Session 2: Best Paper Award, Enumeration and Counting

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

The Complexity of Counting Cycles in the
Adjacency List Streaming Model

John Kallaugher
UT Austin
jmgk@cs.utexas.edu

Eric Price
UT Austin
ecprice@cs.utexas.edu

ABSTRACT

We study the problem of counting cycles in the adjacency
list streaming model, fully resolving in which settings there
exist sublinear space algorithms. Our main upper bound
is a two-pass algorithm for estimating triangles that uses
O(m/T?/) space, where m is the edge count and T is the
triangle count of the graph. On the other hand, we show that
no sublinear space multipass algorithm exists for counting
¢-cycles for € > 5. Finally, we show that counting 4-cycles is
intermediate: sublinear space algorithms exist in multipass
but not single-pass settings.

CCS CONCEPTS

+ Theory of computation — Streaming, sublinear and
near linear time algorithms;

KEYWORDS

Data streams, triangles, cycles.

ACM Reference Format:

John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorot-
nikova. 2019. The Complexity of Counting Cycles in the Adjacency
List Streaming Model. In 38th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (PODS’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3294052.3319706

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PODS’19, June 30-Fuly 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6227-6/19/06...$15.00
https://doi.org/10.1145/3294052.3319706

119

Andrew McGregor
UMass Amherst
mcgregor@cs.umass.edu

Sofya Vorotnikova
UMass Amherst
svorotni@cs.umass.edu

1 INTRODUCTION

Subgraph counting is a fundamental graph problem and an
important primitive in massive graph analysis. It has many
applications in data mining and analyzing the structure of
large networks. In particular, triangle counting and the re-
lated problems of estimating the transitivity and clustering
coefficients arise in spam detection [4], community detection
in social networks [7], identification of web pages with a com-
mon topic [14], and evaluation of large graph models [24];
see Tsourakakis et al. [33] for an overview of applications.
Triangle counting has been studied in various models of
computation for large inputs, such as MapReduce [32], other
parallel models [2, 6], and external memory models [1]. In
the data stream model, triangle counting was first introduced
by Bar-Yossef, Kumar, and Sivakumar [3]. Subsequent work
has studied algorithms in a number of streaming models [5, 9,
12, 13, 16-18, 21, 23, 26-28]. Other subgraphs have received
less attention in the streaming community, with most work
focused on cycles and cliques [5, 25, 28] and a few papers
considering arbitrary subgraphs of constant size [5, 18, 20].

1.1 Prior Work

Triangle Counting. Two adversarial insertion-only stream-
ing models have been studied in the literature: arbitrary
order, where the edges can arrive in any order, and adjacency
list order, where edges incident to the same vertex arrive to-
gether (and therefore every edge is required to appear twice).
In discussing related work, we use T to denote the number
of triangles in the graph and O(-) to hide factors polynomial
in logn and ¢7!. In the single-pass arbitrary order model,
Q(m) space is required to even distinguish between graphs
with 0 and T triangles [9] for any T < n, and thus work
has largely concentrated on providing space bounds param-
eterized by properties of the graph, such as the maximum
degree [17, 28], tangle coefficient [28], number of paths of
length two [16], or the maximum number of triangles shar-
ing an edge or a vertex [18, 27]; see [5] for a summary of
these results. The best known results without such additional

Session 2: Best Paper Award, Enumeration and Counting

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Cycle | Passes Space Comments Source
1 O(P,/T) P, = number of paths of length two [12]
1 O(m/NT) - [26]
3 | O(Wm+m32T) - [21]
. 3 O(m*/2/T) - [26]
Triangle ~ S)
2 O(m/T%?3) Distinguishing between 0 and T triangles [26]
2 O(m/T?/3) - Theorem 3.7
1 Q(fpj(m/ \/T)) QWpi) zfcé)_r;;l: ;u;.uiag(():;)c omplexity Theorem 5.1
const | Q(fa(m/T?3)) B T o Theorem 5.2
2 O(m/T3/®) O(1)-factor approximation Theorem 4.6
=4 1 Q(m) T = 0(n'/3) Theorem 5.3
const Q(m/T?/3) T = 0(n%*) Theorem 5.4
£>5 const Q(m) T =0(n) Theorem 5.5

Table 1: Cycle counting in adjacency list insertion-only streams. Unless specified otherwise, upper bounds are for
(1 + ¢)-estimating the number of cycles and lower bounds for distinguishing between graphs with 0 and T cycles.

parameters are either the trivial O(m) or—for graphs with
many triangles—5(mn/T) [12].

More recently, it has been shown that algorithms using a
constant number of passes over the stream can achieve sub-
linear space for any T = w(1). The optimal lower bound de-
pending on m and T only was given by Bera and Chakrabarti
in [5]. They proved an Q(min{m>/?/T, m/VT}) bound and
gave an o(m*?T) space algorithm matching one of the
terms. Independently, McGregor, Vorotnikova, and Vu [26]
gave two algorithms matching both terms of the lower bound,
and Cormode and Jowhari [13] gave a different algorithm
with O(m/VT) space’.

In the adjacency list model, on the other hand, it is possible
to achieve sublinear space without additional parameters.
Prior to this work, the two state-of-the-art algorithms for (1+
€)-approximating the number of triangles were a single-pass
algorithm using O(m/NT) space and a two-pass algorithm
using O(m*?T) space by McGregor et al. [26]. They also
gave a two-pass algorithm for distinguishing triangle-free
graphs from those with at least T triangles that uses only
O(m/T??) space.

Counting Other Subgraphs. Prior to this work, counting
constant size subgraphs other than triangles had only been
considered in the arbitrary order setting.

Note that in the original version of the paper, Cormode and Jowhari initially
claimed that their algorithm returned a (1 + ¢)-approximation but this claim
was incorrect. Instead, their proposed algorithm returned a (3 + £)-estimate.
Subsequently, they designed a new (1 + ¢)- approximation algorithm which
appeared in the revised version of the paper.

120

Bera and Chakrabarti [5] describe an algorithm (1 + ¢)-
approximating the number of occurrences of a particular
subgraph H of size h using O(m# " /T) space and two passes
over the stream, where f(H) denotes the size of an edge cover
of H. They improve on this algorithm for cliques and cycles,
achieving O(m"2/T) space, and provide a matching lower
bound. For single-pass algorithms they show lower bounds of
Q(m"/T?) for cliques and odd-length cycles and Q(m"/?/T)
for even-length cycles. Kallaugher and Price [18] presented
an algorithm for counting copies of an arbitrary subgraph
H which depends on how much the subgraphs overlap with
each other; it is sublinear as long as no constant-size set of
vertices contains a constant fraction of the copies of H.

1.2 Our Setting

Streaming model. We consider the adjacency list streaming
model. In this model, we assume that the stream consists of
a sequence of ordered pairs xy. For each edge {x,y}, both
xy and yx will be present in the stream. The promise on
the ordering is that all pairs with the same first vertex (the
adjacency list of that vertex) appear consecutively in the
stream. Within the adjacency lists the stream is ordered
arbitrarily. For example, for the graph consisting of a cycle
on three vertices V = {v;, v, v3}, a possible ordering of the
stream could be (v3v;, v30,, V1V, V1U3, VU3, V201). In this
example, we say that the adjacency list for v3 came first,
then the adjacency list for vy, and finally the adjacency list
for vy.

Session 2: Best Paper Award, Enumeration and Counting

Cycle Counting. For £ > 3, we will consider algorithms for
counting the number of £-cycles in a graph G presented as an
adjacency list stream. G has T cycles, with T unknown to the
algorithm, and the problem is to compute a multiplicative
approximation to T with probability 1—§. The approximation
factor may be (1 + ¢), with ¢ an arbitrary parameter, or it
may be a fixed constant.

Our algorithms are parametrized in terms of T, which is
a convention widely adopted in the literature on subgraph
counting. While T cannot be assumed to be known in ad-
vance, it suffices to know a lower bound on T’ < T, and then
set our space usage based on T’, as our bounds will only be
tighter if T > T’. Furthermore, if T is in fact smaller than
T’, then we will not be able to accurately estimate T, but we
will be able to determine that it is smaller than T’. This is
because our bounds are variance-based, with variance that
is increasing in T.

We will be primarily concerned with the space complexity
of the algorithms, expressed in terms of the edge count m, T, ¢,
and 6. When ¢ and § are omitted, this denotes the complexity
when ¢ and § are constant.

1.3 Our Results

We present new upper and lower bounds for cycle counting
in adjacency list streams. See Table 1 for a summary of known
results and our contributions. For triangle counting we give
a two-pass (1 + ¢)-estimation algorithm using O(m/T%/?)
space, improving on the previous best known multipass al-
gorithm. We also present the first adjacency list algorithm
for approximately counting 4-cycles, using O(m/T3/#) space
and two passes over the stream to return a constant-factor
approximation to T. We complement our upper bounds with
lower bound results for all cycle lengths. These are the first
lower bounds for subgraph counting in the adjacency list
model and they fully resolve in which settings there exist
sublinear space cycle counting/distinguishing algorithms.

Both of our algorithms are based on sampling. Sampling-
based approaches to this problem are very sensitive to “heavy”
edges, i.e., edges which are involved in a large number of
cycles. Heavy edges often introduce unacceptably large vari-
ance to the estimator. In our triangle counting algorithm,
we deal with this by defining, for each triangle, a “lightest”
edge, and ensuring that the triangle is only counted if it is
initially sampled at that edge. See Sections 2.1 and 3 for more
in-depth discussion.

In our 4-cycle counting algorithm, we deal with this prob-
lem by showing that a sufficient fraction of the 4-cycles have
at least one wedge that is sufficiently “light”. The difference
from triangle counting is that the algorithm cannot identify
the “light” wedge during the stream; this leads to a constant

121

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

factor approximation to the cycle count, rather than 1 + «.
See Sections 2.2 and 4 for details.

We present lower bounds for counting cycles of all length,
both in one pass and constant number of passes. We use re-
ductions from four known communication complexity prob-
lems: Index (INDEX,), three-player Number on Forehead
Pointer-jumping (3-PJ,), two-player Disjointness (DIS],) and
three-player NOF Disjointness (3-DISJ,), where r indicates
the size of the input. The communication complexity of the
two multi-player Number on Forehead (NOF) problems have
not yet been fully resolved [10, 31] and thus we present
our lower bounds for triangle counting as conditional on
the best communication complexity lower bounds for these
problems. It is generally believed that both of these prob-
lems have communication complexity Q(r), which would
imply lower bounds of ﬁ(m/\/f) and §~2(m/T2/3) for one pass
and multipass triangle counting respectively, matching the
corresponding algorithms (from [26] and here) up to poly-
log factors; certainly any result to the contrary would be a
breakthrough. For 4-cycle counting we show that solving
the problem in one pass requires Q(m) space, but in two
passes it can be done using sublinear amount of space. We
then show that counting larger cycles requires Q(m) space
for any constant number of passes. The details can be found
in Sections 2.3 and 5.

2 TECHNIQUES
2.1 Triangle Counting Algorithm

Our main upper bound is a two-pass adjacency list streaming
algorithm that counts the number of triangles in a graph
using O (m/TZ/3 -log n) space, where T is the number of
triangles in the graph and m is the number of edges. To
motivate our methods, consider first the following algorithm
for distinguishing graphs with T triangles from graphs with
no triangles described in [26]:

First Pass Sample m’ edges from the graph.
Second Pass Check if any of these edges are in a trian-
gle.

Note that the second pass can be accomplished with only
2m’ extra bits of storage by, for each adjacency list presented
in the second pass, flagging any endpoint of a sampled vertex
if it appears in the adjacency list. If both endpoints of an
edge are flagged in the adjacency list of some vertex v, that
edge forms a triangle with v.

It can be shown (see, e.g., [15]) that any graph with T
triangles must have at least T?/3 edges involved in those
triangles, so provided m’ > m/T?/3, at least one such edge
will be sampled in the first pass with good probability, and
so the algorithm will detect that the graph has at least one
triangle.

Session 2: Best Paper Award, Enumeration and Counting

This algorithm gives an unbiased estimator for T, as the
number of triangles found by the algorithm is 3m’T/m in
expectation (if triangles with multiple sampled edges are
counted with multiplicity). However, this estimator has high
variance, due to “heavy” edges—edges involved in many tri-
angles. We can reduce the variance by discarding excessively
heavy edges (for instance, if we discard every edge involved
in at least 100T'/? triangles we can reduce the variance to
O(T?)), but at the cost of biasing the estimator. This approach
will allow us a constant-factor approximation to T, but not
the (1 + ¢)-multiplicative approximation we want.

Instead, consider the following three-pass algorithm, which
only counts a triangle as being sampled if its “lightest” edge
was sampled:

First Pass Sample a size-m’ set S of edges from the graph.

Second Pass Collect the set Q of triangles that include
at least one edge in S.

Third Pass For every triangle uow € Q, calculate T,,,,,
Tows Twu, the number of triangles in G that use uv, vw,
and wu, respectively.

Post-Processing For each edge e € S, and each triangle
7 using e, count 7 iff e = argmin_, __ T/, breaking ties
arbitrarily.

e'er

This algorithm discards most “heavy edges” (it is possible for
a heavy edge to be the lightest edge of some triangle, but not
of most triangles), while providing an unbiased estimator, as
each triangle has an exactly m’/m chance of being counted.
One can show that this leads to an unbiased estimator with
good variance.

However, there are two problems with this algorithm.
Firstly, it takes an extra pass, and secondly, we need to store
Q, which is size m’T /m in expectation. Therefore, its space
complexity is, in the worst case,

(0] (max (m/T2/3, T1/3) log n)

To deal with the second problem, we sample a size-m’ sub-
set of the triangles we would collect in the second pass, or
all of them if we see fewer than m’. This gives us a true
@) (m/Tz/3 -log n)-space algorithm.

Now we consider the first problem. Our algorithm depends
on, for each triangle sampled, determining whether it was
sampled at its “lightest” edge. It is impossible to determine
this exactly in only two passes, as for each edge e’ in a
triangle 7, we will only be able to count triangles that involve
e’ in the postfix of the stream that appears after r is first
detected.

To solve this, we first note that, if we sample the edge
uv in our first pass, we will be able to add it to S when the
first of the adjacency lists of u, v arrive (assuming we use a
hash-based sampling method). Suppose this is u. Then, if uv
is completed by a vertex w to form 7, either w appears after

122

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

u, in which case 7 can be found during the first pass, or it
appears before u, in which case 7 can be found in the second
pass as soon as w arrives. In either case, we can find = by the
time its first vertex arrives in the second pass.

We can therefore replace arg min,, ., T, from the three-
pass algorithm with argmin,, .. He/,;, where

Hy =" e €1/, (' \ ') arrives after (r \ €’) }|,

because we can compute H,/ ; in the second pass for every
T € Qandedgee’ €.

For any given edge e’ and triangle, this can be arbitrarily
small, but on average across all triangles that use an edge
e’, Hy ; will be approximately T,/ /2, which will suffice to
bound the variance of our algorithm (for further details, see
the full discussion in Section 3). This gives us the following
algorithm:

First Pass Sample asize-m’ set S of edges from the graph.

First and Second Pass Collect the set Q of triangles
that include at least one edge in S.

Second Pass For each 7 € Q and each ¢’ € 7, calculate
He ;.

Post-Processing For each edge e € S, and each triangle
T using e, count 7 iff e = argmin,, ., H ;, breaking
ties arbitrarily.

Combining with the aforementioned fix—only storing a
sample of Q—gives our final algorithm.

2.2 4-Cycle Counting Algorithm

Our second result is a two-pass adjacency list streaming algo-
rithm that returns an O(1) multiplicative approximation to
the 4-cycle count of a graph using O (m/ T3/ 8) space, where
T is the number of 4-cycles in the graph and m is the number
of edges. In the first pass, we collect a set of edges S and
in the second, count how many 4-cycles G has that contain
a wedge in S. To sample even one cycle reliably, we need
S to be size at least m/T%/%, as any wedge will be sampled
with probability about (|S|/m)?, and there can be as few as
T3/* wedges in a graph with T 4-cycles. We show that this
also gives a O(1)-factor multiplicative approximation to T
by showing that at least a constant fraction of the cycles in
G have at least one wedge that is “good”, i.e. that is not used
by too many 4-cycles and has neither of its edges used by
too many 4-cycles.

2.3 Lower Bounds

Our last set of results consists of five lower bounds on the
space complexity of cycle counting in the adjacency list
streaming model. All of them involve the standard method
of using reductions from known communication complex-
ity problems. We let C, be a two or three-player commu-
nication complexity problem with input of size ©(r) and a

Session 2: Best Paper Award, Enumeration and Counting

Charlie: r-k

Bob: k
(a) One-pass Triangle Counting

Q(m/NT) from 3-PJ
(conditional)

Alice

Bob JD

(c) One-pass 4-cycle Counting
Q(m) from INDEX

/
Alice

\,
AN 52
\
7 N
A e R
;s . \
e SN
s NN
i S SO,
i - SO,
S SO,
el N
’
4ol
-

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Bob 53
(b) Multi-pass Triangle Counting
Q(m/T?/3) from 3-DISJ
(conditional)
Alice
s
<

¢

00" Bob %

(d) Multi-pass 4-cycle Counting
Q(m/T%/?) from DIS]

Bob

(e) Multi-pass {-cycle Counting, £ > 5

Q(m) from DISJ

Figure 1: Lower bound constructions.

123

Charlie

Session 2: Best Paper Award, Enumeration and Counting

single bit as output. Suppose A is an algorithm that can
distinguish between graphs with T {-cycles and ¢-cycle-free
graphs with probability 2/3 in the one-pass adjacency list
streaming model. We then construct a protocol for C, which
sends messages whose size is the internal space of A. Based
on an instance of C, we construct a graph G, such that G is
{-cycle-free if the output is 0 and has T ¢-cycles if the output
is 1. Alice, Bob (and possibly Charlie) each encode their input
as adjacency lists of vertices in the graph G. The protocol is
then for Alice to run A on her adjacency lists, and send the
algorithm’s state to Bob, who then runs it on his adjacency
lists. If there are three players, Bob sends the state to Charlie,
who then runs A on his lists. The last player can tell whether
G has 0 or T {-cycles and therefore whether the output of C,
is 0 or 1. This implies that if C, requires Q(f(r)) one-way
communication, A must use Q(f(r)) space.

To obtain a bound on the space used by multi-pass algo-
rithms, we allow players to communicate for an arbitrary
number of rounds and consider total communication. If total
communication complexity of C, is Q(f(r)), then any algo-
rithm A with ¢ passes must use Q(f(r)/c) space, which is
Q(f(r)) for constant c.

For our reductions, we use the following communication
complexity problems (formally defined in Section 5):

e INDEX: Alice has s € {0,1}", Bob has x € [r], and
must output sy.

o DISJ: Alice and Bob have s!,s? € {0,1}" and must
determine if any s = 52 = 1.

o 3-PJ: Three-player Number on Forehead (NOF) Pointer-
jumping. This problem can be viewed as an extension
of Index to the multi-party NOF setting.

o 3-DIS]J: Three-player NOF Disjointness.

Using reductions from Index and Disjointness is standard for
proving lower bounds on the space of one-pass and multi-
pass arbitrary order streaming algorithms. In adjacency list
streams, they are only applicable for obtaining bounds on
counting subgraphs with two disjoint edges, and thus cannot
be used for triangles. Since the input of a given communi-
cation complexity problem is encoded in the edges of the
graph and each player sees every edge on certain vertices,
assigning two vertices of a triangle to Alice and the third
one to Bob (or vice versa) would lead to the player with two
vertices having information about the other player’s input.
On the other hand, in a 4-cycle (or a larger cycle) we can
assign two adjacent vertices to Alice and two other adjacent
vertices to Bob, which would insure that both of them have
private input. To circumvent this problem for triangles, we
employ three-player communication complexity problems,
where each player knows two thirds of the input. This is
a special case of the k-player Number on Forehead (NOF)
model, where the input consists of k parts I; through Iy and

124

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

i-th player knows all I; except I;. Showing bounds on com-
munication complexity in this model has proven harder than
in the more standard Number in Hand model. For multiparty
NOF Pointer Jumping and Disjointness there is currently a
gap between best known upper and lower bounds on the
communication complexity. The best known lower bound for
three players is currently Q(+/r) for both problems, where
r is the size of input [30, 34]. Thus, we reference f,;(r) and
fa(r) as (currently unknown) complexities of NOF Pointer
Jumping and Disjointness respectively in our triangle count-
ing lower bounds. It is conjectured, that the communication
complexity of both problems is ﬁ(r), where ﬁ() notation
hides inverse polylog factors. If that is the case, our triangle
counting bounds become tight.

For ¢ > 4, we encode classic one-way (for one-pass) or two-
way (for multi-pass) communication complexity problems as
subgraph counting problems. This requires us to encode the
players’ inputs in disjoint edges, as if we use incident edges
the players will share information, and so it is not available
for £ =3.

In two of our reductions concerning counting 4-cycles we
aim to construct a graph with a large number of 4-cycles for
instances with output 1 and a similar 4-cycle-free graph for
0-instances. To achieve that, we employ bipartite 4-cycle-free
graphs on 2r vertices with @(r*/?) edges. An example of such
a graph is an incidence graph of a special kind of projective
plane called a field plane. If the order of the plane is g, it
has ¢® + g + 1 points, the same number of lines, and each
line passes through exactly q + 1 points. Thus, the incidence
graph has 2(¢? + q + 1) vertices, each with degree q + 1.
The graph is 4-cycle-free since by definition of a projective
plane, for any two distinct points, there is exactly one line
passing through both of them, and for any two distinct lines,
there is exactly one point both of them pass through. We
also note that there are no 4-cycle-free graphs on r vertices
with w(r/?) edges [8].

When ¢ > 5 our lower bounds become Q(m) for any
constant number of passes regardless of the number of cycles
in the graph. This is because we can encode Disjointness
(which is known to require linear communication even in
two-way complexity) as an {-cycle-counting problem. This
encoding will depend on the fact that a pair of disjoint edges
can be shared by many different £-cycles, which does not
hold for ¢ = 4.

For illustrations of the lower bound constructions see
Figure 1. Solid edges are fixed and dashed edges correspond
to players’ input. For detailed definitions of communication
complexity problems and descriptions of the reductions see
Section 5.

Session 2: Best Paper Award, Enumeration and Counting

3 TWO PASS TRIANGLE COUNTING
ALGORITHM

3.1 Notation

For any edge or subset of edges x in G, write L(x) for the
set of triangles involving x, and write T(x) for |L(x)|. Let
T = T(G). For each triangle 7 € L(G), and each edge e € 7,
let 7¢ denote the unique vertex in 7 that is not an endpoint
of e.

3.2 Algorithm

Our algorithm will take two passes over the stream. Call
these passes P;, P,. We will require that P, have the same
ordering as P;. For each i € [2], u € V(G) and v € T'(u), let
P=4? denote the prefix of P; that appears before v appears in
the adjacency list of u, and P;““ denote the postfix of P; that
appears afterwards. Similarly, let P=*,P”? denote the prefix
and postfix of P; that occur before and after the adjacency
list of v, respectively. For each e € G, define an order on the
triangles of the graph as follows: 7; <, 73 if 7, © arrives after
7. ¢ in the stream.

1
Now, let 7 be a triangle and e an edge. Define:

He,={t" €Le) : 7 <. 7'}

Then, for each triangle 7, let p(7) be the unique edge e € ¢
that minimizes H, ,, breaking ties arbitrarily. Let

T, =|{r € L(e) : p(1) = e}
Note that) .cg T, = T. Our algorithm is then as follows:

(1) Choose a sample size m’.

(2) While passing through Py, keep a uniformly chosen
size-m’ subset S of E(G), adding an edge to S the first
time of the two times it appears in P;. If m" > m,
instead keep all of E(G).

(3) While passing through P; and P,, perform the follow-
ing steps in parallel:

(a) Calculate m = |E(G)|. Define k = max(m/m’, 1).

(b) Calculate T" = Y .c5 Te-

(c) Sample a size-m’ subset Q uniformly from {(e, 7) :
e € S,7 € L(e)}, or let Q be the entire set if it is
smaller than m’.

(d) For each (e’,7) € Q and for each e € 7, calculate
He,-r- g 277

(4) Return T’ = kTTH(e,r) €Q:p(r) =e}l

3.3 Analysis

3.3.1 Space Complexity. To see that this can be implemented,
first note that, if we are storing an edge e = uv, whenever
the adjacency list of a vertex w appears in the stream we
can check whether uvw forms a triangle in G with the use
of only two extra bits per such edge e. This is because, while
scanning the adjacency list of w, we can flag u if uw appears,

125

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

and v if vw appears, concluding at the end of the adjacency
list that uow exists iff v and w are flagged.

Therefore, we can perform step 3b with O(|S|log n) space,
and step 3¢ with O(|Q| log n) space. We can perform step 3a
in O(log n) space just by maintaining a counter.

Then, for step 3d, consider any (e,) € Q. The first time
this can be added to Q is the first time the vertex w = 7€ is
seen after adding e to S. Suppose e appears in P; for the first
time as the vertex v in the adjacency list of u. Then, as Py, P,
have the same order, the adjacency list of w appears either
in P1>”v or P;””. So in particular, all of P2>”v U P2>W is seen
after (e, 7) is added to Q. Since u arrives before v, this means
that P;% U P;Y U P is seen after (e, 7) is added to Q.

Then, for any f € v and o € L(e’) such that ¢ <f o, o f
appears after 7/ in Py, by the definition of < r. Since =4
must be one of u,v,w, o is in P7* UP;? UP;Y, and it
appears after (e, 7) is added to Q. Therefore,

Her = 1" €L(e) : 7 <c 7'}
can be counted with only O(]Q|log n) space.
Therefore, the space complexity of this algorithm is:
O ((IQ1 +1SI) log n) = O(m’ log n)
3.3.2 Correctness.

LEmMmA 3.1.
E[T"]=T

Proor. Fix any ordering of the stream. Condition on the
set S of edges sampled from P;. Then, for each triangle r € G
such that e € S and p(r) = e, (e,7) € Q with probability

. Therefore,
S| =k > T

m m
e€S

T = kT

E [T’

and as each e € G is included in S with probability % = 1/k,
E[T]=)T
ecG
and since for each 7 there is exactly one e € r such that
p(r) =e: ~
E[T"]=T
O

To bound the accuracy of this estimator, we will need the
following combinatorial lemma concerning the values T,.

> 7 =o(r)

eeG

LEMMA 3.2.

Proor. Foralli € {0,...,logT]},letE; ={e€ G: T, €
(21,211}, and let A; = {r € G : p(1) € E;}.

Session 2: Best Paper Award, Enumeration and Counting

Then, let B; = {t € A; : Hpr),r 2 TP(T)/Z}, and let
F; = |UB;, so F; contains all of the edges of triangles in
B;. Then, for any e € E;, at least half of the triangles ¢
such that p(r) = e have Hy(7),r 2 Tp(f)/Z, so |B;| > |A;l/2.
Furthermore, by [15], any graph with m edges has at most
m>/? triangles, and so |F;|*/? > |A;|/2. Then,

T

ecG

llog T
Z 2i+1 Z Te
i=0 e€E;

While

DT = 1Al

ecE;
< 2|F; P2

Then, for any e € F;, 37 € B; such that e € 7, and therefore
Her 2 Hy(r),r 2 Ty(r)/2. Therefore:
T, > H,

> Tp(n)/2
> 21'—1

Thus, |F;|271 < 3T, and so |F;|3/2 < T3/2273(i-1)/233/2 At
the same time, }’.cg, T is clearly at most T, and so by break-
ing our sum at i = [log T/3]:

TZ le + 2—i/2+5/2T3/2/33/Z
eeG i=0 i=|log(T)/3]

]

We are now ready to analyze the accuracy of the algorithm.
First, we will show that k). T is a good estimator for T.

LEMMA 3.3.

Ve > 0,P kZi e ((1-6)T,(1+¢)T)

ecS

1-0()

Proor. As each e € G is included in S with probability

m'/m = 1/k,
kDT,

eeS

E T

We will now proceed to bound the variance. Let I, be the
indicator variable thatis 1 if e € S and 0 otherwise. Then,
since a fixed number of edges are included in S, the family

126

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

{I.}eec is negatively associated, and so

Z i) = k? Z T2 Var (I,)

e€S eeG
<K T2(1/k - 1/K%)
ecG

<k T

eeG
< kT*3

Var (k

by applying Lemma 3.2. The result then follows by Cheby-
shev’s inequality.]

We will now bound, for any sample set S, the accuracy with
which the algorithm estimates k), Te.

LEmMmA 3.4.
Vg>op[(ZT —¢T, kZT +sT) }
e€sS e€sS
BT
£2T2 ZT
e€sS

Proor. We may assume |Q| = m’, since otherwise Q =
Uees(e, L(e)) and so T =k ees T, exactly. Conditioned on
S, for any 7 such that p(z) € S, let J; be 1 if (p(r),7) € Q,
and 0 otherwise. As Q is fixed size, the family {J;}; e is
negatively associated, and so

(5, 3 o

e€S rip(r)=e
kT’ *
()

m_(m 2)
ZZ(%)

sz’ ~

Var (T’

ecS

ZT

ecS

k3T’

The result then follows from Chebyshev’s inequality. O

To make use of the bound above, we will need to bound the
probability that T’ is too large.

LEMMA 3.5.
P [kT’ < 30T] > 9/10

Proor. Each edge in G is included in S with probability
1/k, so

E[T] =) T./k
ecG
= 3T/k

The result then follows from Markov’s inequality. m]

Session 2: Best Paper Award, Enumeration and Counting

Putting these results together will allow us to bound the
accuracy of the estimator.

LEMMA 3.6. There exists a constant D > 0 such that, Ve €

(0,1), if
k < e#DT??

then
P[T' € ((1-)T.(1+e)T)] > 2/3

Proor. Using Lemmas 3.3 and 3.4, choose D < 1 such that

k Z T, € (1 - ¢/2)T, (1 + ¢/2)T)

> 99/100
eeS
T e (kZi —gT/z,kZi +sT/2)S}
eeS eeS
ZT

kT’
~3000T43m

Then, if & is the event that kY ,csT. = (1 ¢/2)T and

kT’ < 30T, by Lemma 3.5 and the union bound

P[&] > 89/100

P

Thus,

P [T’ € (kZT —gT/z,kZi +gT/2>S,8
e€eS e€eS
kT’

T,
 2670T43m Z
eI
e€eS
> 1— 1+ €T2/3
- 89m
87
Z _
89

as T < m*?2. Therefore, with probability at least 89/100 x
87/89 —1/100 > 2/3

e(kZi—gT/z,kZi+gT/2)

eeS eeS
and

k Z T. € (1-¢/2)T, (1 +¢/2)T)

ecS

Therefore,

]

THEOREM 3.7. Foralle,§ € (0,1), there is a 2-pass triangle
counting algorithm that uses

O(mlogn

T log 1/5)

127

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

space and returns a (1 + €) multiplicative approximation to T
with probability 1 — .

ProoF. Let m’ = © (m/(£2T2/3)), with constants chosen

so that k = @(¢2T?/%) meets the requirements of Lemma 3.6.
This gives an algorithm that runs in

mlogn
o (%)
space and returns a (1 + ¢) multiplicative approximation to
T with probability 2/3. Then, for an appropriately chosen
constant D’ € N, run D’log1/8 copies of the algorithm
in parallel, and take the median of their outputs. If D’ is
chosen to be a sufficiently large constant, at least half the
algorithms will return a result within ¢T of T with probability
1 — 4, and so the median will give a (1 + ¢) multiplicative
approximation. |

4 TWO PASS 4-CYCLE COUNTING
ALGORITHM

4.1 Notation

For any edge or wedge x, let T denote the number of 4-
cycles that contain x, let T denote the number of 4-cycles in
our graph G, and let m denote the number of edges in G.

4.2 Algorithm

Our algorithm will take two passes over the stream. Call
these passes Py, P,. We will not require P, to have the same
ordering as P;. Our algorithm is then as follows:

(1) Choose a sample size m’.

(2) While passing through P;, keep a uniformly chosen
size-m’ subset S of E(G). If m” > m, instead keep all of
E(G). Record m.

(3) Let Q be the set of wedges consisting of edges in S.

(4) While passing through P, for each w € Q, calculate
T..

(5) Let k = m/m’.

(6) Return T” = k* - ¥ ,,c0 Ty

4.3 Analysis

4.3.1 Space Complexity. For any wedge uvw in Q, and any
vertex z € V(G), we may check whether uvwz forms a 4-
cycle in G while passing over the adjacency list of z with
only extra 2|S| bits of storage, by flagging whether u and w
are in the adjacency list of z. Therefore, the algorithm can

be implemented with the use of
O(|S|logn) = O(m’ log n)

space.

Session 2: Best Paper Award, Enumeration and Counting

4.3.2 Correctness. To show that the algorithm obtains an
O(1) factor approximation to T, we will need to show that
at least a constant fraction of cycles in our graph G are easy

to find.

Definition 4.1. We call an edge e € E(G) “heavy” if it is
contained in at least 40NT 4-cycles, and “light” otherwise. We
call a wedge w “overused” if it is contained in at least 40T*/*
4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as Fg.

Lemma 4.2. |Fg| = Q(T)

ProoF. See appendix. O

For each cycle 7 that has at least one good wedge, let p(7)
denote an arbitrarily chosen good wedge in 7. Let fi denote
the number of 4-cycles 7 such that p(r) is in the sampled
wedge set Q. Let fp denote the number of 4-cycles 7 such that
p(7) € Q, but some other wedge in 7 is in Q. The estimate
returned by the algorithm is then k*(fg + f5).

LEMMA 4.3. There exists a constant D > 0 such that, if
k < DT3/®
then P [k*f5 € [IF61/4.2IF1]] = 9/10.
Proor. For each 7 € Fg, there is a
’ ’
= e @k, 11k

probability that both edges in p(r) will be included in S, so
B [k*fs] € [IF6l/2,1Fg]]

Next we bound the variance. For any two 4-cycles 71, 72, the
probability that both p(r;) and p(r2) are in Q is [}, % <
k™", where r is the total number of distinct edges between
p(ry) and p(r,) (varying from 4 if they are disjoint to 2 if

they are the same wedge).

Var(k*fg) = k*E [fé] -K*E[fs]

<k) Plp(n) p(w) € Q1 - K*E[fo]’
71, €FG

<k > Plpmn) p(z) € Q]
71, €FG:

p(t)Np(72)#0

<K DK Ty + k70 Y T
teFg

eep(r)
< Z (40K*T"/* + 80KT"/2)
TeFg
< 120DT?

128

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

where the penultimate step uses the fact that p(r) is good
and the last step uses the fact that k < DT*/®. The result
then follows for sufficiently small D > 0 by Lemma 4.2 and
Chebyshev’s inequality. O

LEMMA 4.4.
P [K* f5 < 40T| = 9/10

Proor. Each cycle has 4 wedges, and each one has at most
a 1/k? probability of contributing to 3, so E [kz fB] < 4T.
The result then follows by Markov’s inequality. O

LEMMA 4.5. There exists a constant D > 0 such that, if
k < DT3/3

then with probability 4/5, the algorithm outputs an O(1) mul-
tiplicative approximation to T.

Proor. Apply the union bound to the above two lemmas.
m]

THEOREM 4.6. For every § € (0, 1), there exists a two-pass
4-cycle counting algorithm that uses

mlogn
O(T3/8

log 1/5)

space and returns a O(1) multiplicative approximation to T
with probability 1 — 6.

PROOF. Let m’ = ©(m/T?/?), with constants chosen so
that k = ©(T3/®) meets the requirement of Lemma 4.5. This
gives an algorithm that runs in O((mlog n)/T3/®) space and
returns an O(1) multiplicative approximation to T with prob-
ability 2/3. Running ©(log 1/6) copies of the algorithm in
parallel and taking the median of their outputs then gives
the desired result.]

5 LOWER BOUNDS

We will make use of reductions from the following commu-
nication complexity problems. In each case, the players are
allowed to use (shared) randomness, and the lower bounds
mentioned will be for solving the problem with probability
2/3.

InDEX (INDEX,)

Alice holds a binary string s of length r and Bob holds an
index x € [r]. Alice sends a message to Bob, who must
compute s,. This requires Q(r) communication[22].

Session 2: Best Paper Award, Enumeration and Counting

THREE PARTY NOF POINTER-JUMPING (3-PJ,)

Alice, Bob, and Charlie share edges from a graph with four
layers of vertices: Vi = {v*}, Vo = {vyi}]_;, V5 = {v3i}]_,,
Vi = {v40, v41} and three layers of edges Ey, E,, E3, where
E; contains edges from V; to V. Edges of the graph
are directed, and every vertex in layers 1 through 3 has
out-degree exactly one. Vertices in V4 have out-degree 0.
Alice has the edges in E; and Es3, Bob has E; and Es, and
Charlie has E; and E,. Using one way communication —
Alice sends a message to Bob, who then sends a message
to Charlie — the players must compute whether v* is
connected by a directed path to vs or vy, answering
0 in the first case and 1 in the second. The best known
lower bound on the communication complexity of this
problem is Q(4/r) [34], while the best known upper bound
is O (rloglogr/logr) [11], and it is conjectured that the
true complexity of the problem is close to linear.

Two PArTY DisjoINTNESs (DIS],)

Alice holds a binary string s! of length r and Bob holds
a string s® of the same length. Using multi-way commu-
nication, they must determine whether there exists an
index x such that s1. = s2 = 1, answering 1 if there is
and 0 otherwise. The communication complexity of this
problem is Q(r) [19, 29].

THREE PARTY NOF Di1sjoINTNESS (3-DIS]J,.)

Alice, Bob, and Charlie share three binary strings of
length r: s!, s2, and s3. Each of the three players holds
two of the strings: Alice has s' and s?, Bob s? and s°,
Charlie s and s'. Using multi-way communication, they
must determine whether there exists an index x such
that s}c = s,z(= si = 1, answering 1 if there is and 0
otherwise. The best known lower bound on the commu-
nication complexity of this problem is Q(+/r) [30]. No
sublinear protocol is known, and it is conjectured that
the true complexity is Q(r).

5.1 Reduction Structure

Each of the lower bounds will take the following form: an
encoding of an instance of the problem into a graph where
the vertices are “assigned” to players. Each player must be
able to insert the adjacency list corresponding to their “as-
signed” vertices, and thus any edges between the assigned
vertices of two different players must be determined by state
shared by both players.

In each case, we will embed an instance of the problem
in a graph which has no ¢-cycles (for ¢ the length we are
considering) if the correct output of the game is 0, and T
cycles if it is 1. Therefore, any algorithm that can distinguish
between 0 and T ¢-cycles (in particular, any algorithm for

129

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

counting {-cycles) would provide a protocol for the commu-
nication problem, with communication complexity equal to
the space cost of the algorithm. For one-pass lower bounds,
we will reduce from one-way communication problems, and
for multi-pass lower bounds we will reduce from multi-way
communication problems, so that each pass over the input
corresponds to one round of communication.

5.2 Girth-6 Graphs

In two of our reductions concerning counting 4-cycles we
will need to construct a graph with a large number of 4-cycles
for instances with output 1 and a similar 4-cycle-free graph
for 0-instances. To achieve this, we employ bipartite 4-cycle-
free graphs on 2r vertices with ©(r3/?) edges. An example
of such a graph is an incidence graph of a special kind of
projective plane called field plane. If the order of the plane is
g, it has g% + g + 1 points, the same number of lines, and each
line passes through exactly q + 1 points. Thus, the incidence
graph has 2(q? + q + 1) vertices, each with degree q + 1. The
graph is 4-cycle-free since by the definition of a projective
plane, for any two distinct points, there is exactly one line
passing through both of them, and for any two distinct lines,
there is exactly one point both of them pass through. We
also note that there are no 4-cycle-free graphs on r vertices
with w(r*/?) edges [8].

5.3 One-Pass Triangle Counting

THEOREM 5.1. If 3-P], requires Q(f,;(r)) communication,
then for any m and T < m, there exist m’ = ©(m) and T’ =
O(T) such that any adjacency list streaming algorithm that dis-
tinguishes between m’-edge graphs with 0 and T’ triangles with
at least 2/3 probability in one pass requires Q(fpj(m/\/f))
space.

Proor. We will describe an encoding of an instance of
3-P], as a graph G, illustrated in Figure la. Let r,k € N
be variables to be fixed later, and consider an instance of
3-PJ, with edge sets Eq, E,, E3. V(G) will be the union of the
following sets:

o A={a;}]_, of size r, assigned to Alice.
o B of size k, assigned to Bob.
e C1,Cy,...,Cy, each of size k, assigned to Charlie.

The edges of the graph will be:

e For the edge (v*,vy;) € E1, k? edges connecting every
vertex in B to every vertex in C;.

e For each edge (v;, v3j) € Ey, k edges connecting every
vertex in C; to a;.

o For each edge (v;,v41) € Es, k edges connecting a; to
every vertex in B. Edges (v;, vy) € E5 will be ignored.

G will have O(rk + k?) edges. If v* has a path to vy it will
have k? triangles. Otherwise it will have 0 triangles. We can

Session 2: Best Paper Award, Enumeration and Counting

therefore set k = ©(VT) and r = ©(m/VT) to complete the
proof. O

54 O(1)-Pass Triangle Counting

THEOREM 5.2. If3-DIS]J, requires Q(fy4(r)) communication,
then for anym and T < m®/?, there exist m’ = ©(m) and T’ =
O(T) such that any adjacency list streaming algorithm that
distinguishes between m’-edge graphs with 0 and T’ triangles
with at least 2/3 probability in a constant number of passes
requires Q(fy(m/T?/?)) space.

Proor. We will describe an encoding of an instance of
3-DISJ, as a graph G, illustrated in Figure 1b. V(G) will be
the union of the following sets:

e A, Ay, ..., Ay, each of size k, assigned to Alice.
® By, By, ..., B, each of size k, assigned to Bob.
e C1,Cy,...,Cy, each of size k, assigned to Charlie.

The edges of the graph will be:

e For each i € [r], k? edges between A; and C; iff s} =

e For each i € [r], k? edges between A; and B; iff s? = 1.

e For each i € [r], k* edges between B; and C; iff s} = 1.
G will have ©(rk) vertices and O(rk?) edges. If there exists an
index x such that s}(= 332(= si =1, Ay, then B,, and C, will
form k? triangles. Otherwise, the graph will be triangle-free.
Therefore, for any m and T < m*/?, we may set k = ©(T'/3)
and r = m/T?/3, and the result follows. O

5.5 One Pass 4-Cycle Counting

THEOREM 5.3. Foranym andT < m'/3, there existsm’ = m

such that any adjacency list streaming algorithm that distin-
guishes between m’-edge graphs with 0 and T 4-cycles with at
least 2/3 probability in one pass requires Q(m) space.

Proor. We will describe an encoding of an instance of
INDEXg,3/2y as a graph G, illustrated in Figure 1c. V(G) will
be the union of the following sets:

e A={a;}]_, and B = {b;}]_,, each of size r, assigned to
Alice.
LJ Cl, Cz, ..
to Bob.
Using the construction in Section 5.2, fix a bipartite 4-cycle-
free graph H with both partitions of size r and ©(r3/?) edges.
Let the size of Alice’s string (and therefore the size of the
instance) be |E(H)|, and associate each edge of H with a
different index of Alice’s string. The edges of our graph are
then the following:

.»Cr,D1,Ds, ..., D,, each of size k, assigned

e A copy of H between A and B, with the edges corre-
sponding to bits of Alice’s string that are 0 removed.

e A matching of size k between C; and D;, where ij is
the edge of H corresponding to Bob’s index.

e For each i € [r], k edges between a; and C;.

130

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

e For each i € [r], k edges between b; and D;.

The resulting graph has ©(rk) vertices and O(r*/?+rk) edges.
If s, = 1, the graph has k 4-cycles, otherwise it is 4-cycle-
free. Therefore, by setting k = T and r = ©(m?/3), the result
follows. O

5.6 O(1)-Pass 4-Cycle Counting

THEOREM 5.4. For anym and T < m3/°, there exists m’ =
©(m) such that any any adjacency list streaming algorithm
that distinguishes between m’-edge graphs with 0 and T 4-
cycles with at least 2/3 probability in a constant number of
passes requires Q(m/T?/3) space.

Proor. We will describe an encoding of an instance of
DISJg(,3/2) as a graph G, illustrated in Figure 1d.

Using the construction in Section 5.2, fix a bipartite 4-
cycle-free graph H; with both partitions of size r and ©(r*/?)
edges and another bipartite 4-cycle-free graph H, with both
partitions of size k and ©(k*/?) edges. Let the size of Alice
and Bob’s strings (and therefore the size of the instance) be
|E(H1)l, and associate each edge of H; with an index i from
1to |[E(H;)|, so each edge in H; corresponds to bits s} and s?
in Alice and Bob’s strings.

V(G) will be the union of the following sets:

e Sets Aj, Ay, ... A, and By, By, . .. B,, each of size k, as-
signed to Alice.
e Sets C1,Cy,...Crand Dy, Dy, ... D,, each of size k, as-
signed to Bob.
The edges of the graph will be:
o A copy of H; between A; and C; for all i € [r]
o A copy of H, between B; and D; for all i € [r].
e For each edge (v;,u;) in Hy, a matching of size k be-
tween A; and B; iff corresponding Alice’s bit is 1.
e For each edge (v;, u;) in Hy, a matching of size k be-
tween C; and Dj iff corresponding Bob’s bit is 1.
G will have ©(rk) vertices and ©(rk3/? + kr3/?) edges. If
there exists an index x such that s}c = s,z(= 1, G will have
k*/2 4-cycles, and otherwise it will be 4-cycle-free. Therefore,
the result follows by setting k = T?/3 and r3/2 = @(m/T?/3),
so that as T < m®/°, rk3?% 4+ kr3/2 = @(m?**T°° + m) =
O(m). O

5.7 O(1)-Pass {-cycle Counting for £ > 5

THEOREM 5.5. For any constant { > 5, and for any m and
T < m, there exists m’ = ©(m) such that any adjacency
list streaming algorithm that distinguishes between m’-edge
graphs with 0 and T €-cycles with at least 2/3 probability in a
constant number of passes requires Q(m) space.

Proor. We will describe an encoding of an instance of
DIS]J. as a graph G, illustrated in Figure le. V(G) will be the
union of the following sets:

Session 2: Best Paper Award, Enumeration and Counting

o A={a;}/1] of size r + 1, assigned to Alice.
e B = {b;}]_, of size r, assigned to Bob.
e C= {c,~}f.‘:1 of size k, assigned to Bob.

e D = {d;}{Z} of size ¢ — 4, assigned to Bob.
The edges of the graph will be:
e (a;,b;) foralli e [r].
e (a,41,¢;) foralli € [k].
o (dr_y,c;) foralli € [k].
e Apathd; —d; — -+ — dp_4. Note that for £ = 5, this
path has 1 vertex and 0 edges.
e (aj,ar41) for every i such that the i-th bit of Alice’s
string is 1.
o (b;,d;) for every i such that the i-th bit of Bob’s string
is 1.
G will have O(r + k) edges, as ¢ is a constant. If there exists
an index x such that s. = s2 = 1, then the graph will have
k C-cycles, otherwise it will be £-cycle-free. Therefore, if
T < m, the result follows by setting r = m,k = T. O

ACKNOWLEDGMENTS

This work was done in part while John Kallaugher, Eric Price,
and Sofya Vorotnikova were visiting the Simons Institute for
the Theory of Computing. Sofya Vorotnikova was supported
by a Simons-Berkeley Research Fellowship. This material is
based upon work supported by the National Science Foun-
dation under Grant No. 1637536 and Grant No. 1751040.

REFERENCES

[1] Lars Arge, Michael T. Goodrich, and Nodari Sitchinava. 2010. Par-
allel external memory graph algorithms. In 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, At-
lanta, Georgia, USA, 19-23 April 2010 - Conference Proceedings. 1-11.
https://doi.org/10.1109/IPDPS.2010.5470440

Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013.
PATRIC: a parallel algorithm for counting triangles in massive net-
works. In 22nd ACM International Conference on Information and Knowl-
edge Management, CIKM’13, San Francisco, CA, USA, October 27 - No-
vember 1, 2013. 529-538. https://doi.org/10.1145/2505515.2505545
Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in
streaming algorithms, with an application to counting triangles in
graphs. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA. 623—
632. http://dl.acm.org/citation.cfm?id=545381.545464

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008.
Efficient Semi-streaming Algorithms for Local Triangle Counting in
Massive Graphs. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD *08). ACM,
New York, NY, USA, 16-24. https://doi.org/10.1145/1401890.1401898
Suman K. Bera and Amit Chakrabarti. 2017. Towards Tighter Space
Bounds for Counting Triangles and Other Substructures in Graph
Streams. In 34th Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2017) (Leibniz International Proceedings in Informatics
(LIPIcs)), Heribert Vollmer and Brigitte Vallée (Eds.), Vol. 66. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 11:1-
11:14. https://doi.org/10.4230/LIPIcs.STACS.2017.11

—
Do
—

—
w
—

—
S
!

—_
w
[’

131

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

[6] Jonathan W. Berry, Bruce Hendrickson, Simon Kahan, and Petr
Konecny. 2007. Software and Algorithms for Graph Queries on Multi-
threaded Architectures. In 21th International Parallel and Distributed
Processing Symposium (IPDPS 2007), Proceedings, 26-30 March 2007,
Long Beach, California, USA. 1-14. https://doi.org/10.1109/IPDPS.2007.
370685

[7] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and
Cynthia A. Phillips. 2011. Tolerating the community detection reso-
lution limit with edge weighting. Phys. Rev. E 83 (May 2011), 056119.
Issue 5. https://doi.org/10.1103/PhysRevE.83.056119

[8] J. Bondy and M. Simonovits. 1974. Cycles of even length in graphs.
Journal of Combinatorial Theory, Series B (1974), 97-105.

[9] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. 2013. How
Hard Is Counting Triangles in the Streaming Model?. In Automata,
Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I. 244-254. https:
//doi.org/10.1007/978-3-642-39206-1_21

[10] Joshua Brody and Amit Chakrabarti. 2008. Sublinear communication
protocols for multi-party pointer jumping and a related lower bound.
arXiv preprint arXiv:0802.2843 (2008).

[11] Joshua Brody and Mario Sanchez. 2015. Dependent Random Graphs

and Multiparty Pointer Jumping. CoRR abs/1506.01083 (2015).

arXiv:1506.01083

Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto

Marchetti-Spaccamela, and Christian Sohler. 2006. Counting trian-

gles in data streams. In Proceedings of the Twenty-Fifth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, June

26-28, 2006, Chicago, Illinois, USA. 253-262. https://doi.org/10.1145/

1142351.1142388

Graham Cormode and Hossein Jowhari. 2014. A second look at count-

ing triangles in graph streams. Theor. Comput. Sci. 552 (2014), 44-51.

https://doi.org/10.1016/j.tcs.2014.07.025

[14] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links

uncovers hidden thematic layers in the World Wide Web. Proceedings
of the National Academy of Sciences 99, 9 (2002), 5825-5829. https:

//doi.org/10.1073/pnas.032093399

emab (http://math.stackexchange.com/users/74964/emab). 2014. Num-

ber of triangles in a graph based on number of edges. Mathematics

Stack Exchange. URL:http://math.stackexchange.com/q/823650 (ver-

sion: 2014-06-07).

David GarcAna-Soriano and Konstantin Kutzkov. [n. d.]. Triangle

counting in streamed graphs via small vertex covers. In Proceedings

of the 2014 SIAM International Conference on Data Mining. 352-360.

https://doi.org/10.1137/1.9781611973440.40

Hossein Jowhari and Mohammad Ghodsi. 2005. New Streaming

Algorithms for Counting Triangles in Graphs. In Computing and

Combinatorics, 11th Annual International Conference, COCOON 2005,

Kunming, China, August 16-29, 2005, Proceedings. 710-716. https:

//doi.org/10.1007/11533719_72

[18] John Kallaugher and Eric Price. 2017. A Hybrid Sampling Scheme

for Triangle Counting. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’17). Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1778-1797.

http://dl.acm.org/citation.cfm?id=3039686.3039802

B. Kalyanasundaram and G. Schintger. 1992. The Probabilistic Com-

munication Complexity of Set Intersection. SIAM Journal on Discrete

Mathematics 5, 4 (1992), 545-557. https://doi.org/10.1137/0405044

Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. 2012.

Counting Arbitrary Subgraphs in Data Streams. In Proceedings of the

39th International Colloquium Conference on Automata, Languages,
and Programming - Volume Part II (ICALP’12). Springer-Verlag, Berlin,

Heidelberg, 598-609. https://doi.org/10.1007/978-3-642-31585-5_53

[12]

[13]

[15]

[16]

[17]

[19]

[20]

Session 2: Best Paper Award, Enumeration and Counting

[21] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalam-
pos E. Tsourakakis. 2012. Efficient Triangle Counting in Large Graphs
via Degree-Based Vertex Partitioning. Internet Mathematics 8, 1-2
(2012), 161-185. https://doi.org/10.1080/15427951.2012.625260

Ilan Kremer, Noam Nisan, and Dana Ron. 1995. On Randomized
One-round Communication Complexity. In Proceedings of the Twenty-
seventh Annual ACM Symposium on Theory of Computing (STOC *95).
ACM, New York, NY, USA, 596-605. https://doi.org/10.1145/225058.
225277

Konstantin Kutzkov and Rasmus Pagh. 2014. Triangle Counting in Dy-
namic Graph Streams. In Algorithm Theory - SWAT 2014 - 14th Scandina-
vian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014.
Proceedings. 306-318. https://doi.org/10.1007/978-3-319-08404-6_27
[24] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins.
2008. Microscopic evolution of social networks. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008. 462-470.
https://doi.org/10.1145/1401890.1401948

Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou,
and He Sun. 2011. Approximate Counting of Cycles in Streams. In
Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbriicken,
Germany, September 5-9, 2011. Proceedings. 677-688. https://doi.org/
10.1007/978-3-642-23719-5_57

Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. 2016. Better
Algorithms for Counting Triangles in Data Streams. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July
01, 2016. 401-411. https://doi.org/10.1145/2902251.2902283

Rasmus Pagh and Charalampos E. Tsourakakis. 2012. Colorful triangle
counting and a MapReduce implementation. Inf. Process. Lett. 112, 7
(2012), 277-281. https://doi.org/10.1016/1.ipl.2011.12.007

A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung
Wu. 2013. Counting and Sampling Triangles from a Graph Stream.
PVLDB 6, 14 (2013), 1870-1881. http://www.vldb.org/pvldb/vol6/
p1870-aduri.pdf

A. A.Razborov. 1992. On the Distributional Complexity of Disjointness.
Theor. Comput. Sci. 106, 2 (Dec. 1992), 385-390. https://doi.org/10.
1016/0304-3975(92)90260-M

Alexander A. Sherstov. 2014. Communication Lower Bounds Using
Directional Derivatives. J. ACM 61, 6, Article 34 (Dec. 2014), 71 pages.
https://doi.org/10.1145/2629334

Alexander A Sherstov. 2016. The multiparty communication complex-
ity of set disjointness. SIAM J. Comput. 45, 4 (2016), 1450-1489.
Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and
the curse of the last reducer. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March
28 - April 1, 2011. 607-614. https://doi.org/10.1145/1963405.1963491
Charalampos E. Tsourakakis, Mihail N. Kolountzakis, and Gary L.
Miller. 2011. Triangle Sparsifiers. J. Graph Algorithms Appl. 15, 6
(2011), 703-726. https://doi.org/10.7155/jgaa.00245

Emanuele Viola and Avi Wigderson. 2009. One-way multiparty com-
munication lower bound for pointer jumping with applications. Com-
binatorica 29, 6 (01 Nov 2009), 719-743. https://doi.org/10.1007/
500493-009-2667-z

[22]

[23

=

[25

=

[26]

[27

—

(28]

[29]

(30

=

(31

—

(32

—

(33

—_

[34

[l

A PROOFS OMITTED FROM 4-CYCLE
COUNTING
Definition 4.1. We call an edge e € E(G) “heavy” if it is

contained in at least 40NT 4-cycles, and “light” otherwise. We
call a wedge w “overused” if it is contained in at least 40T*/*

132

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as Fg.

Lemma 4.2. |Fg| = Q(T)
We split the proof of this into three subsidiary lemmas.

LEmMMA A.1. There are at least é—gT cycles containing no
more than one heavy edge.

Proor. Call a wedge “very heavy” if it contains two heavy
edges. We note that there are at most VT/10 heavy edges,
as each cycle contains 4 edges. Therefore, there are at most
T/100 distinct pairs of disjoint heavy edges, and so there are
at most T/50 cycles containing a pair of disjoint heavy edges,
as each such pair may participate in at most two distinct
cycles.

Therefore, the remaining %T cycles all either contain no
more than one heavy edge, or consist of one light wedge
joined with one very heavy wedge. Let the number of cycles
of the second type be B.

For each pair of vertices uv, let g,,,, be the number of light
wedges of the form uwv for some vertex w, and b,,,, be the
number of very heavy wedges of that form. Then we have:

B= Z Guobuo

uveV(G)?
Furthermore,
Z Juobuo < 2 Z buw < T/50
uveV(G)%: uveV(G)?
Guov <2

and so we have:

B< > Guobuo+T/50

uveV(G)%:
Juov>2

Furthermore, between any pair of vertices there are at

least (b;”

) cycles consisting of two very heavy wedges with
endpoints at those vertices, and at least (g;”) cycles con-
sisting of two light wedges with endpoints at those vertices.
Furthermore, each of those cycles will appear between at

most two pairs of vertices in this fashion. Therefore:

Session 2: Best Paper Award, Enumeration and Counting

r=fr ((g) i (b))
2 2
uveV(G)?
- 2 2 2
uveV(G)*:

Guov>2

1
=B+Z Z (giv—guv+biv—buv)
uveV(G)%:
Juo>2

2
> (ggﬁv + bfw) — T/400
uveV(G)*:
Guov>2
1
>B+— Z Guvbuo — T/400

uveV(G)%:
Guo>2

> B+

RN

1
> B+ — (B—T/50) — T/400
2 +\/€(/50) =T}/

where the last step plugs in the previous expression. Hence:

+ L)/(1 + i) < 0.72T

1
5046 400 V6

So the number of cycles that contain no more than one
heavy edge is at least %T -0.72T = %T. O

B<T(1+

For the next two lemmas, note that there are at most
4T/40T"* = T3/%/10 overused wedges, as each cycle con-
tains 4 distinct wedges. We will distinguish between two
kinds of vertices. Let a vertex v € V(G) be “primary” if it is
an endpoint of at least VT overused wedges, and “secondary”
otherwise. There are at most 2 - T3/4/10 - 1/VT = T'4/5
primary vertices.

LEMMA A.2. There are at most %T 4-cycles containing all
overused wedges.

ProoF. Any 4-cycle that contains all overused wedges and
at least one primary vertex can be uniquely specified by one
primary vertex and an overused wedge that is disjoint from
it. There are therefore at most

TY4/5. 734710 < T/50

such cycles. Now, for any pair of secondary vertices u,v €
V(G), let X1, be the number of 4-cycles that contain u and v
as opposite vertices (that is, not connected by any edge in the
cycle), and have only overused wedges. As both u and v are
secondary, X, < VT. Note also that there are at least VX0
overused wedges with u and v as their endpoints. Then, the
number of 4-cycles containing only secondary vertices and

133

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

all overused wedges is at most:

2

uveV(G)%:
u,v secondary

Xyo < TY*

>
uveV(G)%:

u, v secondary

< TY*% of overused wedges

< T/10

So the total number of cycles that contain all overused wedges
isat most T + T = =T. m

LEmMMA A.3. There are at most %T 4-cycles containing one
heavy edge e and with the two wedges not containing e being
overused.

Proor. First we bound the number of such 4-cycles where
e has at least one primary endpoint, v. For any such cycle, v
has an overused wedge that is disjoint from it, and v together
with this wedge uniquely determine the cycle, so the number
of such cycles is at most:

TY4/5. 73410 = T/50

Second, we bound the number of such 4-cycles where e has
at least one secondary endpoint v. Each such cycle can be
characterised by the choices of e and the choice of overused
wedge that connects to e at v. As v is secondary, there are at
most VT choices of this overused wedge, so the total number
of such cycles is at most:

\VT/10 - VT = T/10

So the total number of cycles that contain one bad edge e
and with the two wedges not containing e being overused is
at most 5—10T + I—IOT = %T. O

By combining the previous three lemmas, there are at
least ;—g cycles that contain no more than one heavy edge,
no more than %T of which have all overused cycles, and no
more than %T of which have one heavy edge e and both
wedges that do not contain e overused. So the number of
cycles which contain at least one good wedge is at least:

13T 3 T 3

500 25 25

1
T==T=Q(T).
250 50

