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structure.

We propose a greedy algorithm for the compression of Wannier functions into Gaussian-polynomials
orbitals. The so-obtained compressed Wannier functions can be stored in a very compact form, and can
be used to efficiently parameterize effective tight-binding Hamiltonians for multilayer 2D materials for
instance. The compression method preserves the symmetries (if any) of the original Wannier function. We
provide algorithmic details, and illustrate the performance of our implementation on several examples,
including graphene, hexagonal boron-nitride, single-layer FeSe, and bulk silicon in the diamond cubic
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1. Introduction

Since their introduction in 1937 [1], Wannier functions have
become a widely used computational tool in solid state physics and
materials science. These functions provide insights on chemical
bonding in crystalline material [2], they play an essential role in
the modern theory of polarization [3], they can be used to parame-
terize tight-binding Hamiltonians for the calculation of electronic
properties [4], and are useful in several other applications [2].

Maximally localized Wannier functions (MLWFs) were intro-
duced by Marzari and Vanderbilt [5] and are obtained by min-
imizing some spread functional [2,5,6]. Several algorithms for
generating MLWFs are implemented in the Wannier90 computer
program [7]. In the general case, MLWFs obtained by the standard
Marzari-Vanderbilt procedure are not centered at high-symmetry
points of the crystal (typically atoms or centers of chemical bonds),
and do not fulfill any symmetry properties [6,8], which complicates
their physical interpretation. Symmetry-adapted Wannier func-
tions (SAWFs) are centered at high-symmetry points and are asso-
ciated with irreducible representations of a non-trivial subgroup
of the space group of the crystal (precise definitions are given
in Appendix). They are the solid-state counterparts of symmetry-
adapted molecular orbitals [9] that are fruitfully used in quan-
tum chemistry. SAWFs were investigated in [10-19] from both
the theoretical and the numerical point of view. An algorithm
for generating maximally-localized SAWFs was recently proposed
by Sakuma [20], which makes it possible to enforce the center
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and symmetries of the Wannier functions during the spread mini-
mization procedure, and has been implemented in the Wannier90
package.

In this work, we propose a numerical method for compressing
Wannier functions into a finite sum of Gaussian-polynomial func-
tions, referred to as Gaussian-type orbitals (GTOs), which preserves
the centers and the possible symmetries of the original Wannier
functions. Such compressed representations enable the character-
ization of a Wannier function by a small number of parameters
(the shape parameters of the Gaussians and the polynomial coef-
ficients) rather than by its values on a potentially very large grid.
In addition, they can be used to accelerate the parameterization
of tight-binding Hamiltonians or more advanced reduced mod-
els from Wannier functions computed from Density Functional
Theory. Indeed, matrix elements of effective Hamiltonians can be
computed very efficiently using GTOs; this fundamental remark
by Boys [21] was instrumental for the development of numeri-
cal methods for quantum chemistry. Gaussian-type approximate
Wannier functions should be particularly useful for simulating
multilayer two-dimensional materials [22,23], especially when
Fock exchange terms are considered, which is the case for hybrid
functionals.

This article is organized as follows. In Section 2, we describe
our approach for compressing a given symmetry-adapted Wan-
nier function W into a finite sum of GTOs W), sharing the same
center and symmetries as W. Note that our procedure is also
valid if the Wannier function has no symmetry (in this case the
symmetry group is reduced to the identity matrix). The main idea
is to construct a sequence Wy, Wy, W5, ... of successively better
approximations of W (for the relevant metric, see Section 2.1), by
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means of an orthogonal greedy algorithm [24,25]. The basics of
greedy algorithms and symmetry-adapted Wannier functions are
briefly summarized in Sections 2.2 and 2.3 respectively. An overall
description of our algorithm is given in Section 2.4 and implemen-
tation details are provided in Section 2.5. Greedy methods are very
well adapted to the compressing problem under consideration, but
our implementation is not necessarily optimal: many variants of
the numerical scheme described in Section 2.5 can be considered,
and there is clearly room for improvement to reduce the number
of GTOs necessary to reach a given accuracy. The purpose of this
work is to assess the efficiency of greedy methods in this setting,
and to stimulate further work. The performance of our current
implementation is illustrated in Section 3 on four examples: three
two-dimensional materials, namely graphene, hexagonal boron-
nitride (hBN), and FeSe, and bulk silicon in the cubic diamond
structure.

2. Theory
2.1. Error control

Consider a real-valued Wannier function W : R®> — R, which
we would like to approximate by a finite sum of well-chosen
Gaussian-polynomial functions. First, we have to specify the norm
with which the error between W and its approximation W will be
measured. We will consider here the L? and H' norms respectively
defined by

e = (e ar)

and
172
fulr = ([ R de+ [ vuepar) (1)

Requiring that |W — \/T/ll,_p is small is far more demanding than
simply requesting that ||[W — W ||z is small. In using approximate
Wannier functions to_calibrate tight-binding models, it is impor-
tant to require ||[W — W || ;1 to be small. Indeed, while the errors on
the overlap integrals can be controlled by [2-norms:

‘ /  WiRW(r) dr — / W) Wr) dr‘
R R
< Wil Wi — Willj2 + IWill2 [W; — Wil 2,

the errors on the kinetic energy integrals appearing in effective
one-body Hamiltonians matrix elements

1
WiIHIW) = 5 [ VW) YWi(r) dr + [ VEOW©W () de

are controlled by the I>-norms of the gradients, hence by the
H'-norms of the functions. The H!-norm also allows one to control
the errors on the potential integrals, even in presence of Coulomb
singularities. Our greedy algorithm has been implemented in the
Fourier representation, and can therefore minimize the error be-
tween the Wannier function W and its GTO representation for any
value of the Sobolev exponent s.

Note that the L? and H'-norms are particular instances of the
Sobolev norms H¥, s € R, defined on the Sobolev spaces

HY(R?) = {u R} - Rsit. /3(1 + K2 [P dk < oo} ,
R
where U is the Fourier transform of u, by
12
Julle = ( [0+ IEF 0O di) (2)

The L2-norm corresponds to s = 0, due to the isometry property of
the Fourier transform:

[t = [ ()P dr.
JR3 JR3

Likewise, definition (2) agrees with definition(1) for s = 1 since
/ k2 [0 dk = / likG(K)? dk = / |Vu()|* dk
R3 R3 R3

- / \Vu(r)? dr.
JR3

In the numerical examples reported in Section 3, we will consider
the casess = 0ands = 1.

2.2. Greedy algorithms in a nutshell

Greedy algorithms [24,25] are iterative algorithms that, among
other things, construct sequences of approximations Wy, Wi,
W,,...,of some target function W e H*(R3), with the following
properties:

e each approximate function Wp is a sum of p “simple” func-
tions belonging to some prescribed dictionary D C H*(R3):

p
Wy(r) = ¢P(r),
j=1

with ¢>§p) € D. In our case, D will be a set of symmetry-
adapted Gaussian-polynomial functions;
e the errors ||[W — W, ||gs decay to 0 when p — oo.

Greedy algorithms therefore provide systematic ways to ap-
proximate a given function W e H(R?) by a finite sum of simple
functions with an arbitrary accuracy. The set D of elementary
functions cannot be any subset H(R?) (for instance P cannot be
chosen as the set of radial functions since only radial functions
can be well approximated by finite sums of radial functions). The
convergence property |W — Wp|lys — 0 is guaranteed provided
the set D is a dictionary of H5(R3), that is, a family of functions
HS(R?) satisfying the following three conditions:

1. Disacone, thatis, if ¢ € D,thent¢ € Dforanyt € R;

2. Span(D) is dense in the Sobolev space H*(R?). This means
that any function W € H%(R?) can be approximated with an
arbitrary accuracy € > 0 by a finite linear combination of
functions of D, and therefore by a finite sum of functions of
D since D is a cone: for any € > 0, there exist a finite integer
p € N*, and p functions ¢, ...¢"" in D such that

p
_ (p)
w—{> 9 =€
=1 s
Greedy algorithms provide practical ways to construct such
approximations;

3. D is weakly closed in H*(R?). This technical assumption
ensures the convergence of the greedy algorithm [24].

Given a dictionary D, the greedy method then consists of
e initializing the algorithm with (for igstagce)fvo =0;

e constructing iteratively a sequence Wy, W5, W3, ... of more
accurate approximations of the target Wannier function W

of the form
p

Wy(r) =) ¢"(x). (3)
j=1

where qb}p ) are functions of the dictionary D;

e stopping the iterative process when ||W — Wp lgs < €, where
€ > 0 is the desired accuracy (for the chosen H*-norm).

We will use here the orthogonal greedy algorithm for construct-
ing W, from W, which is defined as follows:
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Algorithm 1 (Orthogonal Greedy Algorithm).

Step 1: Compute the residual at iteration k:
Ry(r) = W(r) — Wp(r);
Step 2: find a local minimizer ¢, to the optimization problem
216i7gljp(¢), where J,(¢) == IR, — ¢ |Is; (4)
Step 3: solve the unconstrained quadratic optimization problem
2
p+1
(Cj(p+1))1§il5p+1 € argmin § (W — Z ijl’;p) + Cpr1dp+1 )
i=1 s
(¢)1<jeps1 € RPTT 1S (5)

Step 4: set ¢>(”+1) =

o1
p+] ¢P+l

(p+1) 4 (p) i b+ _
¢ ¢, 1 < j =< pandg, =

Note that Step 3 is easy to perform since (5) is nothing but a least
square problem in dimension (p + 1) (p is of the order of 10 to 103
in practice). Step 2 will be described in detail in Sections 2.4 and
2.5. The next section is concerned with the choice of the dictionary
D.

2.3. Symmetry-adapted Wannier functions and Gaussian-type or-
bitals

We assume that we are dealing with a crystalline material with
space group G = R x Gp, where R is a Bravais lattice embedded
in R, and G, a finite point group (a finite subgroup of the or-
thogonal group O(3)). The Bravais lattice R is two-dimensional for
2D materials such as graphene or hBN, and three-dimensional for
usual 3D crystals. Consider a symmetry-adapted Wannier function
W centered at some high-symmetry point of the crystal, which
we consider from now on as the origin O of the Cartesian frame.
We denote by G° the maximal subgroup of Gp leaving the crystal
invariant for some Cartesian frame with origin O. Recall that G°
depends on the chosen Cartesian frame, and that, by definition of
high-symmetry points, it is non-trivial if and only if O is a high-
symmetry point. We refer the reader to Section 3 for some explicit
examples, and to the Appendix for more details on the general
theory of symmetry-adapted Wannier functions. We focus in this
section on the simpler and more usual case when the action of G°
on W is given by a one-dimensional irreducible representation of
G°, that is:

VO € G°, (OW)(r) = 1) = x(@)W(r), (6)

where yx is the character of this one-dimensional representation.
Note however that our method can straightforwardly be extended
to the less usual case of symmetry-adapted Wannier functions as-
sociated with two-dimensional irreducible representations of G°.

Our goal is to approximate the Wannier function W by a finite
sum of GTOs. In order to reduce the number of GTOs necessary
to obtain the desired accuracy, while enforcing the symmetries
of the approximate Wannier functions W), we use a dictionary
consisting of symmetry-adapted Gaussian-type orbitals (SAGTOs)
of the form

w(e-

¢z§ﬁ7 A (r) |GO Z )(O@yo.4)T)
©ec?
1 - -
= @ Z x(© 1)‘/)u,a,A((") 1l'), (7)
Oec

where |G| is the order of the group G°, and

Paoa® = >

(nx,ny,nz)eZ

1 2
X exp —ﬁlr—od

is a Gaussian-polynomial function centered at & € R* with stan-
dard deviation o > 0. The set Z is a carefully chosen subset of
{(ny, ny, nz) € N’ | ne + ny + n, <L} (total degree lower than or
equal to L) determined by the symmetries of the SAWF. Note that
for 2D materials on the xy plane, it is more appropriate to chose TC
{(ne. ny, ;) € N* | ne +ny <Ly, n; <Ly }. Any function ¢, , of
the dictionary thus satisfies the same symmetry property

)\nx,ny,nz(rx - Ofx)nx(ry - fxy)ny(rz - sz)nz

VO € G, (0¢;) (1) = ¢ (07'r) = x(@)p} 4(xr)  (8)

as the Wannier function W to be approximated. Conversely, any
function W satisfying (6) is left invariant by the symmetrization

operator used to transform ¢, 4 into @37 ,:

1 1
G 2o KOTEWIN = 1= Y x (O x(@W()

exlel Oe0
= W(r),

where we have used the group morphism property of x
(ie. x(®@)x(®") = x(©®O’)and x(E) = 1, where E is the identity
of G%).

2.4. A greedy algorithm for compressing SAWF into SAGTO

It can be shown that the set

P = {¢SA [LAS R37 0 € [Omin, Omax], A € RI&} s 9)

o,0,A°

where 0 < omin < omax < 00 are given parameters (chosen
by the user), and Z, is a carefully chosen nonempty subset of N>
depending on the center « of the SAGTO, is a dictionary for the
closed subspace

HAR?) = {f e H'(R?) | VO € G°, (Of)(r)
= f(67'r) = x(0) (1)}

of H¥(R3) for any s € R,.
For example, in the case of Graphene and hBN (see Section 3),
we use the same set for each « € R>:

T, = {(0,0, 1),(0,0,3),(0,0,5)}, VaeR.

More refined strategies will be considered in future works.

We now consider a symmetry-adapted Wannier function W
satisfying (6), and apply Algorithm 1 with D = D, The main
practical difficulty is the computation of a local minimum to Prob-
lem (4). This problem can be formulated as

min Tplo, o, A),
aeR3, 0 €[omin,omax], A€RT

where Jp(e, 0, A) =R, — ¢>‘” A”HS’ (10)

where R, = W — Wp and Wp, the approximation of W at step
p of the greedy algorithm, is a finite sum of p functions of the
dictionary D*A. As W satisfies (6) and any ¢3% , € D satisfies
(8), R, is symmetry-adapted at each step p. The above minimization
problem can in turn be written as:

min Tple, @), (11)

a€R3, o €[omin.omax]
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where

Tpla, 0) = min Jp(a, 0, A). (12)
AeRT

Since the map A — J,(e, o, A) is quadratic in A, problem (12)
can be solved explicitly at a very low computational cost, and the
gradient of :7:,(05, o) with respect to both & and o can be easily
computed from the solution of problem (12) by the chain rule.
We can then use a constrained optimization solver to find a local
minimizer to the four-dimensional optimization problem (11).

2.5. Algorithmic details

2.5.1. Construction of MLWFs

The Bloch energy bands and wave-functions of the periodic
Kohn-Sham Hamiltonian are obtained using VASP with pseudo-
potentials of the Projector Augmented Wave (PAW) type [26], the
PBE exchange-correlation functional [27], a plane-wave energy
cutoff E. and a grid Q of the Brillouin zone BZ. For 2D materials, the
height n of the supercell is chosen sufficiently large to eliminate the
spurious interactions between the material and its periodic images.
The Bloch eigenfunctions belonging to the energy bands of interest
are combined into a basis of MLWFs using the Marzari-Vanderbilt
algorithm [5] as implemented in the Wannier90 computer pro-
gram [7]. The final output is a set of Wannier functions which
are known to be localized at a certain point and exponentially
decaying for materials with suitable topological properties such
as the ones considered in Section 3 (see [28]). Using a sufficiently
large rectangular box,

. 3
2= [Xmim Xmax] X [yminv ymax] X [Zmin’ Zmax] C R,

we can neglect the exponentially vanishing values of the Wan-
nier function under consideration outside the box. The numerical
values of the Wannier function W are given on a Cartesian grid
M spanning the box and containing M = MM,M, points. The
Wannier functions obtained in this manner are in general not
perfectly symmetry-adapted, as the Marzari-Vanderbilt algorithm
does not take symmetries into account. However, in practice, the
MLWFs we generated are close enough to SAWFs so that it was
possible to identify a high-symmetry center and an associated
point group. To test our compression method, we symmetrize the
MLWFs according to the identified point group before applying the
greedy procedure.

2.5.2. Optimization procedure in the discrete setting

We present next the discrete formulation of problem (12). The
discrete data representing the Wannier function W centered atq €
R? are composed of: (i) the symmetry group G° and (ii) the point
values (W(r))rerq at each point of the cartesian grid M. Because
we seek to minimize in particular the H'-norm of the residual, we
introduce an auxiliary Fourier representation of the data. Indeed,
computing gradients is a fast (diagonal) operation in momentum
space. The Fast Fourier Transform algorithm (FFT) can be used to
efficiently transform data from position to momentum space. In
particular, we obtain the unnormalized discrete representation of
the Fourier transform U of any function u as point values (Ti(K))kex
on a secondary Cartesian momentum-space grid that we denote
by K, containing the same number of points as the real-space grid,
i.e. [K| = [M| = M. The grid K should not be confused with the
grid Q introduced in the previous section. Although both grids are
in momentum space, the grid Q aims at discretizing the Brillouin
zone BZ, while the grid K aims at discretizing the whole reciprocal
space R (just as M aims at discretizing the whole physical space
R3).

Let us recall that the FFT algorithm requires My, M, and M, to
be even numbers so that the momentum grid K is centered at zero.
The H*-norm (2) of u then has a discrete approximation given by

2] _
luls ~ 5 D (1 1K) T, (13)
ke

At every greedy iteration p > 0, the exact cost functional 7, is

approximated in the discrete setting by the functional ij defined

as:

|2] ~ ~

1z 2 (14 IKEZ) [Ry(K) — G, (K)
ke

where we recall that the residual R, is computed from the approx-
imation W, at step p of the target Wannier function W,

Ry(r) = W(r) — Wy(r).

Note that while the Fourier transform of the SAGTO function ¢y » 4
which appears in this expression can be analytically computed,
it is faster and more consistent to evaluate directly the Fourier
transform of the residual numerically using the FFT algorithm.

For the implementation of the minimization problem (11) with
the discrete error functional (14), we use a constrained optimiza-
tion solver to find a local minimizer to the non-convex minimiza-
tion problem

TMa, 0, A) =

p

(14

min ‘Z,M(oc,cr), (15)
a€s2, 0 €[omin,omax]
the minimization over the coefficients A of the SAGTO being
performed explicitly for fixed &, o by solving the least-square
problem

TM e, 0) = min 7M (e, 0, A). (16)
AeRT
We tested both the Sequential Quadratic Programming (SQP) and
the Interior-Point (IP) specializations of the fmincon optimization
routine implemented in the Matlab Optimization Toolbox [29].
To accelerate the computation, the gradient (but not the Hessian
matrix) is also provided to the optimizer routine. Note that it is
straightforward to compute explicitly the gradient by the chain
rule in the case of the discrete error functional in (15) from the
solution of the inner problem in (16) (its expression is quite cum-
bersome). The iterative procedure is stopped when one of the fol-
lowing two convergence criteria is met: (i) the norm of the gradient
is smaller than § = 1071, (ii) the relative step size between two
successive iterations is smaller than ty,;, = 10~'2. In practice, our
numerical tests show that both optimization routines (SQP or IP)
provide similar results, with the IP method being slightly faster.
As usual with non-convex optimization problems, it is very
important to provide a suitable initial guess for the parameters, in
the present case the center of the Gaussian a® € £2 and its variance
Omin < 0% < omax. We propose here the following initialization
procedure. First, the initial center position & is chosen as a maxi-
mizer of the absolute value of the residual R:

o’ € argmax|Ry(r)|. (17)
re2

Next, two different heuristic guesses are proposed to determine a
suitable initial value ¢°, assuming that the function IR, | resembles
locally a Gaussian function centered at o°,

0 Ir — o
[Rp(r)| ~ [Rp(a”)|exp | ——=—— ] - (18)

202
)2

A first guess for o' is obtained by a local data fit,

) 1 2 Ry(r)

0 0 P

= argmin —r— lo

of =aigmin ) <2az| o[+ log | )
re MnNB(a?)
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Table 1

Compression gains obtained with our implementation of the orthogonal greedy minimizing the H'-norm of the residual
for Wannier functions of graphene, hBN, FeSe, and bulk silicon, for different tolerance levels €.

Material M |Z| € p p(4+|Zl) Compression ratio
Graphene LI 3 gn qom 7o e
hen 083 g 130 10300 £
i 23 gn s 10500 10
FeSe 4032000 2 8:(1)2 1 é?g 9223 523
where B(a) is a cubic box centered at a® of side length 27cutofr, with Table 2

Teutoff @ User-defined parameter. This is in fact a linear least-squares
fit, yielding the explicit formula:
1/2

0l4
r—ao
0'10 = ZI‘EMQB(OLO) | | . (19)

2 Rp(r)
-2 ZreMﬁB(ocO) !l‘ - 060| log =

Rp(ao)
A second guess is provided by a property linking the variance of the
standard normalized Gaussian g(r) = (2mo2)" 2 exp (—20% Ir?
to its full width at half maximum, denoted wy:

Wp [g] m

o

The full width at half maximum is not well defined for arbitrary
(non-radial) functions. We choose here to sample the full-width at
half maximum along one-dimensional slices in all three directions
x,y,z around o® and retain the smallest value. For an arbitrary
function u assumed to have its maximum magnitude at the origin,
we let:

wplu] ;== min
de{x.y,z}
. u (y+€q) 1
x inf —y_|: _ <0 and |——| < - ¢,
{m Y- - <0<y 1o | =2

where e, is the standard unit vector in the directiond € {x, y, z}.
This leads to a second initial guess for the variance:

S0 On [Ro(- — )]
27 2 /2log2

In practice, we project the values o} given by (19) and o7 given
by (20) on the interval [0min, 0max] and choose

(20)

= argmin J,(a, o, A). (21)
i=1,2
Again, we do not claim that this procedure is optimal; it however
gives satisfactory results for all the test cases we ran.

3. Numerical results

Our greedy algorithm allows us to compress a SAWF defined on
a cartesian grid with M = MyM,M, points into a sum of SAGTOs
parameterized by p(4 + |Z|) real numbers, where p is the number
of SAGTOs in the expansion

SA(p
W Z ¢°‘J % A} ):

and where each ¢SAU A is characterized by (4 + |Z|) real pa-
rameters. The compressmn gains for the four numerical examples
detailed below, namely three 2D materials (single-layer graphene,
hBN, and FeSe), and one bulk crystal (diamond-phase silicon),
are collected in Table 1. The numerical parameters used in the

Numerical parameters used for the construction of the original Wannier functions
using VASP and Wannier90: E.: plane-wave energy cut-off, Q: size of the k-point
discretization grid, n: height of the supercell (for 2D materials only), M: size of the
cartesian grid on which the values of the Wannier function are given.

Elev] o n[Al M

Graphene 500 25 x 25 x 1 20 168 x 132 x 146

Material

hBN 500 25x25x 1 20 192 x 154 x 136
FeSe 500 19x19x1 25 120 x 120 x 280
Si 300 7x7x17 - 48 x 48 x 48

construction of the original Wannier functions (as described in
Section 2.5.1) are given in Table 2.

For the sake of brevity, we focus here on one particular
symmetry-adapted Wannier function per material. For each ma-
terial, the chosen (generalized) Wannier function belongs to the
Hilbert space associated with a small number of bands (2 for
graphene and hBN, 10 for FeSe, 32 for Si, taking spin into account)
in an energy window containing the Fermi level. More details
are given below. As explained in Section 2.5.1, the Wannier func-
tions generated by Wannier90 are not almost, but not perfectly,
symmetry-adapted. We therefore symmetrize them before apply-
ing our compression algorithm. The left plots in Figs. 2-6 8 display
the so-obtained symmetry-enforced Wannier functions, but visu-
ally, the original Wannier functions generated by Wannier90 look
exactly the same.

3.1. Graphene and single-layer hBN

The space groups of graphene and single-layer hBN are respec-
tively

G = Dg80 := R x Dy, (space group of graphene),

G =P6m2:=R x D, (space group of single-layer hBN),

where R is the 2D Bravais lattice embedded in R> defined as

V3/2

R=2Za| 1/2

0
+ Za (1) , (22)
0 0

where a > 0 is the lattice parameter (which takes different values
for graphene and hBN). The group Dy, is a group of order 24, and
has 12 irreducible representations, while the group D, is a group
of order 12, and has 6 irreducible representations. The points O, A, B
and C represented in Fig. 1 are high-symmetry points of graphene
(left) and hBN (right); their symmetry groups are respectively

Go=Dg,, Ga=D;, Gg=Dy, Gc=D,, (graphene),
Go=Dsp, Ga=Ds, Gp=Dy,
Gc =Dy, (single-layer hBN).

Let oy, be the reflection operator with respect to the horizontal
plane containing the graphene sheet. The two irreducible repre-
sentations of the subgroup C, = (E, oy) of D¢, and D5, give rise to
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Fig. 1. The honeycomb lattices of graphene (left) and hBN (right). The black dots represent carbon atoms, the red dots boron atoms, and the green dots nitrogen atoms. The
blue dots 0, A, B, and C represent some high-symmetry points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Table 3
Character of the A representation of the group D,
Dy, E 2C3 (z) 3G, o (xy) 2S3 3oy Linear Quadratic Cubic
functions functions functions
A +1 +1 -1 -1 -1 +1 z - 23, 2(x* +y?)

the decomposition of L>(R?) as

L*(R%) = I3 (R%) @ L2 (R?),

where

I2(R?) = Ker(o, — 1), [%(R?) = Ker(op + 1).

The bands associated with Li(]R?) are the o bands, the ones asso-
ciated with L2 (R?) the 7 bands. The bands of interest for graphene
and single-layer hBN are the valence and conduction bands closer
to the Fermi level. For graphene, these are the 7 bands originating
from the 2p, orbitals of the carbon atoms.

The SAWF functions for graphene and single-layer hBN consid-
ered here are centered at point A and are transformed according to
the (one-dimensional) A} representation of D, whose character
is given in Table 3.

Graphical representations of the original Wannier functions
generated by Wannier90 and of their compressions into Gaussian
orbitals obtained with the VESTA visualization package [30], are
displayed in Figs. 2 (graphene)and 3 (hBN). The decays of the L and
H'-norms of the residuals along the iterations of our implementa-
tion of the orthogonal greedy algorithm aiming at minimizing the
H'-norm of the residual, are plotted in Fig. 4.

3.2. Single-layer SeFe

The space group of single-layer FeSe is
G = P4/nmm =R x D,

where R is the 2D square lattice of R® defined as

1 0
R:Za<0>+Za (1),
0 0

where a > 0 is the lattice parameter. The group D, is of order 16
and has 10 irreducible representations. The symmetry group of the
high-symmetry point A represented in Fig. 5 is Gy = C,,.

The Wannier function considered here corresponds to a d—type
orbital on an Fe atom centered at point A and is transformed
according to the one-dimensional A; representation of C, , whose
character is given in Table 4.

(23)

Graphical representations of the original Wannier function and
of its compression into Gaussian orbitals are given in Fig. 6. The
decays of the L2 and H'-norms of the residual along the iterations
of our implementation of the orthogonal greedy algorithm mini-
mizing the H'-norm of the residual are plotted in Fig. 9.

3.3. Diamond-phase silicon

The space group of diamond-phase silicon is
G =Fd3m =R x 0,

where R is the Bravais lattice of R> defined as

1 1 0
R:Za(O)—l—Za(l)—i—Za(l),
1 0 1

where a > 0 is the lattice parameter. The group O, is of order
48 and has 10 irreducible representations. The Wannier function
considered here corresponds to a p,—type orbital centered at the
high-symmetry point A represented in Fig. 7 whose symmetry
group is Go = C,,.

It is transformed according to the one-dimensional irreducible
representation A; of the group C,,. Let us mention the following
point : since the basisx = (1,0, 1),y = (1, 1, 0)and Z(0, 1, 1)isnot
orthonormal in R3, the symmetry operators C»(z), o,(xz) and o, (yz)
must be adapted to this geometry. Indeed, the two-fold rotation G,
is about the axis of direction (0, 1, 1) and the two reflexions o, are
defined with respect to the planes P, and P, of cartesian equations
X+ z = 0andy + z = O respectively.

Graphical representations of the original Wannier function and
of its compression into Gaussian orbitals are given in Fig. 8. The
decays of the L> and H'-norms of the residual along the iterations of
our implementation of the greedy algorithm aiming at construct-
ing H'-norm approximations of the Wannier function are plotted
in Fig. 9.

(24)

4. Conclusion

We have introduced a greedy algorithm for compressing
symmetry-adapted Wannier functions into a finite sum of
Gaussian-polynomial functions. We have demonstrated on repre-
sentative examples of 2D and 3D materials that this procedure
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i

Fig. 2. Symmetry-adapted Wannier function of graphene generated with VASP and Wannier90 (left), and its compression into Gaussian orbitals (right). Positive and negative
iso-surfaces corresponding to 15% of the maximum value are plotted.

i

(a) (b)

Fig. 3. Symmetry-adapted Wannier function of single-layer hBN generated with VASP and Wannier90 (left), and its compression into Gaussian orbitals (right). Positive and
negative iso-surfaces corresponding to 15% of the maximum value are plotted.

10’ ‘ : w 10'
—=— L2 norm
—°~L%norm —o—H' norm
—e— H'-norm
] 3
Z Z
= =
g £
° °
4 4
k] 3
E
E z
0 1 2 3
10° 10’ 10° 10° 10" 10 10 10 10
greedy iterations greedy iterations

Fig. 4. Decays of the [? and H'-norms of the residual for our implementation of the orthogonal greedy algorithm minimizing the H'-norm of the residual (left: graphene,
right: hBN).
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Table 4
Character of the A; representation of the group C,,.
Gy, E Cy (2) oy(xz) oy(yz) Linear Quadratic Cubic
functions functions functions
A +1 +1 +1 +1 z X%, y%, 22 2%, X%z, y%z

L.

(a) Side view.

(b) Top view.

Fig. 5. Crystalline structure of FeSe (2D layer with a finite thickness). The brown balls represent Fe atoms and the green balls represent Se atoms. The spotted point A

corresponds to the high-symmetry point at which the Wannier function is centered.

(a)

(b)

Fig. 6. Symmetry-adapted Wannier function of single-layer FeSe generated with VASP and Wannier90 (left), and its compression into Gaussian orbitals (right). Positive and

negative iso-surfaces corresponding to 12% of the maximum value are plotted.

allows to represent Wannier functions with a limited number of
parameters. More importantly, it paves the way to fast parameter-
ization of tight-binding Hamiltonians and other reduced models
from Density Functional Theory calculations. Works in this direc-
tion are in progress.

Another perspective is to further improve the compression
and represent the states in the energy window of interest with a
smaller number of less diffuse Gaussian-polynomial functions. This
can be achieved by improving the greedy algorithm itself (adaptive
choice of the dictionary, more efficient optimization procedure),
by using L'-regularization approaches [31], and/or by concurrently
addressing the two optimization problems consisting in (i) gen-
erating localized symmetry-adapted Wannier functions from the
Bloch representation, (ii) compressing the so-obtained Wannier
functions. This will be the matter of further developments.
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Appendix. Symmetry-adapted Wannier functions
A.1. Space group of a periodic material
Consider a periodic material with M nuclei of charges zy, . . ., zy

per unit cell. The nuclear charge distribution in the material is of
the form

M
V= Z Zlm3km+k,

ReR m=1
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Fig. 7. Crystalline structure of Silicon. The brown balls represent Si atoms and
the spotted point A corresponds to the high-symmetry point where the Wannier
function is centered.

(a)

where R is the Bravais lattice of the crystal (embedded in R? if the
material is a 2D material), 8, the Dirac mass at point a € R3, and
Ry, ..., Ry € R3 the positions of the nuclei laying in the unit cell.
The space group G = R x G, of the crystal is the semidirect product
of R and a finite point group G, (a finite subgroup of 0(3)). Recall
that the composition law in R x G, is defined as

Vg1 =Ry, 01), £ =(Ry,0,), gi1% =(O1R + Ry, ©16,),
and that the natural representation of G in R? is given by

Ve=(R,®)eG, V¥reR® &r=(R O)r=06r+R

Note that
Ve=(R,®)eG g '=(-O RO and
vreR} g lr=0"'(r—R).

The space group of the crystal is the largest group (for an optimal
choice of the Cartesian frame) leaving v invariant:

M
Vg eG, gv:i= Z sz(s’g\(km_'.]{) =.
ReR m=1
The group G has a natural unitary representation I7 = (I1g)scc
in L2(R?) defined by

Vg =(R,0) G, (Tgy)r)=y(E '1)=y(O@ '(r—R)).

(b)

Fig. 8. Symmetry-adapted Wannier function of bulk Silicon (diamond phase) generated by Wannier90 (left), and its compression into Gaussian orbitals (right). Positive and

negative iso-surfaces corresponding to 10% of the maximum value are plotted.
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—=—L? norm
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nomr of the residual
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0
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Fig. 9. Decays of the [? and H'-norms of the residual for our implementation of the orthogonal greedy algorithm minimizing the H!-norm of the residual (left: FeSe, right:

diamond-phase silicon).
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Denoting by E the identity matrix of rank 3, and by t = (7a),cg3
the natural unitary representation of R? in L>(R?) defined by

Vo € I(R?), (rad)(r) = ¢(r —a),

we have ITr) = g for all R € R, so that (tr)rex is an abelian
subgroup of I7.

Va e R3,

A.2. Bloch transform

Let us now recall the basics of Bloch theory. We denote by U a
unit cell of the Bravais lattice R, by

L2.(U) == {u € L} (R, C), u R-periodic},

per loc
(wlo)g, = [ u®virr,

the Hilbert space of locally square-integrable R-periodic functions
C-valued functions on R3, by R* the dual lattice of R and by BZ
the first Brillouin zone. The Bloch transform associated with R (see
e.g. [32, Section XIII.16]) is the unitary transform

D
2(R3,C) 3 ¢ > (diesz € H = ]ﬁz 12, (U) dk

where f;, is a notation for the normalized integral [BZ|™" [,
where H is endowed with the inner product

(el (Vi) = 1 (bulvnd,, di

and where, for a smooth fast decaying function ¢, the periodic
function ¢y is given by

$u(r) =) $(r + Rye ™+,
ReR

The original function ¢ is recovered from its Bloch transform using
the inversion formula

$(r) = ]{32 u(r) " dk.

Consider a one-body Hamiltonian

Vper € Lper(V),

per

1
H= _EA + Vper»

describing the electronic properties of the material (we ignore spin
for simplicity). In the absence of symmetry breaking, H commutes
with all the unitary operators in /T = ([Ty)gec. In particular,
H commutes with the translations g, R € R, and is therefore
decomposed by the Bloch transform:

H = Hi dk,
J BZ

meaning that there exists a family (Hy )kepz Of self-adjoint operators
on Lf,er(U) such that for any ¢ in the domain of H, ¢y is almost
everywhere in the domain of Hy and

(Ho)x = Hkx.
It is well-known that

1 1 1
Hy = 5(—iv +K)? + Vper = —EA —ik-V+ 5|k|2 + Ver-
The operator Hy can in fact be defined for any k € R?, and it holds

Vk e R}, VKeR*, Hik = VkHiVy, (25)

where Vg is the unitary operator on L2, (U) defined by

per

Yu e 2, (U), (Vgu)r) = e ®Tu(r).

per

As a consequence, for all k € R® and K € R*, Hy and Hy g are
unitary equivalent, and therefore have the same spectrum. Not
every I1, a priori commutes with the translation operators g, R €

R. The operator I, is therefore not in general decomposed by the
Bloch transform. On the other hand, denoting by U = (Ug )(,;Ecp the

natural unitary representation of G, in Lf)er(U) defined by

VO €G,, Yuel,(U), (Upu)r)=u(® 'r),

per

the Bloch representation of the operator IT,,g = (R, ®) € G, has a
simple form:

[Mr o)k =€ *RUobi 011
that is:
[MTre)$(r) = e * Ry 1, (O ).

Since H commutes with all the IT,’s, this implies that the family
(Hy)kepz satisfies the covariance relation

VkeRY, VO €G,, Hok=UgHkUj}.

For each k € R’ the operator Hy is self-adjoint on L2, (U) and
is bounded below. If R is a three-dimensional lattice (3D crys-
tal), then Hy has a compact resolvent and its spectrum is purely
discrete. If R is a two-dimensional lattice (2D material), then the

essential spectrum of Hy is a half-line [ Xy, +00).
A.3. Symmetry-adapted Wannier functions

We assume here that H has a finite number n > 1 of bands
isolated from the rest of the spectrum, that is that there exist
two continuous R-valued R-periodic functions k +— u_(Kk) and
k — pi(K) such that u_(k) < pi(k), ue(k) ¢ o(Hg) and
Tr (L1 ), 01 (Hk)) = n for all k € R3. We denote by €1 <
6k < < e€pk the eigenvalues of Hy laying in the range
[—(K), ;+(K)] (counting multiplicities). The functions k — €
are Lipschitz continuous, and, in view (25), are also R-periodic.

A generalized Wannier function associated to these n bands is a
function of the form
vreR3, W(r)= ][BZ ug(r) e dk,

Uy € Ran(L,_ (i), uy ) (H)), llullz, = 1.

Let q be a site of the unit cell of the crystalline lattice.! We
denote by

Go={g=R 0)eG|8q=0Oq+R=q}

the finite subgroup of G leaving q invariant. The point q is called a
high-symmetry point if G4 is not trivial. Setting Ry = q — ©q, we
have

Gq = {g =(Rp,0), O c Gg},

where Gg is a subgroup of Gp,.
A symmetry-adapted Wannier function centered at a high-
symmetry point q is a Wannier function W such that

1. the finite-dimensional space
Hw.q = Span (IT,W, g € Ggq)

is [Tg-invariant for any g € Gq;
2. (Igly,, a Jeecq defines an irreducible unitary representation
B of Gq.

Let ng := dim(Hw q) be the dimension of this representation

and (Wiﬁ))lgii,,ﬂ be a basis of Hy q such that Wl(ﬂ) = W. Let

1 Here the lattice is not in general a Bravais lattice. For graphene and hBN, this is
a honeycomb lattice.
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(dﬁ(@))@ecg € (C"*"8)a be the matrix representation of the
group GJ in

Hyy q = Span (MMet_qW, © € G)), where Ip = Ij,0).

We therefore have

VO €@, Mo (r,qwfﬁ)) Zd \(©) (r Wﬁ‘”),
i'=1
so that

V(Ro, ©) € G,  Mgy.oyW? = Zd(ﬂ)(@)w“”

i'=1
If the representation 8 is one-dimensional (ng = 1), then
(dﬂ(@))@ e is the character of the corresponding representation

of Gy C Gpin M} ¢
Let] = |Gpl/|Gq| € N*. Then, there exist (gj)i<j<; € G such that

J
G=)_ > (RIE)gGy.

j=1 ReER

More precisely, there exist (gj)1<j<; € G such that

o foreach1 <j <]/, q; :=gqeU;
e any g € G can be decomposed in a unique way as

g = (RIE)ggq
for a unique triplet (R, j, g¢) € R x |[1,]]| x Gq.

Foreach1 <i<ng 1<j<JandReT,weset
(B) (B)
Wi,j,R = H(R\E)gjwi )

and we then define

HW=Span( WO 1<izng 1=j<], ReR}.

In other words, Hy is the closure of the vector space generated
by the mother SAWF W and all the SAWFs obtained by letting the
elements of G act on W.

The space Hy C H?(R3)is both H- invariant and [7-invariant,
and for any g € G, the action of T, on W R can be computed as
follows. Let (R, j/, &q +) the unique element ofR x |[1,J]] x Gq such
that g(R|E)g; = (R/|E)g]/gq We have

) ) )
mw? R_ HgMwiegW;™ = Mawipg Wi = Mg g, g W

ng

Z d(ﬁ?( )Wi(/ﬂ)

=1

= Mwipg, Ty W, = Mwieg,

— (5) (B)
=3 ke

=1

The index j’ is the unique integer in the range |[1, J]| such that

g(q]' +R) e qy +R.

The explicit expressions of R' and @[l as functions of (R, j) and
= (R, ©) are the following

Oy =6;'06;, R =gq—q;+OR

Constructing a basis of SAWFs for the n bands defined by the
functions x_ and p amounts to finding s € N* high-symmetry
points qq, ..., qs, and s SAWFs Wannier functions Wy, ..., W;
respectively centered at the points qq, ..., qs, such that

(7]
][BZ Ran (Lo, a01(H)) dK = Huwy @ - - © Huw.-

This is the purpose of the numerical method introduced in [20].
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