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Abstract

The geometry of the N = 3, SO(4)–invariant, AdS4 solution of massive type

IIA supergravity that uplifts from the N = 3 vacuum of D = 4 N = 8 dy-

onic ISO(7) supergravity is investigated. Firstly, a D = 4, SO(4)–invariant

restricted duality hierarchy is constructed and used to uplift the entire, dy-

namical SO(4)–invariant sector to massive type IIA. The resulting consistent

uplift formulae are used to obtain a new local expression for the N = 3 AdS4

solution in massive IIA and analyse its geometry. Locally, the internal S6 geom-

etry corresponds to a warped fibration of S2 and a hemisphere of S4. This can

be regarded as a warped generalisation of the usual twistor fibration geometry.

Finally, the triplet of Killing spinors corresponding to the N = 3 solution are

constructed and shown to obey the massive type IIA Killing spinor equations.
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1 Introduction

Massive type IIA supergravity [1] admits a consistent truncation on the six-sphere to

maximal supergravity in four dimensions with gauge group ISO(7) = SO(7) n R7 [2, 3].

The gauging is dyonic, in the sense of [4, 5] (see also [6]). By virtue of the consistency

of the truncation, all solutions of the four-dimensional theory uplift on S6 to solutions of

massive type IIA supergravity. In particular, the critical points (which can only be AdS) of

the four-dimensional scalar potential give rise to supersymmetric and non-supersymmetric

ten-dimensional solutions of the form AdS4 × S6. This product is generically warped and

the metric on S6 displays an isometry group G ⊂ SO(7) related to the residual symmetry

within ISO(7) supergravity of the critical point it uplifts from. Using this technique,

new massive type IIA solutions have been found [2, 7, 8] and previously known ones

[1, 9, 10] have been recovered. Other supersymmetric AdS4 solutions of massive type

IIA supergravity have been recently found using other methods in [11, 12]. Previous

constructions of supersymmetric AdS4 solutions in massive type IIA supergravity include

[13, 14, 15, 16, 17, 18].
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In this paper, we investigate the ten-dimensional uplift of the N = 3 SO(4)–invariant

critical point of dyonic ISO(7) supergravity. This D = 4 critical point was found in [19].

A local form of its massive type IIA uplift has already appeared in [8]. Here, we provide

an alternate local form of this N = 3 AdS4 solution of massive IIA supergravity (equation

(5.1)) and discuss its geometric features. The internal space of the N = 3 solution is

topologically S6, endowed with a geometry that can be locally regarded as an S2 bundle

over a half-S4. This is a generalisation of the twistor bundle over a quaternionic-Kähler

manifold of positive curvature, see e.g. [20, 15] for reviews. The twistor fibration allows one

to engineer nearly-Kähler or half-flat geometries on six-manifolds M6 of topology different

than S6, see e.g. [15]. In turn, a well known class of N = 1 (direct) product solutions

AdS4×M6 of massive IIA supergravity entails a nearly-Kähler [9, 21] or a half-flat structure

[13, 15, 16] on M6.

It is suggestive that this N = 3 solution formally corresponds to an elaboration of

these N = 1 constructions. This is reminiscent of the situation for a well-known class of

D = 11 direct product solutions involving AdS4 and a tri-Sasaki seven-manifold. Recall

that the latter can be regarded as an S3 bundle over a quaternionic-Kähler base, equipped

with an Einstein metric on the total space. This class of solutions is N = 3, see e.g. [22].

On each tri-Sasaki manifold, a second Einstein metric can be obtained by squashing the

S3 fibers by a certain constant amount. The resulting D = 11 AdS4 solution is N = 1,

see [23, 22]. The analogy with these N = 3 and N = 1 solutions of D = 11 supergravity

should not be taken too far, though. The internal metric of the massive IIA N = 3 solution

is certainly not Einstein, unlike the N = 1 nearly-Kähler solutions of [9]. In the IIA N = 3

solution, the S2 fibers are squashed, not by a constant, but by a warping function of the

S4 hemisphere base. The connection does not have definite duality properties, unlike in

the usual twistor fibration. Finally, the N = 3 solution involves a warped, rather than

direct, product of AdS4 and the internal topological S6. Like in the D = 11 tri-Sasaki

case, though, the SO(3) R-symmetry acts on the fibers of the N = 3 massive IIA solution.

The type IIA N = 3 solution displays a local SO(4) symmetry, inherited from that

preserved by the N = 3 critical point of the D = 4 supergravity. More generally, we

construct in section 2 the restricted, in the sense of [24], duality hierarchy [25, 26] of

D = 4 ISO(7) supergravity that is invariant under this SO(4). This result is particularly

useful, as it allows us to consistently embed the entire, dynamical SO(4)–invariant sector

of the D = 4 N = 8 supergravity into massive type IIA. The explicit consistent uplift

formulae are presented in section 3. These formulae give the ten-dimensional uplift of

any SO(4)–invariant solution of the ISO(7) supergravity, including solutions with running

scalars. The local and global features of this consistent embedding formulae are discussed

at length, and generalisations are given. Section 4 discusses further truncations. The

truncation to the dynamical G2–invariant sector of [3] is recovered, and an example that

illustrates the usefulness of the duality hierarchy approach is worked out. In section 5,

we turn our attention to the massive IIA uplift of solutions of the D = 4 supergravity,

focusing on vacuum solutions. In particular, a new local form of the N = 3 AdS4 solution

in massive IIA is provided. Finally, in section 6, the solution is demonstrated to indeed be

N = 3 by explicitly building the triplet of Killing spinors that it preserves.
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2 A D = 4, SO(4)–invariant duality hierarchy

We are interested in the sector of D = 4 N = 8 dyonically-gauged ISO(7) supergravity

[24] that retains the fields that are invariant under the SO(4) subgroup of ISO(7) defined

by the embedding [19]

SO(7) ⊃ SO(3)′ × SO(4)′ ⊃ SO(3)d × SO(3)R ≡ SO(4) , (2.1)

with SO(4)′ ≡ SO(3)L × SO(3)R and SO(3)d the diagonal subgroup of SO(3)′ × SO(3)L.

Equivalently, this SO(4) is also the maximal subgroup of the G2 contained in SO(7),

SO(7) ⊃ G2 ⊃ SO(4) . (2.2)

The Lagrangian corresponding to this sector of the N = 8 ISO(7) supergravity was given

in [24], and the vacuum structure was studied in detail there. Here, we complete the

analysis of the SO(4)–invariant sector by determining the restricted, in the sense of [24],

duality hierarchy [25, 26] in this sector.

The SO(4)–invariant sector of N = 8 ISO(7) supergravity corresponds to an N = 1

supergravity coupled to two chiral multiplets that parametrise a Kähler submanifold

SU(1, 1)

U(1)
× SU(1, 1)

U(1)
(2.3)

of E7(7)/SU(8). The SU(1, 1)2 in the numerator is the commutant of the SO(4) in (2.1) or

(2.2) inside E7(7). According to table 2 of [24], the SO(4)-singlets of the restricted, SL(7)–

covariant tensor hierarchy considered therein give rise to one two-form and two three-form

potentials in this sector. To summarise and fix the notation, the SO(4)–invariant, restricted

duality hierarchy of D = 4 N = 8 supergravity contains the following real fields:

1 metric : ds2
4 ,

4 scalars : ϕ , χ , φ , ρ ,

1 two-form : B ,

2 three-forms : C1 , C2 . (2.4)

The embedding of the scalars into the N = 8 E7(7)/SU(8) manifold was discussed at

length in [24]. In turn, the two- and three-form potentials in (2.4) are embedded into the

SL(7)–covariant two-, BIJ , and three-forms, CIJ , defined in [24] via

Bij = 4
7 B δ

j
i , Bî

ĵ = −3
7 B δ

ĵ

î
, Cij = C1 δij , C îĵ = C2 δîĵ , (2.5)

and Biĵ = Bĵ
i = Ciĵ = 0. Here, we have split the SL(7) indices I, J = 1, . . . , 7 as I = (i, î),

i = 1, 2, 3, î = 0, 1, 2, 3, as in appendix A.

In a conventional formulation, only the metric and the scalars in (2.4) enter the D = 4

Lagrangian. This reads [24]

L = (R− V ) vol4 + 6
2

[
dϕ ∧ ∗dϕ+ e2ϕ dχ ∧ ∗dχ

]
+ 1

2

[
dφ ∧ ∗dφ+ e2φ dρ ∧ ∗dρ

]
, (2.6)
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N G c−1/3 χ c−1/3 e−ϕ c−1/3 ρ c−1/3 e−φ g−2 c1/3 V ref.

N = 3 SO(4) 1
24/3

31/2

24/3
− 1

21/3
31/2

21/3
−216/3

31/2
[19]

N = 1 G2 − 1
27/3

51/2 31/2

27/3
− 1

27/3
51/2 31/2

27/3
−228/3 31/2

55/2
[27]

N = 0 SO(7)+ 0 1
51/6

0 1
51/6

−3 57/6 [28]

N = 0 G2
1

24/3
31/2

24/3
1

24/3
31/2

24/3
−216/3

31/2
[27]

N = 0 SO(4) 0.412 0.651 0.068 1.147 −23.513 [24]

Table 1: Critical points of the scalar potential (2.7), namely, of N = 8 ISO(7)-dyonically-gauged

supergravity with invariance equal or larger than the SO(4) subgroup of SO(7) defined in (2.1).

For each point we give the residual supersymmetry N and bosonic symmetry G within the full

N = 8 theory, its location, the cosmological constant V and the reference where it was first found.

We have employed the shorthand c ≡ m/g. All of these data are reproduced from [24].

with the scalar potential given by [24]

V = 1
2 g

2 e−φ(1 + e2ϕχ2)
[
−24 eϕ+φ − 8 e2φ + e2ϕ

(
− 3 + (8χ2 − 3ρ2) e2φ

)
+ e4ϕ χ2

(
9 + (3ρ+ 4χ)2 e2φ

)]
− gmχ2 (3ρ+ 4χ) e6ϕ+φ + 1

2 m
2 e6ϕ+φ .

(2.7)

The constants g and m are the electric and magnetic gauge couplings of the parent N = 8

ISO(7) supergravity.

When gm 6= 0, the scalar potential (2.7) contains AdS critical points that sponta-

neously break the N = 8 supersymmetry and ISO(7) gauge symmetry of the full D = 4

supergravity to some supersymmetry N and residual symmetry G. See table 1 for a sum-

mary. The N = 3 SO(4)–invariant point manifests itself as non-supersymmetric within the

subtruncation (2.6), (2.7), see [24] for further details. All these critical points are inherent

to the dyonic ISO(7) gauging and disappear in the purely electric g 6= 0,m = 0, or purely

magnetic, g = 0,m 6= 0 limits. Accordingly, these four-dimensional solutions naturally up-

lift to massive type IIA supergravity on S6 and do not have direct counterparts in either

massless IIA on S6 or massive IIA on T 6.

The three- and four-form field strengths of the SO(4)–invariant two-form, B, and three-

form potentials, C1, C2, are

H(3) = dB − 2g C1 + 2g C2 , H1
(4) = dC1 , H2

(4) = dC2 . (2.8)

These expressions follow from the generic expressions given in (2.8), (2.9) of [24] evaluated

on equation (2.5) above. These field strengths are subject to the Bianchi identities

dH(3) = −2g H1
(4) + 2g H2

(4) , dH1
(4) ≡ 0 , dH2

(4) ≡ 0 . (2.9)

These in turn correspond to the SO(4)–invariant truncation of the generic, N = 8 SL(7)–

covariant Bianchi identities given in (2.13) of [24].
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Not all of the fields in the SO(4)–invariant, restricted tensor hierarchy (2.4) carry

independent degrees of freedom: the field strengths of the form potentials are subject to

duality relations, see [26, 24] for a generic discussion. Particularising the SL(7)-covariant

duality equations (2.17), (2.18) of [24] to the present case, we find the following duality

relations obeyed by the SO(4)–invariant field strengths:

H(3) = ∗
(
dφ− e2φρ dρ− dϕ+ e2ϕχdχ

)
,

H1
(4) =

[
g eϕ

(
1 + e2ϕχ2

)(
4− 4 eφ+3ϕρχ3 + eϕ−φ

(
1− 3e2ϕχ2

)(
1 + e2φρ2

))
+meφ+6ϕρχ2

]
vol4 ,

H2
(4) =

[
g
(
1 + e2ϕχ2

)(
3eϕ − 3 eφ+4ϕρχ3 + 6eφ

(
1 + e2ϕχ2

)
− 4eφ

(
1 + e2ϕχ2

)2)
+meφ+6ϕχ3

]
vol4 . (2.10)

The Bianchi identities (2.9), combined with the duality relations (2.10), reproduce the

scalar equations of motion that follow from the Lagrangian (2.6), (2.7).

Even though it does not play a critical role in the IIA uplift, it is nevertheless useful

to consider the SL(7)–singlet four-form field strength whose duality relation was given in

(2.25) of [24]. In the SO(4)–invariant case at hand, this duality relation reads

H̃(4) = eφ+6ϕ
[
g χ2

(
3ρ+ 4χ

)
−m

]
vol4 . (2.11)

Using (2.10), (2.11), the scalar potential (2.7) can be checked to be related to the four-form

field strengths H1
(4), H

2
(4) and H̃(4) through

g (3H1
(4) + 4H2

(4)) +mH̃(4) = −2V vol4 . (2.12)

This is the SO(4)–invariant counterpart of the full N = 8 expressions (2.28), (2.29) of [24].

At any of the critical points of the scalar potential (2.7), that were summarised in table 1

above, these four-form field strengths turn out to obey

g (3H1
(4)|0 + 4H2

(4)|0) + 7mH̃(4)|0 = 0 , H1
(4)|0 = H2

(4)|0 , (2.13)

where |0 denote evaluation at a critical point.

We conclude by recovering two interesting sectors of D = 4 N = 8 ISO(7) supergravity

from the SO(4)–invariant sector. Firstly, according to the branching rule (2.1), the SO(3)′×
SO(4)′–invariant sector is contained in the SO(4) sector. This is recovered by setting the

pseudoscalars to zero,

χ = ρ = 0 , (2.14)

while retaining all other fields in the duality hierarchy (2.4). The SO(3)′×SO(4)′–invariant

Lagrangian, tensor field strengths, Bianchi identities and duality relations follow by letting

χ = ρ = 0 in the expressions above. Secondly, as discussed in [24], the G2–invariant

sector can be also recovered from the SO(4)–sector. This is apparent from the branching
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(2.2). The G2–invariant sector is recovered from the SO(4)–invariant sector through the

identifications

ϕ = φ , χ = ρ , B = 0 , C1 = C2 ≡ C , (2.15)

along with H(3) = 0 and H1
(4) = H2

(4) ≡ H(4). These identifications bring the Lagrangian

and duality relations to their G2–invariant counterparts, given in section 4 of [24].

3 Truncation from type IIA supergravity

We are now ready to give the complete, non-linear embedding of the dynamical SO(4)–

invariant sector of D = 4 N = 8 ISO(7) supergravity into massive type IIA. As discussed

in [3], the embedding of the full N = 8 theory is naturally expressed, at the level of the

IIA metric, dilaton and form potentials, in terms of the restricted, SL(7)-duality hierarchy

introduced in [24]. Accordingly, the complete IIA embedding of the SO(4)–invariant sector

is naturally written in terms of the tensor hierarchy discussed in section 2.

3.1 Consistent embedding formulae

The SO(4)–invariant consistent embedding formulae can be obtained by particularising

the N = 8 formulae given in (3.12), (3.13) of [3] (see also [2]) to the case at hand. It is

a matter of simple algebra to find the embedding of the two- and three-form potentials

of the D = 4 tensor hierarchy (2.4) into their D = 10 counterparts, using their N = 8

embedding (2.5). In contrast, as is usually the case, the embedding of the D = 4 scalars

entails a lengthy computation. Here, we give the final result, referring to appendix A for

further details on the relevant geometric structures that arise in the calculation.

In order to express the result, it is convenient to introduce constrained coordinates µ̃i,

i = 1, 2, 3, on the two-sphere S2,

δij µ̃
iµ̃j = 1 , (3.1)

and right-invariant one-forms1 ρi, i = 1, 2, 3, on the three-sphere S3. These are subject to

the Maurer-Cartan equations

dρi = −1
2ε
i
jk ρ

j ∧ ρk . (3.2)

It is also convenient to introduce the following combinations of D = 4 scalars [24]

X = 1 + e2ϕχ2 , Y = 1 + e2φρ2 , Z = e2ϕχ
(
eφρ− eϕχ

)
, (3.3)

and the following functions of D = 4 scalars and an angle α on the internal S6,

∆1 = eφ sin2 α+ eϕ cos2 α ,

∆2 = eϕX sin2 α+ e2ϕ−φY cos2 α ,

∆3 = X∆1∆2 − Z2 sin2 α cos2 α . (3.4)

1The right-invariant one-forms ρi on S3 shouldn’t be confused with the D = 4 pseudoscalar ρ.
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Using these definitions, the complete nonlinear embedding of the SO(4)–invariant field

content (2.4) of ISO(7) supergravity into type IIA reads,

dŝ2
10 = e

1
8
ϕX1/4∆

1/8
1 ∆

1/4
3

[
ds2

4

+g−2X∆1∆−1
3 cos2 α δijDµ̃

iDµ̃j + g−2e−ϕX−1dα2 + g−2X−1∆−1
1 sin2 αds̃2(S3)

]
,

eφ̂ = e
11
4
ϕX−1/2∆

3/4
1 ∆

−1/2
3 ,

Â(3) =C1 cos2 α+ C2 sin2 α− g−1 sinα cosαB ∧ dα

+1
2 g
−3 χ sinα cosαdα ∧ εijk µ̃iDµ̃j ∧ ρk

−1
4 g
−3 eϕχX∆−1

3

(
X∆1 + Z cos2 α

)
sin2 α cos2 α εijkDµ̃

i ∧Dµ̃j ∧ ρk

+1
4 g
−3 eϕχ∆−1

1 sin2 α cos2 α µ̃iDµ̃j ∧ ρi ∧ ρj

+ 1
48 g

−3X−1∆−2
1

(
eφρX∆1 + eϕχZ cos2 α

)
sin4 α εijk ρ

i ∧ ρj ∧ ρk ,

B̂(2) =−1
2 g
−2 e2ϕχX−1 sinαdα ∧ µ̃i ρi

−1
2 g
−2 e2ϕ+φ∆−1

3

(
ρX∆1 − χZ sin2 α

)
cos3 α εijk µ̃

iDµ̃j ∧Dµ̃k

+1
2 g
−2 e2ϕ+φχX−1∆−1

1 sin2 α cosαDµ̃i ∧ ρi

+1
8 g
−2 e2ϕχX−2∆−2

1

(
eϕX∆1 − eφZ sin2 α

)
sin2 α cosα εijk µ̃

iρj ∧ ρk ,

Â(1) =−1
2 g
−1 e−2ϕZ∆−1

1 sin2 α cosα µ̃i ρ
i , (3.5)

where we use the ten-dimensional Einstein frame conventions of appendix A of [3]. Indices

i, j are raised and lowered with δij , and ds̃2(S3) is the round metric on the S3 on which the

ρi are defined. We have also introduced the following covariant derivative and one-form

Ai,

Dµ̃i = dµ̃i + εijkAjµ̃k , with Ai = −1
2ZX

−1∆−1
1 sin2 αρi . (3.6)

These embedding formulae depend on the (non-vanishing) D = 4 electric gauge coupling

g, but not on the magnetic coupling m. Thus, they simultaneously describe the embedding

of the dynamical SO(4)–invariant sector of the purely electric, m = 0, and dyonic, m 6= 0,

ISO(7) gauging of D = 4 N = 8 supergravity into massless and massive, respectively, type

IIA supergravity.

The consistent embedding formulae (3.5) are valid in full generality for D = 4 dynam-

ical fields. However, being expressed in terms of the tensor hierarchy (2.4), they contain

redundant degrees of freedom. As discussed in general in [3], these redundancies can be

eliminated by expressing the consistent embedding in terms of the IIA field strengths and

using the D = 4 duality relations. In the case at hand, the only contributions from the

D = 4 form field strengths (2.8) happen to occur in the IIA four-form F̂(4),

F̂(4) = H1
(4) cos2 α+H2

(4) sin2 α+ g−1 sinα cosαdα ∧H(3) + · · · (3.7)
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where the dots stand for D = 4 scalar and derivative-of-scalar contributions without Hodge

dualisations. Equation (3.7) follows from (3.5) after using the D = 4 definitions (2.8). It

thus provides a ten-dimensional cross-check on the four-dimensional calculation of section

2. More importantly, equation (3.7) now expresses the consistent embedding in terms of

the independent metric and scalar degrees of freedom contained in the D = 4 Lagrangian

(2.6), (2.7), when the duality relations (2.10) are employed. A simpler example will be

presented in section 4.2.

A long calculation allows us to compute the scalar contributions to the IIA field

strengths. For simplicity, we present the result for constant D = 4 scalars2

F̂(4) =U vol4

+1
4

[
mg−4 e4ϕ+φχX−1∆−1

3

[
ρX∆1 − χZ sin2 α

]
cos2 α− 2g−3 χ

+2g−3 e−φ∆−1
1 ∆−2

3 sin2 α cos2 α

×
((
eφX − eϕY

)
eϕX∆1 +

(
eφ − eϕ

)
eφX∆2 − eφZ2

(
cos2 α− sin2 α

))
×
(
eφZ

[
ρX∆1 − χZ sin2 α

]
cos2 α+ eϕχX∆1

[
X∆1 + Z cos2 α

])
−g−3 eφZ∆−1

1 ∆−1
3 sin2 α cos2 α

×
(

2
[
(eφ − eϕ)ρX − χZ

]
cos2 α− 3

[
ρX∆1 − χZ sin2 α

])
+2g−3 eϕχX∆−1

3

×
([
X∆1 − Z cos2 α

]
−
[
2X∆1 − 3Z sin2 α

]
cos2 α−

(
eφ − eϕ

)
X sin2 α cos2 α

)]
× sinα cosαdα ∧ εijkDµ̃i ∧Dµ̃j ∧ ρk

−1
8 χe

ϕ ∆−1
1 ∆−1

3

[
mg−4 e3ϕ+φX−2∆−1

1

(
χeφ∆3 sin2 α

+
(
eϕX∆1 − eφZ sin2 α

)(
ρX∆1 − χZ sin2 α

)
cos2 α

)
−2g−3

(
∆3 +

(
X∆1 + Z cos2 α

)(
X∆1 + Z sin2 α

))]
× sin2 α cos2 αDµ̃i ∧Dµ̃j ∧ ρi ∧ ρj

+1
4 X

−1∆−1
1

[
mg−4 e4ϕ+φχ2X−1 sin2 α

+2g−3 eϕZ∆−2
1 ∆−1

3

(
eϕχX∆1

[
X∆1 + Z cos2 α

]
+eφZ

[
ρX∆1 − χZ sin2 α

]
cos2 α

)
sin2 α cos2 α

−g−3 χ∆−2
1

(
2 ∆2

1

[
X∆1 + Z sin2 α

]
− 2 eϕ

[
eϕX∆1 − eφZ sin2 α

]
cos2 α

+eϕ∆1

[
2X∆1 + Z cos2 α

]
sin2 α

)]
× sinα cosαdα ∧ µ̃iDµ̃j ∧ ρi ∧ ρj

− 1
48 X

−2∆−2
1

[
mg−4 e4ϕχ2X−1

[
eϕX∆1 − eφZ sin2 α

]
2The complete, dynamical IIA field strengths contain the contributions in (3.7), (3.8), plus omitted

contributions from dϕ, dφ, dχ, dρ with no Hodge dualisations.
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−g−3 ∆−1
1

(
X∆1

[
2eφρX∆1 − 3eϕχZ sin2 α

]
+2eϕX

[
eφρX∆1 + eϕχZ cos2 α

]
−2χZ∆1

[
3X∆1 + 2Z sin2 α

]
+ eφχZ2 sin4 α

)]
× sin3 α cosαdα ∧ εijk ρi ∧ ρj ∧ ρk ,

Ĥ(3) = 1
2 g
−2 e2ϕ∆−2

3

[
2
((
eφX − eϕY

)
eϕX∆1 +

(
eφ − eϕ

)
eφX∆2

−eφZ2
(

cos2 α− sin2 α
))(

ρX∆1 − χZ sin2 α
)

cos2 α

−eφ∆3

(
2
[(
eφ − eϕ

)
ρX − χZ

]
cos2 α

−3
(
ρX∆1 − χZ sin2 α

))]
sinα cos2 αdα ∧ εijk µ̃iDµ̃j ∧Dµ̃k

−1
2 g
−2 e2ϕX−1∆−2

1 ∆−1
3

[
2eϕ+φZ

(
ρX∆1 − χZ sin2 α

)
cos2 α

−χ∆3 e
ϕ
(
∆1 + 2eφ

)]
sinα cos2 αdα ∧Dµ̃i ∧ ρi

+1
8 g
−2X−2∆−2

1 ∆−1
3

[
e3ϕχX∆1∆3 + e2ϕ+φ

(
2X∆1 + Z sin2 α

)(
χ∆3

−Z
(
ρX∆1 − χZ sin2 α

)
cos2 α

)]
sin2 α cosα εijkDµ̃

i ∧ ρj ∧ ρk

+1
8 g
−2 e2ϕχX−2∆−2

1

[
2 e2ϕX cos2 α− 2 ∆1

(
X∆1 + Z sin2 α

)
−
(
eϕX∆1 − eφZ sin2 α

)
sin2 α

]
sinαdα ∧ εijk µ̃iρj ∧ ρk ,

F̂(2) = 1
2 mg

−2 e2ϕ+φ∆−1
3

(
χZ sin2 α− ρX∆1

)
cos3 α εijk µ̃

iDµ̃j ∧Dµ̃k

+1
2

[
mg−2 e2ϕ+φχX−1 − g−1 e−2ϕZ

]
∆−1

1 sin2 α cosαDµ̃i ∧ ρi

−1
2

[
mg−2 e2ϕχX−1 + g−1 e−ϕZ∆−2

1

(
2 cos2 α− e−ϕ sin2 α∆1

)]
sinαdα ∧ µ̃i ρi

+1
8 X

−1∆−2
1

[
mg−2 e2ϕχX−1

(
eϕX∆1 − eφZ sin2 α

)
+ 2g−1 e−2ϕZ

(
X∆1 + Z sin2 α

)]
× sin2 α cosα εijk µ̃

iρj ∧ ρk , (3.8)

together with F̂(0) = m [2]. In agreement with the discussions in [3, 7], the field strengths

(3.8) now do depend on the magnetic gauge coupling m of the D = 4 supergravity, unlike

the gauge potentials (3.5). By the consistency of the truncation, the metric and dilaton

in (3.5), together with the constant-scalar field strengths (3.8), solve the field equations

of massive type IIA supergravity at any critical point of the D = 4 scalar potential (2.7).

We will make this explicit for the N = 3 critical point in section 5.

The Freund–Rubin term U vol4 in F̂(4) follows from the general SL(7)–covariant four-

form expression given in [3]. It can be written in terms of the SO(4)–invariant four-form
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field strengths H1
(4) and H2

(4) as

U vol4 = H1
(4) cos2 α+H2

(4) sin2 α (3.9)

or, using the dualisation equations (2.10), as

U =
[
g eϕ

(
1 + e2ϕχ2

)(
4− 4 eφ+3ϕρχ3 + eϕ−φ

(
1− 3e2ϕχ2

)(
1 + e2φρ2

))
+meφ+6ϕρχ2

]
cos2 α

+
[
g
(
1 + e2ϕχ2

)(
3eϕ − 3 eφ+4ϕρχ3 + 6eφ

(
1 + e2ϕχ2

)
− 4eφ

(
1 + e2ϕχ2

)2)
+meφ+6ϕχ3

]
sin2 α , (3.10)

in terms of the D = 4 scalars. Note that, while the IIA field strengths (3.8) are evaluated

for constant scalars, the Freund–Rubin term (3.10) is valid beyond that assumption: it

takes on the same form also for dynamical scalars. Some calculation reveals that U is

related to the D = 4 scalar potential (2.7) and its derivatives via

g U = −1
3 V + 1

3

(
∂φV −ρ ∂ρV

)
cos2 α+ 1

12

(
∂ϕV −2∂φV −χ∂χV +2ρ ∂ρV

)
sin2 α . (3.11)

At the critical points of the potential, recorded in table 1, this expression reduces to

g U0 = −1
3 V0 , (3.12)

in agreement with the general N = 8 discussion of [3]. See respectively [7] and [29, 30] for

related discussions in the massive IIA on S6 and D = 11 on S7 contexts.

3.2 Local and global structure

For arbitrary values of the D = 4 scalars, the six-dimensional internal local geometry in

(3.5) can be regarded as the warped product of an interval I, on which α takes values, and

a family of five-dimensional spaces parametrised by α. At fixed α, the five-dimensional

space corresponds to an S2 bundle over S3, with connection one-forms Ai given in (3.6).

All such bundles are trivial. In the present case, this can be seen by the fact that, at fixed

α, the curvature of the connection Ai is identically zero by the Maurer-Cartan equations

(3.2). This local characterisation is useful to discuss the global extension of the geometry,

to which we now turn. It is not the only possible local description, though. A different

local characterisation will be given below.

Globally, the internal geometry extends smoothly into S6. This is expected from the

fact that the D = 4 theory (2.6), (2.7) arises upon consistent Kaluza–Klein truncation of

massive type IIA on S6 via (3.5), and the Kaluza–Klein deformations are not supposed to

change the internal topology. That the topology of the compactification space is indeed

S6 is most easily seen by continuously deforming the geometry into the G2–invariant locus

(2.15). On this locus, the internal metric in (3.5) reduces to the usual, round Einstein

metric (A.2) on S6. The local line element (A.2) is adapted to the topological construction

of S6 as the ‘join’ of S2 and S3, provided the S6 angle α is restricted to the interval

α ∈ I ≡ [0, π2 ] . (3.13)
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On the G2–invariant locus and at α = 0, the S2 remains finite and the S3 collapses; at the

other endpoint, α = π
2 , the opposite happens.

The expression (3.5) makes it straightforward to continuously deform the internal ge-

ometry to the round metric on S6, since it is given as a function of the D = 4 scalar

manifold (2.3). However, once the scalars are fixed to their specific values at some critical

point of the potential (2.7), as e.g. in the explicit N = 3 solution (5.1) below, tracking

down the deformation into the round S6 geometry is no longer obvious. In such cases, it

is more useful to directly characterise the internal S6 by verifying that it still corresponds

to the join of S2 and S3. Namely, that the shrinking patterns of S2 and S3 at each end-

point of the interval I remain valid away from the G2–invariant locus. To see this, we

use the definitions (3.4) to compute the behaviour of the relevant metric functions at both

endpoints of I. At the lower end,

eϕX2∆1∆−1
3 cos2 α −−−→

α→0
eφ−ϕXY −1 − e2φ−2ϕ(X2 − e−2ϕZ2)Y −2 α2 + O(α4) ,

eϕ∆−1
1 sin2 α −−−→

α→0
α2 +O(α4) . (3.14)

Thus, S2 remains finite and S3 shrinks to zero size for all values of the D = 4 scalars. At

the upper end,

eϕX2∆1∆−1
3 cos2 α −−−→

α→π
2

(π2 − α)2 +O((π2 − α)4) ,

eϕ∆−1
1 sin2 α −−−→

α→π
2

e−φ+ϕ + e−2φ+2ϕ(π2 − α)2 +O((π2 − α)4) , (3.15)

and the opposite happens: S2 shrinks and S3 remains finite for all D = 4 scalar values.

An alternate local characterisation of the internal geometry in (3.5) may be given as

follows. The local internal geometry may also be regarded as an S2 bundle over the four-

dimensional local geometry M4 ≡ I × S3, where I is the interval (3.13) parametrised

by α. This local construction is a generalisation of the twistor fibration over a four-

dimensional Riemannian space M4. In the usual twistor construction, the metric ds2(M4)

on M4 is taken to be Einstein with (anti)self-dual Weyl tensor. The local metric on the

six-dimensional twistor bundle is

ds2
6 = 1

4δijDµ̃
iDµ̃j + 1

2ds
2(M4) , (3.16)

see e.g. [31]. Here, µ̃i parametrise an S2 as in (3.1), and the covariant derivatives Dµ̃i are

defined as in the left most equation in (3.6), in terms of a M4–valued connection Ai. Being

four-dimensional and Einstein, M4 is automatically quaternionic-Kähler. The curvature

of the connection,

F i = dAi + 1
2ε
i
jkAj ∧ Ak , (3.17)

is proportional to the quaternionic-Kähler forms J i on M4. The self-duality or antiself-

duality of the Weyl tensor on M4 devolves in the antiselfduality or self-duality of F i with

respect to the metric ds2(M4). For example, the twistor bundle on M4 = S4 coincides

with the three-dimensional complex projective space, CP3. Taking ds2(M4) to be the

usual round metric on S4,

ds2(S4) = dα2 + sin2 αds2(S3) (3.18)
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(with α here ranging in 0 ≤ α ≤ π) and

Ai = 1
2(1− cosα) ρi, (3.19)

where the ρi are the right-invariant Maurer-Carten one-forms on S3, subject to (3.2), the

twistor bundle metric (3.16) becomes the homogeneous nearly-Kähler metric on CP3.

The local internal metric in (3.5) is a generalisation of the twistor construction. In our

case, M4 ≡ I × S3 is the upper S4 hemisphere, given the range (3.13) of α. The metric

ds2
4(M4) induced on it is not selfdual Einstein for any values of the D = 4 scalars. On

the G2–invariant locus (2.15) the S2 fibration trivialises, Ai = 0, and the local geometry

becomes locally a warped product of S2 and I × S3. Away from the G2–invariant locus,

the S2 is warped (unlike in (3.16)), and non-trivially fibered through (3.6) over I × S3.

The curvature (3.17) of the connection Ai is

F i = −eϕZX−1∆−2
1 sinα cosαdα ∧ ρi + 1

8ZX
−2∆−2

1 (2X∆1 + Z sin2 α) sin2 α εijkρ
j ∧ ρk ,

(3.20)

and its Hodge dual with respect to the metric induced on I × S3,

∗F i = 1
2e
− 1

2
ϕZX−2∆

− 3
2

1 (2X∆1 + Z sin2 α) sinαdα ∧ ρi

−1
4e

3
2
ϕZX−1∆

− 5
2

1 sin2 α cosα εijkρ
j ∧ ρk . (3.21)

The non-trivial connection Ai is neither selfdual nor antiself-dual for any values of the

D = 4 scalars, as nowhere on the scalar manifold (2.3) do (3.20), (3.21) obey ∗F i = ±F i.
Massive type IIA supergravity admits a class of N = 1 direct product solutions AdS4×

M6 where M6 is nearly-Kähler [9, 21] or half-flat [13, 15, 16]. For example, M6 can be

taken to be the round S6 equipped with its homogeneous nearly-Kähler structure, see

appendix A for a review in the present context. On topologies different from S6, a natural

way to engineer nearly-Kähler geometries or half-flat geometries of the required type is

via the usual twistor fibration [15]. For example, M6 can be taken to be CP3 with metric

(3.16). Our local geometry (3.5) restricted to the G2–invariant locus (2.15) reduces to

the round, homogeneous nearly-Kähler structure on S6. Away from the G2 locus, as in

the N = 3 solution of section 5, the geometry can be locally described by the generalised

twistor fibration discussed above.

On the G2–invariant locus (2.15), the symmetry of the configuration (3.5) is enhanced

to a homogeneously acting G2. See section 4.1 for further details. Away from the G2

locus, the isometry of the internal geometry is the SO(4) subgroup of SO(7) defined in

either (2.1) or (2.2). The group SO(4) acts by isometries with cohomogeneity one, and is

also preserved by the supergravity forms. The SO(3)d subgroup of SO(4) rotates the S2

fibers, and SO(3)R acts on the S3 base. The supersymmetry of the N = 3 solution will be

discussed in section 6.

Some generalisations can be envisaged. When the D = 4 scalars are restricted to the

G2–invariant locus (2.15), the type IIA solution (3.5) depends only on the homogeneous

nearly-Kähler structure on S6. In this case, the S6 can be replaced with any other nearly-

Kähler manifold. This situation was discussed in [7]. Away from the G2 locus, the solution
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can be also generalised. Now, the generalisation entails replacing S3 with the cyclic lens

space S3/Zp, with the identification acting on the Hopf fiber. While S3/Zp is a smooth

manifold, the total six-dimensional geometry corresponding to this generalisation displays

orbifold singularities.

4 Further truncations

It is useful to obtain particular cases of the uplifting formulae derived above. Here, we will

discuss the truncations to the sectors of the D = 4 supergravity with G2 and SO(3)′×SO(4)′

symmetry.

4.1 Truncation to the G2 sector

The sector of D = 4 ISO(7) supergravity that retains singlets under the G2 subgroup of

SO(7) was analysed in detail in [24], and its explicit ten-dimensional embedding worked out

in [3]. Its consistent IIA embedding was recovered from that of the SU(3)–invariant sector

in [7]. Here, we will recover the embedding of the G2-sector from the SO(4)–invariant

consistent truncation formulae of section 3.1.

The D = 4 G2–invariant sector is recovered from the SO(4) sector by imposing the

identifications (2.15). Bringing these relations to the consistent embedding formulae (3.5),

we find that the connection (3.6) trivialises, Ai = 0, and that the scalar dependence of the

internal metric factorises in front of the round Einstein metric ds2(S6) on S6 foliated as in

(A.2). The internal S6 dependence drops out from the dilaton. Finally, all the dependence

of the IIA potentials on the internal S6 combines into the homogeneous nearly-Kähler

structure J , Ω on S6, through the expressions (A.14). More concretely, (3.5) reduces to

dŝ2
10 = e

3
4
ϕ
(
1 + e2ϕχ2

) 3
4ds2

4 + g−2e−
1
4
ϕ
(
1 + e2ϕχ2

)− 1
4ds2(S6) ,

eφ̂ = e
5
2
ϕ
(
1 + e2ϕχ2

)− 3
2 ,

Â(3) = C + g−3χ ImΩ , B̂(2) = g−2 e2ϕχ
(
1 + e2ϕχ2

)−1 J , Â(1) = 0 , (4.1)

in agreement with the formulae for the consistent truncation to the G2–invariant sector

given in (4.3) of [3]. Similarly, the constant-scalar field strengths (3.8) reduce to the

corresponding contributions in (4.4) of [3].

4.2 Dilatons

According to (2.14), the SO(3)′ × SO(4)′ –invariant sector of N = 8 ISO(7) supergravity

retains only the dilatons φ, ϕ, along with the two- and three-forms in the tensor hierarchy

(2.4). From (3.5), (2.14), it is apparent that the field strengths in this subsector will

not contain terms in dϕ or dφ, prior to imposing the dualisation (2.10). In other words,

equation (3.7) for F̂(4) is exact (the dots can be disregarded) and Ĥ(3) and F̂(2) are zero.

Using the dualisation conditions (2.10), the full non-linear embedding of the D = 4 metric

plus dilaton sector into massive type IIA reads, at the level of the field strengths,

dŝ2
10 = e

1
8
ϕ∆

1/8
1 ∆

1/4
3

[
ds2

4
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+g−2∆1∆−1
3 cos2 αds̃2(S2) + g−2e−ϕdα2 + g−2∆−1

1 sin2 αds̃2(S3)
]
,

eφ̂ = e
11
4
ϕ∆

3/4
1 ∆

−1/2
3 ,

F̂(4) =
[
g
(
4 eϕ + e2ϕ−φ) cos2 α+

(
3eϕ + 2eφ

)
sin2 α

]
vol4 + g−1 sinα cosαdα ∧ ∗

(
dφ− dϕ

)
Ĥ(3) = F̂(2) = 0 , (4.2)

with ∆1, ∆3 given by (3.4) with χ = ρ = 0. In this sector, the fibration of S2 over I × S3

also trivialises, Ai = 0. Accordingly, the symmetry preserved by the configuration (4.2) is

the SO(3)′×SO(4)′ subgroup of SO(7) defined in (2.1), with SO(3)′ and SO(4)′ respectively

acting on the S2 and the S3. By using the D = 4 duality hierarchy (2.10), the consistent

embedding (4.2) becomes expressed in terms of independent four-dimensional degrees of

freedom only: the dilatons and their derivatives, and the metric, explicitly and through

the Hodge dual.

5 N = 3 SO(4)–invariant AdS4 solution of massive type IIA

By the consistency of the embedding, the ten-dimensional metric and dilaton in (3.5), along

with the field strengths that follow from the potentials given in that equation, satisfy the

equations of motion of massive type IIA supergravity provided the equations of motion

that follow from the D = 4 Lagrangian (2.6), (2.7) are imposed. In particular, (3.5),

(3.8) evaluated on the critical points of the scalar potential (2.7) summarised in table 1

give rise to AdS4 solutions of massive type IIA. The N = 1 and N = 0 critical points

with G2 symmetry uplift to the solutions respectively found in [9] and [10]. The non-

supersymmetric SO(7)–invariant critical point gives rise to a solution given in [1]. See [7]

for these solutions in our conventions. In all these solutions with at least G2 symmetry, the

fibration trivialises, Ai = 0, and the metric becomes the round, SO(7)–symmetric Einstein

metric on S6. In the G2–invariant solutions, the symmetry is reduced by the supergravity

forms, which take values along the homogeneous nearly-Kähler structure on S6.

Here we are interested in the uplift of the N = 3 critical point of ISO(7) supergravity

[19]. Bringing the vacuum expectation values of the D = 4 scalars recorded in table 1 to

the formulae (3.5), (3.8), and rescaling the external D = 4 metric and the Freund–Rubin

term with the cosmological constant recorded in the table so that AdS4 is unit radius, as

in [7], we find the massive type IIA uplift of the N = 3 solution. In Einstein frame it

reads,

dŝ2
10 =L2

(
3 + cos 2α

)1/8(
3 cos4 α+ 3 cos2 α+ 2

)1/4[
ds2(AdS4)

+
2
(
3 + cos 2α

)
cos2 α

3 cos4 α+ 3 cos2 α+ 2
δijDµ̃

iDµ̃j + 2 dα2 +
8 sin2 α

3 + cos 2α
ds̃2(S3)

]
,

eφ̂ = eφ0
(
3 + cos 2α

)3/4(
3 cos4 α+ 3 cos2 α+ 2

)1/2 ,
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L−3e
1
4
φ0 F̂(4) = 3

√
2 vol(AdS4)

−
4
√

6
(
2 cos4 α+ 3 cos2 α+ 3

)
sinα cos3 α(

3 + cos 2α
)(

3 cos4 α+ 3 cos2 α+ 2
) dα ∧ εijkDµ̃i ∧Dµ̃j ∧ ρk

+

√
6
(
5 + 3 cos 2α

)
sin2 α cos2 α

2
(
3 cos4 α+ 3 cos2 α+ 2

) Dµ̃i ∧Dµ̃j ∧ ρi ∧ ρj

−4
√

6 sin5 α cosα(
3 + cos 2α

)2 dα ∧ µ̃iDµ̃j ∧ ρi ∧ ρj

−
2
√

2
(
5 + 3 cos 2α

)
sin3 α cosα

√
3
(
3 + cos 2α

)3 dα ∧ εijk ρi ∧ ρj ∧ ρk ,

L−2e−
1
2
φ0 Ĥ(3) =−

2
√

3
(
3 cos6 α+ 8 cos4 α+ 11 cos2 α+ 2

)(
3 cos4 α+ 3 cos2 α+ 2

)2 sinα cos2 αdα ∧ εijk µ̃iDµ̃j ∧Dµ̃k

+
8
√

3
(

cos4 α+ cos2 α+ 2
)

sinα cos2 α(
3 + cos 2α

)(
3 cos4 α+ 3 cos2 α+ 2

) dα ∧Dµ̃i ∧ ρi
+

√
3
(
3 + cos 2α

)
sin2 α cosα

2
(
3 cos4 α+ 3 cos2 α+ 2

) εijkDµ̃
i ∧ ρj ∧ ρk

− 2
√

3 sin5 α(
3 + cos 2α

)2 dα ∧ εijk µ̃iρj ∧ ρk ,
L−1e

3
4
φ0 F̂(2) =

√
2
(
5 + 3 cos 2α

)
cos3 α

4
(
3 cos4 α+ 3 cos2 α+ 2

) εijk µ̃iDµ̃j ∧Dµ̃k +
2
√

2 sin2 α cosα

3 + cos 2α
Dµ̃i ∧ ρi

− 4
√

2 sin3 α(
3 + cos 2α

)2 dα ∧ µ̃i ρi +
3 sin4 α cosα
√

2
(
3 + cos 2α

)2 εijk µ̃iρj ∧ ρk ,
L e

5
4
φ0 F̂(0) =

√
3

2
√

2
, (5.1)

in the IIA conventions of appendix A of [3]. The covariant derivative of µ̃i and the corre-

sponding connection Ai are, from (3.6),

Dµ̃i = dµ̃i + εijkAjµ̃k , with Ai =
sin2 α

3 + cos 2α
ρi , (5.2)

and we have defined L2 ≡ 2−
31
12 3

3
8 g−

25
12 m

1
12 and eφ0 ≡ 2−

1
6 3

1
4 g

5
6m−

5
6 . A set of gauge

potentials for the (internal) field strengths in (5.1) follows from (3.5)3:

3This set of gauge potentials and the metric in (5.1) are related to the expressions given in [8] by

identifying their S6 angle ξPR with our α, ξPR = α, relating their S6 embedding coordinates µîPR, νiPR with

our µî, µi through µîPR = sinα µ̃î, ν1PR = cosα µ̃3, ν2PR = cosα µ̃2, ν3PR = − cosα µ̃1, letting 2
7
8

9
√
2
L2

PR = L2,

and rearranging significantly. The explicit expressions (E.11), (E.14) for the S3 embedding coordinates µ̃î
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L−3e
1
4
φ0 Â(3) =

2
√

2√
3

sinα cosαdα ∧ εijk µ̃iDµ̃j ∧ ρk

− 2
√

2 sin2 α cos2 α√
3
(
3 cos4 α+ 3 cos2 α+ 2

) εijkDµ̃i ∧Dµ̃j ∧ ρk
+

4
√

2 sin2 α cos2 α√
3
(
3 + cos 2α

) µ̃iDµ̃j ∧ ρi ∧ ρj

−
2
√

2
(
2 + cos 2α

)
sin4 α

3
√

3
(
3 + cos 2α

)2 εijk ρ
i ∧ ρj ∧ ρk ,

L−2e−
1
2
φ0 B̂(2) =− 2√

3
sinαdα ∧ µ̃i ρi +

(
5 + 3 cos 2α

)
cos3 α

√
3
(
3 cos4 α+ 3 cos2 α+ 2

) εijk µ̃iDµ̃j ∧Dµ̃k
+

4 sin2 α cosα√
3
(
3 + cos 2α

) Dµ̃i ∧ ρi +

(
7 + cos 2α

)
sin2 α cosα

√
3
(
3 + cos 2α

)2 εijk µ̃
iρj ∧ ρk ,

L−1e
3
4
φ0 Â(1) =

√
2

sin2 α cosα

3 + cos 2α
µ̃i ρ

i . (5.3)

All the comments made in section 3 for the generic solution away from the G2-locus

apply to the specific N = 3 solution (5.1). The internal metric and supergravity forms

extend smoothly on S6. Locally, the solution can be regarded as a (trivial) S2 bundle

over S3 foliated by α or, alternatively, as the warped generalisation of the twistor fibration

discussed in section 3.2. The angle α has range (3.13), µ̃i parametrise S2 via (3.1) and

ρi are the right-invariant Maurer-Cartan one-forms on S3, subject to (3.2). The solution

displays a cohomogeneity-one isometry group SO(4) ≡ SO(3)d×SO(3)R, where SO(3)d and

SO(3)R respectively act on the S2 fibers and the S3 base. The solution can be generalised

by replacing S3 with the cyclic Lens space S3/Zp, a generalisation that introduces orbifold

singularities. The N = 3 supersymmetry of the solution is shown in the next section.

6 Supersymmetry of the N = 3 solution

The gravitini of the D = 4 N = 8 ISO(7) supergravity lie in the spinor representation of

SO(7). Under (2.1), this branches as4

8
SO(3)′×SO(3)L×SO(3)R−→ (2,2,1) + (2,1,2)

SO(3)d×SO(3)R−→ (1,1) + (3,1) + (2,2) . (6.1)

At the N = 1 G2–invariant AdS critical point, only the (1,1) gravitino remains massless,

while all others pick up masses [24]. The full symmetry of this solution within the D = 4

and the right-invariant forms ρi are also useful for this comparison. Note, however, that our expressions

for the N = 3 solution follow directly from the uplifting formulae (3.5) for the dynamical SO(4)–invariant

sector of N = 8 ISO(7) supergravity, which were not given in [8].
4More precisely, here and below we refer to the Spin groups, SU(2)′, SU(2)L, SU(3)R and SU(2)d.
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N = 8 supergravity is OSp(4|1)×G2. At theN = 3, SO(4)–invariant critical point, it is the

(3,1) gravitini that remain massless [24]. While the N = 3 critical point is invariant under

SO(4) ≡ SO(3)d×SO(3)R, the massless gravitini are only invariant under the second factor,

and transform as a triplet under the first factor. The symmetry of the N = 3 solution

within the N = 8 theory is thus OSp(4|3)×SO(3)R, with SO(3)d ⊂ OSp(4|3) identified as

the R-symmetry group.

These (super)symmetry groups are preserved by the ten-dimensional uplift, so the

above considerations should allow us to identify the G-structures carried by the family of

type IIA configurations (3.5). The R7 that furnishes the fundamental representation of the

semisimple, SO(7), part of the D = 4 gauge group is to be identified with the ambient space

of the uplifting S6. In other words, this SO(7) can be regarded as the generic structure

group of the ambient R7, with the internal supersymmetry parameters transforming in the

8. On the G2–invariant locus (2.15), the type IIA configuration (3.5) is N = 1. The G2–

invariant supersymmetry parameter corresponds, via (2.2), to the (1,1) singlet in (6.1).

The structure of R7 gets reduced to G2 (holonomy), which in turn descends into S6 as a

nearly-Kähler SU(3)-structure.

Away from the G2 locus, as in the solution (5.1), the IIA configuration (3.5) is N = 3.

The supersymmetry parameter transforms under SO(3)d × SO(3)R as the (3,1) in (6.1).

The ambient R7 is thus equipped with an SU(2)–structure, with SU(2) ≡ SO(3)R and

R-symmetry SO(3)d. Recall that an SU(2)–structure in seven dimensions is characterised

by a real one-form and a real two-form, transforming as triplets of the R-symmetry group,

see e.g. [32]. Denoting the R7 coordinates by xI , I = 1, . . . , 7, and splitting I = (i, î),

i = 1, 2, 3, î = 0, 1, 2, 3 as in appendix A, the one- and two-forms of our seven-dimensional

SO(3)R–structure can be identified as dxi and 1
2(J i)̂iĵ dx

î∧dxĵ , with (J i)̂iĵ defined in (A.5).

These indeed transform as triplets under the SO(3)d R-symmetry. The SU(2)-structure on

R7 descends on S6 as an identity structure. The latter is characterised by an SO(3)d triplet

of scalars, of one-forms, and of two-forms, that can be constructed as spinor bilinears.

Rather than characterising the identity structure, we will directly contruct the SO(3)d

triplet of Killing spinors, focusing on the N = 3 solution (5.1) for definiteness. In principle,

one would expect that the consistency of the uplift should determine the relevant Killing

spinors from combinations of those of the round S6. In practice, however, such formulae

have never been worked out (although see e.g. [33] for a discussion). It then turns out to

be more efficient, though still a rather demanding exercise, to construct the Killing spinors

by direct integration of the type IIA Killing spinor equations on the background (5.1).

Here we give the end result and sketch the main steps to derive it. Further details can be

found in appendices D and E.

Let ε̂ be the ten-dimensional Majorana supersymmetry parameter, let ζi±, i = 1, 2, 3,

be three of the chiral and antichiral Killing spinors of AdS4, and let χi be an SO(3)d triplet

of Dirac spinors on the internal six-dimensional geometry corresponding to the solution

(5.1). We take

ε̂ = ζi+ ⊗ χi + ζi− ⊗ χic , (6.2)

with the SO(3)d indices contracted, and raised and lowered with δij . The superscript c

denotes Majorana conjugation. The ten-dimensional spinor ε̂ given by (6.2) is manifestly
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Majorana, by the second relation in (D.3). We require that (6.2) annihilates the super-

symmetry variations of the type IIA fermions. Using the AdS4 Killing spinor equations

(D.3) obeyed by ζi±, this turns out to be equivalent to the following set of equations for χi

and χic, defined on the six-dimensional internal geometry:

e−Ãχic +

[
d /̃A+ 1

4e
φ̂
(
F̂(0) + /̂F (2)γ̂ + /̂G(4) − iĜ(0)

)]
χi = 0 , (6.3a)[

d/̂φ+ 1
2
/̂H (3)γ̂ + 1

4e
φ̂
(

5F̂(0) + 3 /̂F (2)γ̂ + /̂G(4) + iĜ(0)

)]
χi = 0 , (6.3b)[

∇M + 1
4
/̂HM γ̂ + 1

8e
Ã+φ̂

(
F̂(0) − /̂F (2)γ̂ + /̂G(4) + iĜ(0)

)
γM

]
χi = 0 . (6.3c)

Here,

e2Ã = e
1
2
φ0L2 (3 + cos 2α)1/2 , (6.4)

is the string frame, for convenience, warp factor of the solution (5.1), φ̂ the dilaton therein,

F̂(0), F̂(2), Ĥ(3), the IIA field strengths, Ĝ(4) the internal component of F̂(4) and Ĝ(0) ≡
3
√

2L3e−
1
4
φ0 e−4Ã. Also, γM are the six-dimensional gamma matrices, with M = 1, . . . , 6

tangent-space indices, γ̂ is the six-dimensional chirality matrix, /̂H (3) ≡ 1
3!ĤMNP γ

MNP ,

and /̂HM ≡ 1
2!ĤMNP γ

NP , etc., with γM1...Mn ≡ γ[M1 · · · γMn].

As argued above, the spinor χi must transform in the (3,1) of the SO(4) ≡ SO(3)d ×
SO(3)R symmetry group of the solution (5.1). As shown in appendix D, the most general

such spinor may be written as

χi = 1
2 e

Ã
2

[(
f1+

f1−

)
⊗ ηi1 +

(
f2+

f2−

)
⊗ ηi2 +

(
f3+

f3−

)
⊗ ηi3 +

(
f4+

f4−

)
⊗ ηi4

]
. (6.5)

The factor of 1
2 e

Ã
2 is chosen for convenience, f1±, etc., are functions of α, and ηi1, . . . , η

i
4 are

independent triplets of spinors on S2 × S3 built as tensor products of the Killing spinors

of S2 and S3. Specifically, let ψα, α = 1, 2, be a doublet of spinors of S2, constructed from

the S2 Killing spinors, and ψ̂α = (σ2)αβψ
βc for ψαc the Majorana conjugate of ψα. The

index α here labels the doublet of SO(3)′ in (2.1) which rotates S2. Let ξα, α = 1, 2, be

the two Killing spinors of S3 that transform as a doublet under the SO(3)L in (2.1) and

are singlets under SO(3)R. Then,

ηi1 ≡ (σ2σi)αβ ψ
α ⊗ ξβ , ηi2 ≡ (σ2σi)αβ ψ̂

α ⊗ ξβ ,

η3
i ≡ µ̃i(σ2)αβ ψ

α ⊗ ξβ , η4
i ≡ µ̃i(σ2)αβ ψ̂

α ⊗ ξβ , (6.6)

where σi are the Pauli matrices and µ̃i are defined in (3.1). The Pauli matrix σ2 appears

as the SO(3)d charge conjugation matrix.

Inserting χi given by (6.5), (6.6) and its Majorana conjugate χic into the Killing spinor

equations (6.3a)–(6.3c), an involved calculation produces a(n overdetermined) system of

algebraic relations among the functions f1±, etc., and a differential equation on the interval

(3.13) for a combination of them. The details are summarised in appendix D. Significant
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further massaging allows us to bring the solution of this set of algebraic and differential

equations into the form

f1+ = −if2− = cos
(
β
2

)
ei(Ψ+− 1

2
Θ) ,

f2+ = if1− = sin
(
β
2

)
e−i(Ψ−+ 1

2
Θ) ,

f3+ = if4− =

√
2 cosα√

cos2 α+ 1
cos
(
β
2

)
ei(

π
3

+Ψ+− 1
2

Θ) ,

f4+ = −if3− =

√
2 cosα√

cos2 α+ 1
sin
(
β
2

)
ei(

π
3
−Ψ−− 1

2
Θ) , (6.7)

up to an arbitrary overall normalisation. We have defined the following functions of α:

tan Θ ≡
√

2

3

1

cosα
√

cos2 α+ 1
,

cosβ ≡
√

2 sinα√
cos2 α+ 1

√
3 cos4 α+ 3 cos2 α+ 2

,

tan Ψ± ≡ ±
√

2

3

1

cosα
√

cos2 α+ 1
−

√
3 cos4 α+ 3 cos2 α+ 2 sinα√

3 cosα
√

cos2 α+ 1(
√

2 cosα−
√

cos2 α+ 1)
. (6.8)

The SO(3)d triplet of SO(3)R–invariant spinors χi given by (6.5) with (6.7), (6.8) solve

the Killing spinor equations (6.3a)–(6.3c) on the N = 3 solution (5.1) of massive type IIA

supergravity. As an additional check, we have also verified that the three independent N =

1 pure spinors that follow from (6.5) with (6.7), (6.8) solve the pure spinor supersymmetry

conditions for AdS4 solutions of massive IIA supergravity given in [14].

Equipped with the N = 3 Killing spinors, we can proceed to compute the spinor

bilinear forms and the torsion classes of the corresponding identity structure. Here we will

only give the scalar bilinears. We expect one SO(3)d triplet of scalar bilinears, based on

the fact that the six-dimensional identity structure is inherited from an SO(3)R–structure

on the ambient R7. Let us see how this scalar triplet arises from spinor bilinears. In

principle, two such real or purely imaginary scalar bilinears can be constructed out of χi,

namely, χi†χj and χi†γ̂χj . Both of these sit in principle in the 3×3→ 1+3+5 of SO(3)d.

Direct computation from (6.5), (6.7), (6.8) shows that

χi†γ̂χj = −ieÃ
√

2 cosα√
cos2 α+ 1

εijkµ̃k , χi†χj = eÃ δij . (6.9)

Thus, for both bilinears, the 5 components vanish identically. The first bilinear is the

triplet argued above, and the second one is a singlet which, however, is not independent

but is algebraically related to the former.

Equation (6.9) provides a further consistency check on our Killing spinors. It was

shown in [14] that, for N = 1 supersymmetric warped product solutions of massive IIA

supergravity containing AdS4, the N = 1 internal Killing spinor χ must satisfy χ†γ̂χ = 0

and χ†χ ∝ eÃ, where e2Ã is the string frame warp factor. It is straightforward to see from

(6.9) with i = j that each individual χi, i = 1, 2, 3, satisfies these N = 1 conditions.
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7 Outlook

In this paper we have studied anN = 3 solution of massive IIA supergravity first considered

in [8, 34]. We have described in detail the sector of ISO(7) supergravity with SO(4)

invariance, which includes this solution as a point in its moduli space. This has allowed

us to better understand its geometry. The solution consists of a fibration over an interval

I of a certain S2-bundle M5 over S3, with the S2 shrinking at one endpoint of the interval

and the S3 at the other, so that the full topology is that of an S6 (as expected for vacua

of the ISO(7) supergravity).

Moreover, we have been able to obtain the spinorial parameters χi, i = 1, 2, 3 under

which it is supersymmetric, thus confirming the expectation that it has N = 3 supersym-

metry. This expectation was based on the amount of supersymmetry of the vacuum in

the four-dimensional ISO(7) supergravity; but while uplift formulas are available for all

physical fields, they are not for the supersymmetry parameters, and thus so far a full proof

that the solution is N = 3 was lacking.

Our results open the way to several possible developments. First of all, the structure of

the spinorial parameters χi is not completely fixed by the SO(4) invariance. The solution

has cohomogeneity one: the SO(4) orbits are copies of the S2 bundle over S3, and thus

a priori the isometry group leaves several functions of the coordinate α on I that appear

in the χi undetermined. For the present solution these are fixed by the Killing spinor

equations, but it is easy to set up a more general Ansatz where both these functions and

those in the physical fields are allowed to vary, without breaking the SO(4) invariance and

in particular N = 3 supersymmetry (whose R-symmetry is one of the SO(3) factors in the

SO(4)).

Several arguments lead one to suspect the existence of more general N = 3 solutions in

massive IIA. On CP3, such solutions are predicted to exist by holography [35] and found

[36] in first approximation in a regime where the Romans mass F̂(0) is small. Varying F̂(0)

beyond this regime suggests the existence of a line of solutions. Since CP3 can be written

as a foliation of copies of T 1,1, it is plausible that such solutions might be related to the

ones we are considering here, and that thus there might be a line of deformations in this

case, too. A possible analogy is offered by N = 2 solutions: in that case, a line of solutions

exists [37] that connects the N = 6 massless solution on CP3 to an analogue of the solution

in [2] obtained by replacing CP2 with CP1 × CP1.
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A Geometric structures on S6

In this appendix we describe the relevant geometric structures on S6 that arise in the

consistent truncation discussed in the main text. Let µI , I = 1, . . . , 7, parametrise S6 as

the locus δIJµ
IµJ = 1 in R7, and let yM , M = 1, . . . , 6, be the S6 angles. It is convenient

to split the µI according to the SO(3)′ × SO(4)′ defined in (2.1) as µI = (µi, µî),

µi = cosα µ̃i , i = 1, 2, 3 , µî = − sinα µ̃î , î = 0, 1, 2, 3 , (A.1)

where α is one of the yM , and is taken to have range (3.13). In (A.1), µ̃i, µ̃î, respectively

parametrise an S2 and an S3 as δijµ̃
iµ̃j = 1 (see equation (3.1)) and similarly for µ̃î. For

convenience, the index î ranges from 0 to 3 as indicated. In terms of these, the round,

homogeneous Einstein metric on S6, (E.2) of [3], is

d̊s2
6 = g−2

(
cos2 αds̃2(S2) + dα2 + sin2 αds̃2(S3)

)
, (A.2)

This metric has of course SO(7) isometry, although only the SO(3)′ × SO(4)′ that rotates

the S2 and the S3 is manifest. The local line element (A.2) is adapted to the topological

description of S6 as the join of S2 and S3.

For our calculation, we need to write the Killing vectors of S6 adapted to the splitting

(A.1). For this purpose, it is useful to split the local index M on S6 as M = (α, a, â), where

a = 1, 2 and â = 1, 2, 3 are local indices on S2 and S3, respectively. With the normalisation

conventions of appendix E of [3], the non-vanshing components of the Killing vectors of

the round metric (A.2) are

Ka
ij = K̃a

ij , Kα
îi

= −µ̃iµ̃î , Ka
îi

= tanα µ̃â g̃
ab∂bµ̃i ,

K â
îi

= − cotα µ̃i g̃
âb̂∂b̂µ̃î , K â

îĵ
= K̃ â

îĵ
, (A.3)

where g̃ab and g̃âb̂ are the round inverse metrics on S2 and S3 and K̃a
ij , K̃

â
îĵ

their corre-

sponding Killing vectors. The derivatives of the Killing vectors with respect to the yM

angles on S6 are

Kij
αa = −4g−2 sinα cosα µ̃[i∂aµ̃

j] , Kij
ab = 4g−2 cos2 α∂aµ̃

[i∂bµ̃
j] ,

K îi
αa = 2g−2 cos2 α µ̃î ∂aµ̃

i , K îi
αâ = 2g−2 sin2 α µ̃i ∂âµ̃

î ,

K îi
aâ = −2g−2 sinα cosα∂aµ̃

i ∂âµ̃
î ,

K îĵ
αâ = 4g−2 sinα cosα µ̃[̂i∂âµ̃

ĵ] , Kij

âb̂
= 4g−2 sin2 α∂âµ̃

[i∂b̂µ̃
j] . (A.4)

In these expressions, ∂Mµ
I means derivative of µI = µI(yM ) with respect to yM , for

M = (α, a, â).

With these ingredients, we can calculate the consistent embedding of the D = 4 su-

pergravity of section 2 into type IIA supergravity using the uplift formulae of [2, 3]. The

ten-dimensional embedding of the tensor hierarchy forms in (2.4) proceeds uneventfully.

The embedding of the scalars is much more laborious. This is achieved by bringing the
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SO(4)–invariant scalar matrix MMN of the D = 4 supergravity, given in appendix D.3 of

[24], to the uplifting formulae (10) of [2]. Manipulating these formulae with the help of

(A.3), (A.4), it turns out that the Killing vectors K â
îĵ

on S3 and their derivatives always

appear projected as (Jk)îĵ K̃ â
îĵ

, where (J i)̂iĵ are the components of the triplet of constant

4× 4 matrices5

J i = e0i − 1
2ε
i
jk e

jk . (A.5)

Here, we have written J i in terms of the set of six 4×4 matrices eîĵ = −eĵî with components

(eîĵ)k̂l̂ = 2δî
[k̂
δĵ
l̂]
, so that (J i)0j = δij and (J i)jk = −εijk. Indices i and î are raised and

lowered with the SO(3)′ and SO(4)′ invariant metrics δij and δîĵ , respectively. The J i are

antisymmetric, (J i)̂iĵ = −(J i)ĵî, anti-selfdual,

(J i)̂iĵ = −1
2 ε̂iĵk̂l̂ (J

i)k̂l̂ , (A.6)

satisfy the quaternion algebra,

(J i)îk̂(J
j)k̂ ĵ = −δijδî

ĵ
+ εijk(J

k)î ĵ , (A.7)

and the identity

(J i)̂iĵ(Ji)k̂l̂ = 2δî[k̂δl̂]ĵ − ε̂iĵk̂l̂ . (A.8)

Specifically, the combinations (J i)îĵ K̃ â
îĵ

select the Killing vectors of S3 that are invariant

under the SO(3)R in (2.1), namely, the right-invariant Killing vectors on S3. Lowering the

index with the round S3 metric g̃âb̂, we have

(J i)̂iĵ K̃
îĵ
â = 2 (J i)̂iĵ µ̃

î∂âµ̃
ĵ = ρiâ , (A.9)

where ρiâ is the â-th component of the right-invariant one-form ρi, i = 1, 2, 3. These close

into the Maurer-Cartan equations (3.2), which are invariant under SO(3)R and lie in the

adjoint of both SO(3)L and SO(3)d defined in (2.1).

Equations (A.6)–(A.9) need to be used extensively to bring the raw consistent trunca-

tion expressions obtained from the formulae in [2, 3] to the final form (3.5) presented in

the main text. Other useful identities for this purpose include

ε̂iĵk̂l̂ µ̃
îdµ̃ĵ ∧ dµ̃k̂ ∧ dµ̃l̂ = 1

8 εijkρ
i ∧ ρj ∧ ρk = 3

8 εijkµ̃
kµ̃h ρ

h ∧ ρi ∧ ρj = 6 vol(S3) ,

εijk µ̃
i dµ̃j ∧ dµ̃k = 2 vol(S2) , ∗̃2 dµ̃i = εijk µ̃

jdµ̃k , ∗̃3 ρi = 1
4ε
i
jk ρ

j ∧ ρk ,

εijk µ̃
iµ̃h dµ̃

j ∧ ρk ∧ ρh = 1
2 εijk dµ̃

i ∧ ρj ∧ ρk ,

εijk µ̃
iµ̃h dµ̃

j ∧ dµ̃k ∧ ρh = εijk dµ̃
i ∧ dµ̃j ∧ ρk ,

εi1i2i3 µ̃
i1 dµ̃i2 ∧ dµ̃i3 ∧ εj1j2j3 µ̃j1 ρj2 ∧ ρj3 = 2 dµ̃i ∧ dµ̃j ∧ ρi ∧ ρj , (A.10)

5Indices i = 1, 2, 3 and î = 0, 1, 2, 3 here correspond to indices a = 2, 4, 6 and λ = 1, 3, 5, 7 in appendix

D.3 of [24]. The J matrices here are the negative of the gamma matrices there: (J i)î ĵ“=”− (γa)λµ.
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where vol(S2) and vol(S3) are the volume forms corresponding to the metrics ds̃2(S2) and

ds̃2(S3) in (A.2), and ∗̃2 and ∗̃3 the corresponding Hodge dual operators. Note that

ds̃2(S2) = δij dµ̃
i dµ̃j , ds̃2(S3) = δîĵ dµ̃

î dµ̃ĵ = 1
4 δij ρ

iρj . (A.11)

We conclude by retrieving the homogeneous G2–invariant nearly-Kähler structure on

S6 from this formalism. The nearly-Kähler forms are given in general by

J = 1
2 ψIJK µ

IdµJ ∧ dµK , Ω = 1
6

(
ψJKL − i ψ̃IJKL µI

)
dµJ ∧ dµK ∧ dµL , (A.12)

in terms of the constrained µI that parametrise S6 and the associative and co-associative

forms ψ and ψ̃, on the ambient R7, see e.g. appendix E of [3]. It turns out that the

non-vanishing components of these forms can be written for the case at hand as

ψijk = −εijk , ψîiĵ = −(Ji)̂iĵ , ψ̃ijîĵ = εijk(J
k )̂iĵ , ψ̃îĵk̂l̂ = −ε̂iĵk̂l̂ , (A.13)

Bringing (A.1), (A.13) to (A.12), we find

J = −1
2 cos3 α εijk µ̃

idµ̃j ∧ dµ̃k − 1
2 sinαdα ∧ µ̃i ρi

+1
8 sin2 α cosα εijk µ̃

iρj ∧ ρk + 1
2 sin2 α cosαdµ̃i ∧ ρi ,

ReΩ = 1
2 sinα cos2 αdα ∧ εijk µ̃idµ̃j ∧ dµ̃k + 1

2 sinα cos2 αdα ∧ dµ̃i ∧ ρi

+1
8 sin2 α cosα εijk dµ̃

i ∧ ρj ∧ ρk − 1
8 sin3 αdα ∧ εijk µ̃iρj ∧ ρk ,

ImΩ = 1
2 sinα cosαdα ∧ εijk µ̃idµ̃j ∧ ρk + 1

4 sin2 α cos2 α µ̃idµ̃j ∧ ρi ∧ ρj

−1
4 sin2 α cos2 α εijk dµ̃

i ∧ dµ̃j ∧ ρk − 1
48 sin4 α εijk ρ

i ∧ ρj ∧ ρk . (A.14)

These forms can indeed be checked to satisfy the nearly-Kähler relations

Ω ∧ Ω̄ = −4i
3 J ∧ J ∧ J 6= 0 , J ∧Ω = 0 , (A.15)

and

dJ = 3 ReΩ , d ImΩ = −2J ∧ J . (A.16)

The expressions (A.14) are needed to show that the SO(4)–invariant consistent truncation

formulae of section 3.1 reduce to the G2–invariant formulae of section 4.1.

B Flux quantisation and free energies

The fluxes corresponding to the generic configuration (3.5) can be appropriately quantised.

The quantisation conditions are

k = 2π`s F̂(0) ≡ 2π`sm ,

N = − 1

(2π`s)5

∫
S6

e
1
2
φ̂ ∗̂F̂(4) + B̂(2) ∧ dÂ(3) +

1

6
mB̂(2) ∧ B̂(2) ∧ B̂(2) , (B.1)
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with k and N integers and `s the string length. The fields A(3), B̂(2) and φ̂ have been given

in (3.5), and from ∗̂F̂(4), only the contribution corresponding to the Freund–Rubin term

(3.10) is relevant. The first relation in (B.1) corresponds to the relation between quantised

Romans mass and D = 4 magnetic coupling [2]. The second expression can be written,

integrating in the range (3.13) for the angle α, as a relation between the integer N and

the electric D = 4 coupling constant g,

N = 5 v(S6) (2π`s)
−5 g−5 , (B.2)

with v(S6) = 16
15 π

3 the volume of the unit radius round six-sphere. The expression (B.2)

coincides with that given in [7, 38] from the embedding of the SU(3)–invariant sector. The

fact that the present SO(4)–invariant calculation here and the SU(3)–invariant calculation

[7, 38] agree provides a selfconsistency check, as the relations (B.1), (B.2) must characterise

the theory, not merely particular subsectors or solutions.

Equipped with these values of the fluxes, we can proceed to the calculation of the grav-

itational free energy of the configuration (3.5), along the lines of [38]. For this calculation,

we first redefine the external D = 4 metric with the inverse scalar potential V in (2.7) so

that the Einstein frame warp factor reads

e2A = −6 e
1
8
ϕX1/4∆

1/8
1 ∆

1/4
3 V −1 . (B.3)

The free energy F is proportional to the inverse of the effective four-dimensional Newton’s

constant [39]. On the geometry (3.5), (B.3), this evaluates to

F =
16π3

(2π`s)8

∫
S6

e8A vol6 = − 96π3

(2π`s)8
g−6 v(S6)V −1 . (B.4)

This again reproduces the expression given in [38]. In order to write the free energy in

terms of quantised fluxes, we factorise the scalar potential as V = g2(m/g)−1/3 Ṽ , where

V is the g = m = 1 scalar potential (2.7), and then replace g and m by their values (B.1),

(B.2) in terms of N and k. We finally obtain

F = −96 · 5−5/3 π3 v(S6)−2/3 Ṽ −1N5/3k1/3 , (B.5)

as in [38].

At the critical points of the scalar potential (2.7), recorded in table 1, the free energy

(B.5) reduces to values that have been previously given in the literature. For the critical

points with at least G2 symmetry, (B.5) reproduces the corresponding values given in table

1 of [7]. For the N = 3 point, (B.5) gives

F = 1
40 313/6 πN5/3k1/3 , (B.6)

in agreement with [34]. This result also matches the field theory result, equation (8.4) of

[40], after correcting a typo there6.

The formula (B.5) holds for geometries with running D = 4 scalars, not only for scalars

frozen at critical points of the D = 4 potential. It was conjectured in [38], based on an

6There is a factor of 1/2 missing in the r.h.s. of (8.4) of [40]. We thank D. Jafferis for confirming this.
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SU(3)–invariant calculation, that the free energy (B.5) should further hold at any point

of the 70-dimensional coset space E7(7)/SU(8) of the full D = 4 N = 8 dyonically-gauged

ISO(7) supergravity, where Ṽ given by the full g = m = 1, N = 8 potential, normalised

as in [24]. The present SO(4)–invariant calculation provides further evidence in favour of

this conjecture.

C SO(4)–invariant AdS4 solutions of massive type IIA

The type IIA solutions that we have presented in the main text have the local form

dŝ2
10 = e2X(α)ds2(AdS4) + e2B(α) δijDµ̃

iDµ̃j + e2A(α)dα2 + e2C(α) ds̃2(S3) , φ̂ = φ(α) ,

F̂(4) = µ0vol4 + C1(α) dα ∧ εijkDµ̃i ∧Dµ̃j ∧ ρk + C2(α)Dµ̃i ∧Dµ̃j ∧ ρi ∧ ρj

+C3(α) dα ∧ µ̃iDµ̃j ∧ ρi ∧ ρj + C4(α) dα ∧ εijk ρi ∧ ρj ∧ ρk , (C.1)

Ĥ(3) = B1(α) dα ∧ εijk µ̃iDµ̃j ∧Dµ̃k +B2(α) dα ∧Dµ̃i ∧ ρi +B3(α) εijkDµ̃
i ∧ ρj ∧ ρk

+B4(α) dα ∧ εijk µ̃iρj ∧ ρk ,

F̂(2) = A1(α) εijk µ̃
iDµ̃j ∧Dµ̃k +A2(α)Dµ̃i ∧ ρi +A3(α) dα ∧ µ̃i ρi +A4(α) εijk µ̃

iρj ∧ ρk ,

where AdS4 and S3 are unit radius, µ0 is a constant, X(α), etc., are functions of the angle

α, the µ̃i, i = 1, 2, 3, are constrained coordinates that define a unit radius S2 through (3.1)

and ρi are the right-invariant forms on S3, subject to (3.2). The corresponding potentials

are of the form

Â(3) = c1(α) dα ∧ εijk µ̃iDµ̃j ∧ ρk + c2(α) εijkDµ̃
i ∧Dµ̃j ∧ ρk + c3(α) µ̃iDµ̃j ∧ ρi ∧ ρj

+c4(α) εijk ρ
i ∧ ρj ∧ ρk ,

B̂(2) = b1(α) dα ∧ µ̃i ρi + b2(α) εijk µ̃
iDµ̃j ∧Dµ̃k + b3(α)Dµ̃i ∧ ρi + b4(α) εijk µ̃

iρj ∧ ρk ,

Â(1) = a1(α) µ̃i ρ
i . (C.2)

In this appendix, we will denote the covariant derivative of µ̃i as

Dµ̃i = dµ̃i + εijkAjµ̃k , with Ai = A0(α) ρi . (C.3)

The function A0(α), as well as all other functions of α in (C.1), (C.2) can be read off from

the concrete expressions given in the main text.

The configuration (C.1)–(C.3) preserves the SO(4) subgroup of SO(7) defined in (2.1).

We will now work out the differential and algebraic equations that the functions X(α), etc.,

must obey for (C.1) to solve the Bianchi identities and equations of motion of massive type

IIA supergravity. Firstly, the functions that specify the potentials (C.2) can be related to

those entering the field strengths (C.1) using the corresponding definitions (see (A.3) of

[3]). We find

A1 = mb2 , A2 = a1 +mb3 , A3 = a′1 +mb1 , A4 = −1
2(1− 2A0)a1 +mb4 ,

(C.4)
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and

B1 = b′2 ,

B2 = b′3 − b1 − 2A′0b2 , (C.5)

B3 = b4 + 1
2(1− 2A0)b3 − (1−A0)A0b2 ,

B4 = b′4 −A′0b3 + 1
2(1− 2A0)b1 ,

and

C1 = c′2 − c1 − a1b
′
2 +mb1b2 ,

C2 = c3 − (1− 2A0)c2 + 2mb2b4 − 1
2mb

2
3 , (C.6)

C3 = c′3 + 2c2A
′
0 − (1− 2A0)c1 + a1

(
b′3 − b1 − 2A′0b2

)
−mb1b3 ,

C4 = c′4 + 1
3c3A

′
0 + 1

3(1−A0)A0c1 − 1
3a1

(
b′4 −A′0b3 + 1

2(1− 2A0)b1
)

+ 1
3mb1b4 .

We have dropped the explicit α dependence and have denoted with a prime the derivative

with respect to it. We used the expressions (C.4)–(C.6) to construct the constant scalar

field strengths (3.8) from the potentials (3.5).

Moving to the field equations (see (A.3), (A.5) of [3]), some calculation shows that the

type IIA Bianchi identities impose the relations

C ′2 − C3 + C1 − 2A0C1 − 2A1B4 − 2A4B1 +A2B2 = 0 ,

B′3 − 1
2(1− 2A0)B2 −B4 + (1−A0)A0B1 = 0 ,

A′1 −mB1 = 0 ,

A′2 −A3 − 2A1A
′
0 −mB2 = 0 ,

A′4 −A2A
′
0 + 1

2(1− 2A0)A3 −mB4 = 0 ,

A4 + 1
2(1− 2A0)A2 − (1−A0)A0A1 −mB3 = 0 . (C.7)

Next, a long calculation shows that the F̂(4) equation of motion gives(
e

1
2
φ+4X−A−2B+CC1

)′
+ 4 e

1
2
φ+4X+A−2B−CC2 − 8 e

1
2
φ+4X+A−2B−CA0C2

−4 e
1
2
φ+4X−A−CC3A

′
0 + 2µ0B4 = 0 ,

e
1
2
φ+4X−A−2B+CC1 + 2 e

1
2
φ+4X−A−C(1− 2A0)C3 − 48 e

1
2
φ+4X−A+2B−3C(1−A0)A0C4

+2µ0B3 = 0 ,(
e

1
2
φ+4X−A−CC3

)′ − 2 e
1
2
φ+4X+A−2B−CC2 − 24 e

1
2
φ+4X−A+2B−3CC4A

′
0 + 1

2µ0B2 = 0 ,

(
e

1
2
φ+4X−A+2B−3CC4

)′
+ 1

24 µ0B1 = 0 , (C.8)

the Ĥ(3) equation of motion gives(
e−φ+4X−A−2B+3CB1

)′
+ 4e−φ+4X−A+CB2A

′
0 + 32e−φ+4X+A−C(1−A0)A0B3
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−4e
1
2
φ+4X−A−2B+CA3C1 − 32e

1
2
φ+4X+A−2B−CA4C2 −me

3
2
φ+4X+A−2B+3CA1

−24µ0C4 = 0 ,

(
e−φ+4X−A+CB2

)′
+ 8e−φ+4X−A+2B−CB4A

′
0 − 8e−φ+4X+A−C(1− 2A0)B3

+8e
1
2
φ+4X+A−2B−CA2C2 + 4e

1
2
φ+4X−A−CA3C3 −me

3
2
φ+4X+A+CA2

−2µ0C3 = 0 ,

e−φ+4X−A+CB2 − 4e−φ+4X−A+2B−C(1− 2A0)B4 − 2e
1
2
φ+4X−A−2B+CA1C1

+4e
1
2
φ+4X−A−CA2C3 − 96e

1
2
φ+4X−A+2B−3CA4C4 − 1

2me
3
2
φ+4X−A+2B+CA3

−2µ0C2 = 0 ,

(
e−φ+4X−A+2B−CB4

)′ − 2e−φ+4X+A−CB3 − 2e
1
2
φ+4X+A−2B−CA1C2

−12e
1
2
φ+4X−A+2B−3CA3C4 −me

3
2
φ+4X+A+2B−CA4 − 1

2µ0C1 = 0 , (C.9)

the F̂(2) equation of motion gives(
e

3
2
φ+4X−A+2B+CA3)′ − 2 e

3
2
φ+4X+A+CA2 + 8 e

3
2
φ+4X+A+2B−C(1− 2A0)A4 (C.10)

+4 e
1
2
φ+4X−A−2B+CB1C1 − 8 e

1
2
φ+4X−A−CB2C3 + 192 e

1
2
φ+4X−A+2B−3CB4C4 = 0 ,

and the dilaton equation of motion gives

(
e4X−A+2B+3Cφ′)′ − 3 e

3
2
φ+4X

(
eA−2B+3CA2

1 + 2eA+CA2
2 + e−A+2B+CA2

3 + 16eA+2B−CA2
4

)
+2 e−φ+4X

(
e−A−2B+3CB2

1 + 2e−A+CB2
2 + 32eA−CB2

3 + 16e−A+2B−CB2
4

)
−4 e

1
2
φ+4X

(
e−A−2B+CC2

1 + 4eA−2B−CC2
2 + 2e−A−CC2

3 + 144e−A+2B−3CC2
4

)
−5

4 m
2 e

5
2
φ+4X+A+2B+3C + 1

4 µ
2
0 e

1
2
φ−4X+A+2B+3C = 0 . (C.11)

As for the Einstein equation, we have only computed the external components, which

produce the following equation for the warp factor:(
e4X−A+2B+3CX ′)′ − 1

4 e
3
2
φ+4X

(
eA−2B+3CA2

1 + 2eA+CA2
2 + e−A+2B+CA2

3 + 16eA+2B−CA2
4

)
−1

2 e
−φ+4X

(
e−A−2B+3CB2

1 + 2e−A+CB2
2 + 32eA−CB2

3 + 16e−A+2B−CB2
4

)
−3 e

1
2
φ+4X

(
e−A−2B+CC2

1 + 4eA−2B−CC2
2 + 2e−A−CC2

3 + 144e−A+2B−3CC2
4

)
+ 1

16 m
2 e

5
2
φ+4X+A+2B+3C − 5

16 µ
2
0 e

1
2
φ−4X+A+2B+3C + 3 e2X+A+2B+3C = 0 . (C.12)

We have employed equations (C.7)–(C.12) to verify that the generic expressions (3.5),

(3.8) evaluated on the critical points of ISO(7) supergravity with at least SO(4) invariance,

recorded in table 1 of the main text, are indeed solutions of massive type IIA supergravity.

We have verified on a case-by-case basis that all solutions mentioned in section 5, partic-

ularly the N = 3 solution (5.1), do satisfy equations (C.7)–(C.12). Up to a check of the

internal Einstein equations, this shows that all constant-scalar configurations presented in

the main text are indeed solutions of massive type IIA supergravity.
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D Derivation of the N = 3 Killing spinors

Following, for convenience, the string frame conventions of [41], the supersymmetry trans-

formations of the type IIA fermions read

δλ̂ =
(
d/̂φ+ 1

4
/̂H (3)Γ̂

)
ε̂+ 1

8e
φ̂
(

5F̂(0) + 3 /̂F (2)Γ̂ + /̂F (4)

)
ε̂ ,

δψ̂M =

(
∇M +

1

4
/̂HM Γ̂

)
ε̂+ 1

8e
φ̂
(
F̂(0) − /̂F (2)Γ̂ + /̂F (4)

)
Γ̂M ε̂ . (D.1)

The IIA dilatino, λ̂, gravitino, ψ̂M , and supersymmetry paramater, ε̂, are Majorana. The

ten-dimensional gamma matrices are Γ̂M , with M = 0, 1, . . . , 9, and M = 0, 1, . . . , 9 de-

noting here ten-dimensional tangent space and local indices, respectively. The slashed

forms are defined, as usual, as /̂H (3) ≡ 1
3!ĤMNP Γ̂MNP , and /̂HM ≡ 1

2!ĤMNP Γ̂NP , etc.,

with Γ̂M1...Mn ≡ Γ̂[M1 · · · Γ̂Mn]. The ten-dimensional chirality matrix has been denoted by

Γ̂, and Γ̂M denotes the contraction of Γ̂M with the ten-dimensional vielbein.

Let us show that the N = 3 solution (5.1) obeys the IIA Killing spinor equations,

δλ̂ = 0, δψ̂M = 0, for the supersymmetry parameters given in section 6. We start by

reducing these to the Killing spinor equations (6.3a)–(6.3c) on the internal six-dimensional

geometry. In order to do this, we choose a basis for the ten-dimensional gamma matrices

such that

Γ̂µ = eÃγ(4)
µ ⊗ I, Γ̂M = γ̂(4) ⊗ γM , B̂(10) = I⊗B, Γ̂ = γ̂(4) ⊗ γ̂ (D.2)

with µ = 0, 1, 2, 3 local indices on AdS4 and M = 1, . . . , 6 now rebranded as a tangent space

index on the internal six-dimensional geometry. Here, e2Ã is the string frame warp factor

(6.4), γ
(4)
µ and γM four- and six-dimensional gamma matrices (the former contracted with

the AdS4 vielbein), γ̂(4) = −iγ(4)
0123 and γ̂ = iγ123456 the respective chirality matrices. The

six and ten-dimensional intertwiners B and B̂(10), with BB∗ = I, are such that χc = Bχ∗,

where c denotes Majorana conjugation, γ∗M = −B−1γMB, and similarly for B̂(10). Let ζi±
be (anti)chiral Killing spinors on AdS4,

Dµζ
i
± =

1

2
γ(4)
µ ζi∓ , ζi∓ = ζic± , (D.3)

and let χi, i = 1, 2, 3, three arbitrary Dirac spinors on the internal six-dimensional geom-

etry. Writing the ten-dimensional spinor paramater ε̂ in terms of ζi± and χi as in (6.2)

and making use of the decompositions (D.2) and the AdS4 Killing spinor equation (D.3),

we obtain the six-dimensional Killing spinor equations (6.3a)–(6.3c) from the expressions

(D.1) equated to zero.

One method to proceed in general (as pursued in [42, 43, 44] for N = 2 AdS4 solutions)

is to form spinor bilinears from (6.3a)–(6.3c), use them to show that a geometrically realised

SO(3) R-symmetry SO(3)R necessarily emerges and then locally determine the metric,

dilaton and fluxes up to PDEs. However given that the solution of section 5 contains S2

fibred over S3, we find it easier to construct all spinors on S2×S3 that transform as triplets

under SO(3)R and couple them to arbitrary spinors on the interval spanned by α, thereby

effectively reducing the problem from 6 to 1 dimensions.
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D.1 Constructing an SO(3)d triplet in 6d

The first thing that needs addressing is exactly how one constructs a triplet of spinors

that transforms under SO(3)R. Clearly the metric on a round S2 and S3 preserve SO(3)S2

and SO(4)S4 isometries respectively but, as explored in the Minkowski classifications of

[45, 46, 47], each independent Killing spinor on these spheres can only individually be used

to form SU(2) doublets. We also have to consider the fact that S2 is fibred over S3 in

terms of the SU(2) right-invariant 1-forms as (C.3). This means that if one decomposes

SO(4)S4 = SO(3)L × SO(3)R (with L/R standing for left/right) it is only SO(3)R and the

diagonal SO(3)d formed from SO(3)′ ≡ SO(3)S2 and SO(3)L that are preserved by the full

space: the anti-diagonal is broken. Since SO(3)R only involves S3, the preceding discussion

suggests that we should identify the R-symmetry as SO(3)R = SO(3)d, but we will need to

be more explicit to construct its corresponding triplets. As we shall show, the fundamental

building blocks of the triplets are actually the SU(2) doublets on S2 and S3, for which we

give further details in appendix E.1.

In what follows, we shall parametrise the two SU(2) doublets on S2 as ψα and ψ̂α, while

the single SU(2)L doublet on S3, that is a singlet with respect to SU(2)R, shall be ξα for

α = 1, 2. The Killing vectors of SO(3)′ we denote by Ki and of SO(3)L/R by Li/Ri. The

key property of the doublets that we shall need is how they transform under the action of

the spinorial Lie derivative along these Killing vectors, namely

LKiψα =
i

2
(σi)

α
βψ

β , LLiξα =
i

2
(σi)

α
βξ
β , LRiξα = 0 (D.4)

with a corresponding expression for the action of Ki on ψ̂α. Here σi are the Pauli matrices,

so that a doublet of a given SU(2) realises the corresponding Lie algebra under its action.

To realise the R-symmetry SO(3)d, then we must construct products of these doublets

that transform as

LKd
i
ηj = εijkη

k , LRiηj = 0 , Kd
i = Ki + Li . (D.5)

The obvious way one might try to construct a triplet is to contract ψα and ξα with the

Pauli matrices. This is almost correct, but it is actually the matrices σ2σi, which are

symmetric, that give the correct transformation properties. It is then not hard to show

that

ηi1 = (σ2σi)αβψ
α ⊗ ξβ , ηi2 = (σ2σi)αβψ̂

α ⊗ ξβ , ηic1 = −ηi2, (D.6)

obey (D.5) using (D.4) and standard Pauli matrix identities, which gives us two triplets.

But this is not the whole story. It is also possible to construct two SO(3)d singlets by con-

tracting the doublets with σ2; so, given that the embedding coordinates µ̃i of S2 transform

as a triplet under SO(3)d,

η3
i = µ̃i(σ2)αβψ

α ⊗ ξβ , η4
i = µ̃i(σ2)αβψ̂

α ⊗ ξβ , ηic3 = ηi4, (D.7)

also obey (D.5), by Leibniz rule.

We can derive (D.6), (D.7) by using ambient space coordinates and group theory. On

S3, our spinors need to be singlets under SO(3)R. The only spinors with this feature are
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the ξα. This can be seen by going to the left-invariant frame, where the spinorial Lie

derivative reduces to partial directional derivative. The ξα transform as a doublet under

SO(3)L; in order to produce a triplet under SO(3)d (the diagonal in SO(3)′ × SO(3)L) we

need to tensor them with S2 spinors that transform either as a doublet or as a quadruplet

of SO(3)′, since only (s = 1/2) and (s = 3/2) are such that (s)⊗ (1/2) contains (1/2).

In order to produce such S2 spinors, we can work in the ambient R3. Here it is clear

that our ingredients are constant spinors and the three coordinates; going back to S2, these

become the ψα and the µ̃i. From the ψα and m copies of the µi one obtains a representation

(m)⊗(1/2) = (m−1/2)⊕(m+1/2). This contains (1/2) or (3/2) for m = 0, 1, 2. Defining

µ̃αβ ≡ µ̃i(σ2σi)αβ , the doublets one obtains this way can be written as ψα, µ̃αβψ
β ; it turns

out that the latter is simply ψ̂α. We can now tensor these two doublets with ξα on S3 and

extract the triplet using (σ2σi)αβ ; this gives (D.6). On the other hand, the quadruplets

one can write in this way can be written as µ̃(αβψγ), µ̃(αβµ̃γ)δψ
δ = µ̃(αβψ̂γ). Tensoring

these with the ξγ and contracting one index to extract the triplet, after some Pauli matrix

algebra one obtains a linear combination of (D.6) and (D.7).

Thus we have obtained a set of triplets {η1
i , η

2
i , η

3
i , η

4
i }, which is linearly independent and

closed under Majorana conjugation and the action (E.31)–(E.32) of the SO(3)d invariant

forms (D.12)–(D.13). From the embedding coordinates argument we have just given, this

set is also exhaustive. One can also see this in the following way. Any 5d spinor can

be decomposed in a basis of four linearly independent spinors with complex functional

coefficients defined in 5d. This means any additional triplet can be decomposed in a basis

of our existing triplets as η̃i =
∑4

n=1(an)ijη
j
n. Since this new triplet needs to transform

as (D.5), and ηin already do transform in this fashion, there are only two options. i) We

take (an)ij constant, in which case η̃i is not linearly independent of ηin by definition. ii)

We take (an)ij to be proportional to the S2 embedding coordinates µ̃j , which leads to

η̃i =
∑4

n=1 cnεijkµ̃kη
j
n. At first sight this does seem to give two additional triplets (not

four, because those involving ηi3, η
i
4 are proportional to εijkµ̃jµ̃k = 0). However, one can

show that εijkµ̃kη
j
1 = −iηi2 + ηi3 and εijkµ̃kη

j
2 = −iηi1 + ηi4; so these triplets depend linearly

on ηin.

The most general SO(3)d triplet of spinors on a fibration of S2 over S3 times an interval

is then of the form

χi =
1

2
e
Ã
2

[(
f1+

f1−

)
⊗ ηi1 +

(
f2+

f2−

)
⊗ ηi2 +

(
f3+

f3−

)
⊗ ηi3 +

(
f4+

f4−

)
⊗ ηi4

]
(D.8)

where fn± are functions of α, the coordinate on the interval, to be determined by (6.3a)–

(6.3c). Up to this point our supersymmetry discussion has been quite general and will

apply to any AdS4 solution with metric, dilaton and fluxes preserving SO(3)d × SO(3)R

with a S2 × S3 fibration. We shall now proceed to solve the arbitrary functions of the

interval for the solution of section 5. We shall return to this system in full generality in a

follow up.
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D.2 Solving for the Killing Spinor

In this subsection, we will explicitly compute the triplet of spinors preserved by the solution

of section 5 by plugging (D.8) into (6.3a)–(6.3c) and solving for the undetermined functions

of the interval. We shall work with the following 6 = 1 + 2 + 3 decomposition of the flat

space gamma matrices

γα = σ1⊗ I⊗ I , γa = σ2⊗σa⊗ I , γâ = σ2⊗σ3⊗σâ , B = σ2⊗σ1⊗σ2 (D.9)

for a = 1, 2 and â = 1, 2, 3, so that the six-dimensional chirality matrix is γ̂ = σ3 ⊗ I ⊗ I
and only acts on the interval part of the spinor. The string frame vielbein on the internal

space can be succinctly written as

eα =
√

2eAdα , eâ = 2
√

2L2e−A+ 1
2
φ0 sinαρâ,

ea =
√

2Leφ̂−
3
2
φ0 cosα

(
dya − 2L4e−4A+φ0 sin2 αKya

i ρi

)
;

(D.10)

ya are coordinates on S2, and Ki are the SU(2) Killing vectors on S2 given in (E.3). The

AdS warp factor and dilaton are respectively

e2A = e
1
2
φ0L2

√
2(cos2 α+ 1) , eφ̂ = eφ0

(2(cos2 α+ 1))
3
4

√
3 cos4 α+ 3 cos2 α+ 2

. (D.11)

In (5.1) all possible 10d fluxes of massive IIA are turned on. However, for SO(3)d to be

preserved, the fluxes should be singlets under its action. To show this is so, and because it

will be helpful in what follows, we introduce a basis of SO(3)d invariant forms on S2×S3:

ω1 =
1

2
ρiµ̃i, ω1

2 =
1

2
εijkµ̃iDµ̃j ∧Dµ̃k, ω2

2 =
1

2
ρi ∧Dµ̃i,

ω3
2 =

1

2
εijkµ̃iρj ∧Dµ̃k, ω4

2 =
1

8
εijkµ̃iρj ∧ ρk .

(D.12)

In terms of these, all invariant forms on S2 × S3 can be expressed [12],

ω1
3 = ω1 ∧ ω1

2 , ω2
3 = ω1 ∧ ω2

2 , ω3
3 = ω1 ∧ ω3

2 , ω4
3 = ω1 ∧ ω4

2,

ω4 = ω1
2 ∧ ω4

2 = −1

2
ω2

2 ∧ ω2
2 = −1

2
ω3

2 ∧ ω3
2 , ω5 = ω1 ∧ ω4 .

(D.13)

This exhausts the list of forms. The fluxes appearing in (6.3a)–(6.3c) then take the form

e4AĜ(0) = 4
√

3seφ0F̂(0)L
4,

F̂(2) = 4se
1
2
φ0F̂(0)L

2

[
− 2 sin3 α√

3(cos2 α+ 1)2
dα ∧ ω1 +

cos3 α(3 cos2 α+ 1)√
3(3 cos4 α+ 3 cos2 α+ 2)

ω1
2

− 2 cosα sin2 α√
3(cos2 α+ 1)

ω2
2 +

√
3 cosα sin4 α

(cos2 α+ 1)2
ω4

2

]
,

Ĝ(4) = 16eφ0F̂(0)L
4

[
cos2 α sin2 α(3 cos2 α+ 1)

(3 cos4 α+ 3 cos2 α+ 2)
ω4 − dα ∧

(
cosα sin5 α

(cos2 α+ 1)2
ω2

3
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+
2 cosα sin3 α(3 cos2 α+ 1)

(cos2 α+ 1)3
ω4

3 +
2 cos3 α sinα(2 cos4 α+ 3 cos2 α+ 3)

(cos2 α+ 1)(3 cos4 α+ 3 cos2 α+ 2)
ω1

3

)]
,

Ĥ(3) = 4se
1
2
φ0L2

[
2
√

3 cosα sin2 α(cos2 α+ 1)

3 cos4 α+ 3 cos2 α+ 2
ω2

3 − dα ∧
( √

3 sin5 α

(cos2 α+ 1)2
ω4

2

+

√
3 cos2 α sinα(3 cos6 α+ 8 cos4 α+ 11 cos2 α+ 2)

(3 cos4 α+ 3 cos2 α+ 2)2
ω1

2

+
2
√

3 cos2 α sinα(cos4 α+ cos2 α+ 2)

(cos2 α+ 1)(3 cos4 α+ 3 cos2 α+ 2)
ω2

2

)]
, (D.14)

which is a mild generalisation of (5.1) including a possible world sheet parity inversion

parametrised by

s = ±1. (D.15)

One can check explicitly that this still solves all the Bianchi identities and flux equations

of motion with the remaining equations of motion following once

3e−
5
2
φ0 = 8F̂ 2

(0)L
2 (D.16)

is imposed.

In the remainder of this appendix and in appendix E.1 we will sketch the computation

of the functions fn± appearing in (D.8).

The first supersymmetry condition we shall solve is the dilatino variation (6.3b). The

reason to start here is that this condition contains no derivatives of the spinors, no Ma-

jorana conjugation and the S2 × S3 data only appears packaged in the invariant forms.

Thus the computation just consists of writing (6.3b) in the form

4∑
n=1

(
Xn+

Xn−

)
⊗ ηin, (D.17)

using the action of the invariant forms listed in (E.31)–(E.32). Once this is done, one knows

that all eight Xn± must individually vanish, because the 4 triplets ηin are independent, and

likewise the positive and negative chirality components of the expression. This leads to

eight complex algebraic constraints that the fn± must satisfy. We found it useful to

introduce an auxiliary set of complex functions of the interval:

f1± =
1

2
(t1± + t2±) , f3± =

1

2
(−t1± + t2± + t3± + t4±),

f2± =
1

2
(t1± − t2±) , f4± =

1

2
(−t1± − t2± + t3± − t4±)

(D.18)

and then solve instead for tn±. This is because the dilaton conditions fix several of the tn±
in terms of just one other and known functions of the interval. The simplest four of the

conditions that follow take the form

X1± +X2± = Z±(t1±, t1∓) , X1± −X2± = Z∓(t2±, t2∓),
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Z±(z1, z2) ∝ z1

√
∆̃3

(
2i
√

6s cos2 α+
√

2∆̃1(2 + cos2 α)±
√

∆̃1 cosα(2 +
√

3si+ cos2 α)
)

+ z2 sinα
(√

6(3 + cos2 α) cos2 α± 4si

√
∆̃1(1 + 2 cos2 α)

)
. (D.19)

∆̃i are defined in (D.21); we have factored out a common non-vanishing α-dependent factor

in Z±. It is easy to check that (D.19) contains only 2 independent expressions, namely the

middle two of (D.20). The remaining 4 Xn± are more complicated and we only quote their

solution. Of the eight complex conditions that follow from (6.3b) only 5 are independent.

All in all, the solution can be written as

t3± = −ist4∓,

t1+ = −
cosα

(√
3∆̃1 + 2si

)
+
√

2
√

∆̃1

(√
3 cos2 α+ si

)(
1 + 3 cos2 α+ 2

√
2
√

∆̃1 cosα
)√

∆̃3

sinαt1−,

t2+ = −
cosα

(√
3∆̃1 + 2si

)
−
√

2
√

∆̃1

(√
3 cos2 α+ si

)(
1 + 3 cos2 α− 2

√
2
√

∆̃1 cosα
)√

∆̃3

sinαt2−,

sinαt4+ =

√
3 cosα∆̃3

1 + 4si cos3 α∆̃2 +
√

2
(
2
√

3 cos4 α+ si∆̃2

)
∆̃

3
2
1(

7 cos4 α+ 4 cos2 α+ 1
)√

∆̃3

t4−

(D.20)

where

∆̃1 = cos2 α+ 1, ∆̃2 = (3 cos4 α+ 2 cos2 α+ 1), ∆̃3 = (3 cos4 α+ 3 cos2 α+ 2). (D.21)

We next turn our attention to the AdS4 gravitino (6.3a), which can be dealt with in

much the same fashion as the dilatino. The only additional ingredient one needs is that

χic can be expressed in a basis of ηin using the relations between triplets under Majorana

conjugation in (D.6)–(D.7). Given (D.20), (6.3a) provides one additional complex and one

real constraints on tn±:

sinαt2− = i(

√
∆̃1 −

√
2 cosα)t∗1−,

Imt4− =

(√
2∆̃2 +

√
3s
√

∆̃3 cos2 α
)(√

3s cosα∆̃
3
2
1 − (1 + 2 cos2 α)

√
∆̃3

)
2 + cos2 α∆̃1(9 cos4 α+ 6 cos2 α+ 8)

Ret4− .

(D.22)

As these conditions are the only ones that involve complex conjugation, we shall delay

solving them until we have fixed more of tn± with the internal gravitino conditions (6.3c).

The gravitino conditions on S2×S3 do require us to take covariant derivatives of spinor

(D.24), and Ha = 1
2Habcγ

bc now appears; both depend on more than simply the invariant

forms. Therefore the action of the forms is insufficient to solve (6.3c) in these directions.

The first thing we need to know is the form of the covariant derivative entering in

(6.3c), which requires that we compute the spin connection on M6. The vielbein on a

generic M6 consisting of S2 fibred over S3 times an interval preserving SO(3)d × SO(3)R

may be expressed as

eα = ekdα , eâ =
1

2
eC2ρâ, ea = eC1

(
dya − λKya

i ρi

)
, Dµ̃i = dµ̃i + λεijkdµ̃jµ̃k

(D.23)
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for ya coordinates on S2 and eK , eC1 , eC2 , λ functions of the interval. The spin connection

on M6 defined through deM + ΩM
N ∧ eN enters into the definition of (6.3c) as ∇M =

∂M+ 1
4ΩM,PQγ

PQ. After computing this it is possible to show that the covariant derivatives

along the internal space defined by (D.23) decompose as

∇α = ∂α −
1

2
e2C1λ′ω3

2,

Kya

i ∇ya = Kya

i DS2

ya +
1

2
Kya

i γyadC1 + e2C1λ(λ− 1)
(1

4
dρi − µ̃iω4

2

)
+

1

4
e2C1dλ ∧ (ρi − 2µ̃iω

1),

Ly
â

i ∇yâ = Ly
â

i D
S3

yâ +
1

2
Ly

â

i γyâdC2 − e2C1λ2(λ− 1)
(1

4
dρi − µ̃iω4

2

)
− 1

4
e2C1λdλ ∧ (ρi − 2µ̃iω

1)

− 1

4
e2C1λεijkDµ̃j ∧Dµ̃k −

1

2
e2C1εijkµ̃kDµ̃

j ∧ (
1

2
dλ+ λdC1 − λdC2)

− 1

2
e2C1λ(λ− 1)(ω1 ∧Dµ̃i − µ̃iω2

2) (D.24)

where DSi

ya/â
is the covariant derivative on S2/S3; we contract the S2 × S3 directions with

the two Killing vectors that make up SO(3)d. Form expressions should be understood

through the Clifford map dxm1 ∧ . . .∧ dxmk 7→ γm1...mk . Elsewhere in the text we have set

ek =
√

2eA , eC1 =
√

2Leφ̂−
3
2
φ0 cosα ,

eC2 = 4
√

2L2e−A+ 1
2
φ0 sinα , λ = 2L4e−4A+φ0 sin2 α .

(D.25)

The other additional object appearing in (6.3c) is Hp, but this is not hard to compute if

we contract the S2 × S3 directions of this along the Killing vectors as in (D.24) and make

use of the identities in the last column of (E.4) and (E.4).

We proceed by solving these conditions spinor component by spinor component. By

making use of the rotation7 outlined in appendix E.2 it is possible to factorise the S2×S3

data out of each of these components leaving many expression involving only functions

of the interval that must vanish. After a lengthy calculation we find that the S2 × S3

gravitino imposes just two additional complex constraints that may be expressed as

t4− = −

(
1 +

(1 + i
√

3s) cosα
√

2
√

∆̃1

)
t2− ,

sinα

√
∆̃3t2− =

(
(2 +

√
3si∆̃1) cosα−

√
2

√
∆̃1(1 +

√
3si cos2 α)

)
t1− (D.28)

after using (D.20) to tame many expressions. This leaves only one complex function, t1−
say, to be determined.

7Specifically, when we use the coordinates presented at the beginning of section E.1 the rotation (E.23)

maps the components of each triplet to

Λχj =
1

2
e

A
2 (−iujt1+, iµ̃jt3+, µ̃jt4+ , − ujt2+, − iujt1−, iµ̃jt3−, µ̃jt4− , − ujt2−)T (D.26)

where

uj = sj + itj = (cos θ1 cosφ1 + i sinφ1, cos θ1 sinφ1 − i cosφ1,− sin θ1)j (D.27)

and µi are the embedding coordinates of S2.
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The last condition we need to deal with is the internal gravitino condition along the

interval. For this expression the covariant derivative (D.24) and Hα are expressed in terms

on the invariant forms. We can thus once more use the action of the forms of the triplets

to massage the interval component of (6.3c) into the form (D.17). Once (D.20) and (D.28)

are used to eliminate the other tn± we are left with a single ODE for t1− :

∂α log(t1−) =
cotα

∆̃1

− 1
√

2 sinα
√

∆̃1

− si
√

3

2

1 + 2 cos2 α

∆̃3

√
∆̃1

sinα. (D.29)

Although this may appear a little intimidating a closed form solution does in fact exist,

and after some effort one finds that

t1− = −c

√
1 +

√
2 cosα√

∆̃1

e−
1
2
siΘ, cot Θ =

√
3

2
cosα

√
∆̃1, (D.30)

is the general solution to (D.29), where the sign is chosen to simplify (6.7). At this point

we have completely determined the spinor up to a complex constant c and a sign s = ±1,

but we still need to check if (D.22) actually holds. After a comparatively brief computation

it is possible to show that consistency can be achieved if either

(s = 1, Imc = 0) or (s = −1, Rec = 0) . (D.31)

However, the fact that c should either be real or purely imaginary is just a consequence of

our choice of intertwiner in (D.9). If we include a constant phase in its definition, c can

be completely arbitrary and it is this phase that is fixed by the choice of s = ±1. We use

this fact to allow for an arbitrary constant in the main text.

We have now completely fixed all 8 auxiliary functions tn±; inverting (D.18), after

significant massaging one is led to the fn± in (6.8). This confirms that a Killing spinor

preserving N = 3 superconformal symmetry does indeed exist.

E Further details on doublets, invariant forms and triplets

In this appendix we shall first give further explicit details about the SU(2) doublets from

which the triplets are constucted in appendix E.1. Later we discuss the SO(3)d invariant

forms, triplets and how the former acts on the latter in appendix E.2. We will mostly work

with a concrete choice of coordinates, ya = (θ1, φ1)a on S2 and yâ = (θ2, φ2, ψ2)â on S3.

E.1 SU(2) doublets

In this appendix we construct SU(2) doublets form the Killing spinors on S2 and S3. In

principle these calculations were already performed in [45, 46, 47]; however, we are using

slightly different conventions here (notably with the choice of frame on S3 and sign of the

Killing spinor equation on S2), so we provided some additional details here.
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E.1.1 SU(2) doublets on S2

The one-forms

ki = εijkdµ̃jµ̃k (E.1)

are dual to the SO(3)′ Killing vectors Ki on S2; under the action of d, they behave as the

right invariant forms on S3, with the same sign. We shall use the specific parametrisation

of the S2 embedding coordinates

µ̃i = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)i, (E.2)

in terms of which the Killing vectors are

K1 = sinφ1∂θ1 + cot θ1 cosφ1∂φ1 ,

K2 = − cosφ1∂θ1 + cot θ1 sinφ1∂φ1 , (E.3)

K3 = −∂φ1 .

It is not hard to show that

LKi µ̃j = ιKidµ̃j = εijkµ̃k , LKikj = εijkkk, (E.4)

so clearly µ̃i, dµ̃i, ki are all charged under SO(3). There exist Killing spinors on S2 that

solve the equation

∇aψ = − i
2
σaψ . (E.5)

If the frame ea = (dθ1, sin θ1dφ1)a, with γa = σa, a = 1, 2 one such specific example is

ψ = e−
i
2
θ1σ1e

1
2
φ1σ1σ2

(
0

1

)
. (E.6)

Using this, one can construct two SU(2) doublets on S2, namely

ψα =

(
ψ

−σ2ψ
∗

)α
, ψ̂α =

(
σ3ψ

−σ3σ2ψ
∗

)α
. (E.7)

Both indeed transform under the action of the spinorial Lie derivative as

LKiψα =
i

2
(σi)

α
βψ

β , (E.8)

as required.

µ̃1̂ + iµ̃2̂ = cos

(
θ2

2

)
e
i
2

(φ2+ψ2), µ̃3̂ + iµ̃4̂ = sin

(
θ2

2

)
e
i
2

(φ2−ψ2) (E.9)

and reabsorb these angles into the right invariant 1-forms everywhere they appear

ρ1 + iρ2 = ie−iφ2(dθ2 + i sin θ2dψ2), ρ3 = dφ2 + cos θ2dψ2. (E.10)
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E.1.2 SU(2) doublets on S3

There are two independent sets of three Killing vectors on S3 that realise each of the SU(2)

factors of SO(4) = SU(2)L ⊗ SU(2)R . The one forms dual to these R/L vectors are the

L/R invariant 1-forms of SU(2), that are defined in terms of g ∈ SU(2) as

λi = −iTr
(
σig
−1dg

)
, dλi −

1

2
εijkλj ∧ λk = 0,

ρi = −iTr
(
σidgg

−1
)
, dρi +

1

2
εijkρj ∧ ρk = 0 .

(E.11)

We shall specifically take our group element to be

g = e
i
2
σ3φ2e

i
2
σ2θ2e

i
2
σ3ψ2 , (E.12)

for which a consistent embedding of S3 into R4 is given by

µ̃1̂ + iµ̃2̂ = cos

(
θ2

2

)
e
i
2

(φ2+ψ2), µ̃3̂ + iµ̃4̂ = sin

(
θ2

2

)
e
i
2

(φ2−ψ2). (E.13)

This leads to the following definition of the Killing vectors

R1 = − sinψ2∂θ2 + csc θ2 cosψ2 − cot θ2 cosψ2∂ψ2 ,

R2 = cosψ2∂θ2 + csc θ2 sinψ2 − cot θ2 sinψ2∂ψ2 ,

R3 = ∂ψ2 ,

L1 = sinφ2∂θ2 + cot θ2 cosφ2∂φ2 − csc θ2 cosφ2∂ψ2 ,

L2 = sinφ2∂θ2 − cot θ2 sinφ2∂φ2 + csc θ2 sinφ2∂ψ2 ,

L3 = ∂φ2 ,

(E.14)

with dual one forms

ρ1 = − cosφ2 sin θ2dψ2 + sinφ2dθ2,

ρ2 = cosφ2dθ2 + sinφ2 sin θ2dψ2,

ρ3 = dφ2 + cos θ2dψ2,

λ1 = cosψ2 sin θ2dφ2 − sinψ2dθ2,

λ2 = cosψ2dθ2 + sinψ2 sin θ2dφ2,

λ3 = dψ2 + cos θ2dφ2.

(E.15)

Using these it is not hard to show that the Killing vectors obey the following relations

when acting of the forms

LRiρj = 0, LRiλj = εijkλk , ιRiλj = δij ,

LLiλj = 0, LLiρj = εijkρk , ιLiρj = δij ,
(E.16)
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so that (ρ/λ)i are triplets under SO(3)L/R and singlets under SO(3)R/L.

Working in the canonical frame of an S3 spanned by ρi (rather than the Hopf frame

that [46] uses) and with γâ = σâ, â = 1, 2, 3, the spinors on S3 that are charged under

SU(2)L are solutions to

∇âξ = − i
2
σâξ (E.17)

which one can show is solved by any constant spinor; we choose

ξ =

(
0

−i

)
. (E.18)

From this we can construct a doublet of SU(2)L

ξα =

(
ξ

σ1ξ
∗

)α
, (E.19)

which transforms as

LLiξα =
i

2
(σi)

α
βξ
β , LRiξα = 0 (E.20)

under the action of the spinorial Lie derivative.

E.2 Invariant forms and triplets

In this subsection we will focus on the five-dimensional manifold spanned by the unwarped

fibration of S2 over S3; we give some additional details about the SO(3)d invariant forms,

triplets and how the former acts on the latter. Our flat space 5d gamma matrices are

γ(5)
a = σa ⊗ I, γ

(5)
â = σ3 ⊗ σâ, B(5) = σ1 ⊗ σ2. (E.21)

Five-dimensional Majorana conjugation is defined as

ηc = B5η
∗ . (E.22)

If one views the invariant forms as spinor bilinears, one can factor out all their dependence

on the S2 angles using the matrix

Λ = I⊗ I⊗ e
i
2
σ2θ1e−

1
2
σ2σ1φ1 . (E.23)

Using this, it is not hard to show that (D.12) becomes

ω
(5)
1 = Λ−1γ

(5)

3̂
Λ , ω

1,(5)
2 = −Λ−1γ

(5)
12 Λ , ω

4,(5)
2 = Λ−1γ

(5)

1̂2̂
Λ,

ω
2,(5)
2 = −Λ−1(γ

(5)

11̂
+ γ

(5)

22̂
)Λ , ω

3,(5)
2 = Λ−1(γ

(5)

12̂
+ γ

(5)

1̂2
)Λ,

(E.24)

under the 5 dimensional Clifford map on the unwarped S2×S3. Likewise the 4 dimensional

components of the SO(3)d triplets in (D.6), (D.7) undergo a simplification when acted on

by Λ. One can show that they can be expressed as

Λη1
i = siη

1
0 − itiη1c

0 + µ̃iη
2
0 , Λη3

i = −µ̃iη2c
0 ,

Λη2
i = −(siη

1c
0 − itiη1

0 + µ̃iη
2c
0 ) , Λη4

i = µ̃iη
2
0

(E.25)
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in terms of two orthogonal constant spinors

η1
0 =


−i
0

0

1

 , η2
0 =


0

i

−1

0

 , (E.26)

and their Majorana conjugates. We have introduced

si = (cos θ1 cosφ1 , cos θ1 sinφ1 ,− sin θ1)i , ti = (sinφ1 ,− cosφ1 , 0)i. (E.27)

Together, (E.24) and (E.25) can be used to greatly simplify the 8 dimensional spinorial

components one needs to solve when plugging (6.5) into (6.3a)–(6.3c). This was extremely

useful for deriving the system of sufficient supersymmetry conditions in (D.20), (D.22),

(D.28). Using these conditions, it is also not hard to establish that the triplets satisfy the

following relations under Majorana conjugation:

ηic1 = −ηi2 , ηic3 = η4 (E.28)

and under inner product

ηi†1 η
j
1 = ηi†2 η

j
2 = 2δij , ηi†1 η

j
2 = −2iεijkµ̃k,

ηi†3 η
j
3 = ηi†4 η

j
4 = ηi†1 η

j
4 = ηi†2 η

j
3 = 2µ̃iµ̃j , (E.29)

ηi†3 η
j
4 = ηi†1 η

j
3 = ηi†2 η

j
4 = 0.

(E.29) is useful to derive (6.9).

Finally, let us work out how the invariant forms act on the 4 triplets. It is quite easy to

show that the various gamma matrix combinations appearing in (E.24) act on the constant

spinors of (E.26) in the following fashion:

γ
(5)

3̂
γ

(5)
12 γ

(5)

1̂2̂
γ

(5)

11̂
γ

(5)

22̂
γ

(5)

12̂
γ

(5)

1̂2

η1
0 η1

0 −iη1c
0 −iη1c

0 iη1
0 −iη1

0 −η1c
0 η1c

0

η2
0 −η2

0 −iη2c
0 iη2c

0 −iη2
0 −iη2

0 −η2c
0 −η2c

0 .

(E.30)

Using this table, and the rotated form of the triplets in (E.25), it is relatively simple

to establish the action of the invariant forms. For the one-form and two-forms one can

compute

ω
(5)
1 ω

1,(5)
2 ω

2,(5)
2 ω

3,(5)
2 ω

4,(5)
2

ηi1 ηi1 − 2ηi4 iηi2 2iηi4 2ηi3 iηi2 − 2iηi3
ηi2 ηi2 − 2ηi3 iηi1 −2iηi3 −2ηi4 iηi1 − 2iηi4
ηi3 −ηi3 iηi4 −2iηi3 −2ηi4 −iηi4
ηi4 −ηi4 iηi3 2iηi4 2ηi3 −iηi3 .

(E.31)

For the three- and four-forms one finds

ω
1,(5)
3 ω

2,(5)
3 ω

3,(5)
3 ω

4,(5)
3 ω

(5)
4

ηi1 iηi2 − 2iηi3 −2iηi4 −2ηi3 iηi2 −ηi1 + 2ηi4
ηi2 iηi1 − 2iηi4 2iηi3 2ηi4 iηi1 −ηi2 + 2ηi3
ηi3 −iηi4 2iηi3 2ηi4 iηi4 ηi3
ηi4 −iηi3 −2iηi4 −2ηi3 iηi3 ηi4 .

(E.32)
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The 5-form just flips the sign of every triplet, but does not appear in the lower form RR

sector in IIA and so does not concern us.

The actions (E.31)–(E.32) are appropriate for the forms on the five-dimensional S2-

fibration over S3. A little extra care needs to be taken when applying them to the main

text and (D.24). This is because the six-dimensional gamma matrices (D.9) contain a

factor that acts on the interval; moreover, the S2 and S3 are multiplied in the main text

by functions eC1 , eC2 . In terms of bilinears, the relation between the full forms in six

dimensions and their five-dimensional counterpart is

eC2ω1 = σ2 ⊗ ω(5)
1 , e2C1ω1

2 = I⊗ ω1,(5)
2 , eC1+C2ω2

2 = I⊗ ω2,(5)
2 ,

eC1+C2ω3
2 = I⊗ ω3,(5)

2 , e2C2ω4
2 = I⊗ ω4,(5)

2 .

(E.33)
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