctuations decouples from all other supergravity fields [30], and we identify a particular

class of solutions which is universally present for the type IIB AdS6 solutions discussed

above. As we discuss in section 4, in the dual SCFTs these fluctuations source the stress

1See [11, 12, 13, 14, 15, 16] for earlier work on type IIB solutions.
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tensor (in the massless case) as well as spin two tensor operators of higher scaling dimension.

We explicitly obtain the “central charge” CT which appears in the two point function of the

stress tensor from our supergravity fluctuation. We close with a discussion in section 5.

2 Type IIB AdS6 × S2 warped solution

In this section we review aspects of the supergravity solutions constructed in [7] which will

be important in the present paper. These solutions provide the general local form of warped

AdS6 solutions with 16 supersymmetries in type IIB supergravity. The geometry is a warped

product of AdS6 × S2 over a Riemann surface Σ. The complex scalar and the complex two-

form potential (proportional to the volume form on S2) depend on the coordinates on Σ.

The metric is given by

ds2 = f 2
6 ds

2
AdS6

+ f 2
2 ds

2
S2 + 4ρ2|dw|2 . (2.1)

The metric functions and the remaining supergravity fields are all expressed in terms of two

locally holomorphic functions A± on Σ, via the composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ ,

G = |A+|2 − |A−|2 + B + B̄ , R +
1

R
= 2 +

6κ2 G
|∂wG|2

. (2.2)

Note that G and κ2 are related as follows

∂w̄∂wG = −κ2 . (2.3)

In Einstein frame, the metric functions f 2
6 , f 2

2 and ρ2 are given by

f 2
6 =
√

6G
(

1 + R

1−R

)1
2

, f 2
2 =

1

9

√
6G
(

1−R
1 + R

)3
2

, ρ2 =
κ2

√
6G

(
1 + R

1−R

)1
2

. (2.4)

The expressions for the axion-dilaton scalar and the complex two-form C(2) can be found in

[7], but are not needed in the following. For arbitrary locally holomorphic A± this yields

a solution to the BPS equations (and also to the equations of motion [10]). For physically

regular solutions, κ2 and G satisfy

κ2 > 0 , G > 0 , (2.5)

at interior points of Σ. If Σ has a boundary, they further satisfy the boundary conditions

κ2
∣∣
Σ

= G
∣∣
Σ

= 0 , (2.6)

which ensure that the S2 collapses on ∂Σ to smoothly close off the 10d geometry. Large

classes of physically regular solutions were constructed in [8, 9, 19], and related to (p, q)
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5-brane webs in type IIB string theory. The Riemann surface Σ is a disc in these solutions,

and the differentials ∂wA± have poles at isolated points on the boundary of the disc. The

technical details of these constructions will be largely irrelevant for the discussion in the

present paper. The results hold in particular for these solutions, but are not limited to

them. We will make use of the regularity conditions (2.5) and (2.6), and discuss the poles

where necessary, e.g. in relation to regularity conditions in sec. 3.1 and 3.3.

3 The spectrum of spin 2 excitations

As discussed in the introduction, determining the complete KK-spectrum of a warped AdS

supergravity solution is challenging. However, as shown in [30], the spectrum of spin-2

fluctuations is determined from a universal equation which depends on the geometry only,

not on the other fields in type IIB supergravity. The original motivation of [30] was to study

localized spin 2 excitations on solutions dual to defect conformal field theories. The result

on the decoupling, however, can be applied to general warped spacetimes with AdS factors,

see e.g. [31, 32, 33, 34, 35, 36] for application in various cases.

While the formulae in [30] were for AdS4, it is straighforward to generalize the analysis to

the case which we are interested in, namely the fluctuations around the warped AdS6×S2×Σ

solutions. The perturbed 10d metric takes the form

ds2 = f 2
6

(
ds2

AdS6
+ hµνdx

µdxν
)

+ ĝabdy
adyb , (3.1)

with hµν a transverse traceless fluctuation in the unit-radius AdS6 part of the background

geometry, and the metric on the 4-dimensional internal space in (2.1) given by

ĝabdy
adyb = f 2

2ds
2
S2 + 4ρ2|dw|2 . (3.2)

The 6d part of the metric perturbation is expanded in modes on unit-radius AdS6,

hµν(x, y) = h[tt]
µν (x)ψ(y) , �AdS6h

[tt]
µν = (M2 − 2)h[tt]

µν . (3.3)

The starting point is eq. (2.23) of [30], which holds for a non-compact part of arbitrary

dimension. With g denoting the full 10d metric and M,N = 0, .., 9, it is given by

1√
−g

∂M
√
−ggMN∂Nhµν = 0 . (3.4)

With the mode expansion (3.3), this reduces to an equation for ψ, given by

− 1

f 4
6

√
ĝ
∂a(f

6
6

√
ĝĝab∂b)ψ = M2ψ . (3.5)

The only effect of having AdS6 instead of AdS4 are the different powers of the AdS warp

factor as compared to [30]. With the explicit form of the internal space metric in (3.2),2

2The Σ part of the metric in (2.1) may be written more explicitly as gΣ = 2ρ2(dw⊗ dw̄+ dw̄⊗ dw), from
which the components of the metric and inverse metric are extracted.
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eq. (3.5) evaluates to

1

f 4
6 f

2
2ρ

2
∂a
(
f 6

6 f
2
2 η

ab∂bψ
)

+
f 2

6

f 2
2

∇2
S2ψ +M2ψ = 0 , (3.6)

where a, b = w, w̄ from now on and

ηww̄ = ηw̄w =
1

2
. (3.7)

Somewhat remarkably, the composite quantity R cancels in all the combinations of metric

factors, which are given explicitly by

f 2
6

f 2
2

= 9 +
6|∂G|2

κ2G
, f 4

6 f
2
2ρ

2 =
2

3
κ2G , f2f

3
6 = 2G . (3.8)

We further expand ψ in spherical harmonics on S2

ψ(y) = φ`m(w, w̄)Y`m(S2) . (3.9)

This turns eq. (3.6) into

6∂a
(
G2ηab∂bφ`m

)
− `(`+ 1)

(
9κ2G + 6|∂G|2

)
φ`m +M2κ2Gφ`m = 0 . (3.10)

This equation can be further simplified with the field redefinition

φ`m = G`χ`m . (3.11)

After multiplying (3.10) by G`, it becomes

∂a
(
G2`+2∂aχ`m

)
+

1

6

(
M2 − 3`(3`+ 5)

)
κ2G2`+1χ`m = 0 . (3.12)

This equation determines the transverse traceless spin-2 fluctuations around generic type

IIB warped AdS6 × S2 × Σ solutions reviewed in sec. 2.

3.1 Regularity conditions

We implement the following regularity requirements for the metric fluctuations. In the

interior of Σ, the perturbation should be finite. At generic points on the boundary of Σ, ∂Σ,

the S2 closes off, as ensured by the boundary condition (2.6). These boundary points are

completely regular points in the 10d geometry, and as such the metric fluctuation at these

points should be finite. Locally, coordinates can be chosen such that Σ corresponds to the

upper half plane, with the real line as the boundary. In view of the decomposition (3.9) and

(3.11), the requirement for finiteness of the metric perturbation then implies

lim
Im(w)→0

G`χ`m <∞ . (3.13)
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For the solutions constructed in [7, 8, 9], the poles on the boundary ∂Σ, at which the

external (p, q) 5-branes of the associated 5-brane web emerge, call for special attention. We

will insist that the metric fluctuation (3.1) does not change the asymptotic behavior of the

AdS6 radius near the poles. This ensures that the poles in the perturbed solution still admit

an interpretation as (p, q) 5-branes. The AdS6 radius in Einstein frame vanishes near the

poles, f 2
6 → 0, as shown in sec. 3.9 of [9], while it diverges in string frame. Demanding this

behavior to remain unmodified simply amounts to requiring (3.13) also at the poles: as long

as φ`m is finite at the poles, the AdS6 radius in the perturbed Einstein-frame metric still

vanishes at the same rate as the poles are approached, due to the overall f 2
6 in the ansatz

for the metric perturbation (3.1).

For the solutions of [19] there are additional punctures in Σ, around which the supergrav-

ity fields undergo non-trivial SL(2,R) monodromy and which encode additional 7-branes in

the associated 5-brane web. The Einstein-frame metric, however, is single-valued. We keep

the requirement that the metric fluctuation be finite all through the interior of Σ, which

ensures that the interpretation of the punctures as 7-branes is unmodified. Since G is single-

valued and also finite all through Σ for these solutions, the punctures then do not play a

special role in the fluctuation equation (3.12).

3.2 Universal minimal solutions

Constructing the general solution to the partial differential equation (3.12) is, still, chal-

lenging. However, with the equation in this particular form, we can immediately identify a

particularly simple class of solutions, given by

χ`m = 1 , φ`m = G` , M2 = 3`(3`+ 5) . (3.14)

Since G vanishes on all of ∂Σ by (2.6), the regularity condition (3.13) excludes such constant

solutions for ` < 0 (which would not be regular on S2 to begin with). But for ` ≥ 0 these

solutions satisfy the regularity conditions discussed in sec. 3.1. This special class of solutions,

in fact, provides the solution with minimal M2 for each `: Multiplying eq. (3.12) by χ`m and

integrating over Σ yields∫
Σ

d2w

[
χ`m∂a

(
G2`+2∂aχ`m

)
+

1

6

(
M2 − 3`(3`+ 5)

)
κ2G2`+1χ2

`m

]
= 0 . (3.15)

Integrating the first term by parts yields a boundary term ∝ χ`mG2`+2∂aχ`m, which vanishes

by (3.13). We thus find, using that χ`m is real,∫
Σ

d2w

[
−G2`+2|∂χ`m|2 +

1

6

(
M2 − 3`(3`+ 5)

)
κ2G2`+1χ2

`m

]
= 0 . (3.16)

Noting that κ2 and G are non-negative in all of Σ and positive in the interior, we conclude

that

M2 ≥ 3`(3`+ 5) . (3.17)
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The solutions in (3.14) saturate this inequality and therefore indeed produce minimal M2

for a given choice of `, m.

3.3 Universal non-minimal solutions

In this section we discuss a second class of solutions which is also universally present but

produces non-minimal M2. It is reminiscent of a second branch of solutions found for the

type IIA solution in [36], but differs in crucial details. As starting point we take eq. (3.13),

and rewrite it, noting (3.7), as follows

G∂w∂w̄χ`m + (2`+ 2)(∂aG)∂aχ`m +
1

6

(
M2 − 3`(3`+ 5)

)
κ2χ`m = 0 . (3.18)

We make an ansatz for χ`m as the difference of a holomorphic and an anti-holomorphic part,

χ`m(w, w̄) = χ+
`m(w)− χ−`m(w̄) . (3.19)

In particular, this makes χ`m harmonic, and the first term in (3.18) drops out. Evaluating

the remaining terms more explicitly yields

(`+ 1)
(
(∂w̄G)∂wχ

+
`m − (∂wG)∂w̄χ

−
`m

)
+

1

6

(
M2 − 3`(3`+ 5)

)
κ2(χ+

`m − χ
−
`m) = 0 . (3.20)

Using the explicit expression for ∂wG, given by

∂wG = (Ā+ −A−)∂wA+ + (A+ − Ā−)∂wA− , (3.21)

it is straightforward to show that eq. (3.20) admits a solution when χ+
`m = A+ and χ−`m = Ā−.

It is given by

χ`m = A+ − Ā− , M2 = (3`+ 1) (3`+ 6) . (3.22)

Note that these χ`m are not real, and the linearized equation is solved by the real and

imaginary parts separately. They are regular in the interior of Σ for the solutions of [8, 9, 19].

The A± have logarithmic divergences at the poles on the boundary of Σ, and associated

branch cuts along the boundary. The discontinuities across the branch cuts, however, cancel

in the combination A+ − Ā−, such that the χ`m are single valued. This leaves only the

logarithmic divergences at the poles. Crucially, the profile of the metric fluctuation is given

by φ`m as defined in (3.11), not by χ`m directly. The solutions for φ`m are

φ
(1)
`m = G` Re

(
A+ − Ā−

)
, φ

(2)
`m = G` Im

(
A+ − Ā−

)
. (3.23)

For ` = 0 the logarithmic singularity at the poles remains.3 For ` ≥ 1, however, since G
vanishes on the boundary of Σ and at the poles (faster than logarithmically, as can be seen

from the near-pole behavior derived in sec. 3.9 of [7]), these solutions are perfectly regular.

3The complete metric perturbation (3.1) in Einstein frame is finite at the poles, due to the factor f2
6 . But

the perturbation dominates the AdS6 part of the background metric and actually blows up in string frame.
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4 Implications for the dual SCFTs

In this section we discuss the operators that the universal spin-2 fluctuations identified

above source in the dual 5d SCFTs, and the superconformal multiplets they belong to. We

also obtain the normalization of the two-point functions for these operators and discuss the

relation to the five-sphere partition function.

4.1 Superconformal multiplets

For each of the graviton perturbations discussed in the previous section there is an operator

in the spectrum of the dual SCFT, which we will call T µν`,m. From the usual relation between

the AdS mass of a bulk field and the scaling dimension of the dual operator, M2 = ∆(∆−5),

we conclude that the dual operators for the minimal solutions (3.14) have scaling dimension

∆(T µνmin,`,m) = 5 + 3` . (4.1)

To identify the multiplets that these dual operators correspond to we consult with the clas-

sification of [27]4. We first note that the Dynkin label R in the convention of [27] is always

integer, rather than half integer, and related to our ` by R = 2`.5 In our type IIB solution

the R-symmetry is realized as the isometries of the S2 and the scalar spherical harmonics on

S2 have integer `, this implies that R takes even integer values. The fluctuation spectrum

of the supergravity solution contains states of up to spin 2. The only short multiplets in

table 22 of [27] that fulfill this requirement are B2 and A4. The B2 representation with

R = 0 reproduces the 6d (gauged) supergravity multiplet. This multiplet should be present

in the spectrum, as we expect our type IIB supergravity solutions to admit a truncation

to 6d gauged supergravity. The arguments of [37] actually suggest the stronger statement

that there is a truncation which is consistent at the full non-linear level. The linear anal-

ysis is sufficient for our purposes. From the perspective of the dual SCFTs, having a 6d

(gauged) supergravity multiplet in the spectrum simply amounts to the field theories having

an energy-momentum tensor.

The natural F(4) supermultiplet candidate to host the operators T µν`,m is thus B2. From

[27], the structure of the B2 supercurrent multiplet is

[0, 0]
(0)
3

Q
−−→ [1, 0]

(0)
7
2

Q
−−→ [0, 1]

(2)
4 ⊕ [2, 0]

(0)
4

Q
−−→ [1, 1]

(1)
9
2

Q
−−→ [0, 2]

(0)
5 . (4.2)

The primary in this multiplet [0, 0]
(0)
3 is a Lorentz scalar with R-charge R = 0 and scaling

dimension ∆ = 3. Note that the operator dual to the massless graviton fluctuation, [0, 2]
(0)
5 ,

arises as the Q4 descendant in this multiplet. Generalizing this structure, the minimal

4For definiteness, we use the notation and conventions of [27] instead of the slightly different ones in [26]
to denote the multiplets and representations.

5The supercharge in their eq. (2.56) has R = 1, but, being a spinor, would correspond to ` = 1/2.
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massive spin two fluctuations found in section 3.2 with ` > 0 fit into a B2 multiplet where

the scalar primary [0, 0]
(2`)
3+3` has scaling dimension

∆B2,primary = 3 + 3`. (4.3)

The massive spin-2 fluctuations can again be identified as the Q4 descendant [0, 2]2`5+3`. That

means the operators dual to the massive spin 2 fluctuations are not primaries, but descen-

dants in this multiplet, with the Q4 precisely accounting for the difference of 2 between the

scaling dimensions (4.1) and (4.3).

The universal non-minimal fluctuation, presented in section 3.3, is dual to a spin-2 oper-

ator with dimension

∆(T µνnon min,`,m) = 6 + 3` . (4.4)

Following the same logic as for the minimal solution we conclude that this operator is part of

an A4 multiplet with R = 3`, where it is again a Q4 descendant of a scalar primary [0, 0]
(2`)
4+3`

with conformal dimension

∆A4,primary = 4 + 3` . (4.5)

4.2 Normalization of two-point functions

We now compute the normalization of the two-point functions of the operators T µν`,m sourced

by the universal graviton fluctuations of sec. 3.2 and 3.3. For the minimal solution with

` = 0, corresponding to the massless graviton fluctuation, the dual operator is the energy-

momentum tensor, whose normalization can be fixed independently, such that the normal-

ization of the two-point function becomes physically meaningful. This is what [38] called

the central charge CT , which is related to the partition function on squashed spheres and

therefore accessible for field theory computations using supersymmetric localization.

Holographically, the normalization of the energy-momentum tensor two-point function

can be extracted from the effective action for the 6d graviton. We start from the Einstein-

frame action as given e.g. in [39], whose form we only need schematically,

SIIB =
1

2κ2
10

∫
d10x
√
−g (R + . . . ) . (4.6)

On general grounds, expanding the action (4.6) to quadratic order in a perturbation δg yields

δ2SIIB =
1

κ2
10

∫
d10x
√
−g δgMNPMN [δg] + boundary terms , (4.7)

where PMN [δg] is the equation of motion operator acting on δg, and the indices in δgMN are

raised with the full 10d background metric. P [δg] is given by (3.4), up to a factor f 2
6 owing
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to the fact that it was derived in [30] for the Weyl rescaled metric where the AdS factor has

unit radius. Noting also the explicit f 2
6 in the perturbation ansatz (3.1), we have

Pµν [δg] = f 2
6

1√
−g

∂M
√
−ggMN∂Nhµν , δgµν = f−2

6 hµν , (4.8)

where the indices on h are now raised with the unit-radius AdS6 metric. Thus, dropping

boundary terms,

δ2SIIB =
1

κ2
10

∫
d10xhµν∂M

√
−ggMN∂Nhµν . (4.9)

Using the expansion hµν = (h
[tt]
`m)µνY`mφ`m, with normalization

∫
S2 Y`mY`′m′ = VolS2 δ``′δmm′

such that Y00 = 1 and φ00 = 1 for the minimal solutions in (3.14), yields the effective action

for the 6d fluctuations

δ2SIIB =
∑
`,m

C`

∫
d6x
√
−gAdS6 (h

[tt]
`,m)µν

[
�AdS6 − (3`(3`+ 5)− 2)

]
(h

[tt]
`,m)µν . (4.10)

The constants C` evaluate to

C` =
1

κ2
10

VolS2

∫
d2w 4f 4

6 f
2
2ρ

2(φ`m)2 =
8

3κ2
10

VolS2

∫
d2w κ2G (φ`m)2 , (4.11)

with dw2 = i
2
dw ∧ dw̄ and where (3.8) has been used to obtain the second equality. The

effective 6d gravitational coupling is related to C0 for the minimal ` = 0 solution with

φ00 = 1, corresponding to the massless graviton, by C0 = 1/κ2
6.

As discussed recently in sec. 4 of [41], CT is thus directly related to C0 for the minimal

solution as defined above. The result (4.11) also shows that this coefficient C0, up to a

universal numerical factor that is independent of the choice of solution, is precisely the finite

part of the entanglement entropy for a spherical region, as computed in sec. IV of [21]. As

verified explicitly in [21], the finite part of this entanglement entropy is given by the S5

partition function of the dual SCFTs. This establishes a direct relation of CT to the S5

partition function, and shows that the two notions of “central charge” are equivalent for the

theories dual to the supergravity solutions discussed here.

The C` are in particular finite for the physically regular solutions constructed in [8, 9, 19].

This follows from the discussion in [21], where it was shown that the integral in (4.11) for

` = 0 and φ`m = 1 is finite, despite the presence of poles in the differentials ∂wA± on the

boundary ∂Σ. Since the φ`m are well behaved for the minimal solutions with ` ≥ 0 and

the non-minimal solutions with ` > 0, as discussed in sec. 3.2 and 3.3, respectively, this

immediately implies finiteness of the integral in (4.11) for all these solutions. This extends

to the non-minimal solution with ` = 0 as well, since the logarithmic singularities near the

poles in φ00 of (3.23) are mild enough for the complete integrand in (4.11) to be integrable.
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5 Discussion

We have identified two special classes of (massive) spin-2 excitations around the warped

AdS6 × S2 × Σ solutions to type IIB supergravity constructed in [9]. Determining the full

spectrum of spin-2 fluctuations is a non-trivial problem, and the full results are expected to

depend crucially on the details of the specific solution at hand. Remarkably, the fluctuations

identified here are universally present, for all solutions of this form. The fluctuations are

expressed directly in terms of the basic building blocks of the background solution and satisfy

natural regularity conditions and boundary conditions on ∂Σ. In the dual 5d SCFTs they

correspond to two sets of universally present spin-2 operators, which are Q4 descendants in

B2 and A4 multiplets in the notation of [27].

These results are reminiscent of the recently obtained results on spin-2 fluctuations [36]

around the massive type IIA solution of [4], but differ in crucial details. The scaling dimen-

sions (4.1) and (4.4) superficially agree with the scaling dimensions found in [36]. However,

as discussed in section 3.2, we only find multiplets with even integer R-charge, whereas in

[36] even and odd integer R-charges appear. This can be explained by the fact that the R-

symmetry is realized differently: in the type IIB solution the R-symmetry is realized directly

as the isometries of S2, while it appears as part of the isometries of a half S4 in the massive

IIA solutions. A second point concerns regularity of the fluctuations dual to A4 multiplets,

of which we find two sets. While those were found to be singular, albeit normalizable, in

[36], the corresponding fluctuations for the type IIB solutions identified here are regular for

` > 0.

The massive type IIA solution can formally be T-dualized along an S1 inside the half S4,

to obtain a solution in type IIB. The resulting singular solution is contained as a special case

in the solutions discussed here, and we have shown in app. A how the PDE for the spin-2

fluctuations reduces to an ODE in that case. The implementation of regularity conditions,

however, is unclear for this background and we did not attempt a general analysis. It may

be interesting in that context to also study the non-Abelian T-dual.

Finally, we have studied generalizations of the notion of central charge to 5d SCFTs.

Two objects which have been studied in that context are the coefficient CT appearing in the

two-point function of the energy-momentum tensor and the five-sphere partition function.

Drawing on results obtained earlier, we showed that the two notions of central charge are

equivalent for the 5d SCFTs described by classical supergravity on the solutions of [9, 19].

We close the paper with some open questions and directions for future work:

As discussed above, the fluctuations identified here correspond to Q4 descendants in

short multiplets with scalar primaries. It would be interesting to identify the other members

of these multiplets as well. While the full KK reduction is a technically very challenging

task, the fluctuations corresponding to the remaining members of these multiplets should be

related by supersymmetry transformations to the ones identified here. In particular, they

should also be universal, and likely have expressions in terms of the basic building blocks

of the background solutions. This should make them accessible and provide potentially

11



interesting insights on the structure of the full KK spectrum.

An immediate question from the perspective of the dual SCFTs is whether and how

the operators identified here can be realized in terms of Lagrangian fields in gauge theory

deformations. The supergravity solutions of [9, 19] are naturally associated to (p, q) 5-

brane webs, many of which have gauge theory deformations to quiver theories. It would be

interesting to understand what the universality of the operators we found implies in that

context and how they are realized.
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A T-dual of massive IIA solution

We briefly discuss the T-dual of the massive type IIA solution, as given in appendix A of

[12]. A choice of A± realizing this solution was given in sec. 5.6 of [7], as

A± =
1

2
aw2 ∓ bw . (A.1)

The parameters a, b were given for L = 1, where L is the curvature radius of AdS6, in [7].

For generic L they are

a =
27

16
L4m1/3 , b =

9L2

8m1/3
, (A.2)

with m encoding the Romans mass. The relevant quantities for the discussion of spin-2

fluctuations are κ2 and G, given by

κ2 = 2ab(1− Z)1/3 , G =
ab

3
Z , Z = 1− (w + w̄)3 . (A.3)

With the field identifications and real coordinates discussed in [7], defined by cos θ = w+ w̄

and φ3 = ia
2bm

(w − w̄), this produces the solution as given in appendix A of [12], including

the factors of L.

A.1 Metric perturbations

The equation determining the spin-2 fluctuations is (3.12), with κ2 and G given in (A.3).

The constants a, b drop out, and the equation becomes

Z−2`−1∂a
(
Z2`+2∂aχ`m

)
+
(
M2 − 3`(3`+ 5)

)
(1− Z)1/3 χ`m = 0 . (A.4)

12



The geometry is invariant under shifts in w − w̄, and the general solution can therefore be

expanded as

χ`m(w, w̄) = f(w + w̄)eik(w−w̄) . (A.5)

Eq. (A.4) becomes, with a real coordinate x = w + w̄ such that Z = 1− x3,

Z−2`−1∂x
(
Z2`+2∂xf

)
− k2Zf +

(
M2 − 3`(3`+ 5)

)
xf = 0 . (A.6)

Setting z = x3 turns this equation into

z(1− z)∂2
zf −

2

3
((3`+ 4)z − 1) ∂zf +

1

9

(
M2 − 3`(3`+ 5)

)
f − k2f

1− z
z1/3

= 0 . (A.7)

For k = 0 this is a hypergeometric differential equation in standard form. The minimal

solutions discussed in sec. 3.2 correspond to constant f with k = 0. The real part of the

non-minimal solutions for χ`m in sec. 3.3 corresponds to f = z1/3 with k = 0, while the

imaginary part has non-trivial dependence on w − w̄.
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