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Abstract

The geometry of the N' = 3, SO(4)-invariant, AdSy solution of massive type
ITA supergravity that uplifts from the AV = 3 vacuum of D = 4 N' = 8 dy-
onic ISO(7) supergravity is investigated. Firstly, a D = 4, SO(4)-invariant
restricted duality hierarchy is constructed and used to uplift the entire, dy-
namical SO(4)-invariant sector to massive type IIA. The resulting consistent
uplift formulae are used to obtain a new local expression for the N' = 3 AdS,
solution in massive ITA and analyse its geometry. Locally, the internal S% geom-
etry corresponds to a warped fibration of $? and a hemisphere of S*. This can
be regarded as a warped generalisation of the usual twistor fibration geometry.
Finally, the triplet of Killing spinors corresponding to the N = 3 solution are
constructed and shown to obey the massive type IIA Killing spinor equations.
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1 Introduction

Massive type ITA supergravity [1] admits a consistent truncation on the six-sphere to
maximal supergravity in four dimensions with gauge group ISO(7) = SO(7) x R7 [2, 3].
The gauging is dyonic, in the sense of [4, 5] (see also [6]). By virtue of the consistency
of the truncation, all solutions of the four-dimensional theory uplift on S® to solutions of
massive type ITA supergravity. In particular, the critical points (which can only be AdS) of
the four-dimensional scalar potential give rise to supersymmetric and non-supersymmetric
ten-dimensional solutions of the form AdS, x S%. This product is generically warped and
the metric on S° displays an isometry group G C SO(7) related to the residual symmetry
within ISO(7) supergravity of the critical point it uplifts from. Using this technique,
new massive type IIA solutions have been found [2, 7, 8] and previously known ones
[1, 9, 10] have been recovered. Other supersymmetric AdSs solutions of massive type
ITA supergravity have been recently found using other methods in [11, 12]. Previous
constructions of supersymmetric AdSy solutions in massive type IIA supergravity include
13, 14, 15, 16, 17, 18].



In this paper, we investigate the ten-dimensional uplift of the N’ = 3 SO(4)-invariant
critical point of dyonic ISO(7) supergravity. This D = 4 critical point was found in [19].
A local form of its massive type ITA uplift has already appeared in [8]. Here, we provide
an alternate local form of this A' = 3 AdSy solution of massive ITA supergravity (equation
(5.1)) and discuss its geometric features. The internal space of the N = 3 solution is
topologically S%, endowed with a geometry that can be locally regarded as an S? bundle
over a half-S*. This is a generalisation of the twistor bundle over a quaternionic-Kihler
manifold of positive curvature, see e.g. [20, 15] for reviews. The twistor fibration allows one
to engineer nearly-Kéhler or half-flat geometries on six-manifolds Mg of topology different
than S%, see e.g. [15]. In turn, a well known class of ' = 1 (direct) product solutions
AdS4 x Mg of massive ITA supergravity entails a nearly-Kéhler [9, 21] or a half-flat structure
[13, 15, 16] on Ms.

It is suggestive that this A/ = 3 solution formally corresponds to an elaboration of
these A/ = 1 constructions. This is reminiscent of the situation for a well-known class of
D = 11 direct product solutions involving AdS, and a tri-Sasaki seven-manifold. Recall
that the latter can be regarded as an S3 bundle over a quaternionic-Kihler base, equipped
with an Einstein metric on the total space. This class of solutions is N = 3, see e.g. [22].
On each tri-Sasaki manifold, a second Einstein metric can be obtained by squashing the
S3 fibers by a certain constant amount. The resulting D = 11 AdSy solution is N = 1,
see [23, 22]. The analogy with these N' =3 and N = 1 solutions of D = 11 supergravity
should not be taken too far, though. The internal metric of the massive IIA N' = 3 solution
is certainly not Einstein, unlike the N' = 1 nearly-Kéhler solutions of [9]. In the ITA N' =3
solution, the S? fibers are squashed, not by a constant, but by a warping function of the
S% hemisphere base. The connection does not have definite duality properties, unlike in
the usual twistor fibration. Finally, the N' = 3 solution involves a warped, rather than
direct, product of AdS,; and the internal topological S°. Like in the D = 11 tri-Sasaki
case, though, the SO(3) R-symmetry acts on the fibers of the A/ = 3 massive ITA solution.

The type ITA N = 3 solution displays a local SO(4) symmetry, inherited from that
preserved by the N/ = 3 critical point of the D = 4 supergravity. More generally, we
construct in section 2 the restricted, in the sense of [24], duality hierarchy [25, 26] of
D = 4 ISO(7) supergravity that is invariant under this SO(4). This result is particularly
useful, as it allows us to consistently embed the entire, dynamical SO(4)-invariant sector
of the D = 4 N' = 8 supergravity into massive type IIA. The explicit consistent uplift
formulae are presented in section 3. These formulae give the ten-dimensional uplift of
any SO(4)—invariant solution of the ISO(7) supergravity, including solutions with running
scalars. The local and global features of this consistent embedding formulae are discussed
at length, and generalisations are given. Section 4 discusses further truncations. The
truncation to the dynamical Go—invariant sector of [3] is recovered, and an example that
illustrates the usefulness of the duality hierarchy approach is worked out. In section 5,
we turn our attention to the massive ITA uplift of solutions of the D = 4 supergravity,
focusing on vacuum solutions. In particular, a new local form of the A/ = 3 AdS, solution
in massive ITA is provided. Finally, in section 6, the solution is demonstrated to indeed be
N = 3 by explicitly building the triplet of Killing spinors that it preserves.



2 A D=4, S0(4)-invariant duality hierarchy

We are interested in the sector of D = 4 N/ = 8 dyonically-gauged ISO(7) supergravity
[24] that retains the fields that are invariant under the SO(4) subgroup of ISO(7) defined
by the embedding [19]

SO(7) O SO(3)' x SO(4) > SO(3)4 x SO(3)r = SO(4) , (2.1)

with SO(4)" = SO(3)1, x SO(3)r and SO(3)q the diagonal subgroup of SO(3)" x SO(3)L.
Equivalently, this SO(4) is also the maximal subgroup of the Go contained in SO(7),

SO(7) 5 Gz O SO(4) . (2.2)

The Lagrangian corresponding to this sector of the N' = 8 ISO(7) supergravity was given
in [24], and the vacuum structure was studied in detail there. Here, we complete the
analysis of the SO(4)-invariant sector by determining the restricted, in the sense of [24],
duality hierarchy [25, 26] in this sector.

The SO(4)-invariant sector of N' = 8 ISO(7) supergravity corresponds to an N' = 1
supergravity coupled to two chiral multiplets that parametrise a Kahler submanifold

SU(L,1)  SU(1 1)

o) < o) (2:3)

of E7(7/SU(8). The SU(1,1)? in the numerator is the commutant of the SO(4) in (2.1) or
(2.2) inside E7(7y. According to table 2 of [24], the SO(4)-singlets of the restricted, SL(7)—
covariant tensor hierarchy considered therein give rise to one two-form and two three-form
potentials in this sector. To summarise and fix the notation, the SO(4)—invariant, restricted
duality hierarchy of D = 4 N' = 8 supergravity contains the following real fields:
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1 metric : dsy ,
4 scalars ©0,X, 0, P,
1 two-form B,
2 three-forms : ct,c?. (2.4)

The embedding of the scalars into the N' = 8 Ez(7)/SU(8) manifold was discussed at
length in [24]. In turn, the two- and three-form potentials in (2.4) are embedded into the
SL(7)-covariant two-, B;”/, and three-forms, C’/, defined in [24] via

B/=4Bs/, B/=-3Bs, CI=C'57, V=06, (2.5)

and sz = Bj.i —Ci =0, Here, we have split the SL(7) indices I,J = 1,...,7 as I = (i,1),
i=1,2,3,1=0,1,2,3, as in appendix A.

In a conventional formulation, only the metric and the scalars in (2.4) enter the D = 4
Lagrangian. This reads [24]

L=(R—V)voly+ & [dp A wdep+ €% dx A dy] + L [d¢ A xdp + €2 dp A *dp] . (2.6)
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Table 1: Critical points of the scalar potential (2.7), namely, of N/ = 8 ISO(7)-dyonically-gauged
supergravity with invariance equal or larger than the SO(4) subgroup of SO(7) defined in (2.1).
For each point we give the residual supersymmetry N and bosonic symmetry G within the full
N = 8 theory, its location, the cosmological constant V' and the reference where it was first found.
We have employed the shorthand ¢ = m/g. All of these data are reproduced from [24].

with the scalar potential given by [24]

Vo= 1g%e?(1+e%y?) [—24 efTP — 820 4 2 ( — 3+ (8x2% — 3p?) 62¢>
(2.7)
+ et y? (9 + (3p + 4x)? 62¢>:| —gmx? (3p + 4x) e59¢ 4 % m? efvto

The constants g and m are the electric and magnetic gauge couplings of the parent N’ = 8
ISO(7) supergravity.

When gm # 0, the scalar potential (2.7) contains AdS critical points that sponta-
neously break the N' = 8 supersymmetry and ISO(7) gauge symmetry of the full D =4
supergravity to some supersymmetry N and residual symmetry G. See table 1 for a sum-
mary. The ' = 3 SO(4)-invariant point manifests itself as non-supersymmetric within the
subtruncation (2.6), (2.7), see [24] for further details. All these critical points are inherent
to the dyonic ISO(7) gauging and disappear in the purely electric g # 0, m = 0, or purely
magnetic, g = 0,m # 0 limits. Accordingly, these four-dimensional solutions naturally up-
lift to massive type IIA supergravity on S® and do not have direct counterparts in either
massless IIA on S% or massive IIA on 7.

The three- and four-form field strengths of the SO(4)—invariant two-form, B, and three-
form potentials, C1', C?, are

Hs=dB-29C'+29C*,  Hly=dC',  H =dC”. (2.8)

These expressions follow from the generic expressions given in (2.8), (2.9) of [24] evaluated
on equation (2.5) above. These field strengths are subject to the Bianchi identities

dH) = —2g H/,, + 29 HY, dH!, =0, dHZ, =0 . (2.9)

These in turn correspond to the SO(4)-invariant truncation of the generic, N' =8 SL(7)—
covariant Bianchi identities given in (2.13) of [24].



Not all of the fields in the SO(4)-invariant, restricted tensor hierarchy (2.4) carry
independent degrees of freedom: the field strengths of the form potentials are subject to
duality relations, see [26, 24] for a generic discussion. Particularising the SL(7)-covariant
duality equations (2.17), (2.18) of [24] to the present case, we find the following duality
relations obeyed by the SO(4)—invariant field strengths:

H) = * <d¢ —e*pdp — do + € dx) ,

Hé) = [g e‘f’(l + 62‘px2) (4 — 4233 + e“p*‘b(l — 36290X2) (1 + €2¢p2)>

+m e¢+6‘ppx2] voly ,

H?, = [g (1+e*x?) (36“’ —3eMpx? + 6e? (1 + e*x?) — 4e?(1 + 62@X2)2>
+m e¢’+6“’x3} voly . (2.10)

The Bianchi identities (2.9), combined with the duality relations (2.10), reproduce the
scalar equations of motion that follow from the Lagrangian (2.6), (2.7).

Even though it does not play a critical role in the ITA uplift, it is nevertheless useful
to consider the SL(7)-singlet four-form field strength whose duality relation was given in
(2.25) of [24]. In the SO(4)-invariant case at hand, this duality relation reads

Hy = et [g Y2 (3p+4x) — m} voly . (2.11)

Using (2.10), (2.11), the scalar potential (2.7) can be checked to be related to the four-form
field strengths H (14), H (24) and H, (1) through

9(3H,,

L FAHZ) +mHyy = —2V voly . (2.12)

(4)

This is the SO(4)—-invariant counterpart of the full N' = 8 expressions (2.28), (2.29) of [24].
At any of the critical points of the scalar potential (2.7), that were summarised in table 1
above, these four-form field strengths turn out to obey

g(BHlo+4H: o)+ TmHuylo=0,  Hllo=Hglo, (2.13)

where |o denote evaluation at a critical point.

We conclude by recovering two interesting sectors of D = 4 N' = 8 ISO(7) supergravity
from the SO(4)-invariant sector. Firstly, according to the branching rule (2.1), the SO(3)" x
SO(4)—invariant sector is contained in the SO(4) sector. This is recovered by setting the
pseudoscalars to zero,

x=p=0, (2.14)

while retaining all other fields in the duality hierarchy (2.4). The SO(3)’ x SO(4)"—invariant
Lagrangian, tensor field strengths, Bianchi identities and duality relations follow by letting
X = p = 0 in the expressions above. Secondly, as discussed in [24], the Go—invariant
sector can be also recovered from the SO(4)-sector. This is apparent from the branching



(2.2). The Go-invariant sector is recovered from the SO(4)-invariant sector through the
identifications
¢=¢, x=p, B=0, C'=0C=C, (2.15)

along with Hz = 0 and H<14) = H<24) =

and duality relations to their Go—invariant counterparts, given in section 4 of [24].

H 4. These identifications bring the Lagrangian

3 Truncation from type ITA supergravity

We are now ready to give the complete, non-linear embedding of the dynamical SO(4)-
invariant sector of D =4 N = 8 ISO(7) supergravity into massive type ITA. As discussed
in [3], the embedding of the full N' = 8 theory is naturally expressed, at the level of the
ITA metric, dilaton and form potentials, in terms of the restricted, SL(7)-duality hierarchy
introduced in [24]. Accordingly, the complete ITA embedding of the SO(4)-invariant sector
is naturally written in terms of the tensor hierarchy discussed in section 2.

3.1 Consistent embedding formulae

The SO(4)—invariant consistent embedding formulae can be obtained by particularising
the N' = 8 formulae given in (3.12), (3.13) of [3] (see also [2]) to the case at hand. It is
a matter of simple algebra to find the embedding of the two- and three-form potentials
of the D = 4 tensor hierarchy (2.4) into their D = 10 counterparts, using their N/ = 8
embedding (2.5). In contrast, as is usually the case, the embedding of the D = 4 scalars
entails a lengthy computation. Here, we give the final result, referring to appendix A for
further details on the relevant geometric structures that arise in the calculation.

In order to express the result, it is convenient to introduce constrained coordinates ji‘,
i=1,2,3, on the two-sphere 52,

S il =1, (3.1)

and right-invariant one-forms' p?, i = 1,2, 3, on the three-sphere S3. These are subject to
the Maurer-Cartan equations

dp! = —%eijkpi AP (3.2)
It is also convenient to introduce the following combinations of D = 4 scalars [24]
X =1+e*y?, Y =1+e2%p?%, Z = ez‘Px(e‘z’p —efx) , (3.3)

and the following functions of D = 4 scalars and an angle o on the internal S,

Ay = e®sin a + e cos’ o,

As = e? X sin® a + €*?7 %Y cos’ o,

Az = XA1Ay — Z?sin® o cos® a . (3.4)

!The right-invariant one-forms p’ on S* shouldn’t be confused with the D = 4 pseudoscalar p.



Using these definitions, the complete nonlinear embedding of the SO(4)—invariant field
content (2.4) of ISO(7) supergravity into type ITA reads,

ds3, = eé‘le/ZlAi/gA;M ds?
+g 72X A1A cos? a8 DD + g2 ? X tda? 4+ g 72X T A sin? a d5?(S?) |,
f =it XTVAAYIA

121(3) =C'cos’a+ C%sin?a — ¢! sinacosa B A da
—i—% g2 x sinacos ada A €ijk LD A p*
—i g3 esoxXAgl (XAl + Z cos? a) sin? o cos® a €ijk Dji' A Dj? A pF
—1—%9 3e“”xA sin? a cos? a fi; Dy A pLA P

—1—4—18 g3 XﬁlAl_2 (e¢pXA1 + e?xZ cos® a) sin* Q€ N Y

B(g):—%g 220X Lsinada A i pf
—% g2 62"+¢A51 (pXA1 — xZ sin? a) cos® €ijk LD A D/]k
+39 22N XTIAT! sin accos a Dji; A p

+é g 2e* Y X 2AT (e‘PXAl — e?Zsin? @) sin? avcos av e, i 7 A o~

A(1) == g_1 e_Z@ZA sin? Q COS v i p , (3.5)

where we use the ten-dimensional Einstein frame conventions of appendix A of [3]. Indices
i, j are raised and lowered with &;;, and d3%(S?) is the round metric on the S* on which the
p' are defined. We have also introduced the following covariant derivative and one-form

Az’
Dit = djii + Gijk.Ajﬂk ’ with Al = —%ZX*IAI1 sin? a p’ . (3.6)

These embedding formulae depend on the (non-vanishing) D = 4 electric gauge coupling
g, but not on the magnetic coupling m. Thus, they simultaneously describe the embedding
of the dynamical SO(4)-invariant sector of the purely electric, m = 0, and dyonic, m # 0,
ISO(7) gauging of D = 4 N = 8 supergravity into massless and massive, respectively, type
ITA supergravity.

The consistent embedding formulae (3.5) are valid in full generality for D = 4 dynam-
ical fields. However, being expressed in terms of the tensor hierarchy (2.4), they contain
redundant degrees of freedom. As discussed in general in [3], these redundancies can be
eliminated by expressing the consistent embedding in terms of the ITA field strengths and
using the D = 4 duality relations. In the case at hand, the only contributions from the
D = 4 form field strengths (2.8) happen to occur in the ITA four-form 13‘(4>,

Fu = H(4) cos® o + H<24) sin? a + g ' sinacosada A Higy + - - - (3.7)



where the dots stand for D = 4 scalar and derivative-of-scalar contributions without Hodge
dualisations. Equation (3.7) follows from (3.5) after using the D = 4 definitions (2.8). It
thus provides a ten-dimensional cross-check on the four-dimensional calculation of section
2. More importantly, equation (3.7) now expresses the consistent embedding in terms of
the independent metric and scalar degrees of freedom contained in the D = 4 Lagrangian
(2.6), (2.7), when the duality relations (2.10) are employed. A simpler example will be
presented in section 4.2.

A long calculation allows us to compute the scalar contributions to the IIA field
strengths. For simplicity, we present the result for constant D = 4 scalars?

F<4) =Uvoly
+% [mg‘4 64‘p+¢xX_1A51 [pXAl — xZ sin? a] cos> a0 — 29 3y
+2¢73 e_¢AI1A§2 sin? v cos? o
X ((6¢X - e“’Y)e“"XAl + (e¢ — e‘P)e¢XA2 — ed’Zz(cos2 « — sin? a))
X (e¢Z [P XA — xZ sin? o cos? o+ e Y X A (XA +Z cos? a])
—g3 e¢ZA1_1A3_1 sin® o cos® a
X (2 [(e¢ —e?)pX — xZ| cos? o — 3[pXA —xZ sin? a])
+2¢73 e‘PxXAg_l
X ([XA1 — 7 cos? a] — [2XA1 — 37 sin® a] cos® v — (ed’ — (33")Xsin2 a cos? a)]
X sinacosada A € D' ADi A pF
—% xe? Al_lAgl {mg*4 63¢+¢X72A1_1 <X€¢A3 sin? a
+(e"°XA1 — e?Z sin? a) (pXAl — xZ sin? a) cos? a)
—2g_3 <A3 + (XA1 + Z cos? a) (XAl + Z sin? oz))}
x sin? avcos? oo Dji; A Dpj N N
—i—% XﬁlAl_l {mg*4 T2 X 1sin? o
+2¢73 e“"ZAIQAgl (e‘pxXAl [XAl + Z cos? oz]
+e%Z [pXAl — xZ sin? a] cos? a) sin? a cos? a
—g3 XAIQ (2 A2 [XAl + Z sin® a] —2e” [e‘pXAl — e?Z sin? a] cos? a
+ePAq [2XA1 + Z cos? a] sin? a)}

xsinacosada/\/}iDﬁj/\pi/\pj

—% X*2A1_2 [mg*4 etPyix—1 [e“"XAl — e?Z sin? a]

2The complete, dynamical ITA field strengths contain the contributions in (3.7), (3.8), plus omitted
contributions from dp, d¢, dx, dp with no Hodge dualisations.



—g3 Afl <XA1 [26¢pXA1 — 3e¥xZ sin? oz]
+2e¥ X [e¢pXA1 + e?xZ cos? o
—2xZ A [SXAl + 27 sin® a] + ed’)(Z2 sin? aﬂ
x sin® a cos v dax A eijkpi Apt A,
ﬁ<3) = %9_2 62¢A§2 [2((6¢X — e‘pY) e’ XA+ (e(ZS - e‘p)ed’XAg
—e? 72 (cos a — sin a)) (pXAl xZ sin? a) cos? a
—e?Ag (2[(6¢ —e¥)pX — xZ] cos?
—3(pXA1 — xZ sin® a))} sin a cos? avdar A €ijk p'Di? A DiiF
—% g2 6230X71A1_2A§1 [265"+¢Z(pXA1 — xZ sin? a) cos? a
—xAze? (A1 + 2€¢):| sin o cos® avder A Djig A p'
—i—% g2 X_QAI_QA:;1 [63‘pxXA1A3 + 2910 (2XA1 + Z sin? a) (XA3
—Z(pXAl — xZ sin? a) cos? a)} sin? o cos a €ijk Dit A p? A pF
+% g2 €2<PXX72A1_2 {2 e X cos’a— 27 (XAl + Z sin? a)

—(e‘pXAl — e?Z sin® a) sin? 04} sinavda A €5 il Apk

13'@) = % mg =2 62¢+¢A§ (XZ sin?a — pX Ay ) cos® €ijk [ ‘Diiy A Dji*
—i—% [mg*2 e2PtoNx 1 g7t e*QWZ} Al_l sin? o cos a Djfi; A p*
-1 [mg 22y Xty gt e_‘pZAf2 (2 cos? o — e ¥ sin? ozAl)] sina da A fi; pt

—l—% X_IAI2 [ “2e¥y X (e‘pXAl — ¢%Z sin? a) +2¢7t 6_2“’Z(XA1 + Z sin? a)}

x sin? avcos av e, fi'p? A o, (3.8)
together with Fjo, = m [2]. In agreement with the discussions in [3, 7], the field strengths
(3.8) now do depend on the magnetic gauge coupling m of the D = 4 supergravity, unlike
the gauge potentials (3.5). By the consistency of the truncation, the metric and dilaton
n (3.5), together with the constant-scalar field strengths (3.8), solve the field equations
of massive type ITA supergravity at any critical point of the D = 4 scalar potential (2.7).
We will make this explicit for the A/ = 3 critical point in section 5.

The Freund-Rubin term U voly in F, follows from the general SL(7)-covariant four-
form expression given in [3]. It can be written in terms of the SO(4)-invariant four-form



field strengths H,

(0 and H(24) as

Uvoly = H(14) cos® a + H<24) sin? o (3.9)

or, using the dualisation equations (2.10), as
U= [g e?(1+e*y?) (4 —4e?T3 0\ + P70 (1 - 3e2°x?) (1 + e2¢p2)>

+m e?16% pr} cos? o

+[9 (1 + 62<,0X2) (3@‘»" _ 3e¢>+4<,0pX3 + 66¢(1 + €2¢X2) N 46¢(1 + 62¢X2)2>
+m e¢+6“"x3} sin? o, (3.10)

in terms of the D = 4 scalars. Note that, while the ITA field strengths (3.8) are evaluated
for constant scalars, the Freund-Rubin term (3.10) is valid beyond that assumption: it
takes on the same form also for dynamical scalars. Some calculation reveals that U is
related to the D = 4 scalar potential (2.7) and its derivatives via

gU = =5V +1 (V= pd,V) cos® a+ 15 (0,V =20,V —x 0,V +200,V ) sin*a . (3.11)
At the critical points of the potential, recorded in table 1, this expression reduces to
gUs = —1 V4, (3.12)

in agreement with the general N' = 8 discussion of [3]. See respectively 7] and [29, 30] for
related discussions in the massive ITA on S% and D = 11 on S” contexts.

3.2 Local and global structure

For arbitrary values of the D = 4 scalars, the six-dimensional internal local geometry in
(3.5) can be regarded as the warped product of an interval I, on which « takes values, and
a family of five-dimensional spaces parametrised by «. At fixed «, the five-dimensional
space corresponds to an S? bundle over S2, with connection one-forms A’ given in (3.6).
All such bundles are trivial. In the present case, this can be seen by the fact that, at fixed
«, the curvature of the connection A’ is identically zero by the Maurer-Cartan equations
(3.2). This local characterisation is useful to discuss the global extension of the geometry,
to which we now turn. It is not the only possible local description, though. A different
local characterisation will be given below.

Globally, the internal geometry extends smoothly into S¢. This is expected from the
fact that the D = 4 theory (2.6), (2.7) arises upon consistent Kaluza—Klein truncation of
massive type ITA on S via (3.5), and the KaluzaKlein deformations are not supposed to
change the internal topology. That the topology of the compactification space is indeed
56 is most easily seen by continuously deforming the geometry into the Go-invariant locus
(2.15). On this locus, the internal metric in (3.5) reduces to the usual, round Einstein
metric (A.2) on S®. The local line element (A.2) is adapted to the topological construction
of S8 as the ‘join’ of S? and S2, provided the S® angle « is restricted to the interval

ael=0,7]. (3.13)
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On the Go-invariant locus and at o = 0, the S? remains finite and the S? collapses; at the
other endpoint, a = 7, the opposite happens.

The expression (3.5) makes it straightforward to continuously deform the internal ge-
ometry to the round metric on S, since it is given as a function of the D = 4 scalar
manifold (2.3). However, once the scalars are fixed to their specific values at some critical
point of the potential (2.7), as e.g. in the explicit N' = 3 solution (5.1) below, tracking
down the deformation into the round S geometry is no longer obvious. In such cases, it
is more useful to directly characterise the internal S® by verifying that it still corresponds
to the join of S? and S®. Namely, that the shrinking patterns of S? and S® at each end-
point of the interval I remain valid away from the Go—invariant locus. To see this, we
use the definitions (3.4) to compute the behaviour of the relevant metric functions at both
endpoints of I. At the lower end,

e? X2 A1A51 cos® a = OTPXY L — 22 (X2 — e 22)Y 2a? + O(at),
a—

e? ATt sin? o — a® +0(at) . (3.14)
a—

Thus, S? remains finite and S2 shrinks to zero size for all values of the D = 4 scalars. At
the upper end,

e’ X AN cos’a —— (Z—a)’ +O((F —a)h),

s
a=%

e‘ﬂAl_l sin? o cx—>—£> e Ote 4 e_2¢+2“"(§ —a)?+ o5 — )ty (3.15)
2
and the opposite happens: S? shrinks and S? remains finite for all D = 4 scalar values.
An alternate local characterisation of the internal geometry in (3.5) may be given as
follows. The local internal geometry may also be regarded as an S? bundle over the four-
dimensional local geometry My = I x S3, where I is the interval (3.13) parametrised
by «. This local construction is a generalisation of the twistor fibration over a four-
dimensional Riemannian space My. In the usual twistor construction, the metric ds?(My)
on My is taken to be Einstein with (anti)self-dual Weyl tensor. The local metric on the
six-dimensional twistor bundle is

dsg = 10;; D' D! + $ds*(My) , (3.16)

see e.g. [31]. Here, fi* parametrise an S? as in (3.1), and the covariant derivatives Dji’ are
defined as in the left most equation in (3.6), in terms of a My-valued connection A’. Being
four-dimensional and Einstein, M, is automatically quaternionic-Kahler. The curvature
of the connection,

Fr=dA" + i AT N AY (3.17)
is proportional to the quaternionic-Kéhler forms J* on My. The self-duality or antiself-
duality of the Weyl tensor on My devolves in the antiselfduality or self-duality of F! with
respect to the metric ds?(My). For example, the twistor bundle on M, = S* coincides
with the three-dimensional complex projective space, CP3. Taking ds?(My) to be the
usual round metric on S?,

ds*(S*) = da® 4 sin® a ds*(S?) (3.18)
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(with o here ranging in 0 < a < 7) and
A" = 1(1 - cosa) p', (3.19)

where the p' are the right-invariant Maurer-Carten one-forms on S3, subject to (3.2), the
twistor bundle metric (3.16) becomes the homogeneous nearly-Kihler metric on CP?,

The local internal metric in (3.5) is a generalisation of the twistor construction. In our
case, My = I x S? is the upper S* hemisphere, given the range (3.13) of a. The metric
ds3(My) induced on it is not selfdual Einstein for any values of the D = 4 scalars. On
the Go-invariant locus (2.15) the S? fibration trivialises, A’ = 0, and the local geometry
becomes locally a warped product of S? and I x S3. Away from the Go-invariant locus,
the S? is warped (unlike in (3.16)), and non-trivially fibered through (3.6) over I x S3.
The curvature (3.17) of the connection A’ is

Fi= —e‘pZX_lAl_2 sinacosada A pt + éZX_zAl_2(2XA1 + Z sin? @) sin? aeijkpj A pk ,

(3.20)
and its Hodge dual with respect to the metric induced on I x S3,
, _3 .
*F! = %efé‘pZX*QAl 2(2X A1 + Zsin® a)sinada A p'
_5 S
—ie%“”ZXflAl 2sin acos el jpp? A p (3.21)

The non-trivial connection A’ is neither selfdual nor antiself-dual for any values of the
D = 4 scalars, as nowhere on the scalar manifold (2.3) do (3.20), (3.21) obey *F* = £F°.

Massive type ITA supergravity admits a class of N/ = 1 direct product solutions AdS4 x
Mg where Mg is nearly-Kahler [9, 21] or half-flat [13, 15, 16]. For example, Mg can be
taken to be the round S® equipped with its homogeneous nearly-Kéhler structure, see
appendix A for a review in the present context. On topologies different from S°, a natural
way to engineer nearly-Kahler geometries or half-flat geometries of the required type is
via the usual twistor fibration [15]. For example, Mg can be taken to be CP? with metric
(3.16). Our local geometry (3.5) restricted to the Go—invariant locus (2.15) reduces to
the round, homogeneous nearly-Kihler structure on S®. Away from the Gy locus, as in
the A/ = 3 solution of section 5, the geometry can be locally described by the generalised
twistor fibration discussed above.

On the Ga-invariant locus (2.15), the symmetry of the configuration (3.5) is enhanced
to a homogeneously acting Go. See section 4.1 for further details. Away from the Go
locus, the isometry of the internal geometry is the SO(4) subgroup of SO(7) defined in
either (2.1) or (2.2). The group SO(4) acts by isometries with cohomogeneity one, and is
also preserved by the supergravity forms. The SO(3)q subgroup of SO(4) rotates the 52
fibers, and SO(3)r acts on the S? base. The supersymmetry of the N = 3 solution will be
discussed in section 6.

Some generalisations can be envisaged. When the D = 4 scalars are restricted to the
Go—invariant locus (2.15), the type ITA solution (3.5) depends only on the homogeneous
nearly-Kihler structure on S%. In this case, the S® can be replaced with any other nearly-
Kéhler manifold. This situation was discussed in [7]. Away from the Go locus, the solution
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can be also generalised. Now, the generalisation entails replacing S% with the cyclic lens
space S3/Z,, with the identification acting on the Hopf fiber. While S®/Z, is a smooth
manifold, the total six-dimensional geometry corresponding to this generalisation displays
orbifold singularities.

4 Further truncations

It is useful to obtain particular cases of the uplifting formulae derived above. Here, we will
discuss the truncations to the sectors of the D = 4 supergravity with Gy and SO(3)’xSO(4)’
symmetry.

4.1 Truncation to the G5 sector

The sector of D = 4 ISO(7) supergravity that retains singlets under the Go subgroup of
SO(7) was analysed in detail in [24], and its explicit ten-dimensional embedding worked out
in [3]. Its consistent ITA embedding was recovered from that of the SU(3)-invariant sector
in [7]. Here, we will recover the embedding of the Gg-sector from the SO(4)-invariant
consistent truncation formulae of section 3.1.

The D = 4 Gg-invariant sector is recovered from the SO(4) sector by imposing the
identifications (2.15). Bringing these relations to the consistent embedding formulae (3.5),
we find that the connection (3.6) trivialises, A’ = 0, and that the scalar dependence of the
internal metric factorises in front of the round Einstein metric ds?(S%) on S foliated as in
(A.2). The internal S dependence drops out from the dilaton. Finally, all the dependence
of the IIA potentials on the internal S® combines into the homogeneous nearly-Kihler
structure 7, Q on S%, through the expressions (A.14). More concretely, (3.5) reduces to

3 _1
d%y = 19 (14 €2 x?) 1ds? + g 2719 (1 + *x?) " 1ds*(S°) |
e = eg(p(l + 62"9x2)_% ,
1

T, Ay =0, (4.1)

in agreement with the formulae for the consistent truncation to the Go—invariant sector

121(3) =C+ g_3x ImQ , B<2) = g_2 62“")((1 + 6290)(2)7

given in (4.3) of [3]. Similarly, the constant-scalar field strengths (3.8) reduce to the
corresponding contributions in (4.4) of [3].

4.2 Dilatons

According to (2.14), the SO(3)" x SO(4)" —invariant sector of N' = 8 ISO(7) supergravity
retains only the dilatons ¢, ¢, along with the two- and three-forms in the tensor hierarchy
(2.4). From (3.5), (2.14), it is apparent that the field strengths in this subsector will
not contain terms in dp or d¢, prior to imposing the dualisation (2.10). In other words,
equation (3.7) for Fi, is exact (the dots can be disregarded) and Hs and Fj,, are zero.
Using the dualisation conditions (2.10), the full non-linear embedding of the D = 4 metric
plus dilaton sector into massive type ITA reads, at the level of the field strengths,

a5ty = ene AP A dsh
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+g_2A1A§1 cos? ads?(S?) + g 2 ¥da® + g_QAfl sin? o d§2(53)] ,
e® = elTlsoAi’MA;l/Q )
F<4> = [g (4 e? + 62"9_¢) cos? o + (36“’ + 2e¢) sin? a} voly + ¢ ' sina cos ada A *(dqf) — dgp)

Hgy=Fpy =0, (4.2)

with Ay, Ag given by (3.4) with x = p = 0. In this sector, the fibration of S? over I x S3
also trivialises, A’ = 0. Accordingly, the symmetry preserved by the configuration (4.2) is
the SO(3)' xSO(4)" subgroup of SO(7) defined in (2.1), with SO(3)" and SO(4)’ respectively
acting on the S? and the S3. By using the D = 4 duality hierarchy (2.10), the consistent
embedding (4.2) becomes expressed in terms of independent four-dimensional degrees of
freedom only: the dilatons and their derivatives, and the metric, explicitly and through
the Hodge dual.

5 N =3 SO(4)-invariant AdS, solution of massive type ITA

By the consistency of the embedding, the ten-dimensional metric and dilaton in (3.5), along
with the field strengths that follow from the potentials given in that equation, satisfy the
equations of motion of massive type ITA supergravity provided the equations of motion
that follow from the D = 4 Lagrangian (2.6), (2.7) are imposed. In particular, (3.5),
(3.8) evaluated on the critical points of the scalar potential (2.7) summarised in table 1
give rise to AdSy solutions of massive type IIA. The N' = 1 and N = 0 critical points
with Gg symmetry uplift to the solutions respectively found in [9] and [10]. The non-
supersymmetric SO(7)-invariant critical point gives rise to a solution given in [1]. See [7]
for these solutions in our conventions. In all these solutions with at least Go symmetry, the
fibration trivialises, A’ = 0, and the metric becomes the round, SO(7)-symmetric Einstein
metric on S8, In the Go-invariant solutions, the symmetry is reduced by the supergravity
forms, which take values along the homogeneous nearly-Kéhler structure on S°.

Here we are interested in the uplift of the N' = 3 critical point of ISO(7) supergravity
[19]. Bringing the vacuum expectation values of the D = 4 scalars recorded in table 1 to
the formulae (3.5), (3.8), and rescaling the external D = 4 metric and the Freund-Rubin
term with the cosmological constant recorded in the table so that AdS, is unit radius, as
in [7], we find the massive type ITA uplift of the N’ = 3 solution. In Einstein frame it
reads,

ds3, = L* (3 + cos 2a) 18 (3 cos* a + 3cos® a + 2) v [d52(AdS4)

2(3 + cos 2a) cos? o 8sin? o

3costa+ 3cos?a+ 2

5 DE'D + 2da? + d§2(53)},

3 + cos 2«

(3 + cos2a) 3/4

e? — %0

(3cos404+3cos2a+2)1/2 7
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L3e1% Fy = 3v/2vol(AdS,)

4/6 (2 cos* o + 3cos o + 3) sin av cos® o
(3 + cos 2a) (3 cos? o + 3cos? a + 2)

da A €y Djit A Djd A p*

V6 (5 + 3 cos 2a) sin? o cos? o
2 (3cos4a+3cosza + 2)

Dfi; N Djij A p* A p?

4+/6 sin® o cos «

—da A fi; Dfi; A p' A p?
(3 + cos2ax)

2v/2 (5 + 3 cos 2a) sin® a cos o
\/§ (3 + cos 2a)3

da A eije p' A pd A pF,

23 (3(:086a +8costa+ 11 cos® o + 2)

L_QE_%(ZSO ﬁ(B) = — 2
(3 cost o + 3cos? a + 2)

sin a cos? avdov A €ijk WD’ A D"

+8ﬁ (cos4 a+ cos?a + 2) sin o cos? o
(3 + cos 2a) (3 costa + 3cos? a + 2)

do A Dji; A pt

V3 (3 —+ cos 2a) sin? a cos o

eiix Dt A p? A pF
2 (3costa+ 3cos? o+ 2) ik DA 7N p

2\/3 sin® o s
5 da A€ atp’ A pk ,
(3 + cos2a)
N V2 (5 + 3 cos 204) cos® o : . 2v/2 sin? o cos « ;
Llei® fr, — eiin D A Dk + Djii A pi
¢ @ 4(3(:054a+3(3032a+2) k=R H 3 + cos 2a Hi A P
B 4+/2 sin® o da/\ﬁ,-pi—k 3sin? acos a Ei'kﬂiﬂj/\pk,
2 2 €ij
(3 + cos 2a) V2 (3 + cos 2a)
- 3

22’

in the ITA conventions of appendix A of [3]. The covariant derivative of i* and the corre-
sponding connection A’ are, from (3.6),

Dit =di’ + €, AP, with A= _sina o (5.2)
J 3 4+ cos 2«

and we have defined L2 = 2~ 12 33 g_% m1 and €% = 275 31 g%m_%. A set of gauge
potentials for the (internal) field strengths in (5.1) follows from (3.5)3:

3This set of gauge potentials and the metric in (5.1) are related to the expressions given in [8] by
identifying their S® angle épr with our «, £pr = «, relating their S® embedding coordinates pbyg, vbg with
our ,u%, u' through ,LL%)R = sinaﬁz, vir = cosa fi®, Vg = cosa i%, vig = —cosa jit, letting %L%R = L2
and rearranging significantly. The explicit expressions (E.11), (E.14) for the S® embedding coordinates /i’
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A 2v/2 ) )
L 3ei% Ag = \—[ sin o cos avdar A €55, fi' DY A o

V3

21/2 sin? o cos? a
\/§(3(:os4a+ 3cos? o+ 2)

eiji D' AN D7 A p"

4\@ sinacos?a _ . . .
LD A p* A p?

\/§(3+0082a)
2v/2 (2 + cos 204) sin* o ; —_—
- 5 €ijk P NP AP,
3\/?:(34—005201)
R 2 da A o + (5+3cos2a)cos3a D A Dk
e =——sinada ; €5
* V3 e V3 (3costa+3cos?a +2) igk H 5K K
4sin? o cos a e (7+cos2a) sin? a cos o 700 A K
Hi /AP €ijk M P
\/§(3+cos2a) ' \/§(3+cos2a)2 N
-2
L7lei® Ay =v2 2 g (5.3)

3 + cos 2«

All the comments made in section 3 for the generic solution away from the Go-locus
apply to the specific N' = 3 solution (5.1). The internal metric and supergravity forms
extend smoothly on S°. Locally, the solution can be regarded as a (trivial) S? bundle
over S? foliated by « or, alternatively, as the warped generalisation of the twistor fibration
discussed in section 3.2. The angle a has range (3.13), ii' parametrise S? via (3.1) and
p! are the right-invariant Maurer-Cartan one-forms on S3, subject to (3.2). The solution
displays a cohomogeneity-one isometry group SO(4) = SO(3)q xSO(3)gr, where SO(3)4 and
SO(3)R respectively act on the S? fibers and the S base. The solution can be generalised
by replacing S with the cyclic Lens space S3/Z,, a generalisation that introduces orbifold
singularities. The N' = 3 supersymmetry of the solution is shown in the next section.

6 Supersymmetry of the N/ = 3 solution

The gravitini of the D = 4 N' = 8 ISO(7) supergravity lie in the spinor representation of
SO(7). Under (2.1), this branches as*

50(3) xSO(3)1 xS0()r 80(3)ax30(3)r

8 (2,2,1) + (2,1,2) (1,1)+(3,1) +(2,2) . (6.1)

At the N =1 Go-invariant AdS critical point, only the (1,1) gravitino remains massless,
while all others pick up masses [24]. The full symmetry of this solution within the D =4

and the right-invariant forms p° are also useful for this comparison. Note, however, that our expressions
for the A/ = 3 solution follow directly from the uplifting formulae (3.5) for the dynamical SO(4)-invariant
sector of N = 8 ISO(7) supergravity, which were not given in [8].

“More precisely, here and below we refer to the Spin groups, SU(2)’, SU(2),, SU(3)r and SU(2)a.
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N = 8 supergravity is OSp(4|1) x Go. At the N’ = 3, SO(4)-invariant critical point, it is the
(3,1) gravitini that remain massless [24]. While the N = 3 critical point is invariant under
SO(4) = S0O(3)4 xSO(3)Rr, the massless gravitini are only invariant under the second factor,
and transform as a triplet under the first factor. The symmetry of the N' = 3 solution
within the /' = 8 theory is thus OSp(4|3) x SO(3)g, with SO(3)q C OSp(4]3) identified as
the R-symmetry group.

These (super)symmetry groups are preserved by the ten-dimensional uplift, so the
above considerations should allow us to identify the G-structures carried by the family of
type ITA configurations (3.5). The R that furnishes the fundamental representation of the
semisimple, SO(7), part of the D = 4 gauge group is to be identified with the ambient space
of the uplifting S®. In other words, this SO(7) can be regarded as the generic structure
group of the ambient R”, with the internal supersymmetry parameters transforming in the
8. On the Go-invariant locus (2.15), the type ITA configuration (3.5) is N/ = 1. The Ga—
invariant supersymmetry parameter corresponds, via (2.2), to the (1,1) singlet in (6.1).
The structure of R gets reduced to Go (holonomy), which in turn descends into S° as a
nearly-Kéhler SU(3)-structure.

Away from the Gg locus, as in the solution (5.1), the ITA configuration (3.5) is N' = 3.
The supersymmetry parameter transforms under SO(3)q x SO(3)r as the (3,1) in (6.1).
The ambient R” is thus equipped with an SU(2)-structure, with SU(2) = SO(3)r and
R-symmetry SO(3)q. Recall that an SU(2)-structure in seven dimensions is characterised
by a real one-form and a real two-form, transforming as triplets of the R-symmetry group,
see e.g. [32]. Denoting the R” coordinates by x!, I = 1,...,7, and splitting I = (i,%),
i=1,2,3,1=0,1,2,3 as in appendix A, the one- and two-forms of our seven-dimensional
SO(3)gr-structure can be identified as dz* and %(Ji)gj dai Ada? | with (J")%j defined in (A.5).
These indeed transform as triplets under the SO(3)4 R-symmetry. The SU(2)-structure on
R” descends on S% as an identity structure. The latter is characterised by an SO(3)q triplet
of scalars, of one-forms, and of two-forms, that can be constructed as spinor bilinears.

Rather than characterising the identity structure, we will directly contruct the SO(3)q
triplet of Killing spinors, focusing on the A/ = 3 solution (5.1) for definiteness. In principle,
one would expect that the consistency of the uplift should determine the relevant Killing
spinors from combinations of those of the round S®. In practice, however, such formulae
have never been worked out (although see e.g. [33] for a discussion). It then turns out to
be more efficient, though still a rather demanding exercise, to construct the Killing spinors
by direct integration of the type IIA Killing spinor equations on the background (5.1).
Here we give the end result and sketch the main steps to derive it. Further details can be
found in appendices D and E.

Let ¢ be the ten-dimensional Majorana supersymmetry parameter, let ¢4, i = 1,2,3,
be three of the chiral and antichiral Killing spinors of AdSy, and let x* be an SO(3)4 triplet
of Dirac spinors on the internal six-dimensional geometry corresponding to the solution
(5.1). We take

E= (i X'+ Gim ® X, (6.2)

with the SO(3)4 indices contracted, and raised and lowered with ¢;;. The superscript ¢
denotes Majorana conjugation. The ten-dimensional spinor é given by (6.2) is manifestly
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Majorana, by the second relation in (D.3). We require that (6.2) annihilates the super-
symmetry variations of the type ITA fermions. Using the AdS, Killing spinor equations
(D.3) obeyed by (%, this turns out to be equivalent to the following set of equations for x*
and x*, defined on the six-dimensional internal geometry:

e A X + [dA + te (F(O) + Foi+ Gy - ZG(0)> ] =0, (6.3a)
[dﬁb + 3 A7+ fe <5F<o> +3F 0y + G +iG ]X (6.3b)
{VM + LA+ LAt (F(O) — Py + & +zG(0)) a1 ] : (6.3¢)
Here, B
24 = ¢392 (3 4 cos2a)'/2 (6.4)

is the strlng frame, for convenience, warp factor of the solution (5.1), (;5 the dilaton therein,
F(0>, F<2), H<3), the IIA field strengths, G 1) the internal component of F<4 and G(O) =
3V2 L3e i e 4A Also, vy are the six-dimensional gamma matrices, with M =1,...,6
tangent-space indices, 4 is the six-dimensional chirality matrix, " @) = 3,H MNP 'yM N P
and ﬁM = %ﬁw AP ote., with MM = [Mi .. -7@.

As argued above, the spinor x must transform in the (3,1) of the SO(4) = SO(3)q x
SO(3)r symmetry group of the solution (5.1). As shown in appendix D, the most general

such spinor may be written as

V= e [( ﬁ* ) ®n§+<§z+>®n§+(§i+>®n§+ ( ﬁ+>®774 . (65)

The factor of % e? is chosen for convenience, fi4, etc., are functions of o, and nt, ...} are
independent triplets of spinors on S? x S3 built as tensor products of the Killing spinors
of S? and S3. Specifically, let 9%, a = 1,2, be a doublet of spinors of S?, constructed from
the S? Killing spinors, and zﬁa = (ag)aﬁwﬁc for ¢*¢ the Majorana conjugate of . The
index a here labels the doublet of SO(3)’ in (2.1) which rotates S?. Let £%, a = 1,2, be
the two Killing spinors of S? that transform as a doublet under the SO(3)y, in (2.1) and
are singlets under SO(3)r. Then,

M= (0200)ap ¥ ®EP . nh = (0203)ap 0 @7,
n = fi(02)ap P @&, 0t = fi(02)ap U @ €7 (6.6)

where o! are the Pauli matrices and fi; are defined in (3.1). The Pauli matrix o9 appears
as the SO(3)q charge conjugation matrix.

Inserting x* given by (6.5), (6.6) and its Majorana conjugate x‘° into the Killing spinor
equations (6.3a)—(6.3c), an involved calculation produces a(n overdetermined) system of
algebraic relations among the functions fi4, etc., and a differential equation on the interval
(3.13) for a combination of them. The details are summarised in appendix D. Significant
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further massaging allows us to bring the solution of this set of algebraic and differential
equations into the form

fi+ = —ifa— = cos (g) ei(¥+=30)
Joy = ifi— =sin (%) e iT-+30)

V2 cos a 8\ i(z+v.-lo
L LI (P
cos?a+ 1 2

. V2cosa . (g 1
e = Zifs- = Veos?2a +1 s (g> 370 ’ (6.7)

up to an arbitrary overall normalisation. We have defined the following functions of «:

2 1
tan © = \/7 ,
3cosavecos?a+ 1
V2sin o

VieosZa + 1v3costa + 3cos2a + 2

- j:\/§ 1 V3 cost oo + 3cos? a + 2sin o (6.8)
an¥4 = - — . .
3cosavcos?a+1  V3cosavcos?a + 1(v2cosa — vcos2a + 1)

The SO(3)q triplet of SO(3)gr—invariant spinors x* given by (6.5) with (6.7), (6.8) solve
the Killing spinor equations (6.3a)—(6.3c) on the N' = 3 solution (5.1) of massive type ITA

cos 3 =

supergravity. As an additional check, we have also verified that the three independent N' =
1 pure spinors that follow from (6.5) with (6.7), (6.8) solve the pure spinor supersymmetry
conditions for AdS, solutions of massive ITA supergravity given in [14].

Equipped with the A/ = 3 Killing spinors, we can proceed to compute the spinor
bilinear forms and the torsion classes of the corresponding identity structure. Here we will
only give the scalar bilinears. We expect one SO(3)q triplet of scalar bilinears, based on
the fact that the six-dimensional identity structure is inherited from an SO(3)g—structure
on the ambient R7. Let us see how this scalar triplet arises from spinor bilinears. In
principle, two such real or purely imaginary scalar bilinears can be constructed out of X,
namely, x*Ix7 and x*'4x?. Both of these sit in principle in the 3 x 3 — 1+3+5 of SO(3)q.
Direct computation from (6.5), (6.7), (6.8) shows that

f jek Y2 ijk, ityi = A i, (6.9)

A —
= e ————— ks =e
X oo 1 K XX

Thus, for both bilinears, the 5 components vanish identically. The first bilinear is the

Xi

triplet argued above, and the second one is a singlet which, however, is not independent
but is algebraically related to the former.

Equation (6.9) provides a further consistency check on our Killing spinors. It was
shown in [14] that, for N' = 1 supersymmetric warped product solutions of massive ITA
supergravity containing AdSy, the N =1 internal Killing spinor x must satisfy x'4x = 0
and xTy o< e?, where €24 is the string frame warp factor. It is straightforward to see from

(6.9) with i = j that each individual x*, i = 1,2, 3, satisfies these A" = 1 conditions.

19



7 Outlook

In this paper we have studied an A/ = 3 solution of massive ITA supergravity first considered
in [8, 34]. We have described in detail the sector of ISO(7) supergravity with SO(4)
invariance, which includes this solution as a point in its moduli space. This has allowed
us to better understand its geometry. The solution consists of a fibration over an interval
I of a certain S2-bundle M; over S3, with the S? shrinking at one endpoint of the interval
and the S% at the other, so that the full topology is that of an S% (as expected for vacua
of the ISO(7) supergravity).

Moreover, we have been able to obtain the spinorial parameters x*, i = 1,2,3 under
which it is supersymmetric, thus confirming the expectation that it has N' = 3 supersym-
metry. This expectation was based on the amount of supersymmetry of the vacuum in
the four-dimensional ISO(7) supergravity; but while uplift formulas are available for all
physical fields, they are not for the supersymmetry parameters, and thus so far a full proof
that the solution is N' = 3 was lacking.

Our results open the way to several possible developments. First of all, the structure of
the spinorial parameters x* is not completely fixed by the SO(4) invariance. The solution
has cohomogeneity one: the SO(4) orbits are copies of the S? bundle over S3, and thus
a priori the isometry group leaves several functions of the coordinate « on I that appear
in the x* undetermined. For the present solution these are fixed by the Killing spinor
equations, but it is easy to set up a more general Ansatz where both these functions and
those in the physical fields are allowed to vary, without breaking the SO(4) invariance and
in particular N' = 3 supersymmetry (whose R-symmetry is one of the SO(3) factors in the
SO(4)).

Several arguments lead one to suspect the existence of more general N' = 3 solutions in
massive ITA. On CP3, such solutions are predicted to exist by holography [35] and found
[36] in first approximation in a regime where the Romans mass F@ is small. Varying ﬁ’(o)
beyond this regime suggests the existence of a line of solutions. Since CP? can be written
as a foliation of copies of T11, it is plausible that such solutions might be related to the
ones we are considering here, and that thus there might be a line of deformations in this
case, too. A possible analogy is offered by N’ = 2 solutions: in that case, a line of solutions
exists [37] that connects the A" = 6 massless solution on CP? to an analogue of the solution
in [2] obtained by replacing CP? with CP! x CP*.
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A  Geometric structures on S°

In this appendix we describe the relevant geometric structures on S® that arise in the
consistent truncation discussed in the main text. Let pu/, I = 1,...,7, parametrise S¢ as
the locus §7yufp’ =1in R7, and let y™, M =1,...,6, be the S® angles. It is convenient
to split the u! according to the SO(3)’ x SO(4)" defined in (2.1) as u! = (1, u%),

fi=cosajil,i=1,2,3, p=—sinaj,i=0123, (A.1)
where « is one of the y™, and is taken to have range (3.13). In (A.1), i, ﬂ%, respectively
parametrise an S? and an S as §;;i'/i/ = 1 (see equation (3.1)) and similarly for i’. For
convenience, the index i ranges from 0 to 3 as indicated. In terms of these, the round,
homogeneous Einstein metric on S%, (E.2) of [3], is

dst = g_2<0082 ads?(S?) + da? + sin? adéQ(Sg)) , (A.2)

This metric has of course SO(7) isometry, although only the SO(3)’ x SO(4)’ that rotates
the S? and the S? is manifest. The local line element (A.2) is adapted to the topological
description of S% as the join of S? and S°.

For our calculation, we need to write the Killing vectors of S adapted to the splitting
(A.1). For this purpose, it is useful to split the local index M on S% as M = («, a, @), where
a=1,2and a = 1,2, 3 are local indices on S? and S3, respectively. With the normalisation
conventions of appendix E of [3], the non-vanshing components of the Killing vectors of
the round metric (A.2) are

ng:f(.a

e, Ko = ﬂiﬂgv K%:tanaﬂagababﬂi,

i

K& = — cot o fi; %0y i; K% = K?. (A.3)

where g% and §% are the round inverse metrics on S? and S® and K, KZ their corre-

sponding Killing vectors. The derivatives of the Killing vectors with respect to the y™
angles on S% are

K, = —4g~2sin a cos a i, i) | K;Jb = 4g72 cos® a O il op 7! |
nga = 2972 cos? a[ﬁ 8a[ﬁ , nga =2¢~2 sin2 a i 8&;2% ’
K = —2g72sinacos a Oy fi 041’

Y = 492 sin? o 0, il 9y i) . (A.4)

K;ja = 4972 sin o cos gﬁa&gﬂ , Kab

In these expressions, dyru! means derivative of u! = uf(y™) with respect to y, for
M = (o, a,a).

With these ingredients, we can calculate the consistent embedding of the D = 4 su-
pergravity of section 2 into type ITA supergravity using the uplift formulae of [2, 3]. The
ten-dimensional embedding of the tensor hierarchy forms in (2.4) proceeds uneventfully.
The embedding of the scalars is much more laborious. This is achieved by bringing the
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SO(4)—-invariant scalar matrix My of the D = 4 supergravity, given in appendix D.3 of
[24], to the uplifting formulae (10) of [2]. Manipulating these formulae with the help of
(A.3), (A.4), it turns out that the Killing vectors KZ on S3 and their derivatives always

appear projected as (J k)%j f(;’ where (J ")23. are the components of the triplet of constant

4 x 4 matrices®
Jh=eb — %eijk ek (A.5)
Here, we ha\{e written J " in terms of the set of six 4 x 4 matrices e = —eJ? with components
(€9); = 2(5[’255}, so that (J%)o; = (5;- and (J')jp = —€jx. Indices i and i are raised and
lowered with the SO(3)" and SO(4)" invariant metrics d;; and 5;3, respectively. The J* are
antisymmetric, (Ji)gj. = —(J")ﬁ, anti-selfdual,
(55 = =€ (IO (A.6)
satisfy the quaternion algebra,
(T ()5 = —0798% 4 € (IR (A7)
and the identity

Specifically, the combinations (.J Z‘)%3 IN(Z select the Killing vectors of S3 that are invariant

under the SO(3)g in (2.1), namely, the right-invariant Killing vectors on S3. Lowering the
index with the round S® metric 943> We have

(T K2 = 2(J')55 0ait = ply (A.9)

where p!, is the a-th component of the right-invariant one-form p°, i = 1,2, 3. These close
into the Maurer-Cartan equations (3.2), which are invariant under SO(3)g and lie in the
adjoint of both SO(3), and SO(3)q defined in (2.1).

Equations (A.6)—(A.9) need to be used extensively to bring the raw consistent trunca-
tion expressions obtained from the formulae in [2, 3] to the final form (3.5) presented in
the main text. Other useful identities for this purpose include

e i NdE* N = g eijep’ A p? A pt = et i " A p" A pP = 6vol(S7)
eiji i diid A dii* = 2vol(S?),  Fodii' =€y dipF, F3pt = Lelipf A pP,
€iji ' fn did A pP A p" = S dfit A p AP

ijh [ fun dii? N A* A p" = € diit A7 A p*

€iyigis T AR N AR N €j17275 w7t p? AP = 2d; A dfij A AP (A.10)
5Indices i = 1,2,3 and i=0, 1,2, 3 here correspond to indices a = 2,4,6 and A =1,3,5,7 in appendix
D.3 of [24]. The J matrices here are the negative of the gamma matrices there: (JZ)Z] “=7 (v
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where vol(S?) and vol(S?) are the volume forms corresponding to the metrics d3?(S?) and
d3?(S8%) in (A.2), and %9 and %3 the corresponding Hodge dual operators. Note that

d32(S?) = 0 diit diid , dFA(S°) = 6 diit di? = L6 p'0 . (A.11)

We conclude by retrieving the homogeneous Go—invariant nearly-Kéhler structure on
S6 from this formalism. The nearly-Kihler forms are given in general by

= v pldp’ ndp® . Q=1 (ijL — YKL MI) dp? A dp®™ Ndpt ) (A12)

in terms of the constrained ! that parametrise S and the associative and co-associative
forms ¢ and ), on the ambient R7, see e.g. appendix E of [3]. It turns out that the
non-vanishing components of these forms can be written for the case at hand as

X -
Yige = —€ijk s Vg = (i, Yy =Ty, Ypn= e (AL3)
Bringing (A.1), (A.13) to (A.12), we find
J = 2cos?’oze”k,ud,uj/\alu — smozda/\,ulp
—i—gsm2acosaeijk,u, p7 /\p + §sm2acosad,ui /\pi,
ReQ = % sin v cos® avdar A €ijk fidid A di® + % sin v cos® avdar A dji; A p°

+851n acosae”kdu Aph APk — sm ada/\emk,u;ﬂ/\p )

ImQ = %smacosada/\euk,u diid A pF + 1 sm «cos auzduj/\p A

—1 sin? avcos® av ez dji* A dji? A o~ . Lsinacegjp p" A p? A o (A14)

These forms can indeed be checked to satisfy the nearly-Kéhler relations
ONQ=-2TANTANT#0, TAQ=0, (A.15)
and
d7 =3ReQ, dimQ=-2JANJT. (A.16)
The expressions (A.14) are needed to show that the SO(4)—invariant consistent truncation
formulae of section 3.1 reduce to the Go—invariant formulae of section 4.1.
B Flux quantisation and free energies

The fluxes corresponding to the generic configuration (3.5) can be appropriately quantised.
The quantisation conditions are

k=27l F(O) =2mlsm

1 15 .~ . . 1 . N A
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with k£ and NNV integers and ¢, the string length. The fields A, B(2> and ¢ have been given
in (3.5), and from %F(4), only the contribution corresponding to the Freund—Rubin term
(3.10) is relevant. The first relation in (B.1) corresponds to the relation between quantised
Romans mass and D = 4 magnetic coupling [2]. The second expression can be written,
integrating in the range (3.13) for the angle «, as a relation between the integer N and
the electric D = 4 coupling constant g,

N =5v(S% (2nls) 5 g7, (B.2)

with v($%) = 18 73 the volume of the unit radius round six-sphere. The expression (B.2)

coincides with that given in [7, 38] from the embedding of the SU(3)-invariant sector. The
fact that the present SO(4)-invariant calculation here and the SU(3)—-invariant calculation
[7, 38] agree provides a selfconsistency check, as the relations (B.1), (B.2) must characterise
the theory, not merely particular subsectors or solutions.

Equipped with these values of the fluxes, we can proceed to the calculation of the grav-
itational free energy of the configuration (3.5), along the lines of [38]. For this calculation,
we first redefine the external D = 4 metric with the inverse scalar potential V in (2.7) so
that the Einstein frame warp factor reads

= —ges X VANPAY VL (B.3)

The free energy F' is proportional to the inverse of the effective four-dimensional Newton’s
constant [39]. On the geometry (3.5), (B.3), this evaluates to

1673 9673
F=——c| volg=——— g Su(shHv. B.4

(28 /56 evols =~ e g V) (B-4)
This again reproduces the expression given in [38]. In order to write the free energy in
terms of quantised fluxes, we factorise the scalar potential as V = g2(m/g)~ /3 V, where
V is the g = m = 1 scalar potential (2.7), and then replace g and m by their values (B.1),
(B.2) in terms of N and k. We finally obtain

F=—-96-5"°373y(8%) 23y~ NO/BEL/3 (B.5)

as in [38].

At the critical points of the scalar potential (2.7), recorded in table 1, the free energy
(B.5) reduces to values that have been previously given in the literature. For the critical
points with at least Gy symmetry, (B.5) reproduces the corresponding values given in table

1 of [7]. For the N’ = 3 point, (B.5) gives
P o L3106 5 NSRS (B.6)

in agreement with [34]. This result also matches the field theory result, equation (8.4) of
[40], after correcting a typo there®.

The formula (B.5) holds for geometries with running D = 4 scalars, not only for scalars
frozen at critical points of the D = 4 potential. It was conjectured in [38], based on an

SThere is a factor of 1/2 missing in the r.h.s. of (8.4) of [40]. We thank D. Jafferis for confirming this.
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SU(3)-invariant calculation, that the free energy (B.5) should further hold at any point
of the 70-dimensional coset space E7(7)/SU(8) of the full D =4 N = 8 dyonically-gauged
ISO(7) supergravity, where V' given by the full ¢ = m = 1, N' = 8 potential, normalised
as in [24]. The present SO(4)—-invariant calculation provides further evidence in favour of
this conjecture.

C SO(4)—invariant AdS, solutions of massive type ITA

The type ITA solutions that we have presented in the main text have the local form

dsly = XX ds?(AdSy) + B 5, D' Dii? 4 4@ da? + 29 432(S%), ¢ = ¢(a),
Fly = povoly + C1(a) da A ejy, Dii* A Dji A p* + Oy(ar) Dfji; A Djij A p* A p?

+Cs(a) da A i Dji; A p* A p? + Ca(a) do A e p" A p? A pP, (C.1)
H) = Bi(a)da A ey, fi' Di? A Dji* + Ba(a) da A Dji; A p' + Bs() €55 Dt A p? A p*
+By(a) do A e fi' o7 A pF

Floy = Ay (o) e i’ Dit! A D" + Ag(a) Dfis A p' + As(a) dov A i p + Ag(e) e i p? A p* |

where AdS, and S® are unit radius, p is a constant, X (), etc., are functions of the angle
a, the fi*, i = 1,2, 3, are constrained coordinates that define a unit radius S? through (3.1)
and p’ are the right-invariant forms on S3, subject to (3.2). The corresponding potentials
are of the form

fl(g) = c1(a) da A € @D A pF + eo(a) €ijk Dt ADi? A p* + e3(a) fi D A PEN P
+ea(@) e ' A p? AP

By = bi(e) da A fi; p + by() eiji it Dii? A D* + bg(@0) Dfiy A p' + ba() egjie fi'p? A p"

Awy = ai(a) i p" . (C2)
In this appendix, we will denote the covariant derivative of i’ as
Dji' =dji' + ¢ Ak, with A= Ag(a) p' . (C.3)

The function Ag(«), as well as all other functions of « in (C.1), (C.2) can be read off from
the concrete expressions given in the main text.

The configuration (C.1)—(C.3) preserves the SO(4) subgroup of SO(7) defined in (2.1).
We will now work out the differential and algebraic equations that the functions X (), etc.,
must obey for (C.1) to solve the Bianchi identities and equations of motion of massive type
ITA supergravity. Firstly, the functions that specify the potentials (C.2) can be related to
those entering the field strengths (C.1) using the corresponding definitions (see (A.3) of
[3]). We find

Al :mbz , Agzal—l-mbg, Agzall—i-mbl , A4:—%(1—2A0)a1+mb4,
(C.4)
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and
By = b,
By = by — by — 2Ahbs (C.5)
By = by + 1(1 —240)b3 — (1 — Ag)Aobs ,
By =V — Apbs + 3(1 — 2A0)by ,
and
C1 = cy — c1 — arby +mbiby ,
Cy=c3— (1 —2A0)co + 2mbaby — %me , (C.6)
Cy = dy + 2c A — (1 — 24¢)c1 + ay (bg — b — 2A6b2) — mbibs ,
Cy =y + 5esAy + 5(1 — Ag)Ager — 5aq (b, — Afbs + 5(1 — 2A40)b1) + Smbyby .

We have dropped the explicit o dependence and have denoted with a prime the derivative
with respect to it. We used the expressions (C.4)-(C.6) to construct the constant scalar
field strengths (3.8) from the potentials (3.5).

Moving to the field equations (see (A.3), (A.5) of [3]), some calculation shows that the
type IIA Bianchi identities impose the relations

Cy— O3+ Cy —2A0C1 —2A1By — 2A4B1 + A2By =0,

By —1(1—2A0)By — By + (1 — Ag)AgB1 =0,

Al —mB; =0,

Al — A3 —2A1Af —mBy =0,

Al — A Ay + 3(1 - 240)A3 —mBy =0,

Ag+ 3(1—240)As — (1 — Ag)AgA1 —mB; =0. (C.7)
Next, a long calculation shows that the F(4) equation of motion gives

(e%¢+4X—A—QB+Ccl)’ 4 erdHIXFA2B=C g o3¢ FAX+A=2B=C g )

430X AC LAl 4 200By =0,

e%¢+4X—A—QB+Ccl + 26%¢+4X—A—C(1 —240)C5 — 48 e%¢+4X—A+QB—3C(1 — Ag)AoCy

+2p0Bs =0,
(€%¢>+4X7A7003)’ — 229 HXFTA2B=C 0y _ 9y oa¢tAX—A+2B=3CC Al | sH0B2 =10,
1
(e§¢+4X—A+2B—3(JC4)/ + kB =0, (C.8)

the H, (3 equation of motion gives

(e #HIX—ADBEIC BV | g moHIX—AYC R, 41 | 39,~6+IX+A-C(1 _ 4)) 4, By

26



1 1 3
Qe TAX—A=2BHC g 0 39038 HANFA2B=C g Oy o§6HAX+A-2B43C 4

—2440C4 =0,

(€_¢+4X_A+CBQ)/ + 86—¢+4X—A+2B—CB4A6 o 8€—¢+4X+A—C(1 . 2A0)33
+86§¢>+4X+A—2B—CA202 + 46%¢+4X—A—C’A303 _ meg¢+4x+A+cA2

_QMOC?) =0,

e~OHIX-A+CR 4€f¢>+4X7A+2BfC(1 —240)By — 2€%¢>+4X7A72B+CA101
+4€%¢+4X—A—CA203 . 96e§¢+4X—A+2B—3cA4C4 . %me%¢+4X—A+28+CA3

—2p0C2 =0,

(e—¢+4X—A+QB—C’B4)/ . 2€—¢+4X+A—033 . 26%¢+4X+A—2B—CA102
_12e%¢+4X—A+QB—3CA304 st tAXTAL2B=C 4 LioCy =0, (C.9)
the }3’(2) equation of motion gives
(eg¢+4X—A+2B+cA3)/ _ 2€§¢+4X+A+CA2 +8 eg¢+4X+A+2B—0(1 —2A0) Ay (C.10)
4_4e§¢+4X—,4—213+0B1C1 _3 e%¢+4X—A—CB2C3 +192 €%¢+4X—A+QB—SCB4C4 -0,

and the dilaton equation of motion gives

(€4X7A+2B+SC¢/)/ _ 3 e50H4aX (eA—2B+30A% i 2€A+CA% 4 67A+2B+CA§ T 16€A+QB—CA?1>
20X (e—A—2B+3C B? + 2¢44C B2 | 39¢A-C B2 4 16~ A+2B-C Bﬁ)

4 er0H4X (e_A_QBJFCClz + 4eA_2B_CC’22 + 2e_A_CC§ + 1446_A+23_3CCE)

5 1
_% m2 e29TAX+AT2B+3C %Mg e30—AX+A+2B+3C _ ) (C.11)

As for the Einstein equation, we have only computed the external components, which
produce the following equation for the warp factor:

(64X—A+2B+SCX/)/ _ ieg¢+4x (eA—QB—s-BCA% + 26A+CA% + e—A+QB+CA§ + 166A+QB—CA?1>
_% o HAX (e—A—QB+30B% n 267A+CBQZ T 326,4ch§ T 16e’A+2B*CB§)

—3eattiX <e—A—2B+C C? 4 4e472B-CC3 4 267 4-C 02 4 144~ A+2B-3C Cf)

5 Loy
+Tlﬁ m2 62¢+4X+A+2B+SC _ %Mge2¢ 4X+A+2B+3C + 362X+A+23+3C =0. <C12)

We have employed equations (C.7)—(C.12) to verify that the generic expressions (3.5),
(3.8) evaluated on the critical points of ISO(7) supergravity with at least SO(4) invariance,
recorded in table 1 of the main text, are indeed solutions of massive type IIA supergravity.
We have verified on a case-by-case basis that all solutions mentioned in section 5, partic-
ularly the A/ = 3 solution (5.1), do satisfy equations (C.7)—(C.12). Up to a check of the
internal Einstein equations, this shows that all constant-scalar configurations presented in
the main text are indeed solutions of massive type IIA supergravity.
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D Derivation of the A = 3 Killing spinors

Following, for convenience, the string frame conventions of [41], the supersymmetry trans-
formations of the type IIA fermions read

e (0 W)+ 16 o 8 )
VS (VM + 4ﬁMF) €+ gef <F<o> — Pl + 121@)) Lme. (D.1)

The ITA dilatino, ;\, gravitino, 1/3 M, and supersymmetry paramater, €, are Majorana. The
ten-dimensional gamma matrices are fM, with M =0,1,...,9, and M =0,1,...,9 de-
noting here ten-dimensional tangent space and local indices, respectively. The slashed
forms are defined, as usual, as ﬁ@) = éﬁmfw, and ﬁM = %ﬁm YL ete.,
with TMi-Mn = P fMa] - The ten-dimensional chirality matrix has been denoted by
f, and I'j; denotes the contraction of I' v with the ten-dimensional vielbein.

Let us show that the N/ = 3 solution (5.1) obeys the ITA Killing spinor equations,
S\ = 0, (WM = 0, for the supersymmetry parameters given in section 6. We start by
reducing these to the Killing spinor equations (6.3a)—(6.3c) on the internal six-dimensional
geometry. In order to do this, we choose a basis for the ten-dimensional gamma matrices
such that

Pu=eW ol fy=iWey, BW=IsB, =425 (D2

with g = 0, 1,2, 3 local indices on AdSy and M = 1, ..., 6 now rebranded as a tangent space
index on the internal six-dimensional geometry. Here, e24 is the string frame warp factor
(6.4), 'yffl) and 7y four- and six-dimensional gamma matrices (the former contracted with
the AdS, vielbein), &(4) = —iq/(()%g and 4 = 77123456 the respective chirality matrices. The
six and ten-dimensional intertwiners B and B(lo), with BB* =1, are such that x¢ = Bx",
where ¢ denotes Majorana conjugation, vy, = —B_WMB, and similarly for B0 16t ¢l

be (anti)chiral Killing spinors on AdSy,
7 1 7 7 ic
DuCh =5, =¥, (D3)

and let x%, i = 1,2, 3, three arbitrary Dirac spinors on the internal six-dimensional geom-
etry. Writing the ten-dimensional spinor paramater ¢ in terms of ¢} and x* as in (6.2)
and making use of the decompositions (D.2) and the AdS, Killing spinor equation (D.3),
we obtain the six-dimensional Killing spinor equations (6.3a)—(6.3c) from the expressions
(D.1) equated to zero.

One method to proceed in general (as pursued in [42, 43, 44] for N' = 2 AdS, solutions)
is to form spinor bilinears from (6.3a)—(6.3c), use them to show that a geometrically realised
SO(3) R-symmetry SO(3)gr necessarily emerges and then locally determine the metric,
dilaton and fluxes up to PDEs. However given that the solution of section 5 contains S?
fibred over 52, we find it easier to construct all spinors on S? x S3 that transform as triplets
under SO(3)% and couple them to arbitrary spinors on the interval spanned by «, thereby
effectively reducing the problem from 6 to 1 dimensions.
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D.1 Constructing an SO(3), triplet in 6d

The first thing that needs addressing is exactly how one constructs a triplet of spinors
that transforms under SO(3)%. Clearly the metric on a round S? and S? preserve SO(3) g2
and SO(4)gs isometries respectively but, as explored in the Minkowski classifications of
[45, 46, 47], each independent Killing spinor on these spheres can only individually be used
to form SU(2) doublets. We also have to consider the fact that S? is fibred over S in
terms of the SU(2) right-invariant 1-forms as (C.3). This means that if one decomposes
SO(4)gs = SO(3)1, x SO(3)r (with L/R standing for left/right) it is only SO(3)r and the
diagonal SO(3)q formed from SO(3)" = SO(3)g2 and SO(3)y, that are preserved by the full
space: the anti-diagonal is broken. Since SO(3)g only involves S2, the preceding discussion
suggests that we should identify the R-symmetry as SO(3)r = SO(3)q, but we will need to
be more explicit to construct its corresponding triplets. As we shall show, the fundamental
building blocks of the triplets are actually the SU(2) doublets on S? and S3, for which we
give further details in appendix E.1.

In what follows, we shall parametrise the two SU(2) doublets on S2 as 1® and ¢)®, while
the single SU(2), doublet on S, that is a singlet with respect to SU(2)r, shall be £ for
o = 1,2. The Killing vectors of SO(3)" we denote by K; and of SO(3)r,/g by L'/R'. The
key property of the doublets that we shall need is how they transform under the action of
the spinorial Lie derivative along these Killing vectors, namely

'CKﬂba - %(Ul)aﬁd)ﬁv LLiga = %(Ul)aﬁgﬁv LRifa =0 (D4)

with a corresponding expression for the action of K; on &a. Here o; are the Pauli matrices,
so that a doublet of a given SU(2) realises the corresponding Lie algebra under its action.
To realise the R-symmetry SO(3)q, then we must construct products of these doublets
that transform as

EKidT]j = e’ Lrn =0, K=K, +L;. (D.5)

The obvious way one might try to construct a triplet is to contract ¥ and £% with the
Pauli matrices. This is almost correct, but it is actually the matrices o90;, which are
symmetric, that give the correct transformation properties. It is then not hard to show
that

= (0201)as® ®E°, mh = (020)asd® ® 7, i¢ = —m, (D.6)
obey (D.5) using (D.4) and standard Pauli matrix identities, which gives us two triplets.
But this is not the whole story. It is also possible to construct two SO(3)4 singlets by con-
tracting the doublets with o5; so, given that the embedding coordinates fi; of S? transform
as a triplet under SO(3)g4,

7 = fi(02)apt® @ €7, ot =ji(02)apt® @7, i =1, (D.7)

also obey (D.5), by Leibniz rule.
We can derive (D.6), (D.7) by using ambient space coordinates and group theory. On
S3 our spinors need to be singlets under SO(3)g. The only spinors with this feature are
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the £€%. This can be seen by going to the left-invariant frame, where the spinorial Lie
derivative reduces to partial directional derivative. The £% transform as a doublet under
SO(3)y; in order to produce a triplet under SO(3)q (the diagonal in SO(3)" x SO(3)1,) we
need to tensor them with S? spinors that transform either as a doublet or as a quadruplet
of SO(3)’, since only (s = 1/2) and (s = 3/2) are such that (s) ® (1/2) contains (1/2).

In order to produce such S? spinors, we can work in the ambient R3. Here it is clear
that our ingredients are constant spinors and the three coordinates; going back to 52, these
become the ¥ and the fi;. From the ¥ and m copies of the u; one obtains a representation
(m)®(1/2) = (m—1/2)@®(m+1/2). This contains (1/2) or (3/2) for m = 0, 1, 2. Defining
flog = ﬂi(GQJi)aﬁ, the doublets one obtains this way can be written as 1, ﬂaﬁwﬁ; it turns
out that the latter is simply 1,20‘. We can now tensor these two doublets with €% on S and
extract the triplet using (020;)qap; this gives (D.6). On the other hand, the quadruplets
one can write in this way can be written as fi,g9), ﬂ(aﬁﬁv)éw‘s = /](aﬁi&,y). Tensoring
these with the £7 and contracting one index to extract the triplet, after some Pauli matrix
algebra one obtains a linear combination of (D.6) and (D.7).

Thus we have obtained a set of triplets {n!,n?,n3, n}}, which is linearly independent and
closed under Majorana conjugation and the action (E.31)-(E.32) of the SO(3)4 invariant
forms (D.12)—(D.13). From the embedding coordinates argument we have just given, this
set is also exhaustive. One can also see this in the following way. Any 5d spinor can
be decomposed in a basis of four linearly independent spinors with complex functional
coefficients defined in 5d. This means any additional triplet can be decomposed in a basis
of our existing triplets as 7' = Zizl(an)i jn%. Since this new triplet needs to transform
as (D.5), and 7!, already do transform in this fashion, there are only two options. i) We
take (an)’ ; constant, in which case 7i* is not linearly independent of 7 by definition. ii)
We take (a,)’ ; to be proportional to the S? embedding coordinates fi;, which leads to
= Zizl cneijk,&knﬁ. At first sight this does seem to give two additional triplets (not
four, because those involving 1,7} are proportional to €ijkflifiy = 0). However, one can
show that eijk,&kn{ = —inb + 77% and eijk/]kng = —int 4+ ni; so these triplets depend linearly
on 1.

The most general SO(3)q triplet of spinors on a fibration of S? over S* times an interval
is then of the form

i Ji+ i jpa ; f3+ i Jat i
e [( f1>®171+ ( b >®772+<f3 ) ®n3+<f4)®?74] (D.8)

where f,1 are functions of «, the coordinate on the interval, to be determined by (6.3a)-

%

X:

| =

(6.3c). Up to this point our supersymmetry discussion has been quite general and will
apply to any AdS, solution with metric, dilaton and fluxes preserving SO(3)q x SO(3)r
with a S? x 83 fibration. We shall now proceed to solve the arbitrary functions of the
interval for the solution of section 5. We shall return to this system in full generality in a
follow up.
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D.2 Solving for the Killing Spinor

In this subsection, we will explicitly compute the triplet of spinors preserved by the solution
of section 5 by plugging (D.8) into (6.3a)—(6.3c) and solving for the undetermined functions
of the interval. We shall work with the following 6 = 1 + 2 + 3 decomposition of the flat
space gamma matrices

Yo =01QIRT, Yo =020, 1, Yo = 02R0305, B=0y®0,®0y (D.9)

for a = 1,2 and a = 1,2, 3, so that the six-dimensional chirality matrix is ¥ = o3 @I QI
and only acts on the interval part of the spinor. The string frame vielbein on the internal
space can be succinctly written as

e = V2edo, et = 2v/2L2e~At3% gin apg,
- ) (D.10)
e® = V2Le? 2% cos (dya — 2L e 4AF %0 gip?2 akK! pi> ;

y® are coordinates on S?, and K; are the SU(2) Killing vectors on S? given in (E.3). The
AdS warp factor and dilaton are respectively

; 2(cos? o+ 1))
€2A:€%¢OL2\/2(COSZOZ+1), e® = e (Rcos”at+ 1)) (D.11)

V3costa+3cos2a+2

In (5.1) all possible 10d fluxes of massive IIA are turned on. However, for SO(3)q4 to be
preserved, the fluxes should be singlets under its action. To show this is so, and because it
will be helpful in what follows, we introduce a basis of SO(3)4 invariant forms on S? x S3:

1 1 U N 1 -
w1 = 5 pifli, wy = §€ijkMiDMj ADjig, wji= P D,
) . (D.12)
wh = S €igkhiPs N Dk, wy = g CidkHiPj N\ Pk -
In terms of these, all invariant forms on S? x S? can be expressed [12],
w%zwl/\w%, wgzwl/\wg, wgzwl/\wg’, wézwl/\wg,
. . (D.13)
S R 2,002 3,,3 _
u)4—u12/\u)2——§w2/\w2——§<Ju2/\u127 ws = w1 Awsg.

This exhausts the list of forms. The fluxes appearing in (6.3a)-(6.3c) then take the form
€4AG(0) = 4\/§S€¢OF(Q)L4,

2sin® « do A wor + cos® a(3cos? a+ 1) 1
aAw
V3(cos? o+ 1)2 ! V3(3costa + 3cos? a + 2)

F(Q) = 48€%¢0F(0)L2 |: —

2cosasin’a 5,  V3cosasinla 4]
Y

— w w
V3(cos2a + 1) 2 (cos? o + 1)2 2

cos? asin? a(3cos? o + 1)

(3costa + 3cos? o + 2)

cosasin®a

(cos? o + 1)2w3

G(4) = 16€¢0F(0)L4[ wq — da A (
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2cosasin® a(3cos?a+1) , 2cos®asina(2cos* a +3cos?a +3)
W w )
(cos? v+ 1)3 37 (cos?a+1)(3cost v+ 3cos2a42) °

2+/3 cos asin? a(cos? o + 1)
3costa +3cos? o+ 2

V3sinda
— W
(cos2a +1)2 2

ﬁ(g) = 486%¢0L2 w% —da A <

N \/gcoszasina(?)cosﬁa—{—Scos‘la—|—11 cosza—|—2) 1
w
(3cos* a + 3cos? a + 2)2 2

(D.14)

2v/3 cos? acsin a(cost o + cos? a + 2)
w
(cos?a+1)(3costa+3cos2a+2) /]

which is a mild generalisation of (5.1) including a possible world sheet parity inversion
parametrised by
s =*+1. (D.15)

One can check explicitly that this still solves all the Bianchi identities and flux equations
of motion with the remaining equations of motion following once

_5 ~
e 2% = 8, L” (D.16)

is imposed.

In the remainder of this appendix and in appendix E.1 we will sketch the computation
of the functions f,+ appearing in (D.8).

The first supersymmetry condition we shall solve is the dilatino variation (6.3b). The
reason to start here is that this condition contains no derivatives of the spinors, no Ma-
jorana conjugation and the S? x S3 data only appears packaged in the invariant forms.
Thus the computation just consists of writing (6.3b) in the form

4

X, :
> < ¥ * ) 21, (D.17)
n=1 n—

using the action of the invariant forms listed in (E.31)—(E.32). Once this is done, one knows
that all eight X,,+ must individually vanish, because the 4 triplets 7!, are independent, and
likewise the positive and negative chirality components of the expression. This leads to
eight complex algebraic constraints that the f,1 must satisfy. We found it useful to
introduce an auxiliary set of complex functions of the interval:

1 1
fie =gt +tar),  fax = (ot +tow + fsx +tax),

) (D.18)
Jor = §(t1i —tot), fax = 5(—25& —tot +t3+ — tay)

and then solve instead for ¢,,o. This is because the dilaton conditions fix several of the ¢,,+
in terms of just one other and known functions of the interval. The simplest four of the
conditions that follow take the form

X1+ + Xox = Zi(t14, tig), X1+ — Xox = Zx(tog, tog),
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Zi(z1, 22) x 210/ As (2@'\/65 cos® a + V2A1(2 + cos? a) + \/ A; cos (2 + V/3si + cos? @))

+ 22 sina(\/é(?) + cos? a) cos® a & 4si\/ A1 (1 4 2 cos? @) . (D.19)

A; are defined in (D.21); we have factored out a common non-vanishing a-dependent factor
in Zy. It is easy to check that (D.19) contains only 2 independent expressions, namely the
middle two of (D.20). The remaining 4 X,,4 are more complicated and we only quote their
solution. Of the eight complex conditions that follow from (6.3b) only 5 are independent.
All in all, the solution can be written as

t3+ = —iSty,
; cos a(\fAl + 231) + \f\/ ( 3cos? o + sz) ot
_ sin oty _,
H (1 +3cos2a + 2v/2y/ A 1cosa) VAs '
; CcOoS a(\/gﬁl + 231) \f\/ ( 3cos? o + sz) e (D-QO)
_ sin aitg_,
> (1+3cos2a—2\/§\/ 1cosa)\/ 3 ?
. V3 cos ozA:{’ + 4si cos® aAz + \/5(2\/3 costa + SiAQ)AI%
sin atyy = ta_

(7cos4a+4cos2a+1)\/A3
where
Ap=cos?a+1, Ay=(3cos’a+2cos’a+1), Az=(3cos’a+3cos’a+2). (D.21)

We next turn our attention to the AdS, gravitino (6.3a), which can be dealt with in
much the same fashion as the dilatino. The only additional ingredient one needs is that
X' can be expressed in a basis of 7’ using the relations between triplets under Majorana
conjugation in (D.6)—(D.7). Given (D.20), (6.3a) provides one additional complex and one
real constraints on t,:

sinaty_ =i(\/ Ay —V2cosa)ti_,

(\[AQ"F[S\/?COS Ct)(\[SCOSOéA2 (1—1—2008204)\/573)

2 + cos? aA (9 cost o + 6 cos? a + 8)

(D.22)

Imty = Rety .

As these conditions are the only ones that involve complex conjugation, we shall delay
solving them until we have fixed more of ¢,4 with the internal gravitino conditions (6.3c).

The gravitino conditions on S? x S3 do require us to take covariant derivatives of spinor
(D.24), and H, = fHabc’y now appears; both depend on more than simply the invariant
forms. Therefore the action of the forms is insufficient to solve (6.3c) in these directions.

The first thing we need to know is the form of the covariant derivative entering in
(6.3c), which requires that we compute the spin connection on Mg. The vielbein on a
generic Mg consisting of S? fibred over S® times an interval preserving SO(3)q x SO(3)r
may be expressed as

1 .
e® = eFda, et = 5602/)@, e® = &1 <dy“ — \K! pz‘), Dji; = dfi; + Neijrdfi;fik
(D.23)
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for y® coordinates on S? and e, €1, €“2, \ functions of the interval. The spin connection
on Mg defined through de™ + QM A eV enters into the definition of (6.3¢) as Vy; =
opm+ iQ M, BQWBQ. After computing this it is possible to show that the covariant derivatives

along the internal space defined by (D.23) decompose as
1
Vo =0 — 5" N3,

1

a a 2 a 1 - 1 ~
KY'Vyo = K/ D + S K yedCy + 2PN — 1)(5dpi - fiiws) + ZeQCIdA A (pi — 2fwh),

a a 3 1 a 1 - 1 ~
L'V, =LI' DY + §L§’ v,adCa — e* TN (X — 1)(de¢ — fijwg) — ZeQCl)\d/\ A (pi — 2fiwt)
L a0, ~ ~ Loocy = yeia (L
— Ze Neije D A\ Dy, — 56 €ijkik D’ N (id)\ + AdC1 — AdCy)

1
- 562%@ —1)(w' A Djt; — fiwd) (D.24)

where DSZ /a is the covariant derivative on S2/83; we contract the $? x S3 directions with
the two Killing vectors that make up SO(3)q. Form expressions should be understood

through the Clifford map dz™! A ... Adx™k +— ~™1"%  FElsewhere in the text we have set

e = \/ieA, et = \@Le‘i_%‘z’o cos a,

L (D.25)
@2 = 4y/2L%eAt3%0 sin o, A = 2L% 4P gin? o .

The other additional object appearing in (6.3c) is H,, but this is not hard to compute if
we contract the S? x S3 directions of this along the Killing vectors as in (D.24) and make
use of the identities in the last column of (E.4) and (E.4).

We proceed by solving these conditions spinor component by spinor component. By
making use of the rotation” outlined in appendix E.2 it is possible to factorise the S? x §3
data out of each of these components leaving many expression involving only functions
of the interval that must vanish. After a lengthy calculation we find that the S? x S3
gravitino imposes just two additional complex constraints that may be expressed as

_ (14 iv/3s) cos
ty— = <1 + ﬂ\/E ) t2_>

sin Oz\/th27 = ((2+ V3siA;) cosa — \@\/Zl(l + V/3si cos® a) ) t1_ (D.28)

after using (D.20) to tame many expressions. This leaves only one complex function, ¢;

say, to be determined.

"Specifically, when we use the coordinates presented at the beginning of section E.1 the rotation (E.23)
maps the components of each triplet to

i1 a, L - _ . . - _
A = ge? (ziujtir, ifigtss, fgtay, —TUjtas, —iughio, ifts—, fjta_, —ustz-)" (D.26)

where
u; = s; +it; = (cos 1 cos ¢1 + isin 1, cosbysings —icospi, —sinbi); (D.27)

and p; are the embedding coordinates of S2.
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The last condition we need to deal with is the internal gravitino condition along the
interval. For this expression the covariant derivative (D.24) and H,, are expressed in terms
on the invariant forms. We can thus once more use the action of the forms of the triplets
to massage the interval component of (6.3¢c) into the form (D.17). Once (D.20) and (D.28)
are used to eliminate the other ¢,+ we are left with a single ODE for ¢;_:

cota_ 1 si §1+2cos2a . (D.29)

~ — — 57 ————sina.
A1 \@sinavAl 2 Ag\/Al

Although this may appear a little intimidating a closed form solution does in fact exist,

O log(t1—) =

and after some effort one finds that

2 , X
tio = —cy/1+ L?Sae*%‘”@, cot® = \/gcos a\/Zh (D.30)
VAL

is the general solution to (D.29), where the sign is chosen to simplify (6.7). At this point
we have completely determined the spinor up to a complex constant ¢ and a sign s = +1,
but we still need to check if (D.22) actually holds. After a comparatively brief computation
it is possible to show that consistency can be achieved if either

(s =1, Imc=0) or (s=-1, Rec=0). (D.31)

However, the fact that ¢ should either be real or purely imaginary is just a consequence of
our choice of intertwiner in (D.9). If we include a constant phase in its definition, ¢ can
be completely arbitrary and it is this phase that is fixed by the choice of s = £1. We use
this fact to allow for an arbitrary constant in the main text.

We have now completely fixed all 8 auxiliary functions t¢,+; inverting (D.18), after
significant massaging one is led to the f,1 in (6.8). This confirms that a Killing spinor
preserving N’ = 3 superconformal symmetry does indeed exist.

E Further details on doublets, invariant forms and triplets

In this appendix we shall first give further explicit details about the SU(2) doublets from
which the triplets are constucted in appendix E.1. Later we discuss the SO(3)q invariant
forms, triplets and how the former acts on the latter in appendix E.2. We will mostly work
with a concrete choice of coordinates, y* = (61, ¢1)® on S? and y® = (02, ¢2, 12)® on S3.

E.1 SU(2) doublets

In this appendix we construct SU(2) doublets form the Killing spinors on S? and S3. In
principle these calculations were already performed in [45, 46, 47]; however, we are using
slightly different conventions here (notably with the choice of frame on S and sign of the
Killing spinor equation on S2), so we provided some additional details here.
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E.1.1 SU(2) doublets on S?

The one-forms
ki = €;jrdjiijfig (E.1)
are dual to the SO(3)’ Killing vectors K; on S?; under the action of d, they behave as the

right invariant forms on S2, with the same sign. We shall use the specific parametrisation
of the S? embedding coordinates

f; = (sinfq cos ¢y, sinf;sin¢y, cosbi);, (E.2)
in terms of which the Killing vectors are
K1 = sin ¢10p, + cot 01 cos $10,,
Ky = —cos ¢10p, + cot 01 sin 104, , (E.3)
K3 = —0y,.
It is not hard to show that
L, fi; = L, dflj = €k flk L, k;j = €ijikr, (E4)

so clearly fi;, djfi;, k; are all charged under SO(3). There exist Killing spinors on S? that
solve the equation

Vot — —%aaw. (E.5)

If the frame e® = (df;, sinfd¢,)®, with v, = 04, a = 1,2 one such specific example is

o= (0 -

Using this, one can construct two SU(2) doublets on S?, namely

o (v N o ew )
v _<—02¢*> Y _<—U302¢*> ' (E1)

Both indeed transform under the action of the spinorial Lie derivative as

Ly = %(Ui)aﬁ¢ﬁa (E.8)
as required.
[Li + i,&i = cos <922> e%(‘ﬁﬁwg), ,&3 + i[fi = sin <922> ez (P2—v2) (E.9)
and reabsorb these angles into the right invariant 1-forms everywhere they appear

p1 4 ipa = ie 2 (dfy + isinOydi)s), p3 = dpy + cos Oadibs. (E.10)
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E.1.2 SU(2) doublets on S3

There are two independent sets of three Killing vectors on S? that realise each of the SU(2)
factors of SO(4) = SU(2)r, ® SU(2)r . The one forms dual to these R/L vectors are the
L/R invariant 1-forms of SU(2), that are defined in terms of g € SU(2) as

1
Ni = —iTr (o397 'dg) ,  dX\; — SCiikAj A M =0,
. (E.11)
pi = —iTr (o:dgg™") , dpi + 5€ijrpi N pe = 0.
We shall specifically take our group element to be
g= 6%03¢26%02926%03w2 7 (E.12)
for which a consistent embedding of S® into R* is given by
1 5 0 ; 5 ] 0 i
it +ifi? = cos (22) e2l®2tv2) g3 4 int — gin (22) e3(92=¥2), (E.13)
This leads to the following definition of the Killing vectors
Ry = —sinndy, + csc Oz cos 1y — cot 02 cos 120y,
Ry = cos 10y, + csc by sin gy — cot O3 sin 120y,
R3 = &m,
(E.14)
Ly = sin ¢20p, + cot O3 cos ¢204, — csc 02 cos p20y,,
Ly = sin ¢20p, — cot O sin 20y, + csc 02 sin ¢20y,,
L3 = 04,,
with dual one forms
pP1 = — €08 o sin Oad1ps + sin Padha,
P2 = €OS ¢Padbs + sin ¢ sin Oodr)s,
p3 = dga + cos Oadis,
(E.15)

)\1 = COS ¢Q sin egdqbg — sin 1/J2d92,
Ao = cos YodBy + sin g sin Bad s,
A3 = dg + cos Oadgps.

Using these it is not hard to show that the Killing vectors obey the following relations
when acting of the forms

Lr,pj =0, LrAj = €jpMk, LR Aj = 0ij,

(E.16)
Lr,2j =0, Lr;pj = €ijkpr,  tLiPj = i
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so that (p/A)" are triplets under SO(3)y, /g and singlets under SO(3)g 1.

Working in the canonical frame of an S® spanned by p; (rather than the Hopf frame
that [46] uses) and with vz = 04, @ = 1,2, 3, the spinors on S? that are charged under
SU(2)y, are solutions to

Vag = —%Uaf (E.17)

which one can show is solved by any constant spinor; we choose

¢ ( i ) . (E.18)

From this we can construct a doublet of SU(2)r,

o [ e\
(5 -

i
Lr&=50)%",  Lrg* =0 (E.20)
under the action of the spinorial Lie derivative.

which transforms as

E.2 Invariant forms and triplets

In this subsection we will focus on the five-dimensional manifold spanned by the unwarped
fibration of S? over S%; we give some additional details about the SO(3)q invariant forms,
triplets and how the former acts on the latter. Our flat space 5d gamma matrices are

7(55) =0, ® Ha ,yé5) =03 ® 0y, B(5) =01 ® 0. (E21)

Five-dimensional Majorana conjugation is defined as
n“ = Bsn*. (E.22)

If one views the invariant forms as spinor bilinears, one can factor out all their dependence
on the S? angles using the matrix

A=1RI® 27201 3020101 (E.23)
Using this, it is not hard to show that (D.12) becomes

5 ~1.(5 1,(5 ~1.(5 4,5 ~1.(5
wg):A 1")/:3())A, UJQ():—A 1’y£2)A, LUQ():A 1,Y§Q)A’
(E.24)
2,(5 1,5 5 3,(5 —1,.(5 5
TN B YO U I
under the 5 dimensional Clifford map on the unwarped S? x S3. Likewise the 4 dimensional
components of the SO(3)4 triplets in (D.6), (D.7) undergo a simplification when acted on
by A. One can show that they can be expressed as
Anj = sy — itig® + fung A = g,
2 1 1 2 4 2 (E-25)
Anj = —=(simo® — iting + pag®) » - A = fung
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in terms of two orthogonal constant spinors

—1 0
0 i
1 2
E.26
"o 0 , "o 1| ( )
1 0

and their Majorana conjugates. We have introduced
s; = (cos B cos ¢1 ,cosbysing; , —sinb);, t; = (singy , —cos ¢y ,0);. (E.27)

Together, (E.24) and (E.25) can be used to greatly simplify the 8 dimensional spinorial
components one needs to solve when plugging (6.5) into (6.3a)—(6.3c). This was extremely
useful for deriving the system of sufficient supersymmetry conditions in (D.20), (D.22),
(D.28). Using these conditions, it is also not hard to establish that the triplets satisfy the
following relations under Majorana conjugation:

me=-ny, ¥ =m (E.28)
and under inner product
ming = nynh =20, ni'n] = —2iejufu,

ny iy = i, = ning = ntnd = 2fuj;, (E.29)

ny'mg = il = mg'm = 0.
(E.29) is useful to derive (6.9).
Finally, let us work out how the invariant forms act on the 4 triplets. It is quite easy to
show that the various gamma matrix combinations appearing in (E.24) act on the constant

spinors of (E.26) in the following fashion:

m | mo | —imgC | —img® | ing | —ing | —ng° | mh© (E.30)
n | =8 | —inge | imge | —ing | —ing | —mg | —mg°

Using this table, and the rotated form of the triplets in (E.25), it is relatively simple

to establish the action of the invariant forms. For the one-form and two-forms one can

compute | o [l | 2O | 26| 0
ni || nd =204 | iny | 2ing | 205 | inh — 2in}
o || mbh—2n% | ind | —2ind | —2n) [ in} — 2inj (E.31)
ns || —ms | amh | =2 | =204 | —ing
ma || —mio | iy | 2imy | 2m§ | —ing.
For the three- and four-forms one finds
IR
|| inb — 2inh | —2ing | =2n% | dans | —ni + 204
b || int — 2ini | 2ink | 2n5 | ini | —nb+ 20} (E.32)
ny || —imh | 2imh | 29 | inj 4
ny || —ingy | =2y | —2n% | ing 4 -
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The 5-form just flips the sign of every triplet, but does not appear in the lower form RR
sector in ITA and so does not concern us.

The actions (E.31)—(E.32) are appropriate for the forms on the five-dimensional S2-
fibration over S3. A little extra care needs to be taken when applying them to the main
text and (D.24). This is because the six-dimensional gamma matrices (D.9) contain a
factor that acts on the interval; moreover, the S? and S3 are multiplied in the main text

Ccy Oy

by functions e*!, e In terms of bilinears, the relation between the full forms in six

dimensions and their five-dimensional counterpart is

2w = 09 ® w§5) 7 1l = 1@ u);7(5) 7 L1022 _ g u)g,(s),
(E.33)
eC’H—CQw% =1I® wg7(5) 7 6202(,03 —I® wg,(5) '
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