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Abstract

Dipole approximations are commonly used in calculations of light scattering and

optical forces acting on nanoparticles. The scattered field strength is proportional to

particle volume. For the past three decades, many researchers have used an effective

volume based on skin depth when dealing with metallic nanoparticles, instead of the

full volume. By comparing several dipole models to Mie scattering and finite difference

time domain simulations, we show that it is more accurate to use the full volume

because the complex relative permittivity of the metal already accounts for its skin

depth.

Introduction

Light scattering calculations play a key role in many areas including aerosol analysis, photo-

voltaics, spectroscopy, biosensing, atomic trapping, and optical tweezers, among others 1–11.

For spherical particles, the gold standard approach is to use Mie scattering12, however these

calculations can be cumbersome and tedious. For particles much smaller than the wavelength

of light, a simpler approach is to use Rayleigh scattering calculations, which assume that a

particle can be approximated as a single dipole, with induced relative dipole moment,

p = εbαEinc(r0), (1)

where εb is the relative permittivity of the background media, α is the polarizability of the

particle, and Einc(r0) is the incident electric field evaluated at the center of the particle. The

polarizability of the particle can be approximated by the Clausius-Mossotti (CM) relation 13:

αCM = 3ε0V
ε− εb
ε+ 2εb

(2)

where ε0 is the permittivity of free-space, ε = ε′ + iε′′ is the complex permittivity of the

particle, V = (4/3)πa3 is the spherical particle volume, and a is particle radius. The CM
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relation (eq 2) is widely accepted for both dielectric and metallic particles as the particle size

tends to zero, while for particles much larger than the wavelength, the dipole approximation

fails in general. In 1994, Svoboda and Block14 proposed an effective volume correction

(V → Veff) to increase the range of validity of eq 2 specifically for particles whose radii

are not much smaller than the material skin depth, δ = λ/(2πn′′), where n′′ = Im{ε1/2} is

the imaginary part of the refractive index of the material, assuming unit relative magnetic

permeability. Veff was given by,

Veff = 4π

∫ a

0

r2e
r−a
δ dr. (3)

Metallic skin depths are typically a few tens of nanometers at optical wavelengths, effectively

limiting the interaction volume between the light and particle to a small shell near the surface

of the particle. Based on this skin depth effect, it was anticipated that particles of size

a� δ would exhibit a trapping force proportional to the total particle volume (∝ a3), while

particles with a� δ would exhibit a trapping force proportional to the shell volume (∝ a2).
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Figure 1: Simulation geometry. (a) Far field scattering calculations are performed for solid
and hollow gold nanospheres illuminated by plane waves. (b) Optical force calculations are
performed on gold nanospheres displaced laterally by ∆x from the optical axis of a Gaussian
beam with λ/2 beam waist.

Several experimental studies have investigated the dependence of trap force on particle

size, but have typically found a rapid transition in trapping force scaling from a3 to sig-
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nificantly slower than a2 without any clearly identifiable region of a2 scaling for spherical

particles15–18 and non-spherical particles19. A qualitative explanation was that that the re-

duced trapping forces were due to enhanced radiation pressure forces displacing the particles

away from the beam focus15,20. One experimental study stated that a region of a2 depen-

dence can be found by minimizing the spherical aberration in the system, but this was based

on a fit to only four data points21. Despite the dearth of experimental evidence supporting

the volume correction approach based on skin depth, it has continued to be used by many

different groups, including our own16,21–31.

In this Article we show that while the concept of the skin depth is physically accurate,

the commonly-used volume correction factor in eq 3 is inaccurate, and in fact, the skin depth

effect is best accounted for by simply using the complex-valued ε. We show that far-field

scattering and optical force calculations (Figure 1) are more accurate using the full particle

volume than a corrected effective volume. And for particles larger than λ/10, the optical

force is neither proportional to the shell volume nor the total particle volume.

Computational Details

Polarizability Models

We compare the accuracy of four different expressions for polarizability: the basic CM re-

lation (eq 2), the CM relation with radiation reaction (RR) correction, the effective volume

approach based on skin depth (SD), and the effective volume approach combined with radi-

ation reaction (SDRR). The radiation reaction correction corrects for the back-action of the

scattered field on the dipole moment, and can be expressed as32,

αRR = αCM

[
1− ik3

6πε0

αCM

]−1

, (4)
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where k = 2πnb/λ is the wavenumber and nb is the refractive index of the background

medium. Note that in the small particle / large wavelength limit, the radiation reaction

correction factor only becomes significant at intermediate particle sizes (λ/50 < a < λ/2).

When using an effective volume based on the skin depth, the polarizability can be expressed

as,

αSD =
Veff

V
αCM. (5)

Finally, by combining the effective volume and radiation reaction corrections, the polariz-

ability is

αSDRR = αSD

[
1− ik3

6πε0

αSD

]−1

. (6)

Forward and Backward Scattering

We compare these polarizabilities using a far-field scattering analysis from plane wave exci-

tation, as shown in Figure 1a. In the far field, the light scattered or radiated by an oscillating

dipole is purely transverse and its components are given by33,

Es =

 Eθ
Eφ

 =
k2

4πε0εb

eikr

r

 (px cosφ+ py sinφ) cos θ − pz sin θ

−px sinφ+ py cosφ

 , (7)

where px, py, and pz are the Cartesian components of p; θ is the polar angle from the z-axis;

and φ is the azimuthal angle.

We use Mie theory as the gold standard, rigorous solution for the diffraction of a monochro-

matic plane wave perturbed by an isotropic, homogeneous sphere. It is valid for particles of

any diameter and composition. We compute scattered fields using the Mie therory formalism

presented by Born & Wolf34. The Mie series solution is truncated after 14 terms, which is

enough for convergence for spheres throughout the size range investigated here.

In addition to Mie scattering calculations of the far field intensity, we also rely on finite-

difference time-domain (FDTD) simulations as a trusted computational approach. These
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simulations are implemented in Lumerical’s FDTD Solutions software with a stability factor

of 0.99, an auto shut-off minimum of 10−5, vacuum background, and perfectly matched layers

(PML) in all boundary conditions. The far field scattering intensity can be obtained using

the “Total Field Scattered Field” source option. With this option, the E-field scattered

from a particle onto a closed box of 6 rectangular monitors is computed. Then the far-field

scattering distribution can be reconstructed using the surface equivalence theorem 35. After

summing up the product of the electric near-field and the surface normals of the closed box,

the results are projected to a closed spherical surface with 1 m radius in the far-field. We

implement this reconstruction using both Lumerical’s built-in script and Matlab.

Optical Forces

The optical force exerted on a solid gold nanosphere illuminated by a monochromatic x-

polarized Gaussian beam is investigated using the configuration in Figure 1b. The gold

nanosphere is displaced 0.7 µm laterally from the center of beam waist at 1064 nm excitation

and 0.4 µm laterally from the center of beam waist at 550 nm excitation. Within the dipole

approximation, the time-averaged optical force can be calculated from the polarizability as 33,

〈F〉 =
1

2

∑
j

Re{α∗E∗inc,j∇Einc,j} (8)

where Einc,j is the jth Cartesian component of the incident electric field and ∗ represents

complex conjugate. Here we determine the incident electric field through FDTD simulations

of the focused Gaussian beam without any particle in the domain with 0.5 nm × 0.5 nm ×

0.5 nm grid size.

We compare the forces predicted by the dipole model to trusted Maxwell’s stress tensor

(MST) calcultions by computing,33

〈F〉 =

∫
∂V

〈
←→
T (r, t)〉 · n̂(r)dA, (9)

6



where n̂(r) is the surface normal, and the MST is given by

←→
T = ε0εbE⊗ E + µ0µbH⊗H− 1

2
(ε0εbE

2 + µ0µbH
2)
←→
I , (10)

where ⊗ represents the tensor product, µ0 is the free-space permeability, µb is the background

medium relative permeability,
←→
I is the identity matrix, and E and H are the total (incident

+ scattered) fields, which can be recorded by a cubic monitor enclosing the particles in

FDTD simulations. The same stability factor, auto shut-off minimum, background, and

boundary conditions are used in these simulations as in the far-field scattering simulations

described above.

Results & Discussion

Far Field Scattering

In Figure 2, we compare the intensities of the forward and backward scattered fields computed

by Mie theory to the results of dipole models calculated using eqs 1 and 7, with the four

different polarizabilities given by eqs 2, 4, 5, and 6 at two wavelengths: 1064 nm and 550

nm. In the dipole models, there is no difference between forward and backward scattering.

For 1064 nm excitation, the CM dipole model closely tracks the Mie theory for particles of

radius a < 150 nm. However it is important to note that the log scale can somewhat distort

the apparent accuracy; the scattered intensity predicted by the CM relation and radiation

reaction are only within 5% of both the forward and backward scattered Mie intensity for

a < 20 nm, and within 10% for a < 100 nm. Including the radiation reaction correction

extends the regime of ±10% accuracy slightly to a < 110 nm. The two models involving

a skin depth correction factor are both less accurate than the other dipole models for all

particles with radius a < 200 nm, while for a > 200 nm, none of the dipole models accurately

describe the scattering.
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Figure 2: Comparison of far-field scattering models. The Mie theory is treated as the gold
standard, with different scattering intensities in the forward and backward directions. (a)
Far-field scattering intensity for λ = 1064 nm. (b) The errors of the four dipole models with
respect to forward Mie intensity. (c) The errors of the four dipole models with respect to
backward Mie intensity. (d–e) Same as (a–c), but for λ = 550 nm.

For 550 nm excitation, the scattered intensity predicted by the CM relation and radiation

reaction are only within 10% of both the forward and backward scattered Mie intensity for

a < 20 nm. The scattered intensities computed by the two dipole models that use an effective

volume correction have more than 10% error for all radii simulated except for a crossover

point around a ≈ 100 nm. We also notice that the error between the dipole models and

our gold standard is slightly greater at 550 nm excitation than it is at 1064 nm excitation,

even when normalizing the particle radius by the wavelength. For example, the radiation

reaction model of 10 nm (λ/55) radius particles exhibits an error of 2.7% at 550 nm, while
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the same model of 19 nm (λ/55) radius particles exhibits an error of 1.9% at 1064 nm. So,

much of the error can be captured by simply using a scale factor, although there is also some

additional complexity. In summary, it appears that the effective volume correction based on

the skin depth is not a particularly good model in any regime, for either wavelength.

The skin depth is, however, a real phenomenon for these particle sizes. The refractive

index of gold given by Johnson and Christy36 is n = n′ + in′′ = 0.26 + 6.97i at 1064 nm.

The skin depth can be evaluated as δ = 24.3 nm. Therefore, we can expect that the electric

displacement field (D-field) completely fills a 30 nm diameter gold nanosphere, but only

exists at the vicinity of the surface for a 300 nm gold sphere, which is consistent with our

FDTD simulation in Figure 3. The apparent skin depth in these simulations agrees well with

the expected skin depth of 24.3 nm.
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Figure 3: Skin effect at 1064 nm excitation. a shows the D-field distribution in a gold
nanosphere with 30 nm diameter. b shows the D-field distribution in a gold nanosphere with
300 nm diameter. In both cases, the unit of D-field is pC/m2 and the fields are computed
in response to an incident plane wave of amplitude 1 V/m. The FDTD grid sizes used in
calculating this figure are a/150 and a/300, respectively.

The skin depth phenomenon can also be verified by investigating whether the light scat-

tered by hollow gold nanoshells is equal to the light scattered by solid gold spheres (Figure 1a)

at 1064 nm. We select a shell inner radius aeff such that the total volume of the shell is equal
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to the effective volume (eq 3) of a solid particle of the same outer radius:

4

3
πa3 − 4

3
πaeff

3 = Veff . (11)

Meanwhile, the far field intensity in the dipole model can be calculated using eq 7 with the

different polarizability models.

Forward Mie theory

Solid Sphere: FDTD

Hollow Sphere: FDTD

C-M relation

Skin depth co. with RR

Radius[nm]
10 50 100 500 700           30 300

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

38 40 42

2

4

6

8

10
10

-18

E
2

2
E

in
c

/
θ

Skin depth correction

Figure 4: Forward scattering from solid and hollow spheres. The FDTD simulation results
for both solid and hollow spheres closely track the solid sphere Mie theory. In the FDTD
simulations, the computational grid sizes were in the range of [a/190, a/30] to ensure ac-
curacy. The CM approximation holds for small particles, while the SDRR approximation
performs poorly.

Figure 4 shows that the far-field diffraction from the solid sphere computed using FDTD

agrees closely with the Mie theory. The hollow sphere results are reasonably close to the solid

sphere results, which indicate only a small contribution of the central core of the particle

past the skin depth to the scattered field. This supports the existence of the skin depth

phenomenon. However, upon closer inspection of the inset of Figure 4, we note that there

is some difference between the results of the solid and hollow spheres, indicated by the fact

that the two are not precisely optically equivalent. We note that the two dipole models

containing an effective volume correction (blue and purple dashed lines) do not accurately
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describe either the solid gold particle or the gold shell.

Optical Forces

10 30 50 100 300 500700        

Radius [nm]

10
-13

10
-12

10
-11

10
-10

10
-9

  
L

a
te

ra
l 
o

p
ti
c
a

l 
fo

rc
e

 p
e

r 
w

a
tt

 [
N

/W
] 10

-8

Maxwell's stress tensor

C-M relation

Radiation reaction (RR)
Skin depth correction

Skin depth co. with RR

33 34 35 36 37
0.8

1

1.2

1.4

1.6

10
-12

10 30 50 100 300 500 700        

Radius [nm]

E
rr

o
r 

[%
]

10
-1

10
0

10
1

10
2

10
3

10
-12

10
-11

10
-10

10
-9

10
-8

  
L

a
te

ra
l 
o

p
ti
c
a

l 
fo

rc
e

 p
e

r 
w

a
tt

 [
N

/W
]

10
1

10
2

10
3

10
4

E
rr

o
r 

[%
]

40 41 4238 39

1

1.2

1.4

1.6

10
-11

1064nm excitation

550nm excitation

a b

c d

10 30 50 100 300 500 700        

Radius [nm]

10 30 50 100 300 500 700        

Radius [nm]

Figure 5: Lateral optical forces. (a) Lateral restoring force per watt of laser beam power at
1064 nm. (b) Relative error of the dipole models with respect to the MST calculation. (c
and d) Same as (a) and (b), but with λ = 550 nm. Out of the various dipole models, the
CM relation and CM relation with radiation reaction agree best with the MST calculations
for particles with radii a < λ/10.

Because the effective volume correction (eq 3) appears to have been most frequently

applied within the optical trapping community, we also investigate its accuracy in predicting

the optical force on gold nanoparticles, as illustrated in Figure 1b. The comparison of
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the optical forces predicted by the dipole models to those predicted by the trusted MST

calculations are shown in Figure 5. For 1064 nm excitation, the CM relation and radiation

reaction dipole models agree well with the MST calculation for a < 100 nm, while the

effective volume skin depth models diverge significantly for a > 15 nm. For a > 200 nm,

the CM relation and radiation reaction dipole models no longer track the MST calculation.

Surprisingly, the skin depth model without radiation reaction is accurate for 200 nm < a <

400 nm, but we view this as a purely empirical coincidence because it begins to deviate from

the MST again for a > 400 nm. It is important to note that a conventional focused Gaussian

beam optical tweezer does not provide a stable 3D trap for such large gold particles with size

a > 200 nm, and so an approximate dipole model at this size range may not have significant

practical application. Under 550 nm excitation, for a < 50 nm, the error in optical force

predicted by the CM relation and radiation reaction dipole models are within 10%, and

are more accurate than the two dipole models that invoke an effective volume correction.

For a > 50 nm, no model tracks the MST calculation. For the CM relation and radiation

reaction dipole models, their errors are slightly larger at 550 nm than at 1064, even when

normalizing the particle size by the wavelength. This small difference in errors could be due

to increased numerical dispersion error in the FDTD simulations at shorter wavelengths.

In Figure 6, we investigate the magnitude of the total force on the particle at 1064 nm

excitation, as opposed to just the lateral force shown in Figure 5. Unlike the lateral force,

the total force shows two clear power-law scaling regions as a function of particle radius,

with a turning point at a ≈ λ/10. For small particles, the fitted exponent is 3.03 with a 95%

confidence interval of [3.00, 3.06] based on the first nine MST calculations. Hence, under the

dipole limit, the force is approximately proportional to a3, as expected from the CM relation.

The fitted slope of Region 2 is computed from eleven different MST calculations, and is

found to be 1.37 with 95% confidence interval [1.31, 1.42]. This value differs significantly

from the a2 dependence predicted by a shell-based model with a constant thickness equal

to the skin depth, which further confirms that an effective volume based on a shell volume
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Figure 6: MST calculations of the magnitude of the total optical force per watt of laser beam
power. There are two distinct regions of power-law scaling corresponding to F ∝ a3.03 and
F ∝ a1.37.

does not provide an accurate approximation. These results agree with previous experiments

that found that the power law dependence for particles larger than skin depth is less than

quadratic15–17.

We also also investigated the total force on a particle under 550 nm excitation and found

similar fitted slopes when the particle is placed near the location of maximal lateral force

(∆x = 400 nm). The fitted slope of Region 1 is 3.31 with a 95% confidence interval of [3.21,

3.40] based on the first eight MST calculations. We believe that the deviation from a slope

of exactly 3 is due to the increased errors in the dipole approximation at smaller wavelength

relative to particle size. The fitted slope of Region 2 is computed from eleven different MST

calculations, and is found to be 1.18 with 95% confidence interval [1.08, 1.28].

When using a dipole model to compute the forces on small nanoparticles (10 nm ≤

100 nm), we find that the radiation reaction correction is quite significant in calculating the

radiation pressure (scattering) forces, but is less significant for calculating gradient forces.

Without the radiation reaction correction, the error in radiation pressure forces are greater

than 20%, even for 15 nm radius particles. This is because the radiation pressure force
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∝ α′′, and for gold at near-IR wavelengths, the value of α′′ is primarily derived from radiation

reaction and not the bulk material properties. Interestingly, the radiation reaction correction

can lead to forces with apparent scaling exponents greater than 3 for intermediate size

particles that agrees with MST and FDTD simulation results for this force component.

However, in Figure 6, we do not see this effect because the total force on the particle is

dominated by the gradient force.

Conclusions

The skin depth effect is observable in simulations; however, the use of an effective volume

approach in calculating polarizability is not accurate. Overall, when a dipole approximation

can be used, the CM relation with radiation reaction provides the most accurate model of

the scattered far-field and optical force. We believe that the effective volume approach is

inaccurate because a complex-valued ε already fully accounts for the attenuation of the field

within the skin of the particle.
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