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ABSTRACT

We study the problem of counting cycles in the adjacency
list streaming model, fully resolving in which settings there
exist sublinear space algorithms. Our main upper bound
is a two-pass algorithm for estimating triangles that uses
Õ (m/T 2/3) space, where m is the edge count and T is the
triangle count of the graph. On the other hand, we show that
no sublinear space multipass algorithm exists for counting
ℓ-cycles for ℓ ≥ 5. Finally, we show that counting 4-cycles is
intermediate: sublinear space algorithms exist in multipass
but not single-pass settings.
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1 INTRODUCTION

Subgraph counting is a fundamental graph problem and an
important primitive in massive graph analysis. It has many
applications in data mining and analyzing the structure of
large networks. In particular, triangle counting and the re-
lated problems of estimating the transitivity and clustering
coefficients arise in spam detection [4], community detection
in social networks [7], identification of web pages with a com-
mon topic [14], and evaluation of large graph models [24];
see Tsourakakis et al. [33] for an overview of applications.
Triangle counting has been studied in various models of

computation for large inputs, such as MapReduce [32], other
parallel models [2, 6], and external memory models [1]. In
the data streammodel, triangle counting was first introduced
by Bar-Yossef, Kumar, and Sivakumar [3]. Subsequent work
has studied algorithms in a number of streaming models [5, 9,
12, 13, 16–18, 21, 23, 26–28]. Other subgraphs have received
less attention in the streaming community, with most work
focused on cycles and cliques [5, 25, 28] and a few papers
considering arbitrary subgraphs of constant size [5, 18, 20].

1.1 Prior Work

Triangle Counting. Two adversarial insertion-only stream-
ing models have been studied in the literature: arbitrary
order, where the edges can arrive in any order, and adjacency
list order, where edges incident to the same vertex arrive to-
gether (and therefore every edge is required to appear twice).
In discussing related work, we use T to denote the number
of triangles in the graph and Õ (·) to hide factors polynomial
in logn and ε−1. In the single-pass arbitrary order model,
Ω(m) space is required to even distinguish between graphs
with 0 and T triangles [9] for any T < n, and thus work
has largely concentrated on providing space bounds param-
eterized by properties of the graph, such as the maximum
degree [17, 28], tangle coefficient [28], number of paths of
length two [16], or the maximum number of triangles shar-
ing an edge or a vertex [18, 27]; see [5] for a summary of
these results. The best known results without such additional
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Cycle Passes Space Comments Source

Triangle

1 Õ (P2/T ) P2 = number of paths of length two [12]

1 Õ (m/
√
T ) - [26]

3 Õ (
√
m +m3/2/T ) - [21]

3 Õ (m3/2/T ) - [26]

2 Õ (m/T 2/3) Distinguishing between 0 and T triangles [26]

2 Õ (m/T 2/3) - Theorem 3.7

1 Ω( fpj (m/
√
T ))

Ω( fpj (r )) = communication complexity
of 3-PJr ; T = O (m)

Theorem 5.1

const Ω( fd (m/T
2/3))

Ω( fd (r )) = communication complexity
of 3-DISJr ; T = O (m3/2)

Theorem 5.2

ℓ = 4

2 Õ (m/T 3/8) O (1)-factor approximation Theorem 4.6

1 Ω(m) T = O (n1/3) Theorem 5.3

const Ω(m/T 2/3) T = O (n3/4) Theorem 5.4

ℓ ≥ 5 const Ω(m) T = O (n) Theorem 5.5

Table 1: Cycle counting in adjacency list insertion-only streams. Unless specified otherwise, upper bounds are for

(1 + ε )-estimating the number of cycles and lower bounds for distinguishing between graphs with 0 and T cycles.

parameters are either the trivial O (m) or—for graphs with
many triangles—Õ (mn/T ) [12].

More recently, it has been shown that algorithms using a
constant number of passes over the stream can achieve sub-
linear space for any T = ω (1). The optimal lower bound de-
pending onm andT only was given by Bera and Chakrabarti
in [5]. They proved an Ω(min{m3/2/T ,m/

√
T }) bound and

gave an Õ (m3/2/T ) space algorithm matching one of the
terms. Independently, McGregor, Vorotnikova, and Vu [26]
gave two algorithmsmatching both terms of the lower bound,
and Cormode and Jowhari [13] gave a different algorithm
with Õ (m/

√
T ) space1.

In the adjacency list model, on the other hand, it is possible
to achieve sublinear space without additional parameters.
Prior to this work, the two state-of-the-art algorithms for (1+
ε )-approximating the number of triangles were a single-pass
algorithm using Õ (m/

√
T ) space and a two-pass algorithm

using Õ (m3/2/T ) space by McGregor et al. [26]. They also
gave a two-pass algorithm for distinguishing triangle-free
graphs from those with at least T triangles that uses only
Õ (m/T 2/3) space.

Counting Other Subgraphs. Prior to this work, counting
constant size subgraphs other than triangles had only been
considered in the arbitrary order setting.

1Note that in the original version of the paper, Cormode and Jowhari initially
claimed that their algorithm returned a (1+ ε )-approximation but this claim
was incorrect. Instead, their proposed algorithm returned a (3+ ε )-estimate.
Subsequently, they designed a new (1+ ε )- approximation algorithm which
appeared in the revised version of the paper.

Bera and Chakrabarti [5] describe an algorithm (1 + ε )-
approximating the number of occurrences of a particular
subgraphH of sizeh using Õ (mβ (H )/T ) space and two passes
over the stream, where β (H ) denotes the size of an edge cover
of H . They improve on this algorithm for cliques and cycles,
achieving Õ (mh/2/T ) space, and provide a matching lower
bound. For single-pass algorithms they show lower bounds of
Ω(mh/T 2) for cliques and odd-length cycles and Ω(mh/2/T )

for even-length cycles. Kallaugher and Price [18] presented
an algorithm for counting copies of an arbitrary subgraph
H which depends on how much the subgraphs overlap with
each other; it is sublinear as long as no constant-size set of
vertices contains a constant fraction of the copies of H .

1.2 Our Setting

Streaming model. We consider the adjacency list streaming
model. In this model, we assume that the stream consists of
a sequence of ordered pairs xy. For each edge {x ,y}, both
xy and yx will be present in the stream. The promise on
the ordering is that all pairs with the same first vertex (the
adjacency list of that vertex) appear consecutively in the
stream. Within the adjacency lists the stream is ordered
arbitrarily. For example, for the graph consisting of a cycle
on three vertices V = {v1,v2,v3}, a possible ordering of the
stream could be 〈v3v1,v3v2,v1v2,v1v3,v2v3,v2v1〉. In this
example, we say that the adjacency list for v3 came first,
then the adjacency list for v1, and finally the adjacency list
for v2.
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Cycle Counting. For ℓ ≥ 3, we will consider algorithms for
counting the number of ℓ-cycles in a graphG presented as an
adjacency list stream.G hasT cycles, withT unknown to the
algorithm, and the problem is to compute a multiplicative
approximation toT with probability 1−δ . The approximation
factor may be (1 ± ε ), with ε an arbitrary parameter, or it
may be a fixed constant.
Our algorithms are parametrized in terms of T , which is

a convention widely adopted in the literature on subgraph
counting. While T cannot be assumed to be known in ad-
vance, it suffices to know a lower bound onT ′ ≤ T , and then
set our space usage based on T ′, as our bounds will only be
tighter if T > T ′. Furthermore, if T is in fact smaller than
T ′, then we will not be able to accurately estimate T , but we
will be able to determine that it is smaller than T ′. This is
because our bounds are variance-based, with variance that
is increasing in T .

We will be primarily concerned with the space complexity
of the algorithms, expressed in terms of the edge countm,T , ε ,
and δ . When ε and δ are omitted, this denotes the complexity
when ε and δ are constant.

1.3 Our Results

We present new upper and lower bounds for cycle counting
in adjacency list streams. See Table 1 for a summary of known
results and our contributions. For triangle counting we give
a two-pass (1 + ε )-estimation algorithm using Õ (m/T 2/3)

space, improving on the previous best known multipass al-
gorithm. We also present the first adjacency list algorithm
for approximately counting 4-cycles, using Õ (m/T 3/8) space
and two passes over the stream to return a constant-factor
approximation toT . We complement our upper bounds with
lower bound results for all cycle lengths. These are the first
lower bounds for subgraph counting in the adjacency list
model and they fully resolve in which settings there exist
sublinear space cycle counting/distinguishing algorithms.

Both of our algorithms are based on sampling. Sampling-
based approaches to this problem are very sensitive to “heavy”
edges, i.e., edges which are involved in a large number of
cycles. Heavy edges often introduce unacceptably large vari-
ance to the estimator. In our triangle counting algorithm,
we deal with this by defining, for each triangle, a “lightest”
edge, and ensuring that the triangle is only counted if it is
initially sampled at that edge. See Sections 2.1 and 3 for more
in-depth discussion.

In our 4-cycle counting algorithm, we deal with this prob-
lem by showing that a sufficient fraction of the 4-cycles have
at least one wedge that is sufficiently “light”. The difference
from triangle counting is that the algorithm cannot identify
the “light” wedge during the stream; this leads to a constant

factor approximation to the cycle count, rather than 1 + ε .
See Sections 2.2 and 4 for details.

We present lower bounds for counting cycles of all length,
both in one pass and constant number of passes. We use re-
ductions from four known communication complexity prob-
lems: Index (INDEXr ), three-player Number on Forehead
Pointer-jumping (3-PJr ), two-player Disjointness (DISJr ) and
three-player NOF Disjointness (3-DISJr ), where r indicates
the size of the input. The communication complexity of the
two multi-player Number on Forehead (NOF) problems have
not yet been fully resolved [10, 31] and thus we present
our lower bounds for triangle counting as conditional on
the best communication complexity lower bounds for these
problems. It is generally believed that both of these prob-
lems have communication complexity Ω̃(r ), which would
imply lower bounds of Ω̃(m/

√
T ) and Ω̃(m/T 2/3) for one pass

and multipass triangle counting respectively, matching the
corresponding algorithms (from [26] and here) up to poly-
log factors; certainly any result to the contrary would be a
breakthrough. For 4-cycle counting we show that solving
the problem in one pass requires Ω(m) space, but in two
passes it can be done using sublinear amount of space. We
then show that counting larger cycles requires Ω(m) space
for any constant number of passes. The details can be found
in Sections 2.3 and 5.

2 TECHNIQUES

2.1 Triangle Counting Algorithm

Our main upper bound is a two-pass adjacency list streaming
algorithm that counts the number of triangles in a graph

using O
(

m/T 2/3 · logn
)

space, where T is the number of
triangles in the graph and m is the number of edges. To
motivate our methods, consider first the following algorithm
for distinguishing graphs with T triangles from graphs with
no triangles described in [26]:

First Pass Samplem′ edges from the graph.
Second Pass Check if any of these edges are in a trian-

gle.

Note that the second pass can be accomplished with only
2m′ extra bits of storage by, for each adjacency list presented
in the second pass, flagging any endpoint of a sampled vertex
if it appears in the adjacency list. If both endpoints of an
edge are flagged in the adjacency list of some vertex v , that
edge forms a triangle with v .
It can be shown (see, e.g., [15]) that any graph with T

triangles must have at least T 2/3 edges involved in those
triangles, so providedm′ ≥ m/T 2/3, at least one such edge
will be sampled in the first pass with good probability, and
so the algorithm will detect that the graph has at least one
triangle.
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This algorithm gives an unbiased estimator for T , as the
number of triangles found by the algorithm is 3m′T /m in
expectation (if triangles with multiple sampled edges are
counted with multiplicity). However, this estimator has high
variance, due to “heavy” edges—edges involved in many tri-
angles. We can reduce the variance by discarding excessively
heavy edges (for instance, if we discard every edge involved
in at least 100T 1/3 triangles we can reduce the variance to
O (T 2)), but at the cost of biasing the estimator. This approach
will allow us a constant-factor approximation to T , but not
the (1 ± ε )-multiplicative approximation we want.

Instead, consider the following three-pass algorithm,which
only counts a triangle as being sampled if its “lightest” edge
was sampled:

First Pass Sample a size-m′ set S of edges from the graph.
Second Pass Collect the set Q of triangles that include

at least one edge in S .
Third Pass For every triangle uvw ∈ Q , calculate Tuv ,
Tvw ,Twu , the number of triangles inG that useuv ,vw ,
andwu, respectively.

Post-Processing For each edge e ∈ S , and each triangle
τ using e , count τ iff e = argmine ′∈τ Te ′ , breaking ties
arbitrarily.

This algorithm discards most “heavy edges” (it is possible for
a heavy edge to be the lightest edge of some triangle, but not
of most triangles), while providing an unbiased estimator, as
each triangle has an exactlym′/m chance of being counted.
One can show that this leads to an unbiased estimator with
good variance.
However, there are two problems with this algorithm.

Firstly, it takes an extra pass, and secondly, we need to store
Q , which is sizem′T /m in expectation. Therefore, its space
complexity is, in the worst case,

O
(

max
(

m/T 2/3,T 1/3
)

logn
)

To deal with the second problem, we sample a size-m′ sub-
set of the triangles we would collect in the second pass, or
all of them if we see fewer than m′. This gives us a true

O
(

m/T 2/3 · logn
)

-space algorithm.
Nowwe consider the first problem. Our algorithm depends

on, for each triangle sampled, determining whether it was
sampled at its “lightest” edge. It is impossible to determine
this exactly in only two passes, as for each edge e ′ in a
triangle τ , we will only be able to count triangles that involve
e ′ in the postfix of the stream that appears after τ is first
detected.
To solve this, we first note that, if we sample the edge

uv in our first pass, we will be able to add it to S when the
first of the adjacency lists of u,v arrive (assuming we use a
hash-based sampling method). Suppose this is u. Then, if uv
is completed by a vertexw to form τ , eitherw appears after

u, in which case τ can be found during the first pass, or it
appears before u, in which case τ can be found in the second
pass as soon asw arrives. In either case, we can find τ by the
time its first vertex arrives in the second pass.
We can therefore replace argmine ′∈τ Te ′ from the three-

pass algorithm with argmine ′∈τ He ′,τ , where

He ′,τ = |{τ ′ : e ′ ∈ τ ′, (τ ′ \ e ′) arrives after (τ \ e ′) }|,

because we can compute He ′,τ in the second pass for every
τ ∈ Q and edge e ′ ∈ τ .

For any given edge e ′ and triangle, this can be arbitrarily
small, but on average across all triangles that use an edge
e ′, He ′,τ will be approximately Te ′/2, which will suffice to
bound the variance of our algorithm (for further details, see
the full discussion in Section 3). This gives us the following
algorithm:

First Pass Sample a size-m′ set S of edges from the graph.
First and Second Pass Collect the set Q of triangles

that include at least one edge in S .
Second Pass For each τ ∈ Q and each e ′ ∈ τ , calculate

He ′,τ .
Post-Processing For each edge e ∈ S , and each triangle

τ using e , count τ iff e = argmine ′∈τ He ′,τ , breaking
ties arbitrarily.

Combining with the aforementioned fix—only storing a
sample of Q—gives our final algorithm.

2.2 4-Cycle Counting Algorithm

Our second result is a two-pass adjacency list streaming algo-
rithm that returns an O (1) multiplicative approximation to

the 4-cycle count of a graph using Õ
(

m/T 3/8
)

space, where
T is the number of 4-cycles in the graph andm is the number
of edges. In the first pass, we collect a set of edges S and
in the second, count how many 4-cyclesG has that contain
a wedge in S . To sample even one cycle reliably, we need
S to be size at leastm/T 3/8, as any wedge will be sampled
with probability about ( |S |/m)2, and there can be as few as
T 3/4 wedges in a graph with T 4-cycles. We show that this
also gives a O (1)-factor multiplicative approximation to T
by showing that at least a constant fraction of the cycles in
G have at least one wedge that is “good”, i.e. that is not used
by too many 4-cycles and has neither of its edges used by
too many 4-cycles.

2.3 Lower Bounds

Our last set of results consists of five lower bounds on the
space complexity of cycle counting in the adjacency list
streaming model. All of them involve the standard method
of using reductions from known communication complex-
ity problems. We let Cr be a two or three-player commu-
nication complexity problem with input of size Θ(r ) and a
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(a) One-pass Triangle Counting

Ω̃(m/
√
T ) from 3-PJ

(conditional)

(b) Multi-pass Triangle Counting

Ω̃(m/T 2/3) from 3-DISJ
(conditional)

(c) One-pass 4-cycle Counting

Ω(m) from INDEX
(d) Multi-pass 4-cycle Counting

Ω(m/T 2/3) from DISJ

(e) Multi-pass ℓ-cycle Counting, ℓ ≥ 5
Ω(m) from DISJ

Figure 1: Lower bound constructions.
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single bit as output. Suppose A is an algorithm that can
distinguish between graphs with T ℓ-cycles and ℓ-cycle-free
graphs with probability 2/3 in the one-pass adjacency list
streaming model. We then construct a protocol for Cr which
sends messages whose size is the internal space of A. Based
on an instance of Cr we construct a graph G, such that G is
ℓ-cycle-free if the output is 0 and hasT ℓ-cycles if the output
is 1. Alice, Bob (and possibly Charlie) each encode their input
as adjacency lists of vertices in the graphG. The protocol is
then for Alice to run A on her adjacency lists, and send the
algorithm’s state to Bob, who then runs it on his adjacency
lists. If there are three players, Bob sends the state to Charlie,
who then runsA on his lists. The last player can tell whether
G has 0 orT ℓ-cycles and therefore whether the output of Cr
is 0 or 1. This implies that if Cr requires Ω( f (r )) one-way
communication, A must use Ω( f (r )) space.
To obtain a bound on the space used by multi-pass algo-

rithms, we allow players to communicate for an arbitrary
number of rounds and consider total communication. If total
communication complexity of Cr is Ω( f (r )), then any algo-
rithm A with c passes must use Ω( f (r )/c ) space, which is
Ω( f (r )) for constant c .
For our reductions, we use the following communication

complexity problems (formally defined in Section 5):

• INDEX: Alice has s ∈ {0, 1}r , Bob has x ∈ [r ], and
must output sx .
• DISJ: Alice and Bob have s1, s2 ∈ {0, 1}r and must
determine if any s1x = s

2
x = 1.

• 3-PJ: Three-player Number on Forehead (NOF) Pointer-
jumping. This problem can be viewed as an extension
of Index to the multi-party NOF setting.
• 3-DISJ: Three-player NOF Disjointness.

Using reductions from Index and Disjointness is standard for
proving lower bounds on the space of one-pass and multi-
pass arbitrary order streaming algorithms. In adjacency list
streams, they are only applicable for obtaining bounds on
counting subgraphs with two disjoint edges, and thus cannot
be used for triangles. Since the input of a given communi-
cation complexity problem is encoded in the edges of the
graph and each player sees every edge on certain vertices,
assigning two vertices of a triangle to Alice and the third
one to Bob (or vice versa) would lead to the player with two
vertices having information about the other player’s input.
On the other hand, in a 4-cycle (or a larger cycle) we can
assign two adjacent vertices to Alice and two other adjacent
vertices to Bob, which would insure that both of them have
private input. To circumvent this problem for triangles, we
employ three-player communication complexity problems,
where each player knows two thirds of the input. This is
a special case of the k-player Number on Forehead (NOF)
model, where the input consists of k parts I1 through Ik and

i-th player knows all Ij except Ii . Showing bounds on com-
munication complexity in this model has proven harder than
in the more standard Number in Hand model. For multiparty
NOF Pointer Jumping and Disjointness there is currently a
gap between best known upper and lower bounds on the
communication complexity. The best known lower bound for
three players is currently Ω(

√
r ) for both problems, where

r is the size of input [30, 34]. Thus, we reference fpj (r ) and
fd (r ) as (currently unknown) complexities of NOF Pointer
Jumping and Disjointness respectively in our triangle count-
ing lower bounds. It is conjectured, that the communication
complexity of both problems is Ω̃(r ), where Ω̃(·) notation
hides inverse polylog factors. If that is the case, our triangle
counting bounds become tight.

For ℓ ≥ 4, we encode classic one-way (for one-pass) or two-
way (for multi-pass) communication complexity problems as
subgraph counting problems. This requires us to encode the
players’ inputs in disjoint edges, as if we use incident edges
the players will share information, and so it is not available
for ℓ = 3.

In two of our reductions concerning counting 4-cycles we
aim to construct a graph with a large number of 4-cycles for
instances with output 1 and a similar 4-cycle-free graph for
0-instances. To achieve that, we employ bipartite 4-cycle-free
graphs on 2r vertices withΘ(r 3/2) edges. An example of such
a graph is an incidence graph of a special kind of projective
plane called a field plane. If the order of the plane is q, it
has q2 + q + 1 points, the same number of lines, and each
line passes through exactly q + 1 points. Thus, the incidence
graph has 2(q2 + q + 1) vertices, each with degree q + 1.
The graph is 4-cycle-free since by definition of a projective
plane, for any two distinct points, there is exactly one line
passing through both of them, and for any two distinct lines,
there is exactly one point both of them pass through. We
also note that there are no 4-cycle-free graphs on r vertices
with ω (r 3/2) edges [8].

When ℓ ≥ 5 our lower bounds become Ω(m) for any
constant number of passes regardless of the number of cycles
in the graph. This is because we can encode Disjointness
(which is known to require linear communication even in
two-way complexity) as an ℓ-cycle-counting problem. This
encoding will depend on the fact that a pair of disjoint edges
can be shared by many different ℓ-cycles, which does not
hold for ℓ = 4.
For illustrations of the lower bound constructions see

Figure 1. Solid edges are fixed and dashed edges correspond
to players’ input. For detailed definitions of communication
complexity problems and descriptions of the reductions see
Section 5.
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3 TWO PASS TRIANGLE COUNTING
ALGORITHM

3.1 Notation

For any edge or subset of edges x in G, write L(x ) for the
set of triangles involving x , and write T (x ) for |L(x ) |. Let
T = T (G ). For each triangle τ ∈ L(G ), and each edge e ∈ τ ,
let τ−e denote the unique vertex in τ that is not an endpoint
of e .

3.2 Algorithm

Our algorithm will take two passes over the stream. Call
these passes P1, P2. We will require that P2 have the same
ordering as P1. For each i ∈ [2], u ∈ V (G ) and v ∈ Γ(u), let
P<uv
i denote the prefix of Pi that appears beforev appears in

the adjacency list ofu, and P>uv
i denote the postfix of Pi that

appears afterwards. Similarly, let P<u
i ,P>v

i denote the prefix
and postfix of Pi that occur before and after the adjacency
list of v , respectively. For each e ∈ G, define an order on the
triangles of the graph as follows: τ1 <e τ2 if τ−e2 arrives after
τ−e1 in the stream.

Now, let τ be a triangle and e an edge. Define:

He,τ = |{τ ′ ∈ L(e ) : τ <e τ ′}|
Then, for each triangle τ , let ρ (τ ) be the unique edge e ∈ τ
that minimizes He,τ , breaking ties arbitrarily. Let

T̃e = |{τ ∈ L(e ) : ρ (τ ) = e}|
Note that

∑

e ∈E T̃e = T . Our algorithm is then as follows:

(1) Choose a sample sizem′.
(2) While passing through P1, keep a uniformly chosen

size-m′ subset S of E (G ), adding an edge to S the first
time of the two times it appears in P1. If m′ > m,
instead keep all of E (G ).

(3) While passing through P1 and P2, perform the follow-
ing steps in parallel:

(a) Calculatem = |E (G ) |. Define k = max(m/m′, 1).
(b) Calculate T ′ =

∑

e ∈S Te .
(c) Sample a size-m′ subset Q uniformly from {(e,τ ) :

e ∈ S,τ ∈ L(e )}, or let Q be the entire set if it is
smaller thanm′.

(d) For each (e ′,τ ) ∈ Q and for each e ∈ τ , calculate
He,τ .

(4) Return T̃ ′ = k2T ′

m
|{(e,τ ) ∈ Q : ρ (τ ) = e}|.

3.3 Analysis

3.3.1 Space Complexity. To see that this can be implemented,
first note that, if we are storing an edge e = uv , whenever
the adjacency list of a vertex w appears in the stream we
can check whether uvw forms a triangle in G with the use
of only two extra bits per such edge e . This is because, while
scanning the adjacency list ofw , we can flag u if uw appears,

and v if vw appears, concluding at the end of the adjacency
list that uvw exists iff v andw are flagged.

Therefore, we can perform step 3b withO ( |S | logn) space,
and step 3c with O ( |Q | logn) space. We can perform step 3a
in O (logn) space just by maintaining a counter.
Then, for step 3d, consider any (e,τ ) ∈ Q . The first time

this can be added to Q is the first time the vertexw = τ−e is
seen after adding e to S . Suppose e appears in P1 for the first
time as the vertex v in the adjacency list of u. Then, as P1, P2
have the same order, the adjacency list ofw appears either
in P>uv

1 or P<uv
2 . So in particular, all of P>uv

2 ∪ P>w
2 is seen

after (e,τ ) is added toQ . Since u arrives beforev , this means
that P>u

2 ∪ P>v
2 ∪ P>w

2 is seen after (e,τ ) is added to Q .

Then, for any f ∈ τ and σ ∈ L(e ′) such that τ <f σ , σ−f

appears after τ−f in P2, by the definition of <f . Since τ
−f

must be one of u,v,w , σ−f is in P>u
2 ∪ P>v

2 ∪ P>w
2 , and it

appears after (e,τ ) is added to Q . Therefore,

He,τ = |{τ ′ ∈ L(e ) : τ <e τ ′}|

can be counted with only O ( |Q | logn) space.
Therefore, the space complexity of this algorithm is:

O (( |Q | + |S |) logn) = O (m′ logn)

3.3.2 Correctness.

Lemma 3.1.

E

[
T̃ ′

]
= T

Proof. Fix any ordering of the stream. Condition on the
set S of edges sampled from P1. Then, for each triangle τ ∈ G
such that e ∈ S and ρ (τ ) = e , (e,τ ) ∈ Q with probability
m′

T ′ =
m
kT ′ . Therefore,

E

[
T̃ ′���S] = k

∑

e ∈S
T̃e

and as each e ∈ G is included in S with probability m′

m
= 1/k ,

E

[
T̃ ′

]
=

∑

e ∈G
T̃e

and since for each τ there is exactly one e ∈ τ such that
ρ (τ ) = e:

E

[
T̃ ′

]
= T

�

To bound the accuracy of this estimator, we will need the
following combinatorial lemma concerning the values T̃e .

Lemma 3.2.
∑

e ∈G
T̃ 2
e = O

(

T 4/3
)

Proof. For all i ∈ {0, . . . , ⌊logT ⌋}, let Ei = {e ∈ G : T̃e ∈
[2i , 2i+1]}, and let Ai = {τ ∈ G : ρ (τ ) ∈ Ei }.
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Then, let Bi = {τ ∈ Ai : Hρ (τ ),τ ≥ T̃ρ (τ )/2}, and let
Fi =

⋃

Bi , so Fi contains all of the edges of triangles in
Bi . Then, for any e ∈ Ei , at least half of the triangles τ
such that ρ (τ ) = e have Hρ (τ ),τ ≥ T̃ρ (τ )/2, so |Bi | ≥ |Ai |/2.
Furthermore, by [15], any graph withm edges has at most
m3/2 triangles, and so |Fi |3/2 ≥ |Ai |/2. Then,

∑

e ∈G
T̃ 2
e ≤

⌊logT ⌋
∑

i=0

2i+1
∑

e ∈Ei

T̃e

While
∑

e ∈Ei

T̃e = |Ai |

≤ 2|Fi |3/2

Then, for any e ∈ Fi , ∃τ ∈ Bi such that e ∈ τ , and therefore
He,τ ≥ Hρ (τ ),τ ≥ T̃ρ (τ )/2. Therefore:

Te ≥ He,τ

≥ T̃ρ (τ )/2
≥ 2i−1

Thus, |Fi |2i−1 ≤ 3T , and so |Fi |3/2 ≤ T 3/22−3(i−1)/2/33/2. At
the same time,

∑

e ∈Ei T̃e is clearly at mostT , and so by break-
ing our sum at i = ⌊logT /3⌋:

∑

e ∈G
T̃ 2
e ≤

⌊log(T )/3⌋
∑

i=0

2iT +

⌊logT ⌋
∑

i= ⌊log(T )/3⌋
2−i/2+5/2T 3/2/33/2

= O
(

T 4/3
)

+O
(

T 4/3
)

= O
(

T 4/3
)

�

We are now ready to analyze the accuracy of the algorithm.
First, we will show that k

∑

e ∈S T̃ is a good estimator for T .

Lemma 3.3.

∀ε > 0,P
k

∑

e ∈S
T̃e ∈ ((1 − ε )T , (1 + ε )T )

 ≥ 1 −O
(

k

ε2T 2/3

)

Proof. As each e ∈ G is included in S with probability
m′/m = 1/k ,

E

k
∑

e ∈S
T̃e

 = T
We will now proceed to bound the variance. Let Ie be the
indicator variable that is 1 if e ∈ S and 0 otherwise. Then,
since a fixed number of edges are included in S , the family

{Ie }e ∈G is negatively associated, and so

Var *,k
∑

e ∈S
T̃e+- = k

2
∑

e ∈G
T̃ 2
e Var (Ie )

≤ k2
∑

e ∈G
T̃ 2
e (1/k − 1/k2)

≤ k
∑

e ∈G
T̃ 2
e

≤ kT 4/3

by applying Lemma 3.2. The result then follows by Cheby-
shev’s inequality. �

We will now bound, for any sample set S , the accuracy with
which the algorithm estimates k

∑

e ∈S T̃e .

Lemma 3.4.

∀ε > 0,P
T̃
′ ∈ *,k

∑

e ∈S
T̃e − εT ,k

∑

e ∈S
T̃e + εT +-

������S


≥ 1 − k3T ′

ε2T 2m

∑

e ∈S
T̃e

Proof. We may assume |Q | = m′, since otherwise Q =
⋃

e ∈S (e,L(e )) and so T̃
′
= k

∑

e ∈S T̃e exactly. Conditioned on
S , for any τ such that ρ (τ ) ∈ S , let Jτ be 1 if (ρ (τ ),τ ) ∈ Q ,
and 0 otherwise. As Q is fixed size, the family {Jτ }τ ∈G is
negatively associated, and so

Var
(

T̃ ′���S) ≤
(

kT ′

m′

)2
∑

e ∈S

∑

τ :ρ (τ )=e

Var(Jτ )

=

(

kT ′

m′

)2
∑

e ∈S

∑

τ :ρ (τ )=e

*
,
m′

T ′
−

(

m′

T ′

)2+
-

≤ k2T ′

m′

∑

e ∈S
T̃e

≤ k3T ′

m

∑

e ∈S
T̃e

The result then follows from Chebyshev’s inequality. �

To make use of the bound above, we will need to bound the
probability that T ′ is too large.

Lemma 3.5.

P
[

kT ′ ≤ 30T
] ≥ 9/10

Proof. Each edge in G is included in S with probability
1/k , so

E
[

T ′
]

=

∑

e ∈G
Te/k

= 3T /k

The result then follows from Markov’s inequality. �
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Putting these results together will allow us to bound the
accuracy of the estimator.

Lemma 3.6. There exists a constant D > 0 such that, ∀ε ∈
(0, 1), if

k ≤ ε2DT 2/3

then

P

[
T̃ ′ ∈ ((1 − ε )T , (1 + ε )T )

]
≥ 2/3

Proof. Using Lemmas 3.3 and 3.4, chooseD ≤ 1 such that

P

k
∑

e ∈S
T̃e ∈ ((1 − ε/2)T , (1 + ε/2)T )

 ≥ 99/100

P

T̃
′ ∈ *,k

∑

e ∈S
T̃e − εT /2,k

∑

e ∈S
T̃e + εT /2+-

������S


≥ 1 − kT ′

3000T 4/3m
k
∑

e ∈S
T̃e

Then, if E is the event that k
∑

e ∈S T̃e = (1 ± ε/2)T and
kT ′ ≤ 30T , by Lemma 3.5 and the union bound

P [E] ≥ 89/100

Thus,

P

T̃
′ ∈ *,k

∑

e ∈S
T̃e − εT /2,k

∑

e ∈S
T̃e + εT /2+-

������S, E


≥ 1 − kT ′

2670T 4/3m
k
∑

e ∈S
T̃e

≥ 1 − 1

89T 1/3m
k
∑

e ∈S
T̃e

≥ 1 − 1 + ε

89m
T 2/3

≥ 87

89

as T ≤ m3/2. Therefore, with probability at least 89/100 ×
87/89 − 1/100 > 2/3

T̃ ′ ∈ *,k
∑

e ∈S
T̃e − εT /2,k

∑

e ∈S
T̃e + εT /2+-

and
k
∑

e ∈S
T̃e ∈ ((1 − ε/2)T , (1 + ε/2)T )

Therefore,
T̃ ′ = ((1 − ε )T , (1 + ε )T )

�

Theorem 3.7. For all ε,δ ∈ (0, 1), there is a 2-pass triangle
counting algorithm that uses

O

(

m logn

ε2T 2/3
log 1/δ

)

space and returns a (1 ± ε ) multiplicative approximation to T
with probability 1 − δ .

Proof. Letm′ = Θ
(

m/(ε2T 2/3)
)

, with constants chosen

so that k = Θ(ε2T 2/3) meets the requirements of Lemma 3.6.
This gives an algorithm that runs in

O

(

m logn

ε2T 2/3

)

space and returns a (1 ± ε ) multiplicative approximation to
T with probability 2/3. Then, for an appropriately chosen
constant D ′ ∈ N, run D ′ log 1/δ copies of the algorithm
in parallel, and take the median of their outputs. If D ′ is
chosen to be a sufficiently large constant, at least half the
algorithmswill return a result within εT ofT with probability
1 − δ , and so the median will give a (1 ± ε ) multiplicative
approximation. �

4 TWO PASS 4-CYCLE COUNTING
ALGORITHM

4.1 Notation

For any edge or wedge x , let Tx denote the number of 4-
cycles that contain x , let T denote the number of 4-cycles in
our graph G, and letm denote the number of edges in G.

4.2 Algorithm

Our algorithm will take two passes over the stream. Call
these passes P1, P2. We will not require P2 to have the same
ordering as P1. Our algorithm is then as follows:

(1) Choose a sample sizem′.
(2) While passing through P1, keep a uniformly chosen

size-m′ subset S of E (G ). Ifm′ > m, instead keep all of
E (G ). Recordm.

(3) Let Q be the set of wedges consisting of edges in S .
(4) While passing through P2, for each w ∈ Q , calculate

Tw .
(5) Let k =m/m′.
(6) Return T ′ = k2 ·∑w ∈Q Tw .

4.3 Analysis

4.3.1 Space Complexity. For any wedge uvw in Q , and any
vertex z ∈ V (G ), we may check whether uvwz forms a 4-
cycle in G while passing over the adjacency list of z with
only extra 2|S | bits of storage, by flagging whether u andw
are in the adjacency list of z. Therefore, the algorithm can
be implemented with the use of

O ( |S | logn) = O (m′ logn)

space.
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4.3.2 Correctness. To show that the algorithm obtains an
O (1) factor approximation to T , we will need to show that
at least a constant fraction of cycles in our graphG are easy
to find.

Definition 4.1. We call an edge e ∈ E (G ) “heavy” if it is

contained in at least 40
√
T 4-cycles, and “light” otherwise. We

call a wedgew “overused” if it is contained in at least 40T 1/4

4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as FG .

Lemma 4.2. |FG | = Ω(T )

Proof. See appendix. �

For each cycle τ that has at least one good wedge, let ρ (τ )
denote an arbitrarily chosen good wedge in τ . Let fG denote
the number of 4-cycles τ such that ρ (τ ) is in the sampled
wedge setQ . Let fB denote the number of 4-cycles τ such that
ρ (τ ) < Q , but some other wedge in τ is in Q . The estimate
returned by the algorithm is then k2 ( fG + fB ).

Lemma 4.3. There exists a constant D > 0 such that, if

k ≤ DT 3/8

then P
[
k2 fG ∈ [|FG |/4, 2|FG |]

]
≥ 9/10.

Proof. For each τ ∈ FG , there is a
m′(m′ − 1)
m(m − 1) ∈ [1/(2k

2), 1/k2]

probability that both edges in ρ (τ ) will be included in S , so

E

[
k2 fG

]
∈ [|FG |/2, |FG |]

Next we bound the variance. For any two 4-cycles τ1,τ2, the
probability that both ρ (τ1) and ρ (τ2) are inQ is

∏r−1
i=0

m′−i
m−i ≤

k−r , where r is the total number of distinct edges between
ρ (τ1) and ρ (τ2) (varying from 4 if they are disjoint to 2 if
they are the same wedge).

Var(k2 fG ) = k
4
E

[
f 2G

]
− k4 E [fG ]2

≤ k4
∑

τ1,τ2∈FG

P [ρ (τ1), ρ (τ2) ∈ Q] − k4 E [fG ]2

≤ k4
∑

τ1,τ2∈FG :
ρ (τ1 )∩ρ (τ2 ),∅

P [ρ (τ1), ρ (τ2) ∈ Q]

≤ k4
*.
,
∑

τ ∈FG

*.
,k
−2Tρ (τ ) + k

−3
∑

e ∈ρ (τ )
Te
+/
-
+/
-

≤
∑

τ ∈FG

(

40k2T 1/4
+ 80kT 1/2

)

≤ 120DT 2

where the penultimate step uses the fact that ρ (τ ) is good
and the last step uses the fact that k ≤ DT 3/8. The result
then follows for sufficiently small D > 0 by Lemma 4.2 and
Chebyshev’s inequality. �

Lemma 4.4.

P

[
k2 fB ≤ 40T

]
≥ 9/10

Proof. Each cycle has 4 wedges, and each one has at most

a 1/k2 probability of contributing to fB , so E
[
k2 fB

]
≤ 4T .

The result then follows by Markov’s inequality. �

Lemma 4.5. There exists a constant D > 0 such that, if

k ≤ DT 3/8

then with probability 4/5, the algorithm outputs an O (1) mul-
tiplicative approximation to T .

Proof. Apply the union bound to the above two lemmas.
�

Theorem 4.6. For every δ ∈ (0, 1), there exists a two-pass
4-cycle counting algorithm that uses

O

(

m logn

T 3/8
log 1/δ

)

space and returns a O (1) multiplicative approximation to T
with probability 1 − δ .

Proof. Let m′ = Θ(m/T 3/8), with constants chosen so
that k = Θ(T 3/8) meets the requirement of Lemma 4.5. This
gives an algorithm that runs in O ((m logn)/T 3/8) space and
returns anO (1) multiplicative approximation toT with prob-
ability 2/3. Running Θ(log 1/δ ) copies of the algorithm in
parallel and taking the median of their outputs then gives
the desired result. �

5 LOWER BOUNDS

We will make use of reductions from the following commu-
nication complexity problems. In each case, the players are
allowed to use (shared) randomness, and the lower bounds
mentioned will be for solving the problem with probability
2/3.

Index (INDEXr )
Alice holds a binary string s of length r and Bob holds an
index x ∈ [r ]. Alice sends a message to Bob, who must
compute sx . This requires Ω(r ) communication[22].
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Three Party NOF Pointer-Jumping (3-PJr )
Alice, Bob, and Charlie share edges from a graphwith four
layers of vertices: V1 = {v∗}, V2 = {v2i }ri=1, V3 = {v3i }ri=1,
V4 = {v40,v41} and three layers of edges E1,E2,E3, where
Ei contains edges from Vi to Vi+1. Edges of the graph
are directed, and every vertex in layers 1 through 3 has
out-degree exactly one. Vertices in V4 have out-degree 0.
Alice has the edges in E2 and E3, Bob has E1 and E3, and
Charlie has E1 and E2. Using one way communication —
Alice sends a message to Bob, who then sends a message
to Charlie — the players must compute whether v∗ is
connected by a directed path to v40 or v41, answering
0 in the first case and 1 in the second. The best known
lower bound on the communication complexity of this
problem isΩ(

√
r ) [34], while the best known upper bound

is Õ (r log log r/ log r ) [11], and it is conjectured that the
true complexity of the problem is close to linear.

Two Party Disjointness (DISJr )
Alice holds a binary string s1 of length r and Bob holds
a string s2 of the same length. Using multi-way commu-
nication, they must determine whether there exists an
index x such that s1x = s2x = 1, answering 1 if there is
and 0 otherwise. The communication complexity of this
problem is Ω(r ) [19, 29].

Three Party NOF Disjointness (3-DISJr )
Alice, Bob, and Charlie share three binary strings of
length r : s1, s2, and s3. Each of the three players holds
two of the strings: Alice has s1 and s2, Bob s2 and s3,
Charlie s3 and s1. Using multi-way communication, they
must determine whether there exists an index x such
that s1x = s2x = s3x = 1, answering 1 if there is and 0
otherwise. The best known lower bound on the commu-
nication complexity of this problem is Ω(

√
r ) [30]. No

sublinear protocol is known, and it is conjectured that
the true complexity is Ω̃(r ).

5.1 Reduction Structure

Each of the lower bounds will take the following form: an
encoding of an instance of the problem into a graph where
the vertices are “assigned” to players. Each player must be
able to insert the adjacency list corresponding to their “as-
signed” vertices, and thus any edges between the assigned
vertices of two different players must be determined by state
shared by both players.
In each case, we will embed an instance of the problem

in a graph which has no ℓ-cycles (for ℓ the length we are
considering) if the correct output of the game is 0, and T
cycles if it is 1. Therefore, any algorithm that can distinguish
between 0 and T ℓ-cycles (in particular, any algorithm for

counting ℓ-cycles) would provide a protocol for the commu-
nication problem, with communication complexity equal to
the space cost of the algorithm. For one-pass lower bounds,
we will reduce from one-way communication problems, and
for multi-pass lower bounds we will reduce from multi-way
communication problems, so that each pass over the input
corresponds to one round of communication.

5.2 Girth-6 Graphs
In two of our reductions concerning counting 4-cycles we
will need to construct a graphwith a large number of 4-cycles
for instances with output 1 and a similar 4-cycle-free graph
for 0-instances. To achieve this, we employ bipartite 4-cycle-
free graphs on 2r vertices with Θ(r 3/2) edges. An example
of such a graph is an incidence graph of a special kind of
projective plane called field plane. If the order of the plane is
q, it has q2 +q+ 1 points, the same number of lines, and each
line passes through exactly q + 1 points. Thus, the incidence
graph has 2(q2 + q + 1) vertices, each with degree q + 1. The
graph is 4-cycle-free since by the definition of a projective
plane, for any two distinct points, there is exactly one line
passing through both of them, and for any two distinct lines,
there is exactly one point both of them pass through. We
also note that there are no 4-cycle-free graphs on r vertices
with ω (r 3/2) edges [8].

5.3 One-Pass Triangle Counting

Theorem 5.1. If 3-PJr requires Ω( fpj (r )) communication,
then for anym and T ≤ m, there existm′ = Θ(m) and T ′ =
Θ(T ) such that any adjacency list streaming algorithm that dis-
tinguishes betweenm′-edge graphs with 0 andT ′ triangles with

at least 2/3 probability in one pass requires Ω( fpj (m/
√
T ))

space.

Proof. We will describe an encoding of an instance of
3-PJr as a graph G, illustrated in Figure 1a. Let r ,k ∈ N
be variables to be fixed later, and consider an instance of
3-PJr with edge sets E1,E2,E3. V (G ) will be the union of the
following sets:

• A = {ai }ri=1 of size r , assigned to Alice.
• B of size k , assigned to Bob.
• C1,C2, . . . ,Cr , each of size k , assigned to Charlie.

The edges of the graph will be:

• For the edge (v∗,v2i ) ∈ E1, k2 edges connecting every
vertex in B to every vertex in Ci .
• For each edge (vi ,v3j ) ∈ E2, k edges connecting every
vertex in Ci to aj .
• For each edge (vi ,v41) ∈ E3, k edges connecting ai to
every vertex in B. Edges (vi ,v40) ∈ E3 will be ignored.

G will have O (rk + k2) edges. If v∗ has a path to v41 it will
have k2 triangles. Otherwise it will have 0 triangles. We can
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therefore set k = Θ(
√
T ) and r = Θ(m/

√
T ) to complete the

proof. �

5.4 O (1)-Pass Triangle Counting
Theorem 5.2. If 3-DISJr requires Ω( fd (r )) communication,

then for anym andT ≤ m3/2, there existm′ = Θ(m) andT ′ =
Θ(T ) such that any adjacency list streaming algorithm that
distinguishes betweenm′-edge graphs with 0 and T ′ triangles
with at least 2/3 probability in a constant number of passes
requires Ω( fd (m/T

2/3)) space.

Proof. We will describe an encoding of an instance of
3-DISJr as a graph G, illustrated in Figure 1b. V (G ) will be
the union of the following sets:

• A1,A2, . . . ,Ar , each of size k , assigned to Alice.
• B1,B2, . . . ,Br , each of size k , assigned to Bob.
• C1,C2, . . . ,Cr , each of size k , assigned to Charlie.

The edges of the graph will be:

• For each i ∈ [r ], k2 edges between Ai and Ci iff s1i = 1.
• For each i ∈ [r ], k2 edges between Ai and Bi iff s2i = 1.
• For each i ∈ [r ], k2 edges between Bi and Ci iff s3i = 1.

G will haveΘ(rk ) vertices andO (rk2) edges. If there exists an
index x such that s1x = s

2
x = s

3
x = 1, Ax , then Bx , and Cx will

form k3 triangles. Otherwise, the graph will be triangle-free.
Therefore, for anym and T ≤ m3/2, we may set k = Θ(T 1/3)

and r =m/T 2/3, and the result follows. �

5.5 One Pass 4-Cycle Counting

Theorem 5.3. For anym andT ≤ m1/3, there existsm′ =m
such that any adjacency list streaming algorithm that distin-
guishes betweenm′-edge graphs with 0 and T 4-cycles with at
least 2/3 probability in one pass requires Ω(m) space.

Proof. We will describe an encoding of an instance of
INDEXΘ(r 3/2 ) as a graphG , illustrated in Figure 1c.V (G ) will
be the union of the following sets:

• A = {ai }ri=1 and B = {bi }ri=1, each of size r , assigned to
Alice.
• C1,C2, . . . ,Cr ,D1,D2, . . . ,Dr , each of size k , assigned
to Bob.

Using the construction in Section 5.2, fix a bipartite 4-cycle-
free graph H with both partitions of size r and Θ(r 3/2) edges.
Let the size of Alice’s string (and therefore the size of the
instance) be |E (H ) |, and associate each edge of H with a
different index of Alice’s string. The edges of our graph are
then the following:

• A copy of H between A and B, with the edges corre-
sponding to bits of Alice’s string that are 0 removed.
• A matching of size k between Ci and D j , where ij is
the edge of H corresponding to Bob’s index.
• For each i ∈ [r ], k edges between ai and Ci .

• For each i ∈ [r ], k edges between bi and Di .

The resulting graph hasΘ(rk ) vertices andO (r 3/2+rk ) edges.
If sx = 1, the graph has k 4-cycles, otherwise it is 4-cycle-
free. Therefore, by setting k = T and r = Θ(m2/3), the result
follows. �

5.6 O (1)-Pass 4-Cycle Counting
Theorem 5.4. For anym and T ≤ m3/5, there existsm′ =

Θ(m) such that any any adjacency list streaming algorithm
that distinguishes between m′-edge graphs with 0 and T 4-
cycles with at least 2/3 probability in a constant number of
passes requires Ω(m/T 2/3) space.

Proof. We will describe an encoding of an instance of
DISJΘ(r 3/2 ) as a graph G, illustrated in Figure 1d.
Using the construction in Section 5.2, fix a bipartite 4-

cycle-free graphH1 with both partitions of size r andΘ(r 3/2)
edges and another bipartite 4-cycle-free graph H2 with both
partitions of size k and Θ(k3/2) edges. Let the size of Alice
and Bob’s strings (and therefore the size of the instance) be
|E (H1) |, and associate each edge of H1 with an index i from
1 to |E (H1) |, so each edge in H1 corresponds to bits s1i and s

2
i

in Alice and Bob’s strings.
V (G ) will be the union of the following sets:

• Sets A1,A2, . . .Ar and B1,B2, . . . Br , each of size k , as-
signed to Alice.
• SetsC1,C2, . . .Cr and D1,D2, . . .Dr , each of size k , as-
signed to Bob.

The edges of the graph will be:

• A copy of H2 between Ai and Ci for all i ∈ [r ]
• A copy of H2 between Bi and Di for all i ∈ [r ].
• For each edge (vi ,uj ) in H1, a matching of size k be-
tween Ai and Bj iff corresponding Alice’s bit is 1.
• For each edge (vi ,uj ) in H1, a matching of size k be-
tween Ci and D j iff corresponding Bob’s bit is 1.

G will have Θ(rk ) vertices and Θ(rk3/2 + kr 3/2) edges. If
there exists an index x such that s1x = s2x = 1, G will have
k3/2 4-cycles, and otherwise it will be 4-cycle-free. Therefore,
the result follows by setting k = T 2/3 and r 3/2 = Θ(m/T 2/3),
so that as T ≤ m3/5, rk3/2 + kr 3/2 = Θ(m2/3T 5/9

+ m) =

Θ(m). �

5.7 O (1)-Pass ℓ-cycle Counting for ℓ ≥ 5
Theorem 5.5. For any constant ℓ ≥ 5, and for anym and

T ≤ m, there exists m′ = Θ(m) such that any adjacency
list streaming algorithm that distinguishes betweenm′-edge
graphs with 0 and T ℓ-cycles with at least 2/3 probability in a
constant number of passes requires Ω(m) space.

Proof. We will describe an encoding of an instance of
DISJk as a graphG , illustrated in Figure 1e. V (G ) will be the
union of the following sets:
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• A = {ai }r+1i=1 of size r + 1, assigned to Alice.
• B = {bi }ri=1 of size r , assigned to Bob.

• C = {ci }ki=1 of size k , assigned to Bob.
• D = {di }ℓ−4i=1 of size ℓ − 4, assigned to Bob.

The edges of the graph will be:

• (ai ,bi ) for all i ∈ [r ].
• (ar+1, ci ) for all i ∈ [k].
• (dℓ−4, ci ) for all i ∈ [k].
• A path d1 − d2 − · · · − dℓ−4. Note that for ℓ = 5, this
path has 1 vertex and 0 edges.
• (ai ,ar+1) for every i such that the i-th bit of Alice’s
string is 1.
• (bi ,d1) for every i such that the i-th bit of Bob’s string
is 1.

G will have O (r + k ) edges, as ℓ is a constant. If there exists
an index x such that s1x = s2x = 1, then the graph will have
k ℓ-cycles, otherwise it will be ℓ-cycle-free. Therefore, if
T ≤ m, the result follows by setting r =m,k = T . �
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A PROOFS OMITTED FROM 4-CYCLE
COUNTING

Definition 4.1. We call an edge e ∈ E (G ) “heavy” if it is

contained in at least 40
√
T 4-cycles, and “light” otherwise. We

call a wedgew “overused” if it is contained in at least 40T 1/4

4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as FG .

Lemma 4.2. |FG | = Ω(T )

We split the proof of this into three subsidiary lemmas.

Lemma A.1. There are at least 13
50T cycles containing no

more than one heavy edge.

Proof. Call a wedge “very heavy” if it contains two heavy
edges. We note that there are at most

√
T /10 heavy edges,

as each cycle contains 4 edges. Therefore, there are at most
T /100 distinct pairs of disjoint heavy edges, and so there are
at mostT /50 cycles containing a pair of disjoint heavy edges,
as each such pair may participate in at most two distinct
cycles.

Therefore, the remaining 49
50T cycles all either contain no

more than one heavy edge, or consist of one light wedge
joined with one very heavy wedge. Let the number of cycles
of the second type be B.

For each pair of vertices uv , let дuv be the number of light
wedges of the form uwv for some vertexw , and buv be the
number of very heavy wedges of that form. Then we have:

B =
∑

uv ∈V (G )2

дuvbuv

Furthermore,

∑

uv ∈V (G )2:
дuv ≤2

дuvbuv ≤ 2
∑

uv ∈V (G )2

buv ≤ T /50

and so we have:

B ≤
∑

uv ∈V (G )2:
дuv>2

дuvbuv +T /50

Furthermore, between any pair of vertices there are at

least
(

buv
2

)

cycles consisting of two very heavy wedges with

endpoints at those vertices, and at least
(

дuv
2

)

cycles con-
sisting of two light wedges with endpoints at those vertices.
Furthermore, each of those cycles will appear between at
most two pairs of vertices in this fashion. Therefore:
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T ≥ B +
1

2

∑

uv ∈V (G )2

((

дuv

2

)

+

(

buv

2

))

≥ B +
1

2

∑

uv ∈V (G )2:
дuv>2

((

дuv

2

)

+

(

buv

2

))

= B +
1

4

∑

uv ∈V (G )2:
дuv>2

(

д2uv − дuv + b2uv − buv
)

≥ B +
1

4

∑

uv ∈V (G )2:
дuv>2

( 2

3
д2uv + b

2
uv

)

−T /400

≥ B +
1
√
6

∑

uv ∈V (G )2:
дuv>2

дuvbuv −T /400

≥ B +
1
√
6
(B −T /50) −T /400

where the last step plugs in the previous expression. Hence:

B ≤ T (1 + 1

50
√
6
+

1

400
)/(1 +

1
√
6
) < 0.72T

So the number of cycles that contain no more than one
heavy edge is at least 49

50T − 0.72T =
13
50T . �

For the next two lemmas, note that there are at most
4T /40T 1/4

= T 3/4/10 overused wedges, as each cycle con-
tains 4 distinct wedges. We will distinguish between two
kinds of vertices. Let a vertex v ∈ V (G ) be “primary” if it is
an endpoint of at least

√
T overused wedges, and “secondary”

otherwise. There are at most 2 · T 3/4/10 · 1/
√
T = T 1/4/5

primary vertices.

Lemma A.2. There are at most 3
25T 4-cycles containing all

overused wedges.

Proof. Any 4-cycle that contains all overused wedges and
at least one primary vertex can be uniquely specified by one
primary vertex and an overused wedge that is disjoint from
it. There are therefore at most

T 1/4/5 ·T 3/4/10 ≤ T /50

such cycles. Now, for any pair of secondary vertices u,v ∈
V (G ), let Xuv be the number of 4-cycles that contain u andv
as opposite vertices (that is, not connected by any edge in the
cycle), and have only overused wedges. As both u and v are
secondary, Xuv ≤

√
T . Note also that there are at least

√
Xuv

overused wedges with u and v as their endpoints. Then, the
number of 4-cycles containing only secondary vertices and

all overused wedges is at most:
∑

uv ∈V (G )2:
u,v secondary

Xuv ≤ T 1/4
∑

uv ∈V (G )2:
u,v secondary

√

Xuv

≤ T 1/4# of overused wedges

≤ T /10
So the total number of cycles that contain all overusedwedges
is at most 1

50T +
1
10T =

3
25T . �

Lemma A.3. There are at most 3
25T 4-cycles containing one

heavy edge e and with the two wedges not containing e being
overused.

Proof. First we bound the number of such 4-cycles where
e has at least one primary endpoint, v . For any such cycle, v
has an overused wedge that is disjoint from it, andv together
with this wedge uniquely determine the cycle, so the number
of such cycles is at most:

T 1/4/5 ·T 3/4/10 = T /50

Second, we bound the number of such 4-cycles where e has
at least one secondary endpoint v . Each such cycle can be
characterised by the choices of e and the choice of overused
wedge that connects to e at v . As v is secondary, there are at
most

√
T choices of this overused wedge, so the total number

of such cycles is at most:
√
T /10 ·

√
T = T /10

So the total number of cycles that contain one bad edge e
and with the two wedges not containing e being overused is
at most 1

50T +
1
10T =

3
25T . �

By combining the previous three lemmas, there are at
least 13

50 cycles that contain no more than one heavy edge,
no more than 3

25T of which have all overused cycles, and no
more than 3

25T of which have one heavy edge e and both
wedges that do not contain e overused. So the number of
cycles which contain at least one good wedge is at least:

13

50
T − 3

25
T − 3

25
T =

1

50
T = Ω(T ) .
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