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Abstract. This paper analyzes the randomized subspace iteration for the computation of low-
rank approximations. We present three different kinds of bounds. First, we derive both bounds for
the canonical angles between the exact and the approximate singular subspaces. Second, we derive
bounds for the low-rank approximation in any unitarily invariant norm (including the Schatten-p
norm). This generalizes the bounds for spectral and Frobenius norms found in the literature. Third,
we present bounds for the accuracy of the singular values. The bounds are structural in that they
are applicable to any starting guess, be it random or deterministic, that satisfies some minimal
assumptions. Specialized bounds are provided when a Gaussian random matrix is used as the starting
guess. Numerical experiments demonstrate the effectiveness of the proposed bounds.
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1. Introduction. The computation of low-rank approximations of large-scale
matrices is a vital step in many applications in data analysis and scientific computing.
These applications include principal component analysis, facial recognition, spectral
clustering, model reduction techniques such as proper orthogonal decomposition and
the discrete empirical interpolation method, and approximation algorithms for partial
differential and integral equations. The celebrated Eckart—Young theorem [10] says
that the optimal low-rank approximation can be obtained by means of the singular
value decomposition (SVD); however, computing the full or truncated SVD can be
computationally challenging, or even prohibitively expensive for many applications of
interest.

Randomized algorithms for computing low-rank approximations have become in-
creasingly popular in the last two decades. For example, see the survey papers [12, 17].
Randomized methods have gained in popularity since they are easy to implement,
computationally efficient, and numerically robust. Although randomized algorithms
tend to have the same asymptotic cost compared to classical methods, they have sev-
eral advantages that make them suitable for large-scale computing. Specifically, for
datasets that are too large to fit in memory, randomized algorithms are able to exploit
parallel computing efficiently and are efficient in the number of times they access the
data. Randomized algorithms also have excellent numerical robustness and are very
reliable in practical applications.

We focus on a specific randomized algorithm known as randomized subspace it-
eration. The main idea of this method is to use random sampling to identify a
subspace that approximately captures the range of the matrix. A low-rank approxi-
mation to the matrix is then obtained by projecting the matrix onto this subspace.
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A post-processing step is then performed to compress the low-rank representation to
achieve a desired target rank, and a conversion step is performed to obtain an equiva-
lent representation in the desired format (typically, a truncated SVD representation)—
both these steps are deterministic.

Many advances have been made in the analysis of randomized algorithms for
low-rank approximations. The analysis typically has two stages: a structural, or
deterministic, stage, in which minimal assumptions are made about the distribution
of the random matrix, and a probabilistic stage, in which the distribution of the
random matrix is taken into account to derive bounds for expected and tail bounds
of the error distribution. As mentioned earlier, existing literature only targets the
error in the low-rank representation [11, 12]. When the low-rank representation is
in the SVD format, it is desirable to understand the quality of the approximate
subspaces and the individual singular triplets. This paper aims to fill in some of the
missing gaps in the literature by a rigorous analysis of the accuracy of approximate
singular values, vectors, and subspaces obtained using randomized subspace iteration.
This analysis will be beneficial in applications where an analysis beyond the low-rank
approximation is desired. Examples include model reduction techniques [2, 9], leverage
score computation [14], spectral clustering [6], FEAST eigensolvers [23], and canonical
correlation analysis [1].

1.1. Contributions and overview of paper. We survey the contents and the
main contributions of this paper.

Canonical angles. We have developed bounds for all the canonical angles be-
tween the spaces spanned by the exact and the approximate singular vectors. Several
different flavors of bounds are provided:

1. The bounds in subsection 3.1 relate the canonical angles between the ex-
act and the approximate singular subspaces. Analysis is also provided for
unitarily invariant norms of the canonical angles.

2. In applications where lower dimensional subspaces are extracted from the
approximate singular subspaces, the bounds in subsection 3.2 quantify the
accuracy in the extraction process.

3. Subsection 3.2 also presents bounds for the angles between the individual
exact and approximate singular vectors, extracted from the appropriate sub-
spaces.

Our bounds suggest that the accuracy of the singular values and vectors, in ad-
dition to the low-rank approximations, is high provided (1) singular values decay
rapidly beyond the target rank k, and (2) the larger the singular value gaps, the
higher the accuracy to be expected. Furthermore, the truncation step to extract
the k-dimensional subspaces does not significantly lower the accuracy of the sub-
spaces.

Low-rank approximation. This paper provides the first known analysis of
the randomized subspace iteration for an arbitrary unitarily invariant norm, with
stronger, specialized results for Schatten-p norms. Bounds for the special cases of the
Schatten-p norm, namely, the spectral and Frobenius norms, have already appeared
in the literature—our result for the Schatten-p norm recovers these results as special
cases.

Singular values. We derive upper and lower bounds on the approximate singular
values obtained by the randomized subspace iteration. Similar bounds also appear

n [11]; however, our proof technique is different. We also present Hoffman-Wielandt
type bounds for the accuracy of the singular values.
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The conclusion of the bounds for the low-rank approximations and the singular
values are similar to those of the conclusions for the canonical angles.

Generalization of sin theta theorem. The sin theta theorem [25] is a well-
known result in numerical analysis and relates the canonical angles between the true
and approximate singular subspaces in the unitarily invariant norms. We derive a
generalization of the sin theta theorem that derives bounds for the individual canonical
angles between the two subspaces. The sin theta theorem is recovered as a special
case. This result may be of independent interest beyond the study of randomized
algorithms.

2. Background and preliminaries.

2.1. Notation. Denote the target rank by k and let 1 < k < rank (A). Let the
matrix A € C™*™ have the SVD

e ][5

Here, ), € Ck*F and ¥ € Cm—k)x(n=k). the columns of Uy and U, are the corre-
sponding left singular vectors, and the columns of Vj, and V| are the corresponding
right singular vectors. We also denote Ay = UpX,V; as the best rank-k approxima-
tion to the matrix A, in any unitarily invariant norm (for a definition, see below). We
also define A| = U, XV} and observe that

A=A+ A,.

Singular values and ratios. Let ||-||, denote the spectral norm, so that ||[X ||, =
k41 and HE,;I H2 = a—lk The singular values of A can be arranged in decreasing order
as

01202220k 20kl 2 " 2 On.

For later use, we define the singular value ratios

(1) yy= L ok

gj
Since the singular values are monotonically decreasing, the singular value ratios are
monotonically increasing, i.e., 73 < --- < < 1.

Norms. We have already defined the spectral norm. The Frobenius norm of a
matrix is ||A|p = y/trace (A*A). We use the symbol [|-[| to denote any unitarily
invariant norm, i.e., a norm that satisfies ||QAZ|| = |||4|| for unitary matrices Q, Z.
An example of the unitarily invariant norms is the Schatten-p class of norms, defined
as the vector £, norm of the singular values of A, i.e.,

min{m,n} p

A, =1 > o

Jj=1

With this definition, it can be readily seen that ||A|l, = [| Al and [|[A]|; = [|A]l,-

Another example is the Ky-Fan-k class of norms defined |Allx) = Z?Zl o; for
every k = 1,...,min{m,n}. Associated with every unitarily invariant norm is a

symmetric gauge function acting on the singular values of the matrix that it acts
on.
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Projection matrices. Suppose the matrix Z has full column rank with column
space R (Z); Z' is a left multiplicative inverse and where T represents the Moore-
Penrose inverse. We define the (orthogonal) projection matrix P, = ZZT. An or-
thogonal projection matrix is uniquely defined by its range, and R (Pz) = R (Z). For
a matrix () with orthonormal columns, the formula simplifies and Pg = QQ*.

Canonical angles. The separation between subspaces can be measured by the
principal or canonical angles. Let M and N be two subspaces of C" such that
dim M = /¢, dim N = k, and £ > k. Then the principal angles between the subspaces
M and N are recursively defined to be the numbers 0 < 6; < /2 such that

cosf; = max v u = v ug, i=1,...,k,
u€EMWEN|ull,=v]l,=1

subject to the constraints ||u;||, = ||vil|, = 1, and
uju, wvijv =0, j=1,...;i—1.
The canonical angles are arranged in increasing order as
0<6; < <0 <m/2.

It can also be shown that sin 6; are also the singular values of Pyq — Pas.

We denote Z(M,N) to be the canonical angles between subspaces M and N.
Let M and N be matrices with orthonormal columns, which form bases for subspaces
M and N, respectively. Then, the singular values of singular values of (I — MM*)N
can be used to compute sin Z(M,N) and the singular values of M*N can be used to
compute cos Z(M,N) [5, section 3]. For ease of notation, in the rest of this paper,
we write Z(M, N) instead of Z(M,N).

2.2. Randomized subspace iteration. The basic version of the randomized
subspace iteration is summarized in Algorithm 1. Given a starting guess, denoted by
Q € C*(:+2) the algorithm performs ¢ steps of the randomized subspace iteration
to obtain the matrix Y, also known as the “sketch.” A thin-QR factorization of Y
is performed to obtain @ whose columns form an orthonormal basis for the range
of Y. The main idea is that, under suitable conditions, the range of @) is a good
approximation for the range of A. We obtain a low-rank approximation to A by the
projection A = QQ*A. The rest of the algorithm involves converting this low-rank
approximation into the SVD format.

Algorithm 1. Idealized version of subspace iteration for approximate SVD.

Require: Matrix A, starting guess Q € C**(*+0) an integer g > 0.
: Compute Y = (AA*)‘IAQ

Compute thin-QR factorization of Y, so that ¥ = QR.
Compute B = Q*A and its SVD B = UgXV™.

Compute U= QUp.

return Matrices U Z V that define A = USV*.

The algorithm to compute an approximate SVD, given starting guess Q €
Cnx(k+p) - is summarized in Algorithm 1. We say that this is an idealized version,
since the algorithm can behave poorly in the presence of round-off errors. A practical
implementation of this algorithm alternates the QR factorization with matrix-vector
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products (matvecs) involving A; for more details regarding the implementation, the
reader is referred to [12, 20]. In Algorithm 1, the output

A=QQA=USV*

may have a rank larger than (or equal to) k. If a rank-k approximation to A is desired,
then it can be obtained by discarding the p smallest singular values of A. We denote
this low-rank representation by

A = 05007

This is summarized in Algorithm 2.

Algorithm 2. Truncated SVD of A= QQ*A.

Require: Matrix A € C™*" and @ € C™*(*+2). Target rank 1 < krank (A).
1: Form matrix B = Q* A.
2: Compute the truncated SVD representation By = U B,kikf/k*.
3: Form ﬁk = QﬁB,k
4: return Matrices ﬁk, f]k, \A/k such that /Alk = ﬁkikf/k*.

Before we state the assumptions needed for our analysis, we introduce the fol-
lowing notation. The matrix V*Q captures the influence of the starting guess on the
right singular matrix V. Partition this matrix as

@ vo =[] [a]

where Q; = V;*Q € CF*(++0) and Q, = ViQ € C"=k)x(k+2) - A5 mentioned earlier,
we assume that the target rank k satisfies 1 < k < rank(A). Additionally, the
following assumptions will be required for our analysis.

Assumption 1. Let Q; € CF*(*+0) be defined as above. We assume that
(3) rank (1) = k.
The singular value gap at index k is inversely proportional to the singular value ratio

Ok+1
Ok

—1
(4) W= I8, 1B, = = < L
The first assumption guarantees that the starting guess 2 has a significant influ-
ence over the right singular vectors, whereas the second assumption ensures that the
k-dimensional subspace R (Uy) is well-defined. In practice, it is highly desirable that
vx < 1, which ensures that there is a large singular value gap.

~

3. Accuracy of singular vectors. We want to understand how well R (U) ap-
proximates R (Uy), measured in terms of the canonical angles between the subspaces.
To this end, abbreviate the subspace angles between AU' € C™*f and U, € C™*F
as 01,...,0,. Similarly, denote the angles between V € C"*¢ and V, € C"**
by v1,...,vk. We are also interested in obtaining bounds for the canonical angles
Z(Ug, Uy) and £(Vy, V). To distinguish these angles from Z(Ug,U) and £(Vy,V),
we call them ¢ and v} for j =1,... k.
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3.1. Bounds for canonical angles. Our first result derives bounds for the

canonical angles Z(Ug,U). The analysis is based on the perturbation of projectors
and the tools used here are similar to [12].

THEOREM 1. Let U and V be obtained from Algorithm 1. With Assumption 1,

the canonical angles 0; and v; satisfy

2¢+1 2q+2
U el " e
sinf; < 2 siny; < 2

2 - 2
e fousi], e foani],

forj=1,... k.

This theorem has several interesting features worth pointing out. First, if the
matrix has exact rank k, then all of the canonical angles are uniformly equal to zero;
that is, the randomized subspace iteration identifies the subspace exactly. On the
other hand, when - is very close to 1, the subspaces may not be well-defined and
may be difficult to identify. In practice, it is highly desirable that v, < 1, so that the
angles are captured accurately.

Second, the bounds for the canonical angles show explicit dependence on the
singular value ratios «;. In particular, the canonical angles ¢; and v; converge to zero
quadratically but at different rates depending on the singular value ratios. Specifically,
the smaller the singular value ratio, smaller the canonical angles.

Third, the term [229Q7]|> can be written in terms of the right singular vector
matrix V and the starting guess () as

Joust], = e,

When the columns of ) are linearly independent, this quantity is nothing but the
tangent of the largest canonical angle between R (Vj) and R (£2). This term appears
frequently in randomized linear algebra and can be interpreted as a measure of the
subspace overlap between the starting guess and the right singular vectors. In the
ideal case, §) contains the singular vectors in Vi. A discussion of the meaning and
interpretation of this term is provided in [8, section 2.5]. In particular, when  is a
Gaussian random matrix, HQQQI |l2 is roughly on the order of \/(n — k)k.

2q+1

Fourth, the influence of HQQQJ{HQ is subdued by the singular value ratios 7;
With sufficiently large number of iterations g, the canonical angles are smaller than
a user-defined tolerance. Rigorous bounds for the requisite number of iterations are
provided in subsection 3.4.

Last, the bounds for the canonical angles §; are smaller than v; because the latter
contains an additional power of ;. The reason for this higher accuracy is as follows:
the columns of V are the right singular vectors of @Q*A. Therefore, the multiplication
step with @ amounts to an additional step of subspace iteration and gives the extra
factor.

Remark 1. Theorem 1 gives the sine of the canonical angles; these bounds can
also be used to obtain upper bounds for the tangents and lower bounds for the cosines.
With the same assumptions and notation as in Theorem 1, the relationship between
the tangent and sine implies

tan6; < ’yj?qH HQQQJ{‘

2q+2
R |

for j =1,...,k. Lower bounds for cosine of the canonical angles follow similarly.
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Unitarily invariant norms. The following result derives bounds for the canonical
angles in any unitarily invariant norm, in contrast to Theorem 1, which bounds the
individual canonical angles.

THEOREM 2. Let the approximate singular vectors U and V for a matriz A be
computed according to Algorithm 1. Under Assumption 1, for every unitarily invari-
ant norm,

~ X
ain 203, 0 < 20 B2 0
Ok 2

) et IS e o
[lsin 20, )| < 2o+t B ]
O 2

The interpretation of this theorem is similar to that of Theorem 1. The connection
between the two theorems follows from the identity sin 0y = || sin Z(Ug, U)||2. If we
specialize the result in Theorem 2 to the spectral norm, then it is clear that this result
is weaker than the bound in Theorem 1.

3.2. Extraction of k-dimensional subspaces. In the previous subsection, the
columns of U and V spanned ¢ = k + p dimensional subspaces. Many applications,
however, require the extraction of k dimensional singular subspaces from the low-rank
approximation A= QQ"A. One way to extract the appropriate subspaces is to first
compute the optimal rank-k truncation of A denoted by Ag. The singular vectors of
Ak7 denoted by Uk and Vk, are then used instead of U and V. See Algorithm 2 for
details regarding implementation. The bounds derived in the previous subsection are
not directly applicable since [26, Corollary 10] says

Ojgﬂg-, ngl/j(, j=1,... k.

To understand how much additional error is incurred during this extraction process,
we present several results. The important conclusion of all these results is that the
accuracy of the extracted subspaces of dimension k is comparable to the accuracy
of the k + p dimensional subspace provided the singular values are sufficiently well
separated.

The approach we take is different from that of the previous section. The starting
point of our analysis is the well-known sin theta theorem for singular subspaces [25].
Let A, A be two matrices of conformal dimensions. Assuming that

-~

(6) (=ok(A) —op1(4) >0
we have
(7) max{H‘smé(Uk,ﬁk) SlHZ(Vk, Vk)”’} < ma’X{”|E12C|”7 |||E21|H},

where the two matrices F15 and FEo; are
@ B =(I—Pg )(A— A)Py,,
By =Py, (A— A)(I —Pg).

However, this version of the sin theta theorem does not provide us with a way to
obtain bounds for the individual canonical angles. To this end, we first present a new
generalization of the sin theta theorem.
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THEOREM 3. Let A € C™*™ with rank (4) > k and let A be the perturbed matriz
with same dimensions. Suppose the singular value gap satisfies (6). Let Ay = UpXi V!
be the truncated SVD of A. Then

ox(A)

U];(A) max{sin 6, sin v}, }, ji=1,... k.

max{sin #},sin v/} } <

This theorem states that the sine of the canonical angles sin 9} are bounded by
sin @}, up to a multiplicative factor, which is at most 1.

Our main result provides the following bounds for canonical angles between the
exact and the approximate singular subspaces, when both the subspaces have the
same dimension. The proof involves simplifying every term in (8).

_ THEOREM 4. Let U and V be obtained from Algorithm 1, and matrices ﬁk and
Vi from Algorithm 2. Under Assumption 1, the following hold:
o For every unitarily invariant norm

2
Yl MEL
1=y ok

) HSinl(VkﬂAfk)’H} <9

max siné(Uk,Uk) QQQJ{ .
2

The factor ¢ takes different values depending on the specific norm used. For
an arbitrary unitarily invariant norm, we have ¢ = /2, whereas for the
spectral and Frobenius norms, we have ¢ = 1.

e The canonical angles 0’; and v} satisfy

o
k HQQQT

max{sin 0, sin v} <, T

The interpretation of this theorem is as follows: (1) as the number of iterations
q increases, the largest canonical angle converges to 0 quadratically, and (2) a larger
singular value gap means that the subspace is computed more accurately. Comparing
this result with Theorem 2, we see that the upper bound in Theorem 4 has additional
factors which depend on the specific norm used. For an arbitrary unitarily invariant
norm, there is an additional factor max{1,v/2v4}/(1 — ). For the spectral and
Frobenius norms, the additional factor is 1/(1 — 7). Both factors are greater than 1,
suggesting that the truncation process can introduce additional error. The additional
factor is also independent of the number of iterations ¢, suggesting that it is a one-time
price to be paid for the extraction process. The bound is devastating when ~; ~ 1,
but this also means that the subspaces may not be well-defined.

Individual singular vectors. The previous results give insight into the accuracy
measured using the canonical angles between the exact and approximate singular
subspaces. When individual singular vectors need to be extracted, does the extraction
process introduce additional error? The following result quantifies the accuracy of the
extraction process.

THEOREM 5. Let the approrimate singular vectors U and V be computed accord-
ing to Algorithm 1. With Assumption 1, we have the following inequalities:

9) sin /(uj, U) < 42! HQQQIHQ, sin (v, V) < 720+ HQQQ{HQ
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for j =1,...k. Denote the approzimate singular triplets (6;,4;,9;) for j=1,... k.
Under Assumption 1

/ 52
(10) max {sin Z(u;, 4;),sin Z(v;,0;)} < 4/1+ 2;.;—2 ’yqu+1 HQ2QIH2 .

Here, 32 = |21 + 12120003 and § = min{ming, 25, {|o; — 6i|,05}}.

The first result bounds the angles between the exact singular vector and the
corresponding approximate singular subspaces. The second result compares the angles
of the exact and the approximate singular vectors. This result also says that the
extraction process does not adversely increase the error in the singular subspaces,
provided the singular values are well-separated.

The convergence of the individual singular vectors tell a story similar to that
of Theorem 1. The singular vectors corresponding to the largest singular values con-
verge earlier than the singular vectors corresponding to the smaller singular vectors.
This is a consequence of the fact that the singular value ratios are nondecreasing.

3.3. Comparison with other bounds. The subspace iteration dates to a 1957
paper by Bauer [3] for eigenvalue problems. The analysis of the subspace iteration
has also been well-established; for example, we refer to [19, Chapter 14]. Randomized
subspace iteration has attracted a lot of attention in the last two decades, with a
special emphasis on quantifying the influence of the starting guess 2. In particular,
recent research has focused on the choice of the distribution and the effect of the over-
sampling parameter p. The effect of randomized subspace iteration on the accuracy of
singular vectors was studied in the context of spectral clustering in [6]. However, the
authors made the rather strong assumption that € R™**, which amounts to setting
the oversampling parameter p = 0. This is a strong requirement since Assumption 1
now requires €2 to be invertible. The authors were able to show (in our notation)

R a0,
VI |2p0

Notice that this bound coincides with Theorem 1 (for sin f5) when p = 0. Our results
provide bounds for the right singular vectors as well as all the canonical angles.

Let us return to this assumption that rank (€1). When  is a standard Gaussian
matrix, [21, Theorem 3.3] says

sin Z(Uk, ﬁk)HQ <

2.35v/k

é
with probability at least 1 — §. For a small probability of failure 0 < § < 1, this
bound can be devastating. By contrast, if we let Q; € CF**+2) with p > 2, and
still suppose that 2 is a Gaussian random matrix. Then, with probability at least
1 —4, [12, Proposition 10.4] says

’r VETp (1 1/(p+1)
o], <=2 (5)
2 P 6

127 M2 <

It is clear that when the random matrix is Gaussian, oversampling has an impact
on the accuracy of the randomized subspace iteration. Specifically, the larger the
oversampling, the more accurate the subspace.
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Oversampling plays a bigger role for random matrices that have different dis-
tributions than Gaussian. When 2 is generated from the subsampled randomized
Hadamard transform, or Rademacher distribution, a more aggressive form of over-
sampling ¢ ~ klog k is necessary to ensure that rank (21) = k. Therefore, by allowing
for oversampling, our bounds are applicable to starting guesses that are not restricted
to Gaussian random matrices. Not only that, our bounds are also informative for
matrices with decaying singular values and significant singular value gap.

A recent paper by Nakatsukasa [18] considered the issue of accuracy of extract-
ing singular subspaces for general projection-based approximation methods. In our
notation, these refer to relating bounds for Z(Ug,U) to Z(Uy,Uy). Our bounds for
the canonical angles appear to be tighter than the result implied by [18, Corollary 1].
This may be because the analysis was applicable to arbitrary subspace projections,
whereas ours is specialized to randomized subspace iteration; we do not go into a
detailed comparison here. Furthermore, our analysis is able to bound the individual
canonical angles which is missing in [18].

3.4. Probabilistic bounds. Thus far, we have not made specific assumptions
on the matrix €, as long as it satisfies rank (1) = k. In particular, Q need not even
be random and may be deterministic. However, more can be said about the random
matrix €2 is drawn from a specific distribution.

In many applications, the matrix Q € R"*(+0) is taken to be the standard
Gaussian random matrix. That is, the entries of 2 are independent and identically
distributed A (0, 1) random variables. Here we derive a few probabilistic results that
provide insight into the accuracy of the subspaces. Let p > 2 and define the constant

B k ey (k+p)(n—k)
(11) C. = It p

and for 0 < § < 1 define the constant

T 2 1/(p+1) 2
(12) cdzevﬁﬁ”(&) vkt Vet f2lg 5 ).

THEOREM 6 (probabilistic bounds). Let Q € R"*(*+0) be ¢ standard Gaussian
random matriz with p > 2. Assume that the singular value ratio v, < 1. Let U and
V' be obtained from Algorithm 1. For j = 1,...,k, the expected value of the canonical
angles satisfies

2Q+1C 2q+20
Efsing)< 2~ Esiny)< -2
1+44;972C2 1+~;74C2

Let 0 < 6§ < 1 be a user-defined failure tolerance. With probability at least 1 — 6, the
following inequalities hold independently for j =1,... k:

2q+1 2q+2
. vVit1 Ca ] N0y
sinf; < L, sinv; < ]—4.
442 2 q+4 2
1++;,777C 1+7,77°CF

The main message of the theorem can be seen from the following bound on the
number of subspace iterations ¢q. Specifically, suppose 0 < € < 1, and the number of
subspace iterations g we take satisfies
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1 (log €/Ce 1) .
2\ logi ’
then E sinf; < O(e?) for j =1,..., k;

Several extensions of these results are possible. First, following the proof tech-
nique of Theorem 6, we can extend the probabilistic analysis to Theorems 2 and 5 as
well. Second, following the strategy in [12], the probabilistic results can be extended
to other distributions. However, we will not pursue these extensions here.

4. Low-rank approximation and singular values. In this section, we pro-
vide several structural bounds for the accuracy of the low-rank approximation and
the accuracy of the singular values.

4.1. Low-rank approximation. Several results are available for estimating the
error in the low-rank approximation A ~ Q@Q* A in the spectral and Frobenius norms,
when the matrix @ is obtained from the randomized subspace iteration [11, 12, 27]. As
mentioned earlier, the spectral and Frobenius norms are special cases of the Schatten-p
norm, which are examples of unitarily invariant norms.

Here we present the first known analysis of randomized subspace iteration in a
unitarily invariant norm.

THEOREM 7. Let A € C™*" be computed using Algorithm 1. Under Assump-
tion 1, the following inequalities hold in every unitarily invariant norm:

(13) I = QR AIN < LIl + 7z

(14) I - Q@) Al < 2| = 2201]|

Let B = Q*A, and let By be its best rank-k approximation. If A is approximated
using QBy, then the error in the low-rank approzimation is

(15) 14 - @Byl < <1+U; iars - [0, ) ISl

As in Theorem 4, ¢ = 1 for spectral and Frobenius norms, and /2 for an arbitrary
unitarily invariant norm.

In this theorem, as the number of iterations ¢ — oo, the error in the low-rank
approximation goes to zero.

We present a variant of the error in the low-rank approximation for the special
case that a Schatten-p norm is used. The proof for the special case of the Frobenius
norm was provided in [27].

THEOREM 8. Let A be computed using Algorithm 1. Under Assumption 1, we
have

(16) Iz = QQUYAIE < e + 7|22 a0 |

The error bound in Theorem 7 is weaker than Theorem 8 for the Schatten-p
norm since for a, 8 > 0, we have \/a? + 82 < a + 3. More generally, Theorem 8 is
applicable to any unitarily invariant norm that is also a Q-norm [4, Definition IV.2.9].
A unitarily invariant norm H||||Q is a @-norm if there exists another unitarily invariant

norm ||-[||,, such that H|A|||i2 = ||A*Al||,,- Note that the Schatten-p norms satisfy this
. 2
property for p > 2, since || 4[| = [|4* Al .
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4.2. Accuracy of singular values. How are the singular values of A related
to the singular values of A7 We now present a result that quantifies the accuracy
of the individual singular values. This result is similar to [11, Theorem 4.3]. Our
proof techniques are substantially different. We make extensive use of the Cauchy
interlacing theorem and the multiplicative singular value inequalities (20).

THEOREM 9. Let A = USV* be computed using Algorithm 1. Under Assump-
tion 1, the approzimate singular values oj(A) satisfy for j =1,...k

ai(A) '
Jrear o]

It can be readily seen that the large singular values are computed more accurately
since the singular value ratio corresponding to larger singular values is smaller.

Rather than quantify the accuracy of the individual singular values, the next
results are of the Hoffman—Wielandt type and account for all the singular values
together. Define the two matrices of conformal sizes

o) e[

Under Assumption 1, the error in the singular values satisfies

0;(A) = 0;(A) =

(17) DESES AR et )

The proof combines [4, Problem II1.6.13] with Theorem 7. For the Schatten-p norm,
with p > 2, we can derive the bound

2
2 4
(18) Il - ), < ¢ Il + |22 0|

The proof is similar and is therefore omitted.

5. Proofs. We recall some results here that will be useful in our analysis; see [15,
section 7.7] for proofs. Let M, N be Hermitian positive definite. The notation M < N
means N — M is positive semidefinite and it defines a partial ordering on the set of
Hermitian matrices. Clearly, this also implies I — N < I — M. The partial order is
preserved under the conjugation rule. That is,

SMS* < SNS* VS ecCcm .

Weyl’s theorem implies that the eigenvalues satisfy A;(M) < A;(N) for all j =
1,...,n. If, additionally, M, N are both positive semidefinite, then M1/2 < N1/2 [4,
Proposition V.1.8] and (I + N)™' < (I + M)~

Singular value inequalities. Let A, B € C™*™. For all 4,5 such that 1 < 4,j <
min{m,n} and i + j — 1 < min{m, n}, the following singular value inequalities hold
for the sum A 4+ B [15, equation 7.3.13],

(19) oirj-1(A+ B) < 0i(A) + 0;(B),
and product AB* [15, equation (7.3.14)],
(20) ivj—1(AB") < 04(A)o;(B).

A useful corollary of these results is that ;(A + B) < 0;,(A) + 01(B) and 0;(AB*) <
0i(A)o1(B) for i =1,...,min{m,n}.
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Unitarily invariant norms. It is useful to recall some properties of the unitarily
invariant norms. Every unitarily invariant norm [|-|| on C™ is associated with a
symmetric gauge function on R™. The ||-||| satisfies || M]| = |H(M"‘M)1/2H}7 since both
matrices have the same nonzero singular values. The following inequality for unitarily
invariant norms, also known as strong submultiplicativity, will be useful [4, Equation
IV.40]:

IABCI < [ Ally IC12 NIBI-

We will need the following lemma.

LEMMA 10. Let A, B, D € C"*™ such that A, B Hermitian and 0 < A < B; then
|0 apy || < [0~y

Proof. Combining the properties of the partial ordering, the eigenvalues of the
scaled matrices satisfy \;(D*AD)Y? < X\;(D*BD)'2 for all j = 1,...,n. Since
the matrices are positive semidefinite, the eigenvalues are the singular values and
[(D*AD)Y2| ) < [[(D*BD)?||x) for every Ky-Fan-k norm k = 1,...,n. By the
Fan dominance theorem [4, Theorem IV.2.2], the advertised inequality is true for every
unitarily invariant norm. ]

5.1. Proofs of subsection 3.1 theorems.

Proof of Theorem 1. We tackle each case separately.

Bounds for sin@;. The proof is lengthy and proceeds in four steps. We give a
great level of detail here, since the proof technique will be applicable to the subsequent
proofs.

1. Converting an SVD to an eigenvalue decomposition. We compute the thin SVD
of (I —Pg)Ur = KSyG*. The matrix

Sy = diag (Sinek, . ,sin@l) S REXF

contains the sine of the canonical angles between the subspaces spanned by the
columns of U and Uy, [5, equation (13)]. It is readily seen that

(21) GS;G* = Ui (I — Pg)Us.
2. Shrinking space. In Algorithm 1, we had defined Y = (AA*)7AQ. Tt follows

that
_ Eiq+1ﬂl
(EJ_EI)’JEJ_QQ ’

\ i )
e S (e

where from (2), Q; = V;*Q and Qs = VQ. Next, by Assumption 1, ©; has full row
rank and therefore it has a right multiplicative inverse. Define

I

Tk —(2¢+1)
Z=UyQly, P = [F

] . F=(3.%])i%, 00fx, Gt
Recall that Y = QR is the thin-QR factorization of Y. Let Q1 R; be the thin-QR

factorization of RQIZ;QQH); here, Q; € C*+P) ¥k R, e Ck*k,
From Q1Q7 =X I, the conjugation rule implies

Pz =U'Q1Q1Q"U 2 U QQ"U = Pu-q-
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~

Since R (U*Y) = R (U*Q) = R (U*U), they have the same projectors, so

(22) Pz 2P, I-Py.521—"Pz.

U=0>

Plug UU* = I into (21), and use (22) to obtain

Ui(I = Py)Uy = UfU(I = Pu.p)U*Us < [I 0] (I - Py) H .

3. Simplifying Py. Since Py = ZZ', we have

Pz = [Iﬂ] (I+FF)~H [ F],

from which it can be readily seen that

[I 0] (I—"Pz) H =1-(I+FF)!
(23) =F*FI+F*F)'=0H.

Note that H is positive semidefinite. To summarize the story so far, GS}G* < H.
4. Applying singular value inequalities. A straightforward SVD argument shows
that the jth singular value of H satisfies

oj(H)=0:(F)/1+0}(F), j=1,....k

The singular value inequalities (20) imply

2q+1
0;(F) < 01(S12])78 1 Q010 (572071 < [ HQ2QJ{H :
Ok—j+1 2

Plugging this inequality into o;(H)

2
4q+2
it o]

_ 2 J=4.-
L3 et

Since GS}G* < H, Weyl’s theorem implies sin? Op—j+1 < O’?(H). Take square roots
on both sides and rename j <~ k — 5 + 1 to get the desired result.

Bounds for sinv;. Let GSZ.G* be the eigenvalue decomposition of V(I — Py )Vj.
Note that the diagonals of Sy are the sine of the canonical angles Z(Vj, ‘A/) Since V
is obtained from the thin SVD of 4*Q, R (A*Q) = R (V) and Py = Pa+q, since an
orthogonal projection matrix is uniquely determined by the range. Next, consider 7
defined as

7 1 ~
(24) Z = ETU*YQIE;%—? = {ﬁ} , FE(EIEl)q+1QQQIZ;2q—2;

from (AV)*@Q = ¥*U*Q, it can be verified that

R(Z)CRETUY)=R(ZTU*Q) =R ((AV)*Q).
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Using an argument similar to (22), we obtain

VEV(I = Po)V* Vi < ViEV(I =PV Vi = [T 0] (I —Py) [é] .

The right-hand side simplifies to I — (I + ﬁ*f)*l. The rest of the proof is similar to
that of the proof for sin6;. ]

Proof of Theorem 2. With the notation of Theorem 1, we follow steps 1-3 of the

proof to obtain
GS3EG* < H < F*F.

Since the square root preserves partial ordering, this implies GSyG* =< (F*F)
Note that (F*F)/? and F have the same nonzero singular values. Therefore,

By using strong submultiplicativity of the unitarily invariant norm, we have

by
2 O

1/2.

sin 2(U. 0) || < || =272 = 11

Jon 3] <

5.2. Proofs of subsection 3.2 theorems.

Proof of Theorem 3. Let X = (I —Pg, )Py, and Y = (I—Py, )Py,. In decreasing
order, the singular values of X and Y are {sin®; ?:1 and {sin V;}?Zl,
Let B= A — ﬁk. First, we observe that

B =(I—Pg )(A— APy,
= (I - Pg)Ax — (I — Pg ) APy,
= (I — Py, )Pu, A — (A — A)Py,
= XAy — B(I = Py, )Py, = XAy — BY.

respectively.

A similar calculation shows that Fo; = X*B — AiY*. From the first relation, since
rank (A) > k, we have
XAgAL = (Eiz + BY)AL

But AkAL = Py, and XPy, = X. Applying (20), we have

a;(X) < (|Bxallz + [ Bll2lYll2)/oh—j+1(A), G =1,... k.
A similar argument gives

oj(Y) < ([1Earlly + 1Bl 1X15)/ok—541(A), G =1,... k.
Combining these relations

maX{HE21||2,||E12H2}+ | Bl|2
ok—j+1(A) or—j+1(A)

-~

Recognize that ||B|ls = ox4+1(A). Applying (7) in the spectral norm simplifies the
expression since

1 (1 . ops1(A) ) o (A)

max{o;(X),0;(Y)} < max{[| X{lz, [[Y]|2}-

o) " or(A) — o (@))  oi 1 (A)(0k(A) — oraa ()
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Therefore,

(X)) o oi(A)  max{|[Ealy, || Eiz2lls}
max{c;(X),0;(Y)} < o (A) ¢ )

Now 0;(X) =sin¢),_;,, and 0;(Y) =sinv;_; ;. Rename j <k —j+1 to finish. O

Proof of Theorem 4. We tackle each case independently.

Unitarily invariant norms. Our proof involves simplifying each term in (7),
and (8) and has several steps.

1. Simplifying the gap. Recall ( = o (A) — O-k+1(121\) and A = QQ*A. From the
first part of Theorem 9

-~

¢ =0k(A) = ort1(A) 2 0x(A) — or1(A).
2. Simplifying || E12]||. First observe that APy, = Ax. So
By = (I =Py ) - QQ")APy, = (I = Py, )(I — QQ7)Ay.
Then applying (14) along with submultiplicativity gives
Il < I - Q@) Awll < 77| |=201 | < 2Nz |20

3. Simplifying || E21]||. First, Ea1 =Py, (I—QQ*)AP%, and since || Py, (I-QQ*)||,
= ||sin Z(U, U)||2,

[[E21 ] <

sin Z(U, D), 167 = Q@) All,
because of strong submultiplicativity. Applying Theorem 1 and (14)
i Jessil]

V122 10,0} 13

B2 <

(17| 0t|) Nz

Let B = 'quHQQQJ{HQ. Then for 8 > 0, since v; < 1
w(l+B) _ 1+ub
VIR T 1+
Therefore, [|Ea1 | < V23212 L [[[]Q221])2-

4. Putting everything together. Plugging in the intermediate quantities into (7),
we have

=L

, _—
20k — Ok41

max{’Hsiné(Uk,fjk)

sin Z(Vy, ‘//\'k)m} < \/iviq

o

Dividing the numerator and denominator by o proves the stated result for unitarily
invariant norms.

Spectral/Frobenius norms. Let [|-[|; denote the spectral and Frobenius norms.
The first two steps are identical to the proof for unitarily invariant norms. For the
third step, using (14)

T 192207 |12
V122 10.0] 13

2
1Bl < DRSS R
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With 3 defined as before, since v, < 1, \/v2 +7282/+/1 + 7232 < 1. Therefore,
1Batlle < 330 1Tl | 2201 -
The rest of the proof is the same.

Canonical angles. The proof combines Theorem 3 with the above analysis for the
spectral norm. The right-hand side contains the term

max{Hsin Z(Ug, ﬁk)Hz , Hsin L(Vg, Vk)Hg} .

The rest of the proof involves some simple manipulations. ]

Proof of Theorem 5. We first address (9). Following the steps of the proof of
Theorem 1, we have

sinzl(uj',ﬁ) =u;U(I = Pu-@)U"u; = [e;r 0] (I = Pz) [e(d ’

where e; is the jth column of the kxk identity matrix. Therefore, we have sin? Z(uj, (7)
< e;-'—Hej, where H was defined in (23). The inequality H < F*F' implies

. 2
sin® Z(u;,U) < 0;4'1_2 H(ELED‘IEL(SEQD(% )

2
4q+2
<o o],
Taking square roots on both sides gives the desired results. The strategy for bounding
the canonical angles sin Z(v;, V') is very similar and will be omitted.

We now address (10), which is a straightforward application of [13, Theorem 2.5].
Let Py = QQ* and Py = I. Then, in our notation, this result takes the form

12 ~
max {sin Z(u;, U;),sin Z(v;,0;)} < 4/1+ 2}—2 max {sinl(uj, U),sinl(vj,l)} ,

where 5/ = max{0, ||(I — QQ*)Al|,} and § is as defined in the statement of the theo-
rem. Theorem 8 for the spectral norm implies 4’ < 7, whereas Theorem 5 implies

max {sin Z(u;,U),sin £ (vj, I)} < ’y?q

QQQIHQ.

Plug in the intermediate steps to obtain the desired bound. 0

Proof of Theorem 6. In Theorem 1, bounds for |||, are available in the lit-
erature. From the proof of [12, Theorem 10.6] we find the inequality

E |||, < .,
2

where the constant C, was defined in (11). Let o > 0 be a constant. The map = —
x/v1+ az? is convex. Therefore, by Jensen’s inequality the results in expectation
follow.

For the concentration inequalities, [11, Theorem 5.8] showed that [|Q229Q1]2 < Cy
with a probability at least 1 — §. Here, Cy was defined in (12). Plug into Theorem 1
to obtain the desired bounds. O
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5.3. Proofs of section 4 theorems.

Proof of Theorem 7. Proof of (13). Using the unitary invariance of the norms
I = PR)All = 1 = Po-@)=ll = || €T (2 = Po-g)z) ||,
We use (22) combined with Lemma 10 to obtain
flo=7 @ = Pomaymy ] < [T - Py

With My =1 — (I + F*F)"Yand My = I — F(I + F*F)"'F*, then (I — Pz)X
simplifies as

(25) T - Py)% [E’“Mlzk * ]

ST M,S,

The square root function is concave on [0, c0) and X (I—Pz)¥ is positive semidefinite.
Therefore, an extension to Rotfel’d’s theorem says [16, Theorem 2.1]

lle=7 =Pz < [ tanzey | + | eTanz.) e
Using the inequalities M7 < F*F and M, < I, along with Lemma 10, gives

I~ o)l < || @er Fu || + |50
< IFSkll + IS

(26)

Use FYp = (ELEL)‘?ELQQQJ{Z;Q‘I and the submultiplicativity to obtain the adver-
tised bounds.

Proof of (14). The proof for (14) is similar and is omitted. The main observation
is that Ay has only k nonzero singular values.

Proof of (15). We follow the strategy in [7, section 3.3]. Recall that By is the
best rank-k approximation to B = Q*A. With the notation in Algorithm 2, note that

QBy, = QUp U B = U Ui A =Py A,
and the triangle inequality gives
I =Poal] <l = Po |+ [ - Poa]]
Since Ay = Py, Ak, applying strong submultiplicativity

Il =Po04]| <[ = o, e || 14kl + Al

We recognize that [[|(1 —Pg, )Pu, || = || sin Z(Uk, Uw)|l, apply Theorem 4 to complete
the proof. ]

Proof of Theorem 8. The proof is similar to that of the proof of Theorem 7. Con-
sider the term of interest ||(I — QQ*)A\HZQ), which can be simplified to

1T = QQMAII; = 14*(1 = QR All, o = [[E7 (T = Po-@) =, -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/19 to 172.74.114.195. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ANALYSIS OF RANDOMIZED SUBSPACE ITERATION 41

The first equality holds only for p > 2, whereas the last equality follows because of
the unitary invariance. As in the proof of Theorem 1, we have

Z =0yl P p=(z,x2])15,0,0fn,
The use of (22) and Lemma 10 ensures

=" =Pu-@)=|, ., < =7 (7 =P2)x]

p/2 p/2"

We apply [16, Theorem 2.1] to (25) with f(¢) =t to obtain

=71 = P2)3| Ik M1 Bkl + [[[SIMRS L]

p/2 <
< IZeF*FZkll,/o + H’ZIZJ_’H

p/2
p/2
2 2
= IFZll, + NZ Ll
We have used My <X F*F and My < I. The rest of the proof is similar to that
of Theorem 7. O

Proof of Theorem 9. The proof makes heavy use of the partial ordering which
was reviewed at the start of section 5. From the inequality I = QQ*, the conjugation
rule gives

A*A = A*QQ* A.

Then, Weyl’s theorem implies A\;(A*A) > X\;(A*QQ*A) for j = 1,..., k. Relating the
eigenvalues to the singular values proves the first inequality.
For the second inequality consider again A*QQ*A. With the aid of (22)

(27) A*QQ*A = VX Py-oXV* = VETP,EV*,

Therefore, \j(A*QQ*A) > \;(VETPzXV*) for j =1,...,k. Since VETPzEV* and
Y. TP,3 are similar, they share the same eigenvalues. It can be readily shown that

Zk(l—i—F*F)_le *
* *|

TPy =
For j =1,...,k, the eigenvalues of A*Q*QA satisfy
(28) N (A*QQ*A) > N(VETPZEV*) > N (Si(I + F*F)71%y).

The second inequality follows from the Cauchy interlacing theorem [19, section 10-1].
Applying the properties of partial ordering, we obtain

2 2
F < 02(_1:12 HQQQHL E;(4q+2) _ HQQQHL ]_—‘i(14r27
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where Ty, = diag (v1,...,7&) is a diagonal matrix with the singular value gaps.
Furthermore,

9 1
Sl + F*F)7's, = % (1 n HQﬁ{H Fiq”) S
2

The diagonal matrix on the right-hand side has its singular values on the diagonals;
this fact, combined with (28), gives for j =1,...,k

2 1 JJZ(A)
0;(Q7A) = N(A"QQ™A) > N\ (B (I + F*F)™ " E) > 3 :
et

Taking square roots, we obtain the desired result. ]
6. Numerical results.

6.1. Test matrices. To demonstrate the performance of the bounds, we use the
following test matrices:
1. Controlled gap. The first set of test matrices A € R3000%300 are constructed
using the formula

300

T
gap 1
A=) eyl + Y -y,
= j=rt1

where z; € R3% and y; € R3 are sparse random vectors with nonnegative
entries generated using the MATLAB commands sprand(3000,1,0.025)
and sprand(300,1,0.025), respectively. The formula above is not an SVD,
since the vectors do not form an orthonormal set. Nonetheless, the singular
values decay like 1/j and the gap between the singular values between 15 and
16 is controlled by the parameter gap. We consider three cases:

(a) small gap (GapSmall), gap = 1,

(b) medium gap (GapMedium), gap = 2,

(c) large gap (GapLarge), gap = 10.

2. Low-rank plus noise. The matrices are of the form

_ |4 0 [t T
A_{O 0]+ 2n2(G+G)’

where G € R™*" is a random Gaussian matrix. We consider three cases:
(a) small noise (NoiseSmall), v,, = 1072,
(b) medium noise (NoiseMedium), 7, = 1071,
(c) large noise (NoiseLarge), v, = 1.
3. Low-rank plus decay. The matrices take the form

A=Udiag(1,1,...,1,27%37% .. (n—r+1)"HV*,
N———

T
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102 10'
—gap=1
gap=2
—gap = 1(
o
S 10 10°
©
ps
k]
3
2 o .
5 10 10
10" 102

0 10 20 30 0 10 20 30 40

30 40

Fic. 1. Singular value of the matrices from the (left) “controlled gap” example, (right) “low-
rank plus noise” example, (below) “low-rank plus decay” example.

The unitary matrices U, V are obtained by drawing a random Gaussian matrix
and taking its QR factorization. We distinguish between the following cases:
(a) slow decay (DecaySlow), d = 0.5,
(b) medium decay (DecayMedium), d = 1.0,
(c) fast decay (DecayFast), d = 2.0.
The first example is adapted from [22], whereas the second and third examples are
drawn from [24]. In all the examples, the random matrices were fixed by setting the
random seed and we set the parameter r = 15. The singular values of all the test
matrices are plotted in Figure 1.

6.2. Canonical angles. For the first numerical example, we use the nine test
matrices in subsection 6.1. For each matrix, we chose an oversampling parameter
p = 20 and the target rank k was chosen to be 25. The starting guess {2 was taken to
be a random Gaussian matrix.

~

6.2.1. No extraction. We plot the canonical angles sin Z(Uy, U) in solid lines;
the corresponding bounds from Theorem 1 are also plotted in dashed lines. The
results are displayed in Figure 2. We make the following general observations:

e The influence of the subspace iterations on the canonical angles is clear: the
angles become smaller as the number of iterations g increases. This implies
that the subspace is becoming more accurate.

e If there is a large singular value gap in the spectrum, this means that all the
canonical angles below that index are captured accurately. This is promi-
nently seen in Figure 2(c), in which there is a large gap between singular
values 15 and 16. Similar observations can be made in the other figures.

e As the decay rate of the singular values increases, the corresponding canonical
angles become smaller.

e In most figures the bounds are qualitatively informative, but in some figures,
the bounds are also quantitatively accurate (e.g., GapLarge).

e Similar results were observed for sin Z(V}, ‘A/) and, therefore, are omitted.
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F1G. 2. Plots of sin6@; for j =1,...,k. The test matrices were described in subsection 6.1. The

target rank k = 25 and an oversampling parameter of 20 was chosen for all the experiments. The
solid lines correspond to the computed values, the dashed lines correspond to bounds obtained using
Theorem 1. The parameter q corresponds to the number of subspace iterations.

We now make observations specific to the test examples:

1. Gap examples. The computed canonical angles decrease as the gap increases, and
with more iterations. The test matrices (GapMedium and GapLarge) have
both a decay in the singular values and a prominent singular value gap be-
tween indices 15 and 16. These matrices satisfy the assumptions of our anal-
ysis, and therefore the bounds can be expected to be good. We see that as
the size of the gap increases, the bounds become more accurate in accor-
dance with Theorem 1. GapSmall has decay in the singular values but no
special singular value gap. Even in this case, the bounds are qualitatively
good.

2. Noise examples. NoiseSmall is close to a low-rank matrix and there is a large sin-
gular value gap at index 15. For this example, the bounds are qualitatively
good. As the level of noise increases, the gap decreases and therefore, the
computed angles increase, as predicted by Theorem 1. The bounds are unin-
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Fic. 3. Plots of max{sin 9;-,sin 1/;} for 5 = 1,...,k. The test matrices were described in

subsection 6.1. The target rank k = 15 and an oversampling parameter of 20 was chosen for all
the experiments. The solid lines correspond to the computed values, the dashed lines correspond to
bounds obtained using Theorem 4. The parameter q corresponds to the number of subspace iterations.

formative for ¢ = 0 but qualitatively good for ¢ = 1 and 2. Compared to the
Gap examples, the bounds are not as sharp since there is very little decay in
the singular values.

3. Decay examples. In these examples, the singular values decay beyond index 15
but there is no prominent gap. As the rate of decay increases, in general, the
canonical angles decrease. It is also seen that the bounds are qualitatively
accurate (except for ¢ = 0).

6.2.2. Extraction step. Our next experiment tests the effect of the extrac-
tion step on the accuracy of the canonical angles. We now compute sin 0} and sin 1/;»
for the test matrices described in subsection 6.1. In Figure 3, we plot the quantities
max{sin 9}, sin uj’} for j = 1,...,k in solid lines. The corresponding bounds from The-
orem 4 are plotted in dashed lines. Here, the target rank was chosen to be k = 15,
to exploit the singular value gap in the matrices. We make the following general
observations:
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e The extraction step did not significantly affect the canonical angles and the
accuracy is comparable to Figure 2. The subspaces are more accurate as the
number of iterations increases, and if there is a large singular value gap at
index 7, then the canonical angles with index j' < ;7 are captured accurately.

e Although the canonical angles are small, compared to Theorem 1, the bounds
in Theorem 4 are not as accurate. One reason is that the upper bounds
in Theorem 1 are at most 1, but the bounds in Theorem 4 are allowed to
be greater than 1. Furthermore, the bound in Theorem 4 has the factor
1/(1 —~%) in the denominator, which can be quite large when there is a small
singular value gap. It may be possible to derive better bounds, but we could
not immediately see how to derive them.

e We also compared the accuracy of the individual singular vectors (not shown
here). The results and the conclusions are similar.

We now make observations specific to the test examples:

1. Gap examples. The behavior of the computed canonical angles is very similar to
that without the extraction step. In general, the angles decrease as the gap
increases. When the parameter gap is small, the singular value ratio v is
large, and (1 — %)~ ! is small. This explains why the bounds are bad for
GapSmall and GapMedium and show little improvement with more subspace
iterations. Only for the GapLarge example with ¢ = 0 are the bounds quali-
tatively good.

2. Noise examples. The computed canonical angles decrease as the noise decreases.
In all three examples, the bounds are qualitatively good. The bounds are bet-
ter for NoiseSmall and NoiseMedium because the singular value gap between
indices 15 and 16 is bigger than that for NoiseLarge.

3. Decay examples. The computed canonical angles become smaller as the decay of
the singular values increases. In these examples, there is no prominent gap,
so the bounds don’t capture the behavior well. However, the computed angles
are small, and the subspace is accurate.

6.3. Singular values. We now consider the accuracy of the singular values. We

use the same test matrices and the remaining parameters are kept fixed. In Figure 4,

the computed singular values are plotted against the upper and lower bounds. We

make the following general observations:

e For the large singular values, both the upper and lower bounds are qualita-
tively good for all the examples that we tested.

e As the number of iterations increases, the singular values are computed more
accurately and are close to the upper bounds (the exact singular values).
However, for indices close to the target rank, the lower bounds are not tight.
The bounds get tighter as the number of iterations ¢ increases.

e The bounds for the singular values quantitatively better than the bounds for
the canonical angles.

We now make observations specific to the test examples:

1. GapSmall. In these examples, the large singular values are captured accurately.
As the number of iterations increases, both the lower bound and the approx-
imate singular values approach the true singular values (upper bound). For
GapMedium and GapLarge, the bounds were much more accurate.

2. NoiseMedium. There is a qualitatively different behavior before and after indices
15 and 16. The upper and lower bounds are tight before index 15, but only
the upper bound is tight after index 16. The lower bound significantly under-
predicts the singular values.
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3. DecayMedium. Similar to the previous example, the lower bounds are good before
index 15 and improve with the number of iterations after index 15.
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