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Abstract

Sagittarius A* (Sgr A”) is the variable radio, near-infrared (NIR), and X-ray source associated with accretion onto
the Galactic center black hole. We present an analysis of the most comprehensive NIR variability data set of
Sgr A* to date: eight 24 hr epochs of continuous monitoring of Sgr A* at 4.5 ym with the IRAC instrument on the
Spitzer Space Telescope, 93 epochs of 2.18 um data from Naos Conica at the Very Large Telescope, and 30 epochs
of 2.12 ym data from the NIRC2 camera at the Keck Observatory, in total 94,929 measurements. A new
approximate Bayesian computation method for fitting the first-order structure function extracts information beyond
current fast Fourier transformation (FFT) methods of power spectral density (PSD) estimation. With a combined fit
of the data of all three observatories, the characteristic coherence timescale of Sgr A* is 7, = 243752 minutes (90%
credible interval). The PSD has no detectable features on timescales down to 8.5 minutes (95% credible level),
which is the ISCO orbital frequency for a dimensionless spin parameter @ = 0.92. One light curve measured
simultaneously at 2.12 and 4.5 ym during a low flux-density phase gave a spectral index o, = 1.6 £ 0.1
(F, o< v~%). This value implies that the Sgr A* NIR color becomes bluer during higher flux-density phases. The
probability densities of flux densities of the combined data sets are best fit by log-normal distributions. Based on
these distributions, the Sgr A* spectral energy distribution is consistent with synchrotron radiation from a non-
thermal electron population from below 20 GHz through the NIR.
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1. Introduction

The broadband radiation source Sgr A* is located at the heart
of the so-called S-star cluster (Sabha et al. 2012) at the center
of the Milky Way. Sgr A™’s position is coincident with the
dynamical center of the S-stars and therefore coincident with
the dynamically derived location (to within ~2mas) of the
central supermassive black hole (SMBH) of our Galaxy (e.g.,
Yelda et al. 2010). That makes Sgr A* more than 100 times
closer than any other supermassive black hole (SMBH), and it
can therefore be studied in far greater detail.

Sgr A is visible as a compact, moderately variable radio
source having flux densities between 0.5 and 4Jy in the
range 0.1 to 360 GHz (Balick & Brown 1974; Falcke et al.
1998; Falcke & Markoff 2000; Zhao et al. 2001; Herrnstein
et al. 2004; Miyazaki et al. 2004; Mauerhan et al. 2005;
Yusef-Zadeh et al. 2006b, 2009; Marrone et al. 2008; Li
et al. 2009; Kunneriath et al. 2010; Garcia-Marin et al. 2011;
Bower et al. 2015; Rauch et al. 2016; Capellupo et al. 2017).
Sgr A* has much dimmer NIR and X-ray counterparts that are
variable by up to 30 times the mean flux density in the NIR

and up to a factor 500 in the X-rays (Baganoff et al. 2001;
Hornstein et al. 2002; Genzel et al. 2003; Ghez et al. 2004,
Eisenhauer et al. 2005; Hornstein et al. 2007; Meyer et al.
2008; Porquet et al. 2008; Do et al. 2009; Dodds-Eden et al.
2009, 2011; Sabha et al. 2010; Witzel et al. 2012; Neilsen
et al. 2013, 2015; Ponti et al. 2017; Zhang et al. 2017). The
X-ray energy output can become comparable to the submm
level during the brightest flares. This strong, rapid variability
may be associated with accretion processes close to the
supermassive black hole’s event horizon. The connection of
the variability to regions close to the event horizon is based on
(1) the observed timescales of the variability, with common
changes of a factor 210 within ~10 minutes in the NIR
(Genzel et al. 2003; Ghez et al. 2004); (2) the spectral index'’
ag ~ 0.6 (Ghez et al. 2005a; Hornstein et al. 2007; Bremer
et al. 2011; Witzel et al. 2014); (3) linear polarization in the
NIR and submm (Eckart et al. 2006b; Marrone et al. 20006,
2007; Meyer et al. 2006b; Trippe et al. 2007; Yusef-Zadeh
et al. 2007; Eckart et al. 2008a; Nishiyama et al. 2009;

10 The spectral index is defined here as F, oc v~%.
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Witzel et al. 2011; Shahzamanian et al. 2015); and
(4) temporal correlations between the submm, NIR, and
X-ray regimes. All of these observational results point to a
population of relativistic electrons in a region that is smaller
than ~10 light minutes (the distance associated with the light
crossing time, <15 Schwarzschild radii) emitting synchrotron
radiation at NIR wavelengths. The variable submm and X-ray
radiation may be synchrotron emission or may be linked by
radiative transfer processes such as adiabatic expansion and
inverse Compton or synchrotron self-Compton scattering,
respectively (Baganoff et al. 2001; Eckart et al. 2004; Yusef-
Zadeh et al. 2006a, 2006b, 2008, 2009, 2012; Eckart et al.
2006a, 2008a, 2008b, 2012; Gillessen et al. 2006; Marrone
et al. 2008; Dodds-Eden et al. 2009; Trap et al. 2011; Haubois
et al. 2012; Dibi et al. 2016; Mossoux et al. 2016;
Rauch et al. 2016; Ponti et al. 2017).

In order to shed light on the physical and radiative
mechanisms at work and on the interrelation between
wavelengths, many studies have attempted to find and
categorize recurring patterns and regularities in the behavior
of Sgr A", both statistically for individual wavelength regimes
as well as in the form of correlations between bands (Gillessen
et al. 2006; Meyer et al. 2006a, 2006b, 2009, 2014, 2007;
Hornstein et al. 2007; Do et al. 2009; Zamaninasab et al.
2010; Dodds-Eden et al. 2011; Witzel et al. 2012; Neilsen et al.
2013, 2015; Dexter et al. 2014; Hora et al. 2014; Subroweit
et al. 2017). In recent years, the preponderance of studies has
arrived at the following set of phenomenological but
statistically rigorous results:

1. Sgr A is a continuously variable NIR source that emits
above the 2.12 ym detection level (0.05 mJy observed or
0.5 mJy dereddened, 30 above the noise level of the NIRC2
camera at the Keck II telescope) ~90% of the time (Witzel
et al. 2012; Meyer et al. 2014). Its probability density
function (PDF) of flux densities'' at 2.18 um is highly
skewed (Dodds-Eden et al. 2011) and can be described by a
power law with a slope Or ~ 4 (Witzel et al. 2012). The
first three moments of the PDF are well defined with mean
~5.8mlJy dereddened (=0.6mlJy observed), variance
~9.4mly* dereddened, and skewness ~52.3 mJy’ dered-
dened. The brightest observed NIR peak reached ~30 mJy
(dereddened, Dodds-Eden et al. 2009). Peaks with F
(2.18 pym) > 10 mJy (dereddened) occur about four times
a day (Do et al. 2009; Meyer et al. 2009, 2014; Hora
et al. 2014).

2. The X-ray emission comes from a steady, extended (~1")
source plus outbursts from an unresolved source. Out-
burst flux densities can be several hundred times the level
of the quiescent state. Outbursts (frequently called
“flares” in the literature) have the character of distinct
events and occur about once per day. The unresolved
source is detectable only during outbursts. At other times,
fluctuations are sufficiently described by the Poisson
distribution expected for the steady source (Neilsen et al.
2015). The flux-density PDF, as for the NIR, is well
described by a power-law distribution but with Gy ~ 2.
X-ray flares seem always to be accompanied by NIR
peaks (Morris et al. 2012 and references therein).
However, the reverse is not true, and only about one in

' The PDF of flux densities is the probability that an independent observation
will yield a flux density in a particular interval.
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four F(2.18 um) > 10 mJy (dereddened) NIR peaks has
an X-ray counterpart (Baganoff et al. 2001; Eckart et al.
2004; Marrone et al. 2008; Porquet et al. 2008; Do
et al. 2009; Neilsen et al. 2013, 2015). There is no
obvious relationship between X-ray and NIR flux-density
levels.

3. The spectral energy distribution of Sgr A* peaks in the
submm (Zylka et al. 1992, 1995; Falcke et al. 1998;
Melia & Falcke 2001), where it is visible as a synchrotron
source powered by the dominant thermal electron
population (Yuan et al. 2003). An analysis by Dexter
et al. (2014) of ~10years of 1.3, 0.87, and 0.43 mm
observations with CARMA and SMA shows a steady
flux-density level of ~3Jy with Gaussian fluctuations
about that mean. Submm flux-density enhancements
rising ~1Jy above the mean occur approximately 1.2
times per day (Marrone et al. 2008). A time-series
analysis of submm light curves gave a mean reversion
timescale of ~8 hr (Dexter et al. 2014).

The patterns of correlation between wavelengths are still
unclear. Several authors have suggested that the submm peaks
often follow bright NIR peaks by 1-3 hr (Eckart et al.
2006a, 2008b, 2009, 2012; Yusef-Zadeh et al. 2006b, 2009,
2011; Marrone et al. 2008), but most observations remain
inconclusive in this regard because of the lack of simultaneous
multi-wavelength data of sufficient length and overlap. Indeed,
there are counterexamples. Recent observations obtained with
the Spitzer Space Telescope, the Chandra X-ray Observatory,
the SMA, and the W. M. Keck Observatory suggest that the
phenomenology of these correlations is not simple (Fazio
et al. 2018). In particular, SMA and Spitzer observed the first
example of an effectively synchronous sequence of variations
in the submm and NIR. Another example obtained with SMA,
Chandra, and Keck showed an even more surprising sequence
in which a submm peak precedes an X-ray flare, which in turn
was followed by a NIR peak. Albeit not conclusive due to the
limitations of ground-based observations, such a sequence of
peaks contradicts the canonical phenomenology of simulta-
neous X-ray and NIR followed by delayed submm variations.

There are many previous studies of the statistical properties
of Sgr A®’s variability. Initially, these studies focused on
putative quasi-periodicity (QPO) at timescales between 10 and
20 minutes and its relation to the innermost stable orbit of the
4 x 10 M, SMBH (Genzel et al. 2003; Meyer et al. 20064,
2006b, 2007; Trippe et al. 2007; Zamaninasab et al. 2010;
Karssen et al. 2017). Do et al. (2009) found no evidence for
such a QPO based on available data at the time. Consequently,
the scope of the statistical analysis was broadened with
a determination of the red-noise correlation timescale
(12843% minutes) in the NIR (Meyer et al. 2009) that allowed
for a comparison of Sgr A* with black holes of different mass
regimes. This comparison revealed that the mass and
characteristic timescale of Sgr A™ are consistent with a linear
mass—timescale relation without a luminosity correction term as
proposed by, for example, McHardy et al. (2006), who
discussed characteristic timescales of AGN and black hole
X-ray binaries (BHXRB). In this context, Meyer et al. (2009)
pointed out the exceptional value of Sgr A™ because it is the
SMBH with the most precise mass determination so far:
My, = (4.02 £ 0.16 £ 0.04) x 10° M, (Boehle et al. 2016),
where the error bar terms give the statistical and systematic
uncertainties, respectively.
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Another line of inquiry has considered the possibility of a
dichotomy of the NIR variability into statistically different
processes (or “states”) with either different flux-density PDFs
or different timing behavior or both. These inquiries have been
motivated by some NIR flares having X-ray counterparts while
others do not (Dodds-Eden et al. 2011). The statistics of the
variations have been shown to be consistent with a single
variability state without evidence for multiple superimposed or
interleaved variability processes (Witzel et al. 2012; Meyer
et al. 2014).

A variety of NIR spectral index values have been reported.
While some authors found a strong dependence of the spectral
index on the flux-density level, other high-cadence and high-
signal-to-noise studies at K-band-equivalent flux densities
>0.2 mJy showed only minor intrinsic fluctuations around an
H- (1.65 um) to L-band (3.8 pm) spectral index oy = 0.6
(Ghez et al. 2005a; Eisenhauer et al. 2005; Gillessen
et al. 2006; Krabbe et al. 2006; Hornstein et al. 2007; Bremer
et al. 2011; Witzel et al. 2014).

Sgr A™ is linearly polarized in the NIR. Shahzamanian et al.
(2015) statistically analyzed time series and found typical
polarization of (20 £ 10)% and a preferred position angle
of (13 £ 15)°.

In summary, the NIR variability is well characterized as a
red-noise process—that is, it has a power spectral density
(PSD)'? that is a power law with a slope 7, ~ 2 for timescales
in the range ~20 to ~150 minutes. The process is a damped
random walk—that is, it has a correlation (or characteristic)
timescale. For timescales longer than the correlation timescale
(12847%° minutes at the 90% credible level'’; Meyer
et al. 2009), the process is uncorrelated white noise, and the
PSD becomes flat for the corresponding lowest frequencies (see
Appendix B.1). Based on the available data sets, no evidence
for periodicity, quasi-periodicity, or changes in its statistical
behavior (e.g., a two-state variability model) could be found. In
fact, the existing knowledge of the NIR variability of Sgr A*
can be described statistically by as few as five parameters: the
PSD slope and break timescale, the slope and normalization of
the power-law flux-density PDF, and the NIR spectral index.
Two more parameters are needed to describe the linear
polarization: the fixed polarization fraction and position angle.
Considering the large amplitudes of flux-density fluctuations,
such constancy of statistical and physical parameters over the
period of existing data is surprising.

Specific scenarios for producing NIR variability have
invoked magnetic reconnection events, disk instabilities,
ejection and expansion of plasma blobs, unsteady jet emission,
or accretion of magnetic fields (Sharma et al. 2007; Dodds-
Eden et al. 2010; Yuan & Bu 2010; Eckart et al. 2012).
However, these theoretical efforts to model the turbulent
accretion flow and the variability caused by the accretion
cannot fully explain all observations to date. In particular, the
peak NIR flux densities are higher than predicted by radiative
transfer models of three-dimensional general relativistic

12 The PSD is the Fourier transform of the autocorrelation function (e.g.,
Timmer & Koenig 1995, Equation (48)). In other words, the PSD measures
how much the flux densities of two measurements separated in time are likely
to differ, but the independent variable is spectral frequency—that is, 1/(time
difference).

'3 The terms “credible interval” and “credible limit” refer to intervals and their
upper and lower limits that have a specified probability of containing the true
value. In the Bayesian context, these intervals are directly derived from the
posteriors.
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magnetohydrodynamic (GRMHD) simulations with a thermal
electron distribution function that matches millimeter flux
densities. The observed NIR variability may therefore be due to
the acceleration of electrons out of the dominant thermal
component of the distribution function into a non-thermal tail
(e.g., Dodds-Eden et al. 2010).

GRMHD models with a thermal electron distribution,
while producing only relatively weak variability (Dolence
et al. 2012), have an interesting feature in their power spectrum
near fisco, the orbital frequency of the innermost stable circular
orbit (ISCO). In particular, these models show an approxi-
mately % power spectrum at f < fisco, a bump in power close
to fisco, and a break in the spectrum to approximately f~* at
f > fisco- This is consistent with the notion that variability in
the disk at frequencies above the orbital frequency is associated
with disk turbulence, which is known from simulations to have
a steeply declining spatial power spectrum (e.g., Guan
et al. 2009). This would naturally give rise to a steeply
declining temporal power spectrum as well. With Spitzer (Hora
et al. 2014), in combination with ground-based 8-10 m
telescopes, the predicted PSD short-timescale structure is
testable.

This work presents the first analysis of the NIR PSD of
Sgr A* that includes continuous data sets for all relevant
timescales from 24 hr down to the sub-minute level. We use an
unprecedented data set from three different observatories: the
W. M. Keck Observatory, the European Southern Observatory
Very Large Telescope (ESO/VLT), and the Spitzer Space
Telescope. The observatories contribute complementary infor-
mation about the PSD: the Keck data have the best signal-to-
noise and can detect Sgr A* variations at timescales below 1
minute. A limitation is that most of the Keck data sets have a
duration of <2 hr. The VLT data cover timescales between 4
minutes and 6 hr, and the Spirzer data timescales from ~7
minutes to 24 hr, much longer than the previously derived
correlation timescale. Together, these data enable the most
precise estimate possible today of the correlation timescale and
a test for PSD features at timescales below 50 minutes.

To exploit the combined data sets, we have developed an
entirely new algorithm. It uses the first-order structure function
as the central tool for analyzing the timing of Sgr A* and a
customized population Monte Carlo approximate Bayesian
computation (PMC-ABC) sampler to derive parameter values.
The goals of this paper are to

1. provide this extensive data set to the community with a
full statistical characterization;

2. introduce the new PMC-ABC algorithm that will have
wide application to variable sources;

3. determine the PSD of the variability process of Sgr A,
including a new determination of the -correlation
timescale;

4. determine the Sgr A* flux-density PDF in both K- and
M-band (4.5 pm);

5. characterize the Sgr A™ spectral index between these two
bands; and

6. characterize the instrumental performance of this kind of
space-based variability study in comparison to ground-
based AO telescopes.

Section 2 describes the observations and data sets used in this
work. Section 3 and Appendix B present the newly developed
algorithm for analyzing non-deterministic stationary linear time
series and the results of our analysis of the Sgr A* light curves.
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Sections 4 and 5 discuss the results and present our
conclusions. Readers mainly interested in the mathematical
foundation of our methodology are referred to Appendices B—
D. Readers only interested in our main results are refereed to
Figures 10, 13, 17, and 19, and Tables 5 and 6.

Different authors (e.g., Genzel et al. 2003; Do et al. 2009;
Dodds-Eden et al. 2011) have used different values for
interstellar extinction to Sgr A*, making it difficult to compare
studies. To avoid ambiguity and simplify comparisons, data are
given here without correction for interstellar extinction,
contrary to prior practice (e.g., Witzel et al. 2012). Where
extinction is needed, for example to compare with models or
discuss an intrinsic spectral index, we adopt a2.12 and 2.18 ym
extinction Agx = 2.46 4+ 0.10 mag (Schodel et al. 2010, 2011)
and a 4.5 um extinction value of Ay, = 1.00 & 0.14 mag."* To
place our K-band flux densities on the same scale as Dodds-
Eden et al. (2011) or Witzel et al. (2012), multiply by 9.64
(Ax = 2.46). To compare with Genzel et al. (2003) or Eckart
et al. (2006a), multiply by 13.18 (Ax = 2.8). To compare with
Do et al. (2009), multiply by 20.89 (Ax = 3.3), and to compare
with Hornstein et al. (2007), multiply by 19.23 (Ax = 3.2).

2. Observations and Data Reduction
2.1. Spitzet/IRAC Observations

All observations in this Spitzer Space Telescope program
(Program IDs 10060, 12034, and 13027) used IRAC subarray
mode, which reads a 32 x 32-pixel region of the IRAC 4.5 ym
detector array 10 times per second. Each subarray data
collection event obtains 64 consecutive images (a “frame
set”) of these pixels, and there is typically 2 s idle time between
images. The subarray pixel area starts at pixel (9,9) of the full
256 x 256-pixel array, and the angular scale is 1721 per pixel.

Each of eight Spitzer observing epochs used the same basic
observing procedure. This comprised an initial peakup from a
reference star to place Sgr A at the center of pixel (16,16),
making a small map, during which time the telescope
temperature settled down, a second peakup, a staring mode
observation lasting ~12 hr, a third peakup, and a second stare.
The staring observations in 2013 and 2014 used custom
Instrument Engineering Requests (IERs) to obtain two 11.6 hr
monitoring periods at each epoch. The 2016 observations used
standard Astronomical Observation Requests (AORs) to do the
same, but with 2 x 12 hr of monitoring. The 2017 observations
used new IERs to decrease the effective data rate by truncating
the lowest four bits of each 0.1 s pixel value. Because of the
high source brightness in the Galactic center, these bits contain
random noise and therefore do not compress. Removing them
reduced the data volume to 65% of what it would have been
without truncating. Prior to making the 2017 observations, we
used our earlier Sgr A* measurements to verify that truncating
these bits would increase the noise by only ~1.3%, which does
not affect our ability to measure flux density fluctuations at
expected levels. Further details of the observations are given by
Hora et al. (2014), and all AORKEYS are in Table 1.

The data reduction used an improved version of the
technique described by Hora et al. (2014). The first image of
every frame set was removed because of calibration difficulties,
and the remaining 63 frames were averaged. The major

14 Error bars include both statistical and estimated systematic uncertainties.
The A,; error bar is a corrected value from R. Schiodel (2018, private
communication).
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Table 1
IRAC Observation Log
AOR Start Frame

AORKEY Time (UTC) Sets® Type
50123264 2013 Dec 10 03:48:56 92 Map
50123520 2013 Dec 10 04:20:24 5000 Stare part 1
50123776 2013 Dec 10 16:04:21 5000 Stare part 2
51040768 2014 Jun 02 22:32:00 126 Map
51041024 2014 Jun 02 22:59:37 5000 Stare part 1
51041280 2014 Jun 03 10:43:22 5000 Stare part 2
51087616 2014 Jun 17 18:29:35 126 Map
51087872 2014 Jun 17 18:57:17 5000 Stare part 1
51088128 2014 Jun 18 06:41:01 5000 Stare part 2
51344128 2014 Jul 04 13:21:59 126 Map
51344384 2014 Jul 04 13:49:41 4999 Stare part 1
51344640 2014 Jul 05 01:33:25 5000 Stare part 2
58115840 2016 Jul 12 18:04:23 156 Map
58116352 2016 Jul 12 18:37:45 5142 Stare part 1
58116608 2016 Jul 13 06:41:14 5142 Stare part 2
58116096 2016 Jul 18 11:44:02 156 Map
58116864 2016 Jul 18 12:17:25 5142 Stare part 1
58117120 2016 Jul 19 00:20:54 5142 Stare part 2
60651008 2017 Jul 15 22:28:54 156 Map
63303680 2017 Jul 15 23:02:17 5142 Stare part 1
63303936 2017 Jul 16 11:05:46 5142 Stare part 2
60651264 2017 Jul 25 22:39:33 156 Map
63304192 2017 Jul 25 23:12:57 5142 Stare part 1
63304448 2017 Jul 26 11:16:26 5141 Stare part 2
Notes.

# Start times are UTC at the Spitzer observatory. Corresponding times at Earth
are a few minutes earlier. Light curves given in Table 3 have heliocentric times.
® Frame set numbers include only frame sets with 0.1 s frame times. As
explained by Hora et al. (2014), 2013—14 observations also included images
with 0.02 s frame times. These are not included in the counts.

remaining problem is that telescope pointing jitter introduces
fluctuations into the flux measured by pixel (16,16). Those can
be largely removed by fitting the measured flux as a function of
the (X, Y) coordinates of Sgr A™ in each frame set, with (X, Y)
being determined by cross-correlating each frame set with a
standard one having Sgr A* centered on pixel (16,16).
However, this basic scheme does not work as well for the
epoch 2-8 observations (2014 June—July) as it did for the first
epoch (2013 December). This may be due to the observations
being performed at a different rotation angle on the array than
the first epoch. The new angle did not allow the same simple
correction to yield similar quality as in the first epoch, probably
due to the inherent structure of the source and the details of
how it falls on the pixel array. For some reason, the (X, Y)
coordinates do not capture all of the apparent background
variability. Several methods were tried to improve the fit. We
found that the dependence of the pixel output F(X;, ¥;) on the X,
Y position on the array for the object and reference pixels could
be well-modeled by using the second-degree polynomial

F(X;, ¥)=a + bX; + c¥ + dX;Y; + eX? + fV”
4
+ Z Pi,n(gn + hnXi + knYi)’ (1)

n=1

where a, b, ¢, d, e, f, g,, h,, and k, are constant coefficients to
be derived; i is the sample number in the time sequence; X; and
Y; represent the position of Sgr A* on the array for sample i in
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Table 2
IRAC Flux Correction Coefficients

Coefficient 2013 2014 2014 2016 2016 2017 2017
Name Dec 10 June 2 June 17 July 4 July 12 July 18 July 15 July 25
a 7537.1 5358.9 3693.5 6684.6 —877.31 4748.0 4555274 6938.5
b —17216 —1336.0 31734 —9461.1 —22340 27.372 —4669.305 15146.3
c 3730.1 —2696.0 1679.9 —12401 —12402 —2525.2 —4963.178 13822.1
d —11716 —6104.9 9248.1 9199.4 —6054.6 —9.3296 —102.5009 14876.4
e 3396.5 —1074.1 7629.8 5026.4 9508.4 —5798.4 —3444.561 2254.8
f —3025.0 —760.80 16120 15750 10070 391.47 5618.444 23499.7
81 0.0054 0.3611 —0.0049 0.1732 0.3128 —0.0004 0.05112 0.05934
2 —0.0451 —0.2359 0.1518 —0.2194 0.3267 0.4427 0.03646 —0.1593
g3 —0.0007 0.1785 0.0344 —0.2423 0.1124 —0.1267 0.06231 0.1074
84 0.04063 —0.2422 0.1685 0.1462 0.0672 —0.2089 0.05674 —0.02738
hy 0.2897 —0.7424 —0.2675 —0.5568 1.3735 —0.2927 0.4828 0.1101
hy 1.338 0.5666 —0.4242 0.9940 1.1245 —0.7833 0.8234 0.8551
hs3 0.1075 —0.6004 0.4291 0.9720 1.0763 1.5937 0.1941 —1.3753
hy 0.4762 1.1260 —0.6078 —0.2426 0.9778 1.1396 0.6042 —0.9479
ky 0.0679 —0.7136 0.6420 —0.5358 0.0466 —1.0620 —0.0834 —0.0098
ky 0.1133 0.8440 —0.7912 0.9836 —0.1290 —1.0258 —1.3781 —1.0708
ks —0.3432 —0.2633 —0.1390 1.6669 —0.0074 —0.3891 0.1371 0.3808
ky —0.0905 0.5196 —0.3543 —0.3662 —0.0981 0.9668 1.0882 0.6798

Note. This table refers to the coefficients defined in Equation (1). For coefficients g, &, and k, the subscripts n = 1 to 4 refer to neighboring pixels in the order (15,16),

(17,16), (16,15), and (16,17).

units of pixels (relative to the center of pixel (16,16)); and P;,,
are the data values of the four pixels that are direct neighbors to
the pixel output being analyzed. For example, for the analysis of
pixel (16, 16), these neighbor pixels were (15,16), (17,16),
(16,15), and (16,17). The values of the coefficients were
determined by least-squares fitting, minimizing the residuals
between F(X;, Y;) and the pixel (16,16) values in the monitoring
data. The fit was done iteratively, removing frame sets in which
Sgr A* showed detectable flux. That typically left about 7000
frame sets to fit out of an initial >10,000 available in each
epoch. Coefficients derived for each epoch are given in Table 2.

As a test of our method, we also extracted and modeled the
output of a reference pixel in the same way as for pixel (16,16).
The reference pixel was at an image location with a significant
gradient and not on a local maximum, similar to pixel (16,16)
but far enough away from it that the pixel will not see the
variability from Sgr A*. For the 2013 December epoch, we
used pixel (18,19) as a reference, as did Hora et al. (2014).
Because of the different rotation angle in all subsequent
epochs, we used pixel (14,14).

One limitation of the reduction technique is that it cannot
provide an absolute zero point for the Sgr A* flux density.
Instead, F = O corresponds to the average flux density in the
frame sets used to derive the coefficients. The actual flux
density corresponding to F = 0 is a parameter derived from
subsequent fitting of the time-series data.

The eight light curves are plotted in Figure 1, and the time
series data are given in Table 3. The new reduction of the 2013
epoch is very similar to the original result of Hora et al., but
the artifacts in the reference pixel are smaller compared to the
original reduction. The peaks of emission from Sgr A™ in the
2013 epoch are in the same locations and very similar in
amplitude and structure.

All eight Spitzer epochs showed flux-density variations
intrinsic to Sgr A* in the range of ~0-8.5mly (not

dereddened; see Figure 2). The first and the sixth epochs
(2013 December 10, 2016 June 18) showed the highest peaks
and the longest-duration excursions from zero. In contrast, the
epoch of 2014 June 2 showed only minor excursions during the
>23 hr of observations. The noise characteristics of the Spitzer
data can be estimated using the flux-density PDF of the
reference pixels (shown in Figure 2), which has a standard
deviation ograc = 0.66 mJy for one 6.4 s frame set.

2.2. Ground-based Observations with VLT and Keck

The VLT data (previously reported by Witzel et al. 2012)
were taken with the adaptive optics camera Naos Conica
(NaCo; Lenzen et al. 2003) in K -band (2.18 um). The NaCo
images have 68 mas resolution and integration times of
30-40s. Data were taken between 2003 June 13 and 2010
June 16. The complete data set, after rejecting images with
unstable zero points, contains 10,639 images. The average
cadence of the observations is one image per 1.2 minutes, the
cadence being limited by deliberate telescope offsets (“dither-
ing”) between frames. Witzel et al. (2012) provided an
observing log, and described the data reduction and calibration.

The Keck data were obtained with the NIRC2 camera (PI:
Keith Matthews) in the K’-band (2.12 ym). Images have
53 mas resolution and a fixed integration time of 28s. The
data set contains 3157 images between 2004 July 16 and 2013
July 19. The average cadence was one image per 1.1 minutes,
again limited by dithering. Table 4 lists the Keck epochs
analyzed here.

For both the NaCo and NIRC2 data sets, Sgr A* flux
densities were derived from aperture photometry on decon-
volved images. Flux-density calibration used 13 non-variable
stars throughout all epochs with consistent flux densities
adopted for both telescopes. (Exact details are given by Witzel
et al. 2012.) We corrected both data sets for flux-density
background levels caused by extended point spread functions
of nearby sources (source confusion) based on yearly
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Figure 1. Excess 4.5 um flux density for Sgr A* and for the reference pixel for each of the eight Spitzer epochs. Flux densities are in mJy with no correction for
interstellar extinction. The flux density zero point cannot be determined by the data reduction method. In each panel, the gray lines show the flux density for each 6.4 s
frame set, and the black lines show the data binned in 1 minute intervals. The lower lines show the Sgr A* flux densities, and the upper lines are for a reference pixel
with 7 mJy added to the flux density. The 2013 December epoch uses pixel (18,19) as the reference, and all other epochs use pixel (14,14). The values plotted are the
difference between the observed value of the pixel in the 6.4 s frame set and the predicted value based on Equation (1) and the measured (X, Y) offset of each frame set.
Flux density values have been corrected to total flux density for a point source by the position-dependent ratio of total flux density to central-pixel signal. The
horizontal axis shows the time in minutes relative to the start time (given in Table 1) of the first monitoring 6.4 s frame set for that epoch.

minimums of Sgr A*. This procedure is justified by the fact that
the mean flux density of Sgr A* is constant within the
uncertainties over ~20 years of observations (Z. Chen et al.
2018, in preparation) The (Gaussian) measurement noise was
0.033mlJy for NaCo and 0.017mlJy for NIRC2. Typical
background flux densities estimated in the direct vicinity of
Sgr A* are 0.06 mJy (NaCo) and 0.03 mJy (NIRC2). Observed
flux densities ranged from 0 to 2.9 mJy with NaCo and from 0
to 2.3 mJy with NIRC2. We have calibrated the flux densities at
the NIRC2 effective wavelength of 2.12 ym with the same
magnitudes and zero point as for NaCo with an effective
wavelength of 2.18 ym. This introduces a systematic error of
<1%, much smaller than the overall flux-density calibration
uncertainty of 10%. The relative calibration uncertainty is
~2%. For a discussion of the conversion between NaCo K, and
NIRC2 K’ photometry, see Do et al. (2013, appendix). Figure 3
and Table 3 give the K light curve data.

2.3. Simultaneous Observations with NIRC2 and IRAC

A key data set was the one on 2016 July 13, when we
observed Sgr A" with NIRC2 at 2.12 pum during IRAC 4.5 ym
observations that began July 12. The AO correction for the
NIRC?2 data set was comparatively poor due to the atmospheric
conditions for this night, but the frames show a significant

enough flux-density excursion to be taken into account in this
paper. Because of the lower data quality, the standard reduction
methods described above gave poor results. However, the
UCLA Galactic center group developed a new software
package “AIROPA” (Witzel et al. 2016) based on the PSF-
fitting code StarFinder (Diolaiti et al. 2000). This package was
designed to take atmospheric turbulence profiles, instrumental
aberration maps, and images as inputs, and then fit field-
variable PSFs to deliver improved photometry and astrometry
on crowded fields. AIROPA wuses improved StarFinder
subroutines, in particular a much improved PSF extraction
that also benefits local, static (non-field-dependent) PSF-fitting
as applied to these data. Running AIROPA in static PSF mode
and using the resulting PSFs to deconvolve the individual
frames of 2016 July 13 improved the signal-to-noise of the
light curve by a factor of three in comparison to the standard
reduction. Figure 4 shows the IRAC and NIRC2 light curves.

It is remarkable how well the NIRC2 light curve is matched
by the IRAC data. These two light curves impose strong limits
on the F(M)/F(K) ratio (from here on denoted R(M/K)), at
least for the observed flux-density levels, which have medians
of 0.15 and 0.94 mJy at K and M, respectively (but with the
M-band zero point offset as noted in Section 2.1). In K-band,
this value is about 5% of the maximum flux densities seen at
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Table 3
Sgr A" Light Curve Data

Observation Sgr A* Reference
Date Flux Density Flux Density
(HMID) dy) dy)
Spitzer /IRAC
57581.7781761 0.001056 0.000016
57581.7782728 0.001576 —0.000329
57581.7783700 0.001055 0.000182
57581.7784676 —0.000623 0.000908
57581.7785647 0.001590 —0.000180
57581.7786621 —0.000930 —0.001045
57581.7787590 0.000980 —0.000776
57581.7788565 —0.000085 0.000744
57581.7789539 0.000819 —0.000939
57581.7790510 —0.000407 0.000747
VLT/NaCo
52803.1129224 0.0001745
52803.1133356 0.0001585
52803.1137607 0.0000846
52803.1141797 0.0001671
52803.1145983 0.0001632
52803.1150173 0.0001849
52803.1154358 0.0001362
52803.1158572 0.0001725
52803.1162806 0.0001702
52803.1166930 0.0001488
Keck/NIRC2
53212.3510956 0.0004091
53212.3529755 0.0005316
53212.3532755 0.0004738
53212.3539055 0.0006439
53212.3550154 0.0005638
53212.3555354 0.0003294
53212.3796940 0.0000225
53551.3979607 0.0000009
53581.3320382 0.0001165

0.0001175

53581.3369779

Note. The tabulated flux-density values are as observed, uncorrected for
interstellar extinction. They are plotted in Figures 1 and 3. Times are
heliocentric Modified Julian Dates.

(This table is available in its entirety in machine-readable form.)

this wavelength. Despite confusion with the first Airy ring of
the bright star SO-2 (S0-2’s closest approach to SgrA* is
anticipated for 2018), we were able to extract K-band fluxes at
the position of Sgr A* and its vicinity with essentially zero flux
density offset. The remaining low-level flux density floor was
determined in “empty” apertures without obvious point sources
next to Sgr A™ and subtracted from the K-band light curve. In
order to properly determine the relative offset and the flux-
density ratio between the two bands, we resampled the M-band
light curve (which has much higher cadence) to the cadence of
the K-band light curve, and then used an MC-MC implementa-
tion in Pystan (Carpenter et al. 2017) to derive the Bayesian
posteriors for the offset and the ratio while taking into account
the two different measurement noise amplitudes (see
Appendix A). The resulting corner plot is shown in Figure 5,
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Figure 2. Normalized flux density distributions for the combined IRAC data.
Black curves show the observed distributions: the reference pixel in the upper
panel and Sgr A* in the lower panel. The red dashed curve in both panels
shows a Gaussian distribution centered at x, = —0.02 mJy and with a standard
deviation o = 0.66 mJy. As explained in Section 2.1, the zero points
correspond to the average flux density during times when the flux density
was small, not to an absolute zero.

and the resulting uncorrected flux-density ratio R(M/K) =
12.4 4+ 0.5. The relative offset ¢ = —1.72 & 0.08, and the
total dispersion ogisp = 0.33 £ 0.03. These values are the
integrated ratio and relative offset over the entire 204 frames
and ~3 hr. Instantaneous ratio values can be even higher, and
around ¢ = 820-825 minutes, there is a significant deviation
with R(M/K) ~ 14.7.

3. Bayesian Light Curve Modeling and Results

The goal of the analysis, as it was for Hora et al. (2014), is to
find the parameters that best describe the statistical variability
of the observed light curves. Compared to the earlier work, the
present study uses seven additional 24 hr IRAC data sets, 123
additional epochs of ground-based observations, and a more
rigorous method to explore the parameter space. Simple
periodograms, as shown in Figure 6, demonstrate the overall
properties of the variability but do not provide the required
fidelity in PSD parameter estimation. A break near
0.01 minutes ' is evident, but the noise does not permit a
precise determination of the break frequency.

The analysis method used here is simple in principle but
computationally expensive. A set of statistical parameters was
chosen based on prior knowledge of the variability properties.
From each parameter set, many mock light curves were
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Table 4
Keck/NIRC2 Observation Log

Date Start Time Stop Time Duration Number
UT) UT) UT) (minutes) of Frames
2004 Jul 26 08:18:50 09:00:01 41.18 7
2005 Jul 30 07:51:43 08:47:24 55.68 4
2006 May 03 11:03:03 13:14:12 131.14 26
2006 Jun 20 08:59:22 11:04:45 125.38 90
2006 Jun 21 08:52:27 11:36:53 164.43 163
2006 Jul 17 06:47:50 09:54:03 186.22 63
2007 May 17 11:08:23 13:52:39 164.26 81
2007 Aug 10 06:54:19 08:21:05 86.77 78
2007 Aug 12 06:47:09 07:44:37 57.47 60
2008 May 15 10:32:40 13:05:16 152.59 129
2008 Jul 24 06:21:14 09:20:04 178.83 173
2009 May 01 11:50:04 14:51:44 181.67 186
2009 May 02 11:48:28 12:49:31 61.04 53
2009 May 04 12:48:42 13:40:32 51.84 57
2009 Jul 24 07:09:43 09:25:34 135.85 138
2009 Sep 09 05:23:34 06:19:27 55.87 49
2010 May 04 11:42:12 14:45:44 183.54 118
2010 May 05 13:34:16 14:41:24 67.13 75
2010 Jul 06 07:23:03 09:28:04 125.02 130
2010 Aug 15 05:45:35 08:01:03 135.47 138
2011 May 27 10:37:31 13:16:23 158.87 150
2011 Aug 23 05:57:35 07:30:44 93.15 105
2011 Aug 24 05:49:56 07:26:34 96.62 107
2012 May 15 10:56:28 14:00:01 183.54 203
2012 May 18 10:29:53 12:54:26 144.54 74
2012 Jul 24 06:05:04 09:25:28 200.40 208
2013 Apr 26 12:59:28 14:52:09 112.69 119
2013 Apr 27 12:53:26 15:09:22 135.93 137
2013 Jul 20 06:04:26 09:32:51 208.42 234
2016 Jul 12 06:59:04 10:08:59 188.21 204

Note. This table lists the data sets used in this work and by Meyer et al. (2009).
Times are UTC at the observatory, not heliocentric.
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Figure 3. K-band light curve of Sgr A* observed with ground-based
observatories. The data were taken in hours-long segments over more than a
decade and are here joined together on a linear abscissa for display. Black
points show data taken with VLT/NaCo at 2.18 um (Table 2 of Witzel et al.
2012). Red points show data taken with Keck/NIRC2 (Table 4) at 2.12 ym.
Flux densities are as observed with no correction for interstellar extinction. The
combined K-band data have been used previously by Meyer et al. (2014).

generated and compared to the real ones. The parameters were
then modified iteratively, and new sets of mock light curves
generated, seeking parameter values that minimized the

Witzel et al.

differences between the real and mock data. Such an
approximate Bayesian computation' (ABC) gives approximate
posterior distributions for the model parameters, including
proper uncertainties and correlations between the parameters,
without needing an analytic likelihood function. The approx-
imation accuracy is contingent on the selected distance function
—the function that quantifies the difference between real and
mock data (see Appendix B.2).

The variability analysis needs to model flux density
differences as a function of time lag between measurements.
Our analysis is therefore based on the structure function rather

than the light curves themselves. The first-order'® structure
function V(1) of a light curve F(¢) is defined as
V(r) =([F(t+ 1) — F(OF), 2

that is, as the variance of the process at a given time lag 7
(Simonetti et al. 1985; Hughes et al. 1992). The structure
functions derived from the three data sets are shown in
Figure 7.

The underlying model is based on the results of earlier
analyses:

1. The long-term flux-density PDF in K-band is a highly
skewed distribution, well described by either a power law
with a slope § = 4.2 and a pole Fy = —0.37 mJy (Witzel
et al. 2012) or by a log-normal distribution.

2. The PSD has the form of a power-law with a slope
1 &~ 2 and a break at a couple of hundred minutes (Do
et al. 2009; Witzel et al. 2012; Hora et al. 2014; Meyer
et al. 2014; Figure 6).

3. The noise properties of the individual data sets are well
described by Gaussians. (For the VLT and Keck data, see
Witzel et al. 2012; Meyer et al. 2014; for the Spitzer data,
see Section 2.1.)

4. The uncorrected average flux-density ratio for bright
phases (F(K) > 0.2mly) of Sgr A* R(M/K) = 6'3.
This corresponds to NIR spectral index a; = 0.6 + 0.2
(Hora et al. 2014; Witzel et al. 2014).

Two crucial parts of the ABC algorithm are (1) a method to
simulate mock data from the model parameters, and (2) a
distance function that describes how closely the mock data
resemble the observed sample. Our PMC-ABC implementa-
tion, which follows that of Ishida et al. (2015), is an iterative
one that first chooses random values for each of 11 parameters
(listed in Table 5) according to the current probability
distribution for each. (For the first iteration, the probability
distribution is given by the priors.) Each parameter set is used
to generate a mock light curve for NIRC2, NaCo, and IRAC,
and each light curve is transformed to its structure function. For
this step, the range and binning of time lags must match those
of the real data.

Many structure functions are generated this way, each from
new values of the 11 parameters but with the probability
distributions fixed. These structure functions are compared with
the structure functions of the real data via a distance function

15 ABC algorithms are routinely used in cosmology (see, e.g., Akeret
et al. 2015).

16 the variability literature as followed here, the definition of the structure
function is such that a structure function of order M removes polynomials of
order M — 1 from the data—that is, the first-order structure function is blind to
DC offsets in the data. In the literature about turbulent media, V(7) as defined
here is called the second-order structure function.
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Figure 4. Observations with Spitzer /IRAC (black) and Keck /NIRC2 (blue) on 2016 July 12-13. The inset shows both light curves on an expanded abscissa and with
K flux density multiplied by a factor of 12.4 and then 1.74 mJy subtracted (see Appendix A and Figure 5) to match M. Light curves are given in observed flux density
with no interstellar extinction correction. This is the only simultaneous data set from both observatories that shows significant variability.
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Figure 5. Results of the MCMC analysis for R(M/K) from the simultaneous
IRAC and NIRC2 data (Section 2.3, Appendix A). Contours show the joint
(posterior) probability density for each parameter pair, and panels along the
upper right edge show histograms of the marginalized posterior of each
parameter. For each histogram, the dashed lines mark the 16%, 50%, and 84%
quantiles. Parameters are the ratio 8(M/K), the dispersion ogis, in the ratio,
and the constant offset c.

(see Appendix B). The parameter sets that give structure
functions closest to the real data are used to modify the
parameter probability distributions, and the cycle is repeated.
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Figure 6. FFT periodograms of the eight IRAC data sets. Gray lines show the
individual data sets, and the black line shows their average at each frequency.
The calculation is facilitated by the IRAC light curve points being almost
equally spaced in time.

The structure function is blind to DC offsets, which is
important in the context of the arbitrary flux-density zero points
of the Spitzer epochs. It encodes information on the flux-
density PDF, the measurement noise, the intrinsic correlations
of the variability process, and the cadence and window function
of the observations. (For detailed discussions of the structure
function, see Emmanoulopoulos et al. 2010 and Koztowski
2016.) The intrinsic variability process and the window
function are hard to disentangle, and for our analysis it is
important to choose a representation that emphasizes the parts
of the structure function that are dominated by the intrinsic
correlations. With increasing time lag, a decreasing number of
point pairs contribute to the structure function bins. For time
lags longer than half the observing window (i.e., 12 hr for
Spitzer), not all flux-density measurements contribute to every
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Figure 7. Logarithmically binned structure functions (Equation (2)) for the
light curve data. The lower panel shows the NaCo structure function in green
and the NIRC2 structure function in red. The upper panel shows the IRAC
structure function.

structure function bin, and the variance of the structure function
increases dramatically without carrying much information
about the intrinsic variability. Therefore we chose a logarithmic
binning scheme, roughly equally spaced in logarithmic time
lags, with a spacing large enough to allow for a similar number
of points in the long-time-lag bins. We included time lags up to
half the size of the observing window, ~700 minutes in the
case of the IRAC data. For the NaCo and the NIRC2 data,
which have a wide range of observing window durations, we
used points of similar variance increase in the structure
function, 300 minutes and 40 minutes, respectively. For the
ranges of [160, 700] minutes (IRAC), [50, 300] minutes
(NaCo), and [10.5, 40] minutes (NIRC2), we used a single
large bin with three times the weight in the distance function as
the lower bins (see Equation (27))."” This approach makes
conservative use of the complementary but overlapping
information provided by each instrument, with IRAC providing
the longest timescales covering the coherence timescale, NaCo
at medium timescales between 100 and 10 minutes, and NIRC2
at the shortest timescales to below 1 minute.

The slope of the structure function is related to the slope of
the underlying PSD but is also a function of the overall
variance of the process and the variance of the measurement
noise. In particular, for red noise with quickly decreasing

7 It is not necessary to densely sample the shape of the structure function
around the break timescale. Because the mock data are computed as the Fourier
transform of the PSD, the break frequency contributes to all timescales.
However, the plateau of the structure function at the longest timescales is
directly related to the variance of the process and crucially helps constrain the
PSD parameters.
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amplitudes toward higher frequencies, the structure function at
the shortest timescales close to the data cadence 7,4 is
V(T & Tead) ® 207, (3
with o the measurement noise. If the red-noise process has
finite variance, then at timescales much larger than the
coherence timescale 7., the structure function is
V(r>m) ~2- Var[F(t)] + 202, “)

with Var[F(#)] the variance of the variability process.

Ishida et al. (2015) implemented ABC sampling in Python
and gave a detailed description of the method. Following their
approach, we developed our own C++ implementation.'®
Appendix B gives a more detailed description of the algorithm

and the underlying model.
We tested three models of the flux density PDFs:

1. Case 1 (exploratory): independent power-law parametri-
zations of the flux-density PDFs in K-band and M-band

2. Case 2 (exploratory): a power-law parametrization of the
flux-density PDF in K-band and a log-normal parame-
trization in M-band

3. Case 3 (main result): independent log-normal parameter-
izations of the flux-density PDFs in K- and M-band while
including R(M/K) = 12.4 + 0.5 from the synchronous
K- and M-band data (Section 2.3)

All of the above parametrizations describe the data in the
limited flux-density range observed, and at least in the K-band,
they are equally valid. The choices were informed by the
analyses of Dodds-Eden et al. (2011) and Witzel et al. (2012).
While a log-normal distribution can be expected from accretion
variability processes (e.g., Uttley et al. 2005), and indeed a log-
normal distribution can also describe the observed K-band flux
densities, the log-normal parameters derived are related to the
location of the mode of the PDF. For the NaCo data, which
constitute the majority of the K-band data, the mode is close to
the white-noise-dominated part of the distribution. This makes
both parameters difficult to determine with precision. In
contrast, power-law parameters—slope and normalization—
describe mainly the tail, which is well above the white noise.
For K-band, Witzel et al. (2012) showed that the power-law
description is advantageous, but it makes the simplifying (and
possibly unphysical) assumption that the PDF increases
monotonically toward smaller flux densities until hitting a
sharp cutoff at zero flux density. Nevertheless, the baseline
Case 1 fit uses a power law for both bands. Because we do not
have, a priori, a detailed understanding of the M-band
distribution, and also motivated by (but not explicitly using)
the additional information drawn from synchronous data,
Case 2 investigates a log-normal distribution for M-band.
Finally, adding constraints from simultaneous K + M data lets
even the double log-normal parametrization give well-con-
strained parameters, and Case 3, our preferred model, gives
results for this possibility.

To simultaneously fit the structure functions of the three data
sets, the model parameters (Table 5) are as follows:

% Our C++ implementation (Appendix B) is based on FFTW, uses an
efficient algorithm (Appendix C) for calculating structure functions, and is fully
parallelized for large computational clusters.
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Table 5
Priors and Posteriors of Bayesian Analysis

Mean of
Parameter Prior Posterior Description
Case 1: K power-law /M power-law model
Y flat” on [1.2, 3.5] 2211912 primary PSD slope
7P flat* on [1.2, 10.0] 6.013% secondary PSD slope
f» [10~% minutes '] flat" on [1.0, 600.0] 3.5070%8 primary correlation frequency
fy2 [minutes™ "] flat" on [0.001, 0.6] 0.347913 secondary break frequency

>0.120 (95% credible level)

Fy [mly] Gaussian (u = —0.36, 0 = 0.05)
Bk Gaussian (1 = 4.22, 0 = 0.6)
B Gaussian (u = 4.22, 0 = 0.6)

K flat on [0.01, 24.0]

Okeck [MJy] Gaussian (1 = 0.017, o = 0.008)
oyt [mly] Gaussian (@ = 0.034, o = 0.008)
orac [mly] Gaussian (4 = 0.65, o = 0.2)

—0.3779%2
4537534
4.45+9:38

0.01473:90¢

0.0313:903

0.676+9:929

pole of the power-law flux-density PDF (K- and M-band)
slope of the power-law flux-density PDF in K-band
slope of the power-law flux-density PDF in M-band
5923 M to K flux density ratio

measurement noise of the Keck observations
measurement noise of the VLT observations

measurement noise of the IRAC observations

Case 2: K power-law /M log-normal model

" flat" on [1.2, 3.5]
P flat on [1.2, 10.0]
f»> 1073 minutes '] flat* on [1.0, 600.0]
fvo [minutes™ "] flat* on [0.001, 0.6]

Fo [mly] Gaussian (u = —0.37, 0 = 0.05)
Bk Gaussian (1 = 4.22, 0 = 0.6)
Hiogn.M flat on [—6.0, 6.0]

Ologn,M flat on [0.001, 4.0]

OKeck [MJY] Gaussian (¢ = 0.017, o = 0.008)
oyrr [mly] Gaussian (¢ = 0.034, 0 = 0.008)
orac [mly] Gaussian (1 = 0.65, 0 = 0.2)

2215012 primary PSD slope

6.0°%7 secondary PSD slope
371512 primary correlation frequency
0.33°517 secondary break frequency
>0.112 (95% credible level)

—0.377¢6
459703
—0.3713
0.89703%

0.015+,904

00317663

0678057

pole of the power-law flux-density PDF in K-band
slope of the power-law flux-density PDF in K-band
log-normal mean in M-band

log-normal standard deviation in M-band
measurement noise of the Keck observations
measurement noise of the VLT observations
measurement noise of the IRAC observations

Case 3: K log-normal /M log-normal model + spectral information from synchronous data

o0 flat* on [1.2, 3.5] 2.105989 primary PSD slope
7P flat” on [1.2, 10.0] 5.812% secondary PSD slope
f» (1072 minutes '] flat* on [1.0, 600.0] 4.11197% primary correlation frequency
Jo2 [minutes’ll flat" on [0.001, 0.6] 0.31f8_‘112 secondary break frequency

>0.118 (95% credible level)
Hiogn.K flat on [—8.3, 3.7] —1.35758 log-normal mean in K-band
Ologn.K flat on [0.001, 4.0] 0.56793¢ log-normal standard deviation in K-band
Hiogn,m flat on [—6.0, 6.0] 1.01f8jﬂ log-normal mean in M-band
Clogn,m flat on [0.001, 4.0] 0391013 log-normal standard deviation in M-band
OKeck [MJY] Gaussian (u = 0.017, o = 0.008) 0.013f8;88§ measurement noise of the Keck observations
oyrr [mly] Gaussian (¢ = 0.034, 0 = 0.008) 0.030f8_’88§ measurement noise of the VLT observations
orac [mJy] Gaussian (1 = 0.65, 0 = 0.2) 0.677f8j8{§ measurement noise of the IRAC observations
Notes.

? The joint prior distributions are flat under the conditions Jo2 > fp and > > 4, respectively; see Appendix B.3.

Unconstrained by the data; posterior is a minor alteration of the prior.

1. In all cases the respective instrumental measurement
uncertainties o and four PSD parameters: slopes v, and v,
and break frequencies f, and f;,

2. For Case 1, flux-density PDF parameters F,, (pole), Ok
and [y, (power-law slopes), and the M- to K-band ratio
factor s'°

19 This choice of parametrization was motivated by the reports that R(M/K ) is
invariant within uncertainties, at least over a wide range of timescales (except
for very minor short-timescale fluctuations) and flux-density levels (Hornstein
et al. 2007; Witzel 2014 but disputed by, e.g., Ponti et al. 2017). However, this
parametrization permits a flux-density-dependent R(M/K) if Bx = (y. In this
case s loses its meaning as the M- to K-band ratio factor (see Appendix D).

11

3. For Case 2, K power-law parameters F, (pole) and (g
and M log-normal parameters fiiogn psr a0d Ologn s

For Case 3, two pairs of log-normal parameters fiiogn ks
Ologn,k> Mognam» and Ooenp. The Case 3 analysis is
additionally based on a modified distance function
(Equation (42)) to select combinations of log-normal
PDFs that result in R[M/K, F(K) = 0.15mly] ~ 124
(see Section 4.4 for details).

4.

Table 5 lists the priors for each of the parameters (see also
Appendix B.3). We used informative Gaussian priors for the
measurement noise levels, which are independently deter-
mined, and for the power-law parameters in exploratory
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Figure 8. Results of the Bayesian structure function fit for Case 1 (power-law /power-law; see Section 3). Contours show the joint (posterior) probability density for
each parameter pair, and panels along the upper right edge show histograms of the marginalized posterior of each parameter defined in Table 5. For each histogram,
the dashed lines mark the 16%, 50%, and 84% quantiles. The upper limit for 1/f;,, with a probability of 95% is 8.3 minutes.

Cases 1 and 2. The reasons are further discussed in Section 4.2.
For Case 3, we used flat priors for the unknown parameters in
order to let the data dominate the posteriors.

Developing and running the ABC algorithm required an
extensive effort in optimization of code and adaptation of the
distance function to the problem to achieve the results
presented here. The large number of calculations involved
in the massive iterative generation and evaluation of light

curves—including both test and final analysis runs—required
in total about 60,000 CPU hours on our UCLA Hoffman
cluster node and 250,000 CPU hours on the XSEDE super
clusters Stampedel, Comet, and Bridges (Towns et al. 2014).
Each of the runs reported here took 2 days on 24 cores, and
the last iteration with 10,000 parameter sets took about 1 day
each on 800-1200 cores executing ~2 x 10'° FFTs. The
results of our Bayesian analyses are shown in Figures 8-10,
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Figure 9. Results of the Bayesian structure function fit for Case 2 (power-law/log normal; see Section 3). Contours show the joint (posterior) probability density for
each parameter pair, and panels along the upper right edge show histograms of the marginalized posterior of each parameter defined in Table 5. For each histogram,
the dashed lines mark the 16%, 50%, and 84% quantiles. Upper limit for 1/f,, with a probability of 95% is 8.6 minutes, nearly the same as Case 1. The strong
correlation between the M log-normal parameters is expected when the mode of the intrinsic log-normal distribution is below the white noise level.

and the weighted averages and standard deviations are listed
in Table 5.

For Case 1 (power-law/power-law), all parameters are well
constrained with the exception of the secondary break
frequency f,, and slope 7,. The secondary break frequency
has a lower limit f,, > 0.120 minutes~! or equivalently an
upper limit for the secondary break timescale of 8.3 minutes
at the 95% credible level. The main break timescale
7, = 286743 minutes (90% credible level).

13

For Case 2 (power-law/log-normal), all parameters are
similarly well constrained, again with the exception of the
secondary break frequency and slope. The limit is
Jop > 0.112 minutes~! or equivalently an upper limit for the
secondary break timescale of 9.0 minutes (95% credible level).
The main break timescale 7, = 270125 minutes (90% credible
level).

For Case 3 (log-normal/log-normal), again all parameters

but the secondary break frequency f;» and slope 7y, are well
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Figure 10. Results of the Bayesian structure function fit for Case 3 (log-normal/log normal; see Section 3). Contours show the joint (posterior) probability density for
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the dashed lines mark the 16%, 50%, and 84% quantiles. Upper limit for 1/f;,» with a probability of 95% is 8.5 minutes, about the same as Cases 1 and 2.

constrained. The limitis f, , > 0.118 minutes ' or equivalently
an upper limit for the secondary break timescale of 8.5 minutes
(95% credible level). The main break timescale 7, =
2438 minutes (90% credible level).

4. Discussion
4.1. Validation of the Distance Function

The posterior distributions derived from our analysis depend
on the choice of distance function. The ABC posterior will only

14

approach the actual distribution if the distance correctly
encapsulates all information relevant to parameter estimation.
Without an analytic likelihood function, determining the
validity of the distance function is difficult. However, given a
mock data set derived from a set of assumed parameters, we
can determine whether our analysis and distance function
recover the known parameters. We tested our algorithm on
mock data sets constructed with 7, = 270 minutes and
v1 = 2.25 and with the same cadence and flux-density PDFs
as the real data. For the secondary break timescale and slope,
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we explored two cases: one with 7,, = 70 minutes and
72> = 4.5 and another with 7,, = 15 minutes and -, = 5.5.
For both cases, we were able to recover the secondary break
frequency and all other input parameters except .. Inability to
constrain v, is a result of the data being dominated by
instrumental white noise at the shorter timescales. In other
words, while a secondary break to a slope =, distinctly steeper
than =y, changes the variance at short timescales enough to be
detected in the mock data structure function, the actual value
for the secondary slope is dominated by the white noise
variance. As a result a precise measurement of v, is impossible,
but the data can reveal a break if one is present.

4.2. Quality of the Statistical Analysis

The mock structure functions resulting from the derived
posterior distributions (Table 5) are in excellent agreement with
the observed structure functions. Based on the final Case 3
iteration, we created 10,000 structure functions for each
instrument, and these closely resemble the measured structure
functions as shown in the upper panel of Figure 11. This figure
additionally shows the short- and long-timescale white noise
levels of the processes (see Equations (3) and (4)). The latter
were directly derived from the Case 3 log-normal parameters.
The measured structure functions asymptotically approach the
calculated levels.

Figure 12 shows the excellent agreement of the cumulative
distribution functions (CDFs) of the M- and K-band data with
the Case 3 posteriors. Light curves derived for Cases 1 and 2
show agreement between mock and observed data similar to
Case 3. However, for the power-law parametrization in these
cases, we could not use wide, flat priors because the resulting
parameters for the K-band CDF did not describe the observed
distribution. The reason seems to be that a power law is simply
not the correct model for the lowest flux densities. In order to
force the proper description of the K-band CDF, we used
informative priors based on earlier analysis (Witzel et al. 2012).
In Case 3 this reliance on informative priors is not needed.

4.3. Power Spectral Density of NIR Variability

Based on our combined modeling of the PSD and the
flux-density PDFs (and in Case3 the additional constraints
from K- to M-band spectral properties), we can derive a well-
constrained estimate of the PSD of the Sgr A* NIR variability.
The lower panel of Figure 11 shows a PSD synthesized from
the final Case 3 parameters. This synthesized PSD shows a
well-constrained shape over three orders of magnitude in
frequency. The IRAC data fully cover the coherence timescale
of the variability process (as expected), and there is no
significant evidence for a second break timescale below
20 minutes. However, FFT periodograms on real data with
white noise and irregular sampling are not statistically
consistent estimators and not well suited for precision
measurements of the PSD parameters, motivating our use of
the ABC sampler. The coherence timescale for Case 1 is
7 = 1/f,, = 28675, minutes at the 90% credible level.

Case 2 gives much the same timescale 7, = 270735! minutes

but with a larger uncertainty because of the uncertainty in the
log-normal parameters. Case 3 shows a slightly different (but
consistent within 1¢) and more precise 7, = 24352 minutes.
The validity of the smaller error bars is dependent on whether
or not one considers R(M/K) derived from the synchronous
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Figure 11. Structure functions and power spectral density. The upper panel
shows structure functions (Equation (2)) for the three instruments. Solid lines
show the observed data (as presented in Figure 7), and corresponding dashed
curves show the median of 10,000 Case 3 (see Section 3) model structure
functions for the respective instruments. The shaded envelopes denote the
model 68% credible intervals for each time lag. The vertical dashed line marks
the derived correlation timescale 1/f;. Pairs of horizontal short-dashed lines,
color-coded for each instrument, mark the two noise levels of each
measurement. The lower line of each pair indicates the measurement noise
(Equation (3)), and the upper line the intrinsic red noise of the Sgr A*
variability when sampled at timescales >>7, combined with measurement noise
(Equation (4)). (The wupper lines for NaCo and NIRC2 are nearly
indistinguishable.) The details of generating the structure functions, including
the choice of time lag ranges, are described in Section 3 and Appendix B.2. The
slope of the structure function relates to the slope of the PSD but also depends
on the underlying white noise level and is therefore different for each
observatory despite the common PSD. The lower panel shows power spectral
densities of 10,000 mock IRAC light curves derived from the final Case 3
parameters. The mock light curves have the same cadence as the IRAC data but
the lower white noise of the NIRC2 data. The solid line shows the median for
each frequency, and the shaded areas show the 68% credible intervals. Because
the PSD is a function of frequency, short time lags are to the right. The units of
the PSD are mJy” - minutes, but the scaling of PSD values shown here is
arbitrary. The slight break in slope around 0.2 minutes ' is well within the 1o
envelope. It arises from the condition v, > 7, and the lack of sensitivity to
structure below 9 minutes, close to the white noise level.

data as representative of the true ratio at that flux density. All
three cases give the most precise determination of the PSD
parameters so far, and all are consistent with the earlier estimate
7 = 128732 minutes (Meyer et al. 2009). Figure 13 compares
the credible contours of the respective analyses.

Break timescales of several hours are consistent with viscous
timescales rather than with dynamical timescales (e.g., orbital
modulations due to inhomogeneities in the accretion flow;
Dexter et al. 2014). Dexter et al. analyzed the characteristic
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Figure 12. Cumulative distribution functions of Sgr A* 4.5 ym, 2.18 um, and
2.12 pm flux densities (top to bottom). The black lines show the CDFs
observed by the respective instruments. For the VLT and Keck, the dashed
sections of the black lines indicate flux densities that stem from the single
brightest flux density excursion observed with that instrument (discussed in
Section 4.4). The dashed blue lines show the median CDFs from the Case 3
model, and shaded areas show 68% and 95% credible intervals derived from
10,000 light curves drawn from the Case 3 parameters (Section 3 and Table 5).

timescale of Sgr A* from 230, 345, and 690 GHz submm data
and found 7 gpmm = 4807380 minutes at the 95% credible
level. The authors pointed out that the timescale of ~8 hr in the
submm is more than 3¢ larger than the former NIR timescale of
~2.5 hr Meyer et al. 2009). Dexter et al. (2014) discussed the
possibility of the NIR emission originating from the same
process as the submm but at smaller radii. The dependence of
the viscous timescale on the radius is fy o< R3/2. Therefore
the timescales above suggest the NIR radius to be ~0.5 of the
submm radius. For a canonical size Rgypmm = 3 Rs of the
submm emission region (with Rg the Schwarzschild radius),
this puts the entire NIR emitting process very close to the ISCO
(which is unlikely). The authors concluded that a difference in
radius is likely not the reason for the different timescales and
suggested that adiabatically expanding plasma with delayed
submm emission at larger sizes could be a natural explanation
of the timescales.

Our findings change the interpretation of the relative
timescales. 7, NIR = 243%8 minutes is statistically consistent
with the submm values. This suggests a more direct relation
between the NIR and submm emission (e.g., both wavelengths
stemming from the same optically thin synchrotron source). A
detailed analysis of a larger submm data set with similar
statistical tools as used here and further simultaneous
observations are needed to refine this relation.

Despite the ability of the ABC algorithm to detect secondary
timescales in mock data, there is little indication of a second
break in the real data, regardless of the choice of parametriza-
tion. Indeed, a second break can be restricted to timescales
<9 minutes. Only Case 3 has even a small peak in the posterior
with 1/f,» ~ 6 minutes. (See the f;,, histogram in Figure 10.)
Shorter break times are consistent with the data, and the
secondary break slope v, is unconstrained. The existing data
therefore do not require a second break at all.

Several models predict modulation of the NIR light at
frequencies related to motion at the innermost stable circular
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(Table 5). The upper panel shows Case 1 and the lower panel shows Case 3.
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orbit (ISCO) of the black hole, either as a QPO (Meyer
et al. 2006a; Zamaninasab et al. 2010; Dolence et al. 2012) or a
loss of PSD power below the ISCO timescale. Either would
create a second break (Dolence et al. 2012). If these or other
processes near the ISCO modulate the light curve of Sgr A,
the absence of a secondary break in the PSD implies a lower
limit on the black hole spin. The orbital period for a direct-
rotation, equatorial orbit at the ISCO is

GMyy,
37

3/2

P =27 (xgco + @)

&)

where 0 < a < 1 is the dimensionless black hole spin, and
Xisco, the radius of the ISCO in units of GM,,;, /c2, is given by

xisco =3+ Zy — (3 — Z)B + Zi + 2Zy)1'/2. (6)
Here Z =1+ (1 —a)3[ +a)'?+ (1 —a)'/3] and
Z, = (3a® + Z})'/? (Bardeen et al. 1972). Figure 14 shows
P(a) for My, = 4 x 10° M. Only ISCO modulation periods
shorter than the 9 minutes upper limit and therefore black hole
spins a > 0.9 are consistent with the light curve data, unless
there are no NIR flux variations at the frequency of the ISCO.
The hint of a posterior peak for case 3 at about 6 minutes
would, if taken seriously, point to maximum spin if the power
is generated at the ISCO. The models as presented by, for
example, Meyer et al. (2006a, 2007) and Zamaninasab et al.
(2010) can be ruled out because they predict NIR variability
with typical timescales of 15-20 minutes.
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Figure 14. ISCO orbital period (Equation (5)) as a function of black hole spin
in the Kerr metric for a black hole mass 4 - 10° M., The horizontal dashed line
indicates a period of 8.5 minutes, the upper limit on a secondary break
timescale. The vertical dashed line shows the corresponding dimensionless
spin a.

4.4. Sgr A*’s NIR Spectral Index

The K- to M-band ratio derived from the Case 1 (power-law/
power-law) ABC fit s = 5.9773 (10) is in excellent agreement
with the value s = 5.8]4® calculated from the published NIR
source spectral index a; = 0.6 = 0.2. That index was derived
from synchronous 1.6 ym to 3.7 um measurements (Hornstein
et al. 2007; Witzel et al. 2014). However, s ~ 6 is in striking
disagreement with S3(M/K) = 12 derived from the simulta-
neous K and M data during its particularly dim flux-density
level with a median of F(K) = 0.15 mJy (Section 2.3).

In order to test how s ~ 6 is related to our choice of prior,
we attempted to alter the prior such that a higher value of s was
preferred. In all tests with Gaussian priors centered around
s > 6.0, the ABC sampler consistently found a posterior about
lo below the mean value of the prior to approach s = 6.0.
Altering the prior for s to exclude s = 6.0 and prefer higher
values led to significantly different power-law indices [ for the
flux-density PDFs in the two bands (and thus to a flux-density-
dependent spectral index; see Appendix D). In the case of flat
priors wide enough to encompass s = 6.0, the ABC code
always reverted to a posterior s ~ 6.0 (Figure 8). This behavior
shows that, integrated over the entire data sets and in the
absence of simultaneous data, s = 6.0 describes the data well
enough to match the total variance in both bands (i.e., the levels
and shapes of the structure functions at longer time lags). This
result, however, requires use of informative priors for the
power-law PDF parameters. Flat priors produced flatter, but
still equal, power-law slopes for the K- and M-band PDFs but
gave a poor fit to the K-band PDF. The ratio s preferred higher
values but remained only loosely constrained.

The tension in Case 1 with informative priors between the
statistically derived ratio s and the observed (Figure 4) ratio
suggests a variable spectral index, in particular a trend of a;, with
flux-density level. All three parametrizations allow the NIR
spectral index to be a function of flux-density level. Based on the
fact that the light curves at different wavelengths within the NIR
are almost identical in shape (ignoring the minor short-timescale
fluctuations discussed in Section 2.3 and Witzel et al. 2014),
the basic assumption is that if one NIR band rises or falls, the
other rises or falls too. As a consequence, the quantiles of the
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flux-density PDFs must be equal for corresponding flux densities,
and it is possible to derive the flux-density ratio between
two bands as a function of flux density in one of the bands and
the PDF parameters. These dependencies are calculated in
Appendix D for our three different combinations of power-law
and log-normal PDFs. In Case 1 our posterior distributions for F,
Bk, Bu, and s result in an almost perfectly constant R(M/K)
independent of F. This is expected because the posteriors of the
power-law slopes (g and (3, are almost identical, and the PDFs in
both bands are the same except for a factor R(M/K) =~ s.

In the context of matching quantiles, larger values for R(M/K)
at low flux-density levels imply different distributions for K
and M-band flux densities, in particular a flattening of the M-band
flux-density PDF toward low flux densities relative to the K-band
PDF. The IRAC data set is competitive with the S/N of the
ground-based telescopes (Hora et al. 2014). The measured large
value for R(M/K) is an indicator that, in contrast to K-band, in
M-band we start to discern the intrinsic turnover at the mode of
the flux-density PDF despite measurement noise. Dodds-Eden
et al. (2011) originally suggested a log-normal flux-density PDF
parametrization for Sgr A*. Parameterizing the M-band PDF as a
log-normal while keeping the power-law parametrization for
K-band (as a well-constrained reference) is one way to test for the
presence of an intrinsic turnover in the M-band PDF. Case 2
analyzes this possibility.

Figure 15 illustrates how the different K and M PDFs
lead to a variable flux-density ratio that naturally reaches
R(M/K) = 12.4 at the average offset-corrected flux density
Fave = 0.15mJy measured for the 2016 data. Unfortunately,
because the log-normal parameters cannot be well con-
strained from non-synchronous data only, the marginalized
distribution of the flux density ratios is much wider in Case 2
than in Case 1 (Figure 15). At low flux densities, the 10 and
20 contours cover a huge range of possible flux-density
ratios. However, the distributions peak at about the same
ratio, and the flux-density ratio at high flux densities is about
the same in both cases. This suggests that the power-law /log-
normal parametrization of Case 2 can naturally explain both
the redder spectral indices observed for low phases of Sgr A*
(Eisenhauer et al. 2005; Gillessen et al. 2006; Krabbe et al.
2006; Bremer et al. 2011; Ponti et al. 2017) and the bluer
spectral indices during brighter phases (Ghez et al. 2005a;
Hornstein et al. 2007; Bremer et al. 2011; Witzel et al. 2014).

This discussion takes R(M/K) ~ 12 at face value despite
evidence for short-timescale fluctuations. However, this value
is integrated over ~3 hr during which the source fluctuated
around the low level of Fg ~ 0.15mlJy with a maximal
variation amplitude of AFg ~ 0.1 mJy. In the following, we
assume that this ratio is representative for Fg ~ 0.15 mJy.

In Case 3 we assumed a log-normal parametrization for both
bands. (It would be surprising for the K-band PDF to have a
fundamentally different form than the M-band PDF.) This case
exploits the additional information from the synchronous data
in our statistical analysis of the non-synchronous data sets. This
is achieved by a modification of the distance function, as given
by Equation (42). This approach has immense constraining
power and allows us to derive tight posteriors for the log-
normal parameters of both bands. Equation (41) gives R(M/K)
as a function of F(K) as derived from the posteriors. Figure 16
shows the drastic improvement of the 1o and 20 envelopes.
Interestingly, the flux density distributions derived from the
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Figure 15. Flux-density ratio R(M/K ) as a function of K-band flux density, as derived from our posteriors for Cases 1 and 2. The central panel shows the median and
68% and 95% credible contours for Case 1 in green and for Case 2 in blue. The red point denotes the flux-density ratio derived from the simultaneous observations
(Section 2.3). The upper panel shows the CDFs for Case 2: M-band in purple and K-band in orange. Shading indicates the limits at the 68% credible level. In order to
make the CDFs comparable, the abscissa of the M-band CDF (i.e., the M-band flux densities) has been scaled by a factor 1/5.9 (with 5.9 being the average R(M/K) in
Case 1) to place them on the same scale as the K-band flux densities. The right panel shows histograms of R(M/K ) marginalized over the actually observed flux-

density range. Case 1 is in green and Case 2 in blue.

posteriors predict F(K) < 0.15 mJy to occur with a probability
of only ~23% (this flux density is located left of the peak of
most distributions in the particle system), and the flux-density-
ratio histogram in the range directly observed is peaked around
R(M/K) ~ 9.0, close to the value derived in Case 1.

In summary, in all three cases R(M/K) at high flux density
is consistent with a; ~ 0.6 (e.g., Hornstein et al. 2007 and
reddening values from Section 1). At F(K) = 0.15mly,
oy, = 1.64 £ 0.06. This is the most precise determination of
a spectral index change with flux density in the existing
literature. This value is consistent with a; = 1.7 determined by
Gillessen et al. (2006) for their off-state-subtracted dim state.
The combined data are consistent with well-constrained log-
normal parameters for both M and K and require o to depend
on the flux-density level. For Case 3, an empirical equation for
ay as a function of observed F(K) is

as = ¢ - log [M] + 1+ 1.2708 - (Ay — Ak), (7
mJy

with £ = —0.93 + 0.16 and n = 2.7 4+ 0.1 (1o uncertainties).
Equation (45) shows how Equation (7) was derived, and
Figure 17 illustrates the resulting o, dependence on flux density.
The correlation between & and 7 is p(&, n) = C(&, n)/(0c0,) =
0.87 (with C(&, 1) = 0.0115 the cross-covariance)—that is, the

18

two parameters are strongly correlated.”® For F(K) < 0.35 mly,
Case 3 predicts a deviation of more than 2¢ from the constant
spectral index of Case 1.

The change of oy with flux density is in the same direction
but less extreme than found by Eisenhauer et al. (2005), Krabbe
et al. (2006), or Ponti et al. (2017). A direct comparison
between the studies is difficult because of the following:

1. Different S/N from the various instruments; for Gaussian
white measurement noise, o, at low, noise-dominated
flux densities becomes the logarithm of a Cauchy-
distributed random variable (i.e., a distribution with
extreme tails in both directions)

2. Different levels of background contamination and
different methods of background subtraction

3. Intrinsic momentary variations outside the general trend
(which we determined here with integral methods; e.g.,
the simultaneous K and M data presented here show an
extreme value of a; > 1.9 in one brief time interval)

The present analysis benefits from two advantages: (1) The
comparably high S/N in both bands thanks to the IRAC

20 When explaining results from Equation (7), we will use the variables £ and 7
instead of their numerical values. With the uncertainties of ¢ and 7 being
strongly correlated, numerical values with uncertainties could be misinterpreted
as independent.
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[ Flux-marginalized”
[ spectral index
[ distribution

F(K) [mJy]

Figure 17. K-band to M-band spectral index as a function of K-band flux
density. The filled red circle in the left panel shows the result of the
simultaneous data (Figure 4), and the solid line shows the relation from
Equation (7) with parameter posteriors of Case 3. Shaded areas show the 68%
and 95% credible contours. Absolute values of oy are based on extinctions
Ag = 2.46 mag and A, = 1.0 mag, and the black error bar in the lower right
indicates the uncertainty in the spectral index due to uncertainties in these
reddening values. The right panel shows the histogram of o, marginalized over
the actually observed flux-density range. The dashed lines show (vertical) the
typical flux-density level and (horizontal) the corresponding c,. Previous
studies (e.g., the Hornstein et al. 2007 determination of ag_;) became noise
dominated below ~0.2 mJy. Gray curves show values of «; predicted by a
simple synchrotron model (Equation (53)) for several values of 7 as labeled.
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M-band data. (2) The determination of oy from flux-density
PDFs, which themselves are derived from structure functions
(i.e., from flux-density differences rather than from absolute
flux-density levels). Background contamination is only an issue
for the simultaneous data set, which is one of the longest Keck
light curves available and which has a distinct shape. That
makes the determination of the relative offset and the flux-
density ratio very accurate.

The intrinsic short-timescale variations of a; seem to be
based on small flux-density deviations of one band relative to
the shape of the other. As a consequence, they significantly
change the spectral index only at low flux-density levels. As the
flux-density levels rise, the spectral index should follow the
trend of Equation (7) with increasing precision. A simple
comparison with the Hornstein et al. (2007) and Witzel et al.
(2014) data suggests consistency with such a mild trend. An in-
depth analysis of additional data will be published separately.

While the Case 3 log-normal parametrization is consistent
with most of the data, the K-band CDFs (Figure 12) show tails
at high flux density outside the 68% credible level (but within
the 95% level). These are caused by a single particularly bright
flux density excursion in the NaCo data and one similarly
bright in the NIRC2 data. While these tails were one reason
Witzel et al. (2012) chose a power-law approach, the spectral
properties discussed in Section 4.4 are a strong indication that
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for the majority of flux densities, a log-normal parametrization
is preferred over a power-law. The need for informative priors
in Case 1 is another hint that a power-law parametrization is
not an appropriate model. Dodds-Eden et al. (2011) interpreted
the tail in the VLT data as an indication for a second population
of power-law-distributed flux densities. It is intriguing that the
independent Keck data set shows a similar tail as the VLT data.
However, both tails constitute about 1% of the K-band
observed time. If M-band (which does not show any indication
of a higher rate of occurrence at higher flux densities) is
included, they constitute only about 0.6%. Whether the extreme
flux densities are extraordinary or not crucially depends on the
baseline model. One way to integrate the spectral properties at
the lowest flux densities with the extended tails without adding
more parameters would be a log-log-normal (double logarith-
mic) parametrization as proposed and used by Meyer et al.
(2014). In the context of accretion processes, however, a log-
normal distribution is the better established choice (e.g.,
Gandhi 2009). More data are needed to properly test whether
a different PDF or a second population of extreme events is
needed, but the Case 3 log-normal model is adequate for the
existing data.

4.5. Implications of the Flux-density-dependent Spectral Index
for a Radiative Model

For the parametrization of Case 3, we can provide a physical
context why the spectral index is a linear function of
log [F(K)]. In the following we analytically compare our
results to the submm/NIR variability model discussed by
Eckart et al. (2006a) and Bremer et al. (2011). Eckart et al.
(2006a) argued that the submm (>1THz) to NIR emission is
pure synchrotron radiation or synchrotron radiation with an
additional contribution from synchrotron self-Compton emis-
sion. During brighter phases of Sgr A*, o, = 0.6 is close to the
canonical value for optically thin synchrotron radiation
(ay = 0.7; e.g., Moffet 1975). The turnover of the synchrotron
spectrum from optically thick to optically thin is assumed to be
at frequencies <1 THz. The steeper spectral indices during dim
phases discussed in the literature (Eisenhauer et al. 2005; Ghez
et al. 2005b; Gillessen et al. 2006; Krabbe et al. 2006) are
interpreted as the result of a changing electron energy
distribution with a changing exponential cutoff at high energies
due to synchrotron losses. As derived in Appendix E, the
dependence of a; on S(v) is

a=F 1og[ﬂ] o ®)
mly
with € and 7 being parameters related to the observing
frequencies and submm spectral index and flux density and
defined in Appendix E. Equation (8) has the same form as
Equation (7), and one can see this as a motivation to use the
log-normal /log-normal parametrization in the context of this
model. With v, = 6.66 x 103 Hz (M-band) and v = v, =
1.375 x 10" Hz (K-band), & = —0.96576 ~ ¢ (i.e., the
spectral index slope for this model is in excellent agreement
with the empirical slope determined in Case 3). This is
illustrated in Figure 17. Our findings in Case 3 therefore imply
that variations of the cutoff frequency v, are sufficient to
explain the observed flux density and spectral index variations.
Equation (55) then implies a linear relation between the submm
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Figure 18. Synchrotron cutoff frequency as a function of observed K-band flux
density according to Equation (9) for & = 0.4. Solid lines show the median
and shaded areas of the 68% and 95% credible contours.

spectral index & and the submm flux density log [i(—;y)]

independent of F(K). Equations (50) and (7) give for the break-
off frequency v

0 —24.1921 -{a, — € - log LiG9)
THz mly

—n — 1.2708 - (Ay — Ag)} 2, )

with the condition

log F(K) < as —n — 1.2708 - (Ay — Ag) (10)
m]y & '

This last inequality states that &, and consequently log [%],
can only be constant for a certain flux range (e.g., 0mJy < F
(K) < 3.0 mly for &; = 0.4). For flux densities higher than
this range, & needs to become smaller. However, no flux
densities higher than this range have been observed.

Figure 18 shows 1q as a function of F(K) in the range of
0.4-1.5mlJy for a constant, optically thin spectral index
&; = 0.4 and at a submm frequency 7 = 1 THz. The required
flux-density of the optically thin submm component is ~2.3 Jy
for &, = 0.4. This value is similar to, but somewhat smaller
than, the typical submm levels, which indicates that such an
optically thin submm component might not account for all
submm radiation. The predicted cutoff frequencies for
moderately bright phases in the NIR are between 50 THz and
5@
mly
seems sufficient to explain the NIR statistics, Equations (55)
and (10) leave open the possibility for a rich interdependence of
F(K), S(7), and &, that is testable with synchronous
observations. Indeed, a close correlation between submm
fluctuations seen with SMA and the 2014 June 18 IRAC light
curve has been observed (Fazio et al. 2018). However, other
studies have found evidence for optically thick synchrotron
radiation at submm wavelengths (e.g., Yusef-Zadeh et al.
2008). The simple model presented here only begins to address
the question of how the NIR and an optically thin submm
component might be related. It does not provide any
explanation about the origin of the variability in the submm,
the origin of the non-thermal electrons, the acceleration
mechanisms, or the link to the X-rays, which are crucial for

200 THz. Even if a constant combination of &, and log[
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understanding the high energy end of the electron distribution
(see, e.g., Ponti et al. 2017).

4.6. The Sgr A* Spectral Energy Distribution

In Case 3, the inferred log-normal parameters allow us to
derive the mode and the expected flux-density PDF for each
band. These quantities provide information on the lower limits
of NIR flux densities. The modes of the log-normal distribu-
tions are

MI[F (M)] = 2.34"113 mJy and

MI[F (K)] = 0.19702} mJy (11)

for the M- and K-band, respectively. With a Galactic center
distance of 8.3 kpc (and extinctions given in Section 1), these
flux densities correspond to

M(yL,,) = (3273 103 erg s~ and

M(gL,) = (2.6 103 erg s\, (12)

The error bars do not include uncertainties in the extinction or
distance. These values are in full agreement with previously
published upper limits (Genzel et al. 2003 and references
therein).

In order to put the NIR flux densities in context, it is
important to understand how the SED was estimated in the
radio regime. The radio levels were obtained as average flux
densities of multiple observations (e.g., Falcke et al. 1998).
Because of the symmetry of the intrinsic flux-density PDFs in
the radio regime, the average is identical with the mode. The
NIR modal values, being the most probable flux densities of
Sgr A* during its least variable moments, are the natural
counterparts to these radio flux density levels and can be
interpreted as characteristic flux densities of Sgr A* within their
bands. In this picture, a distinction between a quiescent (or
steady) and a variable NIR state, as often proposed in the
literature, is unnecessary. The modal values are merely
particular flux densities within the distributions of variable
flux densities.

Despite its attractive simplicity, representing the variable
flux densities of Sgr A* by a single value is misleading. A full
characterization of flux densities is provided by the expected
flux-density PDF. This PDF incorporates information on both
the intrinsic variability and the uncertainty in the parameters of
the log-normal distributions given our data, and therefore is the
proper tool for comparing SED models with our findings. The
expected PDF is defined as

PF|T) = f P(FI0)P012)do, (13)

with P(F|0) the log-normal PDF defined in Equation (22) and

f7\5(0|@) the approximate posterior defined in Equation (33). To
estimate these, for each mock parameter set, we drew 100 flux
density values from the corresponding log-normal distribution
and assigned each the weight corresponding to the parameter
set. We then derived weighted quantiles from the resulting 10°
values. The results are presented in Table 6 and Figure 19.
Figure 19 represents the first systematic characterization of
Sgr A”s SED in the NIR at the lowest flux densities. The
lowest quantiles are extrapolations to flux densities that are
unobservable because of measurement noise. They are valid
under the assumptions of Case 3, which has 5Sth percentiles
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Table 6
Percentiles of the Expected Flux-density PDFs
Percentile F(K) vrlLvg F(M) VyLvy,
(mly) (10** ergs™") (mly) 10** ergs™")
Sth 0.055 0.60 0.94 1.30
15th 0.110 1.19 1.49 2.06
25th 0.158 1.71 1.92 2.65
35th 0.208 2.26 2.33 3.21
45th 0.263 2.85 2.75 3.79
55th 0.325 3.52 3.19 4.40
65th 0.398 431 3.70 5.10
75th 0.489 5.29 4.33 5.98
85th 0.618 6.69 522 7.20
95th 0.877 9.49 6.94 9.57
99th 1.190 12.88 9.12 12.58

Note. Percentile flux densities for Case 3 (log-normal/log-normal parame-
trization). The luminosities were derived assuming a distance of the Galactic
center of 8.3 kpc and extinctions Ax = 2.46 mag and A,; = 1.0 mag. The
uncertainties of these quantities are not included in the calculations of expected
luminosities.

Fs5¢,(K) = 0.055ml]y and Fs5q (M) = 0.94mlJy. These can
serve as lower limits for the typical flux density range. In
contrast, the quantiles above 25% are above the 30 detection
levels of NIRC2, and the median level is above the 3o
for IRAC.

Characterization of the dim-phase SED of Sgr A* constrains
the radiative processes at work. For radio wavelengths >3 cm,
the SED is dominated by synchrotron radiation from non-
thermal electrons with a power-law energy distribution
(Mahadevan 1998; Ozel et al. 2000; Yuan et al. 2003). The
models predict a significant contribution of this non-thermal
electron population to the NIR. Figure 19 compares the
corresponding luminosities with the Yuan et al. (2003) spectral
energy distribution model (as shown in their Figure 1). The
NIR flux densities agree remarkably well with the model of
synchrotron radiation, which was derived entirely from the
radio part of the SED for a slope of the electron energy
distribution of 3.5.

4.7. Black Hole Mass, Luminosity, and Rate of Stochastic
Variability Power

Meyer et al. (2009) found their Sgr A® break timescale
consistent with mass—timescale relations of AGN in X-rays.
However, it can be very difficult to obtain reliable break
timescales from AGN light curves (Kelly et al. 2013). Kelly
et al. analyzed X-ray and 0.51 pm light curves of 39 AGN by
introducing a parameter called “rate of stochastic variability
power” (RSVP, designated £?). This parameter is defined for
damped random walks and quantifies the rate at which
stochastic power driving the random walk is inserted. The
RSVP is related to the total variance of the Ornstein-Uhlenbeck
(OU) variability process (Kelly et al. 2009, 2013) by

¢? = 4xf, - Var[F (1)]. (14)

For the 39 AGN observed by Kelly et al., ¢* measured in
X-rays correlates closely with black hole mass. While ¢* as
determined from visible light curves also scales with black hole
mass, the (anti-)correlation with luminosity is even tighter.

As we have found here, Sgr A™ is well described by an OU-
process with a PSD slope of ~2 with one break timescale (see
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Figure 19. Observed and model spectral energy distributions for Sgr A™. Green and red points show, respectively, the 2.18 and 4.5 ym dim-phase luminosity densities
of Sgr A", as derived from the modes of the Case 3 analysis. The inset on the right shows several percentiles of the expected flux-density PDF as defined in
Equation (13). The gray connection lines indicate the change of the v/L,, spectral slope 1 — « with luminosity. The blue line shows an SED model (Yuan et al. 2003)
derived and normalized entirely from the radio part of the SED. The SED model assumes synchrotron radiation from electron populations with thermal and non-
thermal energy distributions for the radio to NIR, and inverse Compton and bremsstrahlung emission for the higher frequencies. The black, dashed curve shows the

non-thermal synchrotron model component (Yuan et al. 2003).

also Meyer et al. 2014.). Therefore we can use Equation (14) to
derive ¢* from the variance of the flux-density PDF and the
break timescale. For Sgr A* at M, log(? = —2.617015. The
value predicted by the empirical mass—RSVP relation (Kelly
et al. 2013) is log¢* ~ —7.4, about five orders of magnitude
smaller. This discrepancy might be expected because AGN are
highly accreting objects, whereas Sgr A* has a tiny Eddington
ratio. However, it is remarkable that the empirical luminosity—
RSVP relation (Kelly et al. 2013) predicts log¢*> ~ —3.63,
close to the value for Sgr A*. Figure 20 compares Sgr A* with
the Kelly et al. AGN, which have luminosities about nine
orders of magnitude larger. While the uncertainties of the
empirical relation put Sgr A™ just outside the 1o envelope, the
agreement is striking. These findings are even more surprising
considering that the Kelly et al. (2013) interpretation for the
luminosity—RSVP anti-correlation identifies the likely origin of
the visible radiation as blackbody radiation from the outer parts
of a thick accretion disk, whereas for Sgr A*, the NIR emission
is non-thermal synchrotron radiation from the innermost
accretion region.

4.8. Telescope Photometric Performance

While the observations from ground-based observatories do
not include data after 2010 for the VLT and after 2013 for Keck
(except the single 2016 data set), the VLT and Keck data used
here constitute the most comprehensive and best characterized
data sets available. They include most of the previously
published K-band data for Sgr A*. In particular, they have been
used in the statistical analyses of Witzel et al. (2012) and
Meyer et al. (2014) and therefore provide a well understood
baseline for the analysis of the 4.5 um Spitzer data. Our
analysis of the flux-density PDFs tells us which flux-density
level in M-band corresponds to which level in K-band. This
enables us to compare the relative sensitivity of each
observatory to a given flux-density excursion. For a represen-
tative clock time of a1 minutes (for which the Spitzer 8.4s
noise scales down by ~7 to orac = 0.05 mly) and large
flux densities, the S/N proportions IRAC:NaCo:NIRC2 are
1:1.7:3.7. For low flux densities where R(M/K) ~ 12, S/N
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Figure 20. Rate of stochastic variability power (RSVP, Section 4.7) as a
function of luminosity. Blue points denote 39 AGN observed by Kelly et al.
(2013), and the solid line shows those authors’ Equation (29). Dashed lines
show the corresponding uncertainty envelope. The red point shows the RSVP
for Sgr A* derived here.

proportions become 2:1.7:3.7 (i.e., Spitzer/IRAC observing in
M-band is competitive in S/N with ground-based AO imaging
with 8-10 m-class telescopes observing in K). The future
James Webb Space Telescope should be far superior at these
wavelengths.

5. Conclusions

The existing 2.2 and 4.5 ym variability data of Sgr A* can be
explained by a relatively simple model. The model incorporates
log-normal PDFs at both wavelengths and a broken power-law
PSD with a single break near 4 hr. The two brightest observed
epochs of Sgr A* hint at but do not require either a separate
process for these rare events or a PDF that is not log-normal.

This paper has aimed to do the following:

1. Presented the most comprehensive available set of NIR
light curves of Sgr A*. Data were compiled from three
observatories: the Spitzer Space Telescope, the ESO
VLT, and the Keck observatory.



THE ASTROPHYSICAL JOURNAL, 863:15 (29pp), 2018 August 10

2. Demonstrated the value of the new PSF extraction and
fitting tool AIROPA on photometry for Sgr A*

3. Introduced a new Bayesian method to determine the
power spectral density of irregularly sampled, red-noise-
dominated time series with non-Gaussian flux-den-
sity PDFs

4. Determined the power spectral density and characteristic
timescale 7, = 243f§% minutes of the variability process
with unprecedented precision

5. Excluded PSD structure at timescales of 10—100 minutes.
Such timescales correspond to the innermost stable
circular orbit for black hole spin parameter a < 0.9.

6. Determined the spectral NIR properties of Sgr A* and the
intrinsic flux-density PDFs with unprecedented accuracy.
In particular, we confirmed the NIR spectral index of
ay =~ 0.6 for flux densities above 0.3 mJy and found a
redder spectral index at lower flux densities.

7. Explored the spectral index dependence on flux density
within the context of a electron energy distribution with
exponential cutoff. We find the predicted submm levels
and variability amplitudes to be consistent with the
observed submm properties.

8. Determined the dim-phase SED in the NIR based on
synchronous K- and M-band data, assuming a log-normal
parametrization for the flux-density PDFs

9. Demonstrated that Sgr A* is in agreement with the anti-

correlation between luminosity and rate of stochastic

variability power derived from visible light curves of
more luminous AGN

Showed that the Spitzer Space Telescope has relative

photometric performance at 4.5 um on Sgr A* competi-

tive with ground-based AO observations at 2.18 ym

10.

These results are especially of interest for the GRAVITY
interferometric experiment at the Galactic Center. One of its
goals is to measure the astrometric signature of hot spots
moving close to the ISCO of the black hole. We expect that
GRAVITY will not detect any such signature at timescales
longer than 9 minutes, as we do not find any NIR ISCO
signature at these timescales. It seems imperative to design
GRAVITY to operate at timescales significantly shorter than
10 minutes.

Another interesting result is the indication of the intrinsic
turnover of the flux-density PDF at low flux-density levels in
M-band. This means that M-band space-based observations are
uniquely suited to explore all relevant timescales and the low
flux-density regime, where the changes in timing and flux-
density PDF possibly carry essential information about the
physical processes at work. Sgr A* will be an essential target
for the much more sensitive James Webb Space Telescope.

It is surprising how steady the statistical, spectral, and
polarimetric parameters describing the variability of Sgr A*
have been since the beginning of AO observations. The fact
that the PSD parameters can be determined more precisely with
a more extensive data set and a better method implies that the
PSD and PDF parameters are indeed self-consistent and nearly
stationary over the last ~15 years. (We have, however, not
strictly tested stationarity in this analysis.) While one might
expect the accretion process to be susceptible to abrupt changes
in the supply of material (e.g., material stripped off G1 or G2),
the NIR variability process shows no indication of that. The
timescales at which matter travels from the typical periapsis
distance of the G sources or S-stars (>100-200 au) are not
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clear. The interaction of infalling matter with the large number
of fast-orbiting stars in the S-cluster might prevent larger
clumps of gas from coherently finding their way to the
innermost accretion region, thus regulating the steady supply of
matter.
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Appendix A
Bayesian Estimation of the Flux-density Ratio from
Synchronous Data

Figure 4 shows simultaneous K and M light curves that
match very closely. In order to derive the best flux-density ratio
from these data, we modeled the M flux-density as F
(M) =s - F(K) + ¢, where s and c are constants to be derived
from the light curves. Each data point in the observed light
curves can be modeled as

Fireal (M) ~ N(s - Frea(K) + ¢, 05igp) (15)
Frobs(M) ~ N(F e (M), 03)) (16)
Frobs(K) ~ N(F; e (K), 0%), (17)

where x ~ N(u, 0?) denotes a random variable distributed
according to a normal distribution with mean p and standard
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deviation 0. Fg,s(M) and F.,(K) are the observed flux
densities including measurement white noise; Fie(M) and
F.q(K) are idealized flux densities without measurement
n0ise; Ogisp 1S an additional dispersion to allow the ideal ratio of
Frea(M) and F.,(K) to differ as implied by the previously
observed low-level and short-timescale spectral index fluctua-
tions (Witzel et al. 2014). Integrating over the model
parameters F. (M) and F ., (K) gives

Fiobs(M) ~ N(s - Fyops(K) + ¢, 03 + 5 - 0% + 0Gigp)- (18)

We implemented this likelihood function with a MCMC
Bayesian sampler in Pystan. With o), = 0.212 (the M-band
measurement noise for the rebinned IRAC data) and
ox = 0.015, we obtained the posteriors shown in Figure 5.

Appendix B
Bayesian Structure Function Analysis

For time series analyses of non-Gaussian-distributed light
curves, there is generally no analytic expression for the
likelihood function. That rules out a standard Bayesian
approach, and instead we use a population Monte Carlo
approximate Bayesian computation (PMC-ABC), which
requires no prior knowledge of the likelihood function. The
procedure was described by Ishida et al. (2015), but we have
created our own C++ implementation tailored to the task of
time series analysis. Our analysis procedure has four functional
components:

1. A method to randomly simulate data that mimic the
observations as closely as possible. The method is based
on a model parameterized by the quantities one wishes to
determine. The model can be either statistical or
deterministic or a combination.

2. A distance function that quantifies how close the
simulated data come to the available observations

3. A prior distribution for each parameter

4. The PMC-ABC sampler itself, which calls the three
components above in the proper order

A previous approach to the PMC-ABC sampler was described
by Ishida et al. (2015) and to data simulation by Witzel et al.
(2012) and Hora et al. (2014). Notation and details for this
work are explained below.

B.1. Simulating NIR Light Curves of Sgr A*

The power spectral density of the simulated data is a red-
noise power-law spectrum with breaks at two frequencies, f;
and f, » (Figure 21). The first break transitions between a slope
Yo = 0 (for low frequencies corresponding to long time lags) to
slope ~; and the second (at high frequencies corresponding to
short time lags) from v; to 7,:

£

f*?’l
f*’Yz

for f<f,
for f, <f<fn
for f>f,,.

PSD(f) (19)
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Figure 21. PSD model before and after nonlinear transformation. The black
lines show an example PSD model with two break timescales. Because the
abscissa is in frequency space, short timescales are to the right. In the notation
used here, the first break frequency at ~3 X 1073 minutes ™! is f», and the
second break frequency at ~0.1 minutes " is fb2- Slopes of the three segments
are from left to right vo = 0, 74, and 7,. The last is indeterminate in the actual
data, because no second break can be found. The blue curves show a simulated
measurement of the example PSD (Appendix B.1) based on an average FFT
periodogram of 1000 equally sampled light curves with 6 s cadence and a
duration of 10* minutes.

For long time intervals t > 7, = 1/f}, the flux-density PDF
(denoted P(F)) is well described by a power law:

G-DIF-F)]"
P[Fl(ﬁ, F())]: [ 7F0 :|[ (*FQ) ] for F}O’

0 for F <O,
(20)

where (3 is the power law index and F < 0 is the pole of the
power-law. The cumulative distribution function is then

F—%I“'

—Io

CDF[F|(8, Fo)] o ( 21

An alternative distribution that describes the data in the
observed range is a log-normal:

,P[Fl(,ulogn’ Ulogn)] = (v 27"'Fa'logn)71 - eXp

2
F(K
[ln (ﬁy)) - Mlogn]

x| — s (22)
\/Eglzogn
with
F(K)
CDF[F|( p=L_ 1 fln(_‘m)_ﬂlogn
Pioens Tlogn)] = — — —erf| ——————— |,
log o 2 2 \/Ea'logn
(23)

where F € [0, inf], p1ogn € [— inf, +inf], and oy,g, € [0, inf].
To create light curves from the PSD in Equation (19) that
show the flux-density PDF of Equation (20), we used the
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Timmer & Koenig (1995) method as further developed by
Witzel et al. (2012):

1. Draw Fourier coefficients for each frequency from a
Gaussian distribution with a variance proportional to the
value of the PSD at that frequency.

2. Fourier transform to the time domain giving normal-
distributed random variable y, and normalize y to unit
variance.

3. Sample y to the cadence of the observed light curve.

4. Transform y into a power-law distributed random variable
T(y) that takes on values 0 < T'(y) < oc:

a-py!
T()=Fy— F- {%[1 + erf(%)]} .4

where “erf” is the Gaussian error function, [ is the power-
law index, and Fj, is the power-law pole of Equation (20).
For the alternative log-normal distribution, use instead

T(y) = exp (Ologn * ¥ + figgn)- (25)

5. Draw Gaussian noise (independent for each point), and
add it to each point to account for the measurement
errors.

The above method allows generating light curves according
to any calibrated PSD of the form of Equation (19)—that is,
distributed as the observed data on all timescales. In particular,
it enables comparison of the absolute values of the structure
functions of simulated light curves with the observed structure
function. The transformation of Equations (24) or (25) changes
the PSD of the generated light curve slightly (Figure 21), but
the break timescales are invariant under this transformation.

B.2. The Distance Function

The distance function ¢ quantifies the difference between
two data sets. This function is used in the PMC-ABC algorithm
to compare randomly drawn mock data sets to the measured
data (see Appendix B.4 below). We based our distance function
on the first-order structure function defined by

Vim) = L IF@) — F@P for m< () — ) < e,

i itk

(26)

that is, the sum of [F(#;)) — F(%)] over all n; existing pairs
whose time lags (t; — 1) fall within the bin [7;, 7;11]. We
defined the distance between two light curves as the weighted
L2 norm of the difference between the logarithms of the
respective structure function’s binned values:

¢, Vo) = 3 wilog [Vi(m) /Va(m)])?,

with w; the weights for the chosen binning. These weights
control the relative influence of each data set on the results, not
the accuracy to which the structure function is approximated.
For a sufficient number of iterations, any weighting scheme
converges to the same result, but speed of convergence depends
on the weights. For this work, weights were chosen by trial and
error to give consistent and equal convergence in all bins of all
three structure functions. The relative weights adopted were
unity for each structure function bin, except for the single wide
bin at large time lags (see Section 3 and Figure 7), which had a

27)
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weight of 3. This last bin had to be wide in order to compensate
for the intrinsic variance of the structure function at high time
lags. However, using a wide bin lowers the effective weight of
high time lags, which are essential for determining the
characteristic timescale. Using weight 3 let the mock structure
function converge onto the last bin as fast as onto all the others.
Additionally, we weighted the structure function from the
NIRC2 data with 0.67 relative to the IRAC and NaCo data
because the relatively short durations of NIRC2 observations
led to higher variance in the structure function. Even with its
higher variance, the NIRC2 structure function carries most of
the information about the shortest timescales. The adopted
weights enable the ABC algorithm to first determine the
posteriors of the well-determined parameters before finding the
best fits for the second break timescale and slope. Searching for
foo and v, before settling on good values for the other
parameters would have been hopelessly inefficient.

B.3. Prior Distributions

We used a combination of flat and Gaussian priors. The latter
are appropriate for the few cases of independently well-
determined parameters such as the measurement noise. In order
to guarantee a monotonically decreasing function for the PSD,
we applied the conditions

Joo > Jyandy2 >y

to the flat joint prior distributions for the PSD, P(v,, 7,) and
P(f,, ﬁjaz). While the joint prior distributions of v, 72, f, and
foo are uniform, their marginalized distributions are not
because of the conditions in Equation (28). In this case, the
cumulative distribution functions of the marginalized prob-
abilities are quadratic in their respective parameters. Therefore
drawing from a joint uniform probability distribution subject to
the constraints in Equation (28) can be obtained by

(28)

Jo = Finax = (finax —finin) = U1 (29)
Jor = Unax2 =) -2 + (30)
and
M = Ymax — (Ymax — Ymin) * U1 (31
Y2 = Ymax2 — YD * Uy2 + 71 (32)

where uy; and u.,; are random variables uniformly distributed
on [0,1].

B.4. The PMC-ABC Sampler

Approximate Bayesian Computation (ABC) is a useful
computational algorithm for Bayesian parameter space explora-
tion where explicit likelihood evaluations are either impossible
or not feasible (Marjoram et al. 2003; Sisson et al. 2007;
Cameron & Pettitt 2012). The goal is to estimate the posterior
by finding a set of mock light curves (~10,000 in our case) that
agree with the actual data within specified limits. The input
parameter sets from which these light curves were generated
provide an approximation of the source parameters’ posterior if
these variability parameters were drawn from distributions that
are statistically consistent with the priors. In principle, one
could simply draw from the prior as often as it takes to find
10,000 accepted light curves. However, this approach becomes
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computationally impossible for tight limits. Instead, the PMC-
ABC algorithm implemented here is iterative and informed by
the posterior estimate of the previous iteration, focusing its
search on regions of parameter space in which acceptable light
curves are most likely to be found.

At its core, the basic ABC algorithm consists of two Monte
Carlo sampling steps and an acceptance step. Each iteration
starts by selecting a random model parameter set § from a
predefined probability distribution P(#). Given the parameter
set, a random mock data set Z is drawn from the likelihood
P(2]0). This mock data set is compared to the actual data set
through the distance function ¢(Z, 2). If ($(Z, )| < e),
where € is a chosen limit, the drawn parameter set is accepted.
These steps repeat until enough mock data sets are accepted.

The ABC algorithm explores the approximate posterior
probability distribution:

PO12) = POI6(Z, D) < €)

x (W2, DNeP@OPO) dF,  (33)
where W(-|¢) is a top-hat window function with width e. Given
an adequate distance function, the approximate posterior
becomes exact as ¢ — 0, but the chance of accepting a drawn
parameter set becomes vanishingly small. Therefore, as
mentioned, a naive application of the ABC algorithm would
be computationally infeasible. The PMC-ABC algorithm is a
variant of the normal ABC algorithm that attempts to improve
ABC performance by iteratively applying a population Monte
Carlo technique to “learn” the important regions of parameter
space (Drovandi & Pettitt 2011; Ishida et al. 2015). The PMC-
ABC algorithm iteratively modifies a population of parameter
combinations (a “particle system” %) and a list of weights
corresponding to each parameter combination. With each
iteration, the weighted particle system asymptotically
approaches the target posterior distribution. Each iteration’s
parameter combinations are drawn from a distribution P(6)
inferred from the previous iteration’s particle system. In our
implementation, we smooth over the previous iteration’s
particle system using a Gaussian kernel whose dispersion is
the dispersion of the previous particle system ({6, _ 1, :}),
thereby selecting from a distribution of

PO) o< Y K(O10n—1,i D), (34)

where KC(-|-, ¥) is a Gaussian kernel with dispersion . P(0) is
truncated to be within the prior range. The mock data set is then
drawn, and the resulting parameter combination is accepted if
the distance from the real data is below €. € is decreased for
each iteration by selecting the 45th percentile largest distance
value from the previous iteration’s accepted parameter sets.
Because the parameter values at stages after the first are not
selected from the prior but from a “proposal distribution” based
on the previous posterior estimate, the resultant parameter
points must be reweighted by a factor P(6)/P(#). This
reweighting makes the proposal distribution statistically
consistent with the prior. The algorithm is iterated until the
acceptance ratio decreases to a user-specified value. The
diagram Algorithm 1 summarizes the required steps.
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Appendix C
Efficient Calculation of the First-order Structure Function

The time-series analysis technique used here requires
multiple structure function calculations that share the
same observing cadence. This can be resource-intensive
because the number of operations needed to calculate each
structure function (Equation (26)) is proportional to the square
of the number N of light curve data points. Direct calculation
made this step the primary computational bottleneck. To reduce
computation time, we developed a more efficient algorithm for
calculating structure functions that share identical observing
cadences. Central to our algorithm is the comparison of a
“perfect” structure function defined by

1 N—i—1

>, Fag) — Fw)
=0

~

V=— (35)

N—i— N—-i—1

1
S Fe? + Fad) - 2 Flaw)Fw) (36)
N k=C N k=0

(=}

=3, + 23, 37)
to the actual structure function calculated from Equation (26),

which needs to be evaluated only once. This is advantageous

because the number of operations for the second term &D,l of
Equation (37) goes as N log N when calculated via fast Fourier
transforms. The first term 5? can be calculated recursively
@ = By, | + Flty_1_1)* + F(t;)? By = 0), which is linear
in N. Replacing flux pairs in the actual binned structure
function (Equation (26)) with the corresponding perfect
structure function values therefore shortens computation time.
Unfortunately, some perfect structure function values will be
shared between multiple bins, and these values will need to be
split between these bins. In such cases, light curve pairs must
be explicitly calculated and added to or subtracted from the
affected bins. In practice, for observing cadences that are fairly
even, few light curve pairs need to be calculated directly, and
these have negligible effect on computational performance. For
observing cadences that are very uneven, up to 30% of the light
curve pairs require direct calculation. Even in such cases,
though, the above algorithm still offers significant performance
improvements for multiple structure function calculations that
share the same observing cadence.

Algorithm 1.

Algorithm 1: PMC-ABC algorithm.
‘While size of Gy < M do
Draw 6, from the prior, P(6).
Use 6 to generate 9.
Save 6 as part of next generation particle system, Ggar.
end
Save N points in %, with the lowest distance values to €.
Set weights to 1/N
While Acceptance ratio is above o do
Infer P(6) from %.
Set € to the 45% quantile of the ordered distances in .
While size of @pexe < N do
Draw 6 from P(6).
Use 6 to generate 7.
If |6(Z, 2)| < e, then
Save 6 as part of next generation particle system, @pex;-
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(Continued)
Set weight to P(0) /P(6)
end
end
b — Grnext
end
Appendix D

Ratio between M- and K-band Derived from Power-law and
Log-normal Distributions

Any model that allows different flux-density PDFs for M-
and K-band predicts a varying F(M)/F(K) ratio as a function of
F(K). This is true even when both distributions are power laws
if the power-law index ( differs for the two bands. A simple
way to calculate the ratio function—that is, the ratio R[M/K, F
(K)] = F(M)/F(K) as a function of F(K)—is the assumption
that the cumulative distribution functions (as defined in
Equations (21) or (23)) are equal for all corresponding pairs
[F(K), (F(M)]. This is simply asking for a match of the lowest
5% in K-band with the lowest 5% in M-band, the lowest 10%
with the lowest 10%, and so on. In other words, it assumes that
when K-band rises, M-band rises, and when K-band falls, M-
band falls. The simultaneous NIR (1.65-3.8 psm) light curves in
the literature indeed demonstrate this behavior. Under this
assumption, we get for Case 1 (power-law /power-law):

RIM/K. F(K)]
Be—1
_ s R 1_[F<K>F0<K>]ﬂ—l ey
F(K) —Fo(K)

with Fo s, Fox < 0. For Case 2 (power-law/log-normal),

RIM/K, F(K)]

—1

F(K
= [Q] - €Xp [Nlogn,M\/zalogn,M ) erf_] (1 - 2’%)]5

mly

(39)

with
_ 1- B¢
K = [M] , (40)
—Fyk

and with Fy g < 0. For Case 3 (log-normal/log-normal),

F(K) ]"

mly

-exp {[ln [I:IEJI;)] — p“logn,[() .

In order to use the information about the flux-density ratio
determined from the synchronous data (R[M/K, 0.15 mJy] =
12.4 4+ 0.5), we can use this equation and extend the
Equation (27) distance function to

¢ ) = d(Vo, Vons) + w - {[X — R(M/K, 0.15)]/0.5),
(42)

with X ~ N(12.4,0.5%) and w a chosen weight. (Here,
w = 0.002 relative to the weights defined in Appendix B.2.)

RIM/K, F(K)] [

Ologn,M

+ Mlogn,M}' (4])

Ologn,K
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The corresponding NIR spectral index

—1
o = {IOg(j\\—M)} -{log [RWM/K)] + 0.4 - (Ayy — Ag)}.

K
(43)

where A,, and Ag are the adopted interstellar extinctions in

magnitudes. For our case with
mJy

: /ulogn,K]

and with \y; = 4.5 pm and g = 2.18 um,

. 1] | log[w]
mly
: Mlogn,[()
+ 1.2708 - (Ayy — Ak)
F(K)

=¢ - log [—] + 1+ 1.2708 - (Ay — Ak). (45)
mly

log {RIM/K, F(K)]} = (Ulog_nM

Ologn,K

Ologn,M

+0.4343 - (ulogn’M - (44)

Ologn,K

Ologn,M

oy =3.1771 -
Ologn,K
Ologn,M

+ 13798 - (ulogn,M -

Ologn,K

Appendix E
NIR Spectral Index as a Function of Flux Density

For synchrotron radiation from an electron energy distribu-
tion with an exponential cutoff, the spectrum in the optically
thin frequency regime is a power-law with an exponential
cutoff at a frequency v, (e.g., Bregman 1985). The flux density
S(v) at a given frequency v in the optically thin regime is

S@) =ko- v - exp[—/n)"/?, (46)

with &, the spectral index of the optically thin power-law
spectrum and k&, a proportionality constant. For typical electron
energy cutoffs, v, will be located in or slightly above the NIR
frequency range. Thus varying flux densities in the NIR and a
flux-density-dependent NIR spectral index could be the
consequence of a changing energy cutoff in the electron
energy distribution.

We want to derive the flux-density dependence of the
spectral index for this scenario. For a frequency 7 < 1 (but
still in the optically thin regime; i.e., in the submm regime close
to 1 THz), Equation (46) becomes

S@) =ko- %, (47)
and we can eliminate the proportionality factor:
Sw) =S®@) - (/o) - exp[—w/v)'/?]. (48)

This equation implies that while the flux density in the NIR
overall scales with flux density in the submm, for a given
submm flux density the NIR variability is caused by the
changes in v,. The flux-density ratio between two frequencies
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121 and 1%} iS
Sy /S(w2) = w1/v2) ™% - exp[(v2/vo)'/? — (v1/v9)"/?],
(49)
and
! 3
o=y — vy /2 2N (50)

In(10) - log (1 /1)
Equation (48) gives

Vo

= —v~ 2. 1In(10) - {log[S(v)/S(P)] + &, - log(v/P)} with

0=

S@) < 10%1°2G) . s w). (52)
Inserting Equation (51) in Equation (50) gives
% S) -
ag=¢& - logl —= |+ 7, 53
s=¢ g[ mjy] U] (53)
with
1 1
~ V3 — UV
f=—F—"—"=— (54)
vz - log (v1/v2)
and

mJy

ﬁ=m-n+%4%wwn—2«grfq. (55)
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