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Abstract— The recent proliferation of human-carried mobile
devices has given rise to mobile crowd sensing (MCS) systems
that outsource the collection of sensory data to the public crowd
equipped with various mobile devices. A fundamental issue in
such systems is to effectively incentivize worker participation.
However, instead of being an isolated module, the incentive
mechanism usually interacts with other components which may
affect its performance, such as data aggregation component
that aggregates workers’ data and data perturbation component
that protects workers’ privacy. Therefore, different from the
past literature, we capture such interactive effect and propose
INCEPTION, a novel MCS system framework that integrates an
incentive, a data aggregation, and a data perturbation mecha-
nism. Specifically, its incentive mechanism selects workers who
are more likely to provide reliable data and compensates their
costs for both sensing and privacy leakage. Its data aggregation
mechanism also incorporates workers’ reliability to generate
highly accurate aggregated results, and its data perturbation
mechanism ensures satisfactory protection for workers’ privacy
and desirable accuracy for the final perturbed results. We vali-
date the desirable properties of INCEPTION through theoretical
analysis as well as extensive simulations.

Index Terms— Incentive mechanism, data aggregation, privacy
preservation, mobile crowd sensing.

I. INTRODUCTION

THE recent popularity of increasingly capable human-
carried mobile devices (e.g., smartphones, smartglasses,

smartwatches) with a plethora of on-board sensors (e.g., com-
pass, accelerometer, gyroscope, camera, GPS) has given rise to
mobile crowd sensing (MCS), a newly-emerged sensing para-
digm that outsources the collection of sensory data to a crowd
of participating users, namely (crowd) workers. Currently,
a large variety of MCS systems [1]–[4] have been deployed
which serve a wide spectrum of applications, including health-

Manuscript received March 23, 2017; revised December 12, 2017; accepted
April 25, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor J. Shin. Date of publication August 16, 2018; date of cur-
rent version October 15, 2018. This work was supported in part by the
National Science Foundation under Grants CNS-1330491 and 1652503 and
in part by the Ralph and Catherine Fisher Grant. (Corresponding author:

Haiming Jin.)

H. Jin was with the Coordinated Science Laboratory, University of Illinois
at Urbana–Champaign, Urbana, IL 61801 USA. He is now with the John
Hopcroft Center for Computer Science and the Department of Electronic
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
jinhaiming@sjtu.edu.cn).

L. Su and H. Xiao are with the Department of Computer Science and Engi-
neering, State University of New York at Buffalo, Buffalo, NY 14260 USA
(e-mail: lusu@buffalo.edu; houpingx@buffalo.edu).

K. Nahrstedt is with the Coordinated Science Laboratory, University of Illi-
nois at Urbana–Champaign, Urbana, IL 61801 USA, and also with the Depart-
ment of Computer Science, University of Illinois at Urbana–Champaign,
Urbana, IL 61801 USA (e-mail: klara@illinois.edu).

Digital Object Identifier 10.1109/TNET.2018.2840098

care, indoor floor plan reconstruction, smart transportation, and
many others.

Participating in MCS is usually costly for individual work-
ers, since it consumes not only workers’ time but also the
system resources (e.g., battery, computing power) of their
mobile devices. Therefore, it is essential to design incen-
tive mechanisms to stimulate worker participation. Typically,
an incentive mechanism selects a subset of workers from the
pool of potential participants to execute sensing tasks, and
determines the payments to them that effectively compensate
their participation costs. In real practice, an MCS system
usually contains some other components which interact with
the incentive mechanism and thus may affect its performance,
such as data aggregation component that aggregates workers’
data and data perturbation component that protects work-
ers’ privacy. Therefore, different from the isolated design
of the incentive mechanism in [5]–[25], we capture such
interactive effect, and propose INCEPTION,1 a novel MCS
system framework with an integrated design of the incentive,
data aggregation, and data perturbation mechanism. Below,
we would like to shed some light on our design philosophy.

On one hand, the design of the incentive mechanism highly
depends on how the platform aggregates workers’ data. The
sensory data provided by individual workers are usually not
reliable due to various factors (e.g., poor sensor quality,
environment noise, lack of sensor calibration). Therefore,
the platform (i.e., a cloud-based central server) has to prop-
erly aggregate workers’ noisy and even conflicting data so
as to cancel out the possible errors from individual work-
ers. Intuitively, if workers’ data are aggregated using naive
methods (e.g., average and voting) that regard all workers
equally, the incentive mechanism does not need to view them
differently in terms of their reliability. However, a weighted
aggregation scheme that assigns higher weights to workers
with higher reliability is much more favorable in that it makes
the aggregated results closer to the data provided by more
reliable workers. Therefore, we propose a weighted data aggre-
gation mechanism that incorporates workers’ diverse reliability
to calculate highly accurate aggregated results. Accordingly,
we jointly design our incentive mechanism which selects
workers who are more likely to provide reliable data.

On the other hand, the incentive mechanism also needs
to consider the leakage of workers’ privacy, because it
incurs costs which should be compensated as well. In many
MCS applications, the platform usually publishes the aggre-
gated results, which are oftentimes beneficial to the commu-
nity or society, but jeopardizes workers’ privacy. Although the
platform can be considered to be trusted, there exist adver-

1The name INCEPTION comes from INCEtive, Privacy, and data
aggregaTION.
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saries highly motivated to infer workers’ data, which contain
their sensitive and private information, from the published
results. For example, publishing aggregated health data, such
as treatment outcomes, improves people’s awareness about
the effects of new drugs and medical devices, but poses
threats to the privacy of participating patients. Geotagging
campaigns provide timely and accurate localization of physical
objects (e.g, automated external defibrillator, litter, pothole),
however, at the risk of leaking workers’ sensitive location
information. A high possibility for excessively large privacy
leakage will deter workers from participating in the first place,
even though they are promised to be compensated for their
privacy costs. Therefore, we propose a data perturbation
mechanism that reduces workers’ privacy leakage to a reason-
able degree by adding carefully controlled random noises to
the original aggregated results, and jointly design the incentive
mechanism that compensates their costs for not only sensing
but also the remaining privacy leakage.

In summary, this paper has the following contributions.
• In this paper, we propose INCEPTION, a novel MCS

system framework that integrates an incentive, a data
aggregation, and a data perturbation mechanism. Such an
integrated design, which captures the interactive effects
among these mechanisms, is much more challenging than
designing them separately.

• INCEPTION has a reverse auction-based incentive mech-
anism that selects reliable workers and compensates their
costs for both sensing and privacy leakage, which also
satisfies truthfulness and individual rationality, and min-
imizes the platform’s total payment for worker recruiting
with a guaranteed approximation ratio.

• The data aggregation mechanism of INCEPTION also
incorporates workers’ reliability and generates highly
accurate aggregated results.

• Its data perturbation mechanism ensures satisfactory guar-
antee for the protection of workers’ privacy, as well as
the accuracy of the final perturbed results.

II. RELATED WORK

Game theory has been widely adopted, thus far, by the
research community in the design of incentive mechanisms
for MCS systems [5]–[25] so as to tackle workers’ strate-
gic behaviors. Specifically, these prior work utilize either
auction [13]–[25] or other game-theoretic models [5]–[12].
Although with different objectives, including maximizing
social welfare [12]–[17] or platform’s profit [5]–[9], [18]–[22],
and minimizing social cost [23] or platform’s payment
[10], [11], [24], [25], a common property they ensure is
that workers’ costs are compensated, at least in expectation.
However, only workers’ sensing costs are taken into consid-
eration by these existing work.

Different from the aforementioned prior work, we explicitly
incorporate workers’ reliability and privacy costs (motivated
by [26] and [27]) into the incentive mechanism and provide
an integrated design of the incentive, data aggregation, and
data perturbation mechanism. Note that the crowd’s private
information purchased by the data analyst in [26] and [27] is
not necessarily obtained by sensing, and thus, sensing costs
are not considered by [26] and [27].

One line of past literature [28]–[33], highly related to
this paper, investigates mobile sensing systems that preserves
workers’ privacy. These prior work invariably protect workers’
privacy against an untrusted platform. In contrast, the plat-
form is trusted in our model and threats to workers’ privacy

come from the adversaries outside the MCS system inferring
workers’ data using the publicly available aggregated results,
which cannot be tackled by the cryptography-based methods
given in [28]–[32]. Furthermore, unlike this paper, most of
these work do not consider the issue of providing incentives
to workers. Another set of existing work [34]–[37], orthogonal
to this paper, studies privacy-preserving incentive mechanisms
for mobile sensing systems. These work do not consider work-
ers’ privacy leakage caused by the public aggregated results
and how it affects the design of the incentive mechanism.
Instead, they protect workers’ anonymity [34], [35] or bid
privacy [36], [37] within the incentive mechanisms.

III. PRELIMINARIES

In this section, we give an overview of INCEPTION, and
describe the task model, reliability level model, auction model,
as well as design objectives.

A. System Overview

INCEPTION is an MCS system framework consisting of
a cloud-based platform and a set of N participating workers,
denoted as N = {w1, · · · , wN}. The platform hosts a set
of K sensing tasks, denoted as T = {τ1, · · · , τK}, where
each task τj ∈ T requires workers to locally sense a specific
object or phenomenon, and report the sensory data to the plat-
form. If worker wi is selected to execute task τj , she will pro-
vide her data xi,j to the platform. We define x = [xi,j ] ∈

(
X∪

{⊥}
)N×K

as the matrix containing all workers’ data, where X
denotes the range of tasks’ sensory data, and xi,j = ⊥ means
that task τj is not executed by worker wi. To cancel out the
errors from individual workers, for each task τj , the platform
aggregates workers’ data into an aggregated result, denoted as
xj , which is used as an estimate of the task’s ground truth
value x∗

j , unknown to the platform and the workers.
In our model, the platform publishes the aggregated

results (e.g., locations of automated external defibrillators,
litter, potholes) to the community or society. However, directly
publishing them impairs workers’ privacy. Therefore, the plat-
form publishes the perturbed results after adding random
noises to the original ones, and ensures ǫ-differential privacy
defined in Definition 1.

Definition 1 (Differential Privacy): We denote M : (X ∪
{⊥}

)N×K → R
K×1 as a mechanism that maps any input data

matrix to a perturbed result vector. Then, the mechanism M is
ǫ-differentially private if and only if for any two data matrices
x and x′ that differ in only one entry and any A ⊆ R

K×1,
we have

Pr[M(x) ∈ A] ≤ exp(ǫ)Pr[M(x′) ∈ A], (1)

where ǫ is a small positive number usually referred to as
privacy budget.

The framework of INCEPTION is illustrated in Figure 1,
and its workflow is described as follows.

• Firstly, the platform announces the set of sensing tasks
T and an upper bound of the privacy budget ǫ, such as
ǫ ≤ 0.5, to workers (step ①).

• Incentive Mechanism: Then, the platform starts the
reverse auction-based incentive mechanism, where it acts
as the auctioneer, to purchase data from participating
workers, who act as bidders. Every worker wi submits
to the platform her bid bi = (Γi, b

s
i , b

p
i ) which is a

triple containing the set of sensing tasks Γi she wants
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Fig. 1. Framework of INCEPTION (where circled numbers represent the
order of the events).

to execute, as well as her bidding prices for executing
them bs

i and unit privacy loss b
p
i (step ②). Based on

workers’ bids, the platform determines the set of winners
S ⊆ N and the payment pi to every winner wi (step ③).
Losers of the auction do not execute tasks and receive no
payments. We denote workers’ bid and payment profile
as b = (b1, · · · , bN) and p = (p1, · · · , pN), respectively.

• Data Aggregation Mechanism: Next, the platform collects
winners’ sensory data (step ④) and calculates an aggre-
gated result xj for each task τj (step ⑤).

• After collecting workers’ data, the platform pays workers
according to p and reveals to them the exact value of the
privacy budget ǫ (step ⑥), such as ǫ = 0.25. The design
rationale for keeping the exact value of ǫ confidential to
workers at the bidding stage and revealing it together with
the payments is described in detail in Section IV-B.3.

• Data Perturbation Mechanism: Finally, the platform adds
random noises to the original aggregated results and
publishes the perturbed ones (step ⑦). We use x̂j to
denote the perturbed result for task τj .

B. Task Model

In this paper, we target a general scenario, where our MCS
system collects heterogeneous types of sensory data from
participating workers. That is, some of the tasks held by
the platform (e.g., environmental monitoring) require work-
ers to submit continuous data (e.g., temperature, humidity),
whereas others (e.g., geotagging) collect categorical data
(e.g., whether or not potholes exist on a specific road segment).
In the rest of this paper, we refer to the former as continuous
tasks, and the latter as categorical tasks. Furthermore, we use
Tcon and Tcat to denote the set of continuous tasks and
categorical tasks, respectively. Obviously, T = Tcon ∪ Tcat.

To avoid unnecessary complications to the analysis and pre-
sentation of our results, we assume that, for each continuous
task τj ∈ Tcon, the ground truth x∗

j and any worker wi’s data

xi,j are within the range [0, 1]. Such assumption is without
loss of generality, as we could convert data of arbitrary value
to be in the range [0, 1] by proper normalization. For the same
reason, we assume that all categorical tasks in Tcat are binary
classification tasks with ground truths x∗

j ’s, as well as workers’

labels, taking values from the set {+1,−1}. Note that this is
also a mild assumption, as for any binary classification task,
we could assign the label +1 to one class, and −1 to the other.

C. Reliability Level Model

Before task τj is executed by worker wi, her data about
this task can be regarded as a random variable Xi,j . Then,
we define a worker’s reliability level for continuous and
categorical tasks, respectively, in Definition 2 and 3.

Definition 2 (Reliability Level for Continuous Task):
Worker wi’s reliability level θi,j for a continuous task
τj ∈ Tcon is defined as the expected absolute difference
between her data and the ground truth, i.e.,

θi,j = E[|Xi,j − x∗
j |] ∈ [0, 1], (2)

where the expectation is taken over the randomness of Xi,j .
Definition 3 (Reliability Level for Categorical Task):

Worker wi’s reliability level θi,j for a categorical task τj ∈ Tcat

is defined as the probability that she provides a correct label
about this task, i.e.,

θi,j = Pr[Xi,j = x∗
j ] ∈ [0, 1]. (3)

We use θ = [θi,j ] ∈ [0, 1]N×K to denote the reliability
level matrix of all workers. We assume that the reliability
level matrix θ is a priori known to the platform. In practice,
the platform can keep a historical record of θ, which can be
obtained by many methods. For example, since a worker’s
reliability levels for similar tasks typically tend to be similar,
the platform could assign some tasks with known ground
truths to workers and utilize workers’ sensory data about these
tasks to estimate their reliability levels for similar tasks as
in [38]. In scenarios where ground truths are not available, θ

can still be effectively estimated utilizing workers’ previously
submitted sensory data about similar tasks by algorithms
proposed in [39] and [40] or inferred from some of workers’
characteristics (e.g., a worker’s reputation and experience for
similar tasks, the price of a worker’s sensors) using the
methods in [41].

D. Auction Model

In this paper, as in most prior work, we assume that workers
are selfish and strategic that aim to maximize their own
utilities. We use the term bundle to refer to any subset of
the overall task set T in the rest of this paper. Since every
worker bids on one bundle of tasks in the INCEPTION frame-
work, we model the incentive mechanism as a single-minded
reverse combinatorial auction. However, different from the
traditional combinatorial auction [42], we study the scenario
where workers explicitly consider privacy leakage as one of
the sources for their costs. Therefore, we propose the single-
minded reverse combinatorial auction with privacy cost (pSRC
auction), defined in Definition 4, as the incentive mechanism.

Definition 4 (pSRC Auction): In a single-minded reverse
combinatorial auction with privacy cost (pSRC auction), each
worker wi has only one interested bundle Γ∗

i . Her cost of
executing the bundle of tasks, namely sensing cost, is denoted
as cs

i (unknown to the platform). Additionally, she has a cost
for privacy leakage, namely privacy cost, denoted as C

p
i (ǫ),

if ǫ-differential privacy is guaranteed. Hence, worker wi’s cost
function is defined as in Equation (4).

Ci(Γ, ǫ) =

{
cs
i + C

p
i (ǫ), if Γ ⊆ Γ∗

i

+∞, otherwise.
(4)

For the tasks that do not belong to worker wi’s interested
bundle Γ∗

i , either she is not able to execute them or executing
these tasks incurs a large cost. Therefore, we assign a +∞
cost to these tasks in Equation (4).

A major difference between the cost function defined in
Equation (4) and those in [5]–[25] is that the privacy cost
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C
p
i (ǫ) is explicitly integrated into it. Such integration is rea-

sonable and necessary. In an MCS system where the platform
utilizes a worker’s private and sensitive data in a way that
incurs privacy leakage, the worker will not be effectively
incentivized to participate unless both her sensing and privacy
cost are compensated. For any worker wi the privacy cost
C

p
i (ǫ) is positively correlated with the privacy budget ǫ,

because ǫ in fact captures the amount of privacy leakage of the
MCS system. Therefore, we adopt the natural linear model for
privacy cost as in [26] and [27] where C

p
i (ǫ) = c

p
i ǫ with c

p
i

representing worker wi’s cost for unit privacy leakage. Similar
to cs

i , c
p
i is also unknown to the platform. Next, we define a

worker’s utility in Definition 5.
Definition 5 (Worker’s Utility): Any worker wi’s utility ui

is defined as

ui =

{
pi − cs

i − c
p
i ǫ, if wi ∈ S

0, otherwise.
(5)

Apart from workers’ utilities, we are also interested in the
platform’s total payment defined in Definition 6.

Definition 6 (Platform’s Total Payment): Given the pay-
ment profile p and the winner set S, the platform’s total
payment is P =

∑
i:wi∈S pi.

E. Design Objective

In this paper, we aim to ensure that INCEPTION bears the
following desirable properties.

Since workers are strategic in our model, it is possible that
a worker wi submits a bid (Γi, b

s
i , b

p
i ) that deviates from the

true value (Γ∗
i , c

s
i , c

p
i ). However, one of our objectives is to

design a truthful incentive mechanism defined in Definition 7.
Definition 7 (Truthfulness): A pSRC auction is truthful if

and only if bidding the true value (Γ∗
i , c

s
i , c

p
i ) is the dominant

strategy for each worker wi, i.e., bidding (Γ∗
i , c

s
i , c

p
i ) maxi-

mizes each worker wi’s utility for all possible values of other
workers’ bids and the privacy budget ǫ.

By Definition 7, we aim to ensure the truthful bidding
of the interested bundle Γ∗

i , the sensing cost cs
i , and the

cost for unit privacy leakage c
p
i for every worker wi. Apart

from truthfulness, another desirable and necessary property is
individual rationality defined in Definition 8.

Definition 8 (Individual Rationality): A pSRC auction is
individual rational if and only if no worker receives negative
utility, i.e., we have ui ≥ 0 for each worker wi.

Individual rationality in our pSRC auction means that a
worker’s sensing and privacy cost are both compensated,
which is crucial to effectively incentivize worker participa-
tion. As mentioned in Section III-A, we aim to design an
MCS system that ensures ǫ-differential privacy. However,
the perturbation added to the aggregated results inevitably
impairs their accuracy. Next, we formally define the concept of
(α, β)-accuracy for continuous tasks in Definition 9.

Definition 9 ((α, β)-Accuracy): For two random variables
Y1 and Y2 within the range [0, 1], Y1 is (α, β)-accurate to Y2,
if and only if Pr[|Y1 − Y2| ≥ α] ≤ β, where α, β ∈ (0, 1).
Note that Y2 could also be a constant.

We use X̂j to denote the random variable corresponding to
x̂j (i.e., the perturbed result for task τj). Facing the trade-off
between privacy and accuracy, we need to carefully control the
amount of noises added to the aggregated results and ensure

that, for each continuous task τj , X̂j is (α, β)-accurate to the
ground truth x∗

j with sufficiently small α and β within (0, 1).

That is, we aim to ensure that the perturbed results of all
continuous tasks are fairly close to the ground truths with
high probability. For categorical tasks, we adopt the notion of
γ-accuracy, which is formally defined in Definition 10.

Definition 10 (γ-Accuracy): For two random variables Z1

and Z2 that take values from the set {+1,−1}, Z1 is
γ-accurate to Z2, if and only if Pr[Z1 
= Z2] ≤ γ, where
γ ∈ (0, 1). Note that Z2 could also be a constant.

For each categorical task τj , we aim to ensure that the

perturbed result X̂j is γ-accurate to the ground truth x∗
j with

a sufficiently small γ ∈ (0, 1), which means that the perturbed
results of all categorical tasks are equal to the ground truths
with high probability.

In short, our objective is to design a differentially private
MCS system that provides satisfactory accuracy guarantee for
the final perturbed results, and incentivizes worker participa-
tion in a truthful and individual rational manner.

IV. DESIGN DETAILS

In this section, we provide our design details for the
incentive, data aggregation, and data perturbation mechanism.

A. Data Aggregation Mechanism

1) Proposed Mechanism: Although the data aggrega-
tion mechanism comes after the incentive mechanism in
INCEPTION’s workflow, we introduce it first, as it affects
the design of the incentive mechanism.

To guarantee that the perturbed results have satisfactory
accuracy, the original aggregated results before perturbation
need to be accurate enough in the first place. Therefore,
we reasonably assume that the platform uses a weighted
aggregation method to calculate the aggregated result xj for
each task τj based on workers’ data. That is, given the winner
set S determined by the incentive mechanism, the aggregated
result xj of each continuous task τj ∈ Tcon is calculated as

xj =
∑

i:wi∈S,τj∈Γi

λi,jxi,j , (6)

where λi,j > 0 is the weight of worker wi on this task with∑
i:wi∈S,τj∈Γi

λi,j = 1 for every continuous task τj . Similarly,

for each categorical task τj ∈ Tcat, we calculate the aggregated
result xj as

xj = sign

(
∑

i:wi∈S,τj∈Γi

λi,jxi,j

)
, (7)

where, similar to continuous tasks, λi,j > 0 is worker wi’s
weight on this task

∑
i:wi∈S,τj∈Γi

λi,j = 1. Furthermore,

function sign(z) equals to +1, when z ≥ 0, and −1 otherwise.
The motivation for utilizing weighted aggregation is to

capture the effect of workers’ diverse reliability levels on the
calculation of the aggregated results. Intuitively, we should
assign higher weights to workers whose sensory data are
more likely to be close to the ground truths, which makes
the aggregated results closer to the data provided by more
reliable workers. In fact, many state-of-the-art data aggre-
gation methods [39], [40] utilize such weighted aggregation
to calculate the aggregated results. Since the accuracy of
the aggregated results highly depends on how the weight
λi,j’s are chosen, we propose the data aggregation mechanism
in Algorithm 1.
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Algorithm 1 Data Aggregation Mechanism

Input: α, θ, b, x, S, T ;

Output: (x1, · · · , xK);
1 foreach j s.t. τj ∈ T do

2 if τj ∈ Tcon then

// Calculate the aggregated result

of a continuous task

3 xj ← ∑
i:wi∈S,τj∈Γi

(αj−θi,j)xi,j�
k:wk∈S,τj∈Γk

(αj−θk,j)
;

4 else

// Calculate the aggregated result

of a categorical task

5 xj ← sign
(∑

i:wi∈S,τj∈Γi

(2θi,j−1)xi,j�
k:wk∈S,τj∈Γk

(2θk,j−1)

)
;

6 return (x1, · · · , xK);

Besides the reliability level matrix θ, the bid profile b,
workers’ data x, the winner set S, as well as the task set
T , Algorithm 1 also takes as input a vector of positive
real numbers α, where each element αj corresponds to one
continuous task τj . These αj’s are parameters chosen by the
platform, such that maxi:τj∈Γi

θi,j < αj < 0.5. Note that,
for a continuous task τj , large θi,j indicates low reliability,
and any worker wi with θi,j ≥ 0.5 will not be selected
by the incentive mechanism. The aggregated result xj of
every continuous task τj ∈ Tcon is calculated (line 3) using
Equation (6) with the weight

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

, ∀wi ∈ S, τj ∈ Γi. (8)

By Equation (8), worker wi’s weight for a continuous
task τj , namely λi,j , increases with the decrease of θi,j . Such
a design choice conforms to our intuition that the less the
expected deviation of worker wi’s data compared to the ground
truth x∗

j , the more xi,j should be counted in the calculation
of the aggregated result xj .

For each categorical task τj ∈ Tcat, we calculate its aggre-
gated result xj (line 5) using Equation (7) with the weight,

λi,j =
2θi,j − 1∑

k:wk∈S,τj∈Γk
(2θk,j − 1)

, ∀wi ∈ S, τj ∈ Γi. (9)

Note that large θi,j for a categorical task implies high relia-
bility, and the incentive mechanism will not select any worker
wi with θi,j ≤ 0.5 to execute this task. Following a similar
philosophy as calculating the aggregated result of a continuous
task, the data from workers with higher reliability are counted
more in the calculation of a categorical task’s aggregated
result, as well. Formal analysis about the data aggregation
mechanism is provided in Section IV-A.2.

2) Analysis: In this section, we first analyze Algorithm 1’s
guarantee of aggregation accuracy for continuous tasks. In the
following Lemma 1, we establish an upper bound for the
accuracy of the aggregated result xj of each continuous task
τj ∈ Tcon compared to its ground truth x∗

j . In the rest
of our analyses, we use Xj to denote the random variable
representing any task τj’s aggregated result xj .

Lemma 1: For each continuous task τj ∈ Tcon, given the
winner set S, the reliability level matrix θ, the vector of
platform-chosen parameter α, as well as workers’ weights

λi,j’s on this task, we have that

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]

≤ exp

(
−

2
(∑

i:wi∈S,τj∈Γi
λi,j(αj − θi,j)

)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)
(10)

by aggregating workers’ data according to Equation (6).
Proof: From Equation (6), for each continuous task τj ,

we have that

∣∣Xj − x∗
j

∣∣ =

∣∣∣∣
∑

i:wi∈S,τj∈Γi

λi,jXi,j − x∗
j

∣∣∣∣

=

∣∣∣∣
∑

i:wi∈S,τj∈Γi

λi,j

(
Xi,j − x∗

j

)∣∣∣∣

≤
∑

i:wi∈S,τj∈Γi

∣∣∣∣λi,j

(
Xi,j − x∗

j

)∣∣∣∣.

We define a random variable Lj for every continuous task

τj as Lj =
∑

i:wi∈S,τj∈Γi

∣∣λi,j(Xi,j −x∗
j )

∣∣, which is the sum

of random variables Li,j’s with Li,j = |λi,j(Xi,j − x∗
j )| ∈

[0, λi,j ]. Thus,

E[Lj ]=
∑

i:wi∈S,τj∈Γi

λi,jE
[∣∣Xi,j − x∗

j

∣∣]=
∑

i:wi∈S,τj∈Γi

λi,jθi,j .

Therefore, from the Hoeffding bound, we have

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]

≤ Pr

[ ∑

i:wi∈S,τj∈Γi

∣∣λi,j

(
Xi,j − x∗

j

)∣∣ ≥ αj

]
= Pr[Yj ≥ αj ]

≤ exp

(
− 2

(
αj − E[Yj ]

)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)

= exp

(
−

2
(
αj −

∑
i:wi∈S,τj∈Γi

λi,jθi,j

)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)

= exp

(
−

2
(∑

i:wi∈S,τj∈Γi
λi,j(αj − θi,j)

)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)
,

which exactly proves this lemma. �

Clearly, Lemma 1 gives us an upper bound for the
probability Pr[|Xj − x∗

j | ≥ αj ] for each continuous task
τj ∈ Tcon. Then, in the following Theorem 1, we will
prove that this upper bound is minimized by our proposed
Algorithm 1.

Theorem 1: For each continuous task τj ∈ Tcon, the data
aggregation mechanism proposed in Algorithm 1 minimizes the
upper bound of the probability Pr[|Xj −x∗

j | ≥ αj ] established
in Lemma 1, and ensures that

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
.

(11)

Proof: For each continuous task τj ∈ Tcon, we denote
λj = [λi,j ] as the vector that contains every λi,j such that
wi ∈ S and τj ∈ Γi. Therefore, minimizing the upper bound
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of Pr[|Xj − x∗
j | ≥ αj ] established in Lemma 1 is equivalent

to maximizing the function ϕ(λj) defined as

ϕ(λj) =

( ∑
i:wi∈S,τj∈Γi

λi,j(αj − θi,j)
)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

.

From the Cauchy-Schwarz inequality, we have that

ϕ(λj) ≤

( ∑
i:wi∈S,τj∈Γi

λ2
i,j

)( ∑
i:wi∈S,τj∈Γi

(αj−θi,j)
2
)

∑
i:wi∈S,τj∈Γi

λ2
i,j

=
∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

and equality is achieved when λi,j ∝ αj − θi,j .
Using the fact that

∑
i:wi∈S,τj∈Γi

λi,j = 1, we have

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

. (12)

Therefore, when λi,j ’s satisfy Equation (12), we have

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
,

which is exactly the Equation (11) in Theorem 1. �

By Theorem 1, for each continuous task τj ∈ Tcon,
the data aggregation mechanism proposed in Algorithm 1
upper bounds the probability of Pr[|Xj−x∗

j | ≥ αj ] by exp
(
−

2
∑

i:wi∈S,τj∈Γi
(αj − θi,j)

2
)

which is the minimum value of

the upper bound established in Lemma 1 for this probability.
Then, we introduce Corollary 1 which is directly utilized in
the design of the incentive mechanism in Section IV-B.

Corollary 1: For each continuous task τj ∈ Tcon, if

∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2 ≥ 1

2
ln

(
1

βj

)
, (13)

then the data aggregation mechanism proposed in Algorithm 1
ensures that Pr[|Xj − x∗

j | ≥ αj ] ≤ βj , where βj ∈ (0, 1) is a
parameter chosen by the platform for this task. We use β to
denote the vector, where each element βj corresponds to one
continuous task τj .

Proof: Corollary 1 directly follows from Theorem 1. If we
let the upper bound of Pr[|Xj − x∗

j | ≥ αj ] guaranteed by

Algorithm 1 to be no greater than βj ∈ (0, 1), we have

exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
≤ βj ,

which is equivalent to exactly

∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2 ≥ 1

2
ln

(
1

βj

)
. (14)

Therefore, together with Theorem 1, we know that Inequal-
ity (14) implies Pr[|Xj − x∗

j | ≥ αj ] ≤ βj . �

Corollary 1 states that (αj , βj)-accuracy is guaranteed for
the aggregated result of each continuous task τj ∈ Tcon

compared to its ground truth x∗
j , if the condition specified

by Inequality (13) is satisfied by the set of selected winners
S in the incentive mechanism proposed in Section IV-B.

Next, we introduce the analyses on Algorithm 1’s aggrega-
tion accuracy for categorical tasks in the following Lemma 2,

Theorem 2, and Corollary 2, which are adapted from
[14, Th. 1, Corollary 1].

Lemma 2: For each categorical task τj ∈ Tcat, given the
winner set S, the reliability level matrix θ, as well as workers’
weights λi,j’s on this task, we have that

Pr[Xj 
= x∗
j ] ≤ exp

(
−

( ∑
i:wi∈S,τj∈Γi

λi,j(2θi,j − 1)
)2

2
∑

i:wi∈S,τj∈Γi
λ2

i,j

)

(15)

by aggregating workers’ data according to Equation (7).
Theorem 2: For each categorical task τj ∈ Tcat, the data

aggregation mechanism proposed in Algorithm 1 minimizes
the upper bound of the probability Pr[Xj 
= x∗

j ] established in
Lemma 2, and ensures that

Pr[Xj 
= x∗
j ] ≤ exp

(
−

∑
i:wi∈S,τj∈Γi

(2θi,j − 1)2

2

)
. (16)

Corollary 2: For each categorical task τj ∈ Tcat, if

∑

i:wi∈S,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

γj

)
, (17)

then the data aggregation mechanism proposed in Algorithm 1
ensures that Pr[Xj 
= x∗

j ] ≤ γj , where γj ∈ (0, 1) is a
parameter chosen by the platform for this task. We use γ to
denote the vector, where each element γj corresponds to one
categorical task τj .

The proofs of Lemma 2, Theorem 2, and Corollary 2 are
omitted in this paper, because they can be adapted from those
of [14, Th. 1, Corollary 1] with minor changes. Clearly, they
are counterparts of Lemma 1, Theorem 1, and Corollary 1 for
categorical tasks, and collectively ensure that γj-accuracy is
guaranteed for the aggregated result of each categorical task
τj ∈ Tcat, as long as Inequality (17) is satisfied by the winners
selected by the incentive mechanism. Next, in Section IV-B,
we introduce the design of INCEPTION’s incentive mech-
anism, which is based on the data aggregation mechanism
proposed in Algorithm 1.

B. Incentive Mechanism

In this section, we introduce the mathematical formulation,
design details and the analysis of the proposed incentive
mechanism.

1) Mathematical Formulation: As mentioned in
Section III-D, our incentive mechanism is based on the
pSRC auction defined in Definition 4. In this paper, we aim
to design a pSRC auction that minimizes the platform’s
total payment with satisfactory data aggregation accuracy.
Such a design choice exactly captures the objective of most
MCS systems, that is to collect high quality data from the
crowd with minimum total expense. The formal mathematical
formulation is given in the following pSRC auction total
payment minimization (pSRC-TPM) problem.

pSRC-TPM problem:

min
∑

i:wi∈N

piyi (18)

s.t.
∑

i:wi∈N ,τj∈Γi

(
αj−θi,j

)2
yi ≥

1

2
ln

(
1

βj

)
, ∀τj ∈ Tcon

(19)
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∑

i:wi∈N ,τj∈Γi

(2θi,j − 1)2 yi ≥ 2 ln

(
1

γj

)
, ∀τj ∈ Tcat

(20)

yi ∈ {0, 1}, pi ∈ [0, +∞), ∀wi ∈ N (21)

Constants: The pSRC-TPM problem takes as inputs the
worker set N , the continuous and categorical task set Tcon and
Tcat, workers’ bid profile b, the reliability level matrix θ, and
the α, β, and γ vector.

Variables: The pSRC-TPM problem has a vector of N
binary variables, denoted as y = (y1, · · · , yN ). The variable
yi = 1 indicates that the worker wi is selected as a winner
(i.e., wi ∈ S); otherwise wi 
∈ S. The second vector of
variables is the payment profile p = (p1, · · · , pN), where
every element takes a non-negative real value.

Objective function: The objective function given by∑
i:wi∈N piyi =

∑
i:wi∈S pi is exactly the total payment made

by the platform to all winners.
Constraints: Constraint (19) is equivalent to Inequal-

ity (13) given in Corollary 1, which specifies the condition
that the selected winners should satisfy. By Corollary 1,
any feasible solution y to the pSRC-TPM problem gives
a winner set S which ensures that the aggregated result
of every continuous task τj ∈ Tcon is (αj , βj)-accurate to
the ground truth x∗

j . Similarly, Constraint (20) is equivalent
to Inequality (7), which ensures that γj-accuracy for each
categorical task τj ∈ Tcat is satisfied by the winner set S
given by any feasible solution y to the pSRC-TPM problem.
To simplify presentation, we introduce the following extra
notations. For each worker wi ∈ N and task τj ∈ T , we define

qi,j =

{
(αj − θi,j)

2, if τj ∈ Tcon

(2θi,j − 1)2, if τj ∈ Tcat,
(22)

and for each task τj ∈ T , we define

Qj =

⎧
⎪⎪⎨
⎪⎪⎩

1
2 ln

(
1
βj

)
, if τj ∈ Tcon

2 ln

(
1
γj

)
, if τj ∈ Tcat.

(23)

Furthermore, we define q = [qi,j ] ∈ [0, +∞)N×K and Q =
[Qj ] ∈ [0, +∞)K×1. Therefore, Constraint (19) and (20) can
be simplified and merged into the following Constraint (24).

∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj, ∀τj ∈ T . (24)

Besides Constraint (19) and (20), any feasible solution to the
pSRC-TPM problem should also satisfy two other inherent
constraints, namely truthfulness and individual rationality.
These two implicit constraints impose additional restrictions
to pi’s besides non-negativity. Because of the difficulty in
mathematically formulating the two constraints, we take them
into consideration without explicitly formulating them, in the
pSRC-TPM problem.

In Theorem 3, we prove the NP-hardness of the pSRC-TPM
problem.

Theorem 3: The pSRC-TPM problem is NP-hard.
Proof: We consider a special case of the pSRC-TPM

problem with a constant payment profile p and the truthfulness
and individual rationality constraints relaxed. With constant
pi’s, it becomes a binary linear program (BLP). We prove the
NP-hardness of the BLP by a polynomial-time reduction from
the minimum weight set cover (MWSC) problem.

The reduction starts from an instance of the NP-complete
MWSC problem with a universe T = {τ1, · · · , τK} and a
set of subsets of T defined as R = {Γ1, · · · , ΓN}. Each set
Γi ∈ R has a non-negative weight pi. The objective of the
MWSC problem is to find the subset of R with the minimum
total weight whose union equals to T . We transform Γi to Γ′

i

where each element τj ∈ Γi has ai,j ∈ Z
+ copies and require

each τj to be covered for exactly Aj ∈ Z
+ times. By now,

an instance of the BLP with q = [ai,j ] ∈ (Z+)N×K , Q =
[Aj ] ∈ (Z+)K×1, and payment profile p has been constructed.
Actually, a richer family of problems can be represented by
the BLP because elements in q and Q can be any positive
real numbers besides positive integers. Hence, every instance
of the MWSC problem is polynomial-time reducible to the
BLP, which proves its NP-hardness. Furthermore, because
the BLP is only a special case of the pSRC-TPM problem,
the pSRC-TPM problem is also NP-hard. �

2) Proposed Mechanism: Because of the NP-hardness of the
pSRC-TPM problem proved in Theorem 3, directly solving
it to obtain the winner set S and the payment profile p is
computationally intractable when the cardinality of N and
T become large. Therefore, we propose our own winner
determination and pricing algorithm for the pSRC auction
in Algorithm 2 and 3, respectively. The proposed algorithms
are computationally efficient and approximately minimize the
platform’s total payment with a guaranteed approximation
ratio. The design rationale of Algorithm 2 is that we seek to
ensure the monotonicity property, i.e., if a worker wi wins the
auction by bidding (Γi, b

s
i , b

p
i ), she will also win by bidding

(Γ̃i, b̃
s
i , b̃

p
i ) with Γ̃i ⊃ Γi and b̃v

i = b̃s
i + b̃

p
i ǫ < bv

i . In terms of
Algorithm 3, we aim to achieve the critical payment property,
i.e., each winner wi is paid the supremum of the virtual
bidding price, defined as bv

i = bs
i +b

p
i ǫ, that can still make her

a winner. As will be proved in Theorem 4, these two properties
help ensure the truthfulness of the proposed pSRC auction.

Algorithm 2 pSRC Auction Winner Determination

Input: ǫ, b, q, Q, N , T ;

Output: S;

// Initialization

1 S ← ∅, Q′ ← Q;

// Calculate the winner set S
2 while

∑
j:τj∈T Q′

j 
= 0 do

// Find the worker with the minimum

bidding price effectiveness

3 l = arg mini:wi∈N
bs

i +b
p

i
ǫ�

j:τj∈Γi
min{Q′

j
,qi,j}

;

4 S ← S ∪ {wl};

5 N ← N \ {wl};

// Update the Q′ vector

6 foreach j s.t. τj ∈ T do

7 Q′
j ← Q′

j − min{Q′
j, ql,j};

8 return S;

The inputs of the winner determination algorithm given
in Algorithm 2 include the privacy budget ǫ, bid profile b,
q matrix, Q vector, worker set N , and task set T . Firstly,
it initializes the winner set S as ∅ and the residual vector
of Q, namely Q′, as Q (line 1). Then, the main loop
(line 2-7) calculates the winner set S. It is executed until the
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winner set S makes the pSRC-TPM problem feasible (line 2).
In each iteration, Algorithm 2 finds the worker wl with the
minimum bidding price effectiveness (line 3) defined as the
ratio between her virtual bidding price and her contribution to
the improvement of the feasibility of Constraint (19). Next, wl

is included into the winner set S (line 4) and excluded from
the worker set N (line 5). Finally, the Q′ vector is updated
(line 6-7) before the start of the next iteration.

Algorithm 3 pSRC Auction Pricing

Input: ǫ, b, q, Q, N , T , S;

Output: p;

// Initialization

1 p ← (0, · · · , 0);
2 foreach i s.t. wi ∈ S do

3 run Algorithm 2 on N \ {wi} until
∑

j:τj∈Γi
Q′

j = 0;

4 S′ ← the winner set when step 3 stops;

// Calculate payment

5 foreach k s.t. wk ∈ S′ do

6 Q′ ← tasks’ Q′ vector when wk is selected;

7 pi ← max

{
pi, (b

s
k + b

p
kǫ) ·

�
j:τj∈Γi

min{Q′

j ,qi,j}�
j:τj∈Γk

min{Q′
j
,qk,j}

}
;

8 return p;

Besides the same inputs of Algorithm 2, the pricing algo-
rithm in Algorithm 3 also uses the winner set S calculated by
Algorithm 2. It initializes the payment profile p as a vector
of N zeros (line 1). Then, the main loop (line 2-7) calculates
the payment to each winner. For each wi ∈ S, Algorithm 2 is
executed on the worker set with all workers except wi until the
point after which wi will never be selected as a winner (line 3).
The winner set at this point is recorded as S′ (line 4). For
each worker wk ∈ S′, Algorithm 3 calculates worker wi’s
maximum virtual bidding price bv

i,k that makes her substitute
wk as the winner. To achieve this, bv

i,k should satisfy

bv
i,k∑

j:τj∈Γi
min{Q′

j , qi,j}
=

bs
k + b

p
kǫ∑

j:τj∈Γk
min{Q′

j, qk,j}
,

which is equivalent to

bv
i,k = (bs

k + b
p
kǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γk
min{Q′

j, qk,j}
.

Then, the maximum value among these bv
i,k’s is chosen as the

payment pi to worker wi (line 7).
3) Analysis: Firstly, we analyze the truthfulness of the

proposed pSRC auction in Theorem 4.
Theorem 4: The proposed pSRC auction is truthful.

Proof: Firstly, we fix the privacy budget ǫ and assume
a worker wi wins the auction by bidding bi = (Γi, b

s
i , b

p
i ).

We show that the pSRC auction satisfies the property of
monotonicity and critical payment in terms of the bidding
bundle Γi and virtual bidding price bv

i = bs
i + b

p
i ǫ.

• Monotonicity: Consider worker wi’s bid b̃i = (Γ̃i, b̃
s
i , b̃

p
i )

with Γ̃i ⊃ Γi and b̃v
i = b̃s

i + b̃
p
i ǫ < bv

i . Algorithm 2
selects winners in an increasing order of the bidding

price effectiveness. Hence, b̃i will also make worker
wi a winnner, as it increases her priority of winning
compared to bi.

• Critical Payment: Algorithm 3 in fact pays every winner
the supremum of all virtual bidding prices that can still
make her a winner, namely critical payment.

As proved in [15] and [42], the monotonicity and critical
payment property make the pSRC auction truthful in terms
of the bidding bundle and the virtual bidding price. That is
worker wi maximizes her utility by bidding Γ∗

i and (bs
i , b

p
i )

such that bs
i +b

p
i ǫ = cs

i +c
p
i ǫ. For a fixed ǫ, the worker still has

incentive to bid (bs
i , b

p
i ) 
= (cs

i , c
p
i ). However, since the exact

value of ǫ is not revealed to workers in the bidding process,
the only strategy that maximizes her utility under all possible
values of ǫ is to bid bs

i = cs
i and b

p
i = c

p
i . Therefore, the pSRC

auction is truthful. �

The proposed pSRC auction ensures that truthful bidding
is a dominant strategy for every worker under any possible
value of ǫ. As stated in the proof of Theorem 4, it is crucial
to keep the exact value of the privacy budget ǫ confidential
to workers in the bidding process to ensure the truthfulness
of a worker’s bidding prices for the costs of sensing and unit
privacy leakage, i.e., to achieve bs

i = cs
i and b

p
i = c

p
i for every

worker wi. The reason that the platform firstly announces
to workers an upper bound of ǫ is to avoid their concerns
of the possibility for excessively large privacy leakage. Next,
we analyze the individual rationality of the pSRC auction.

Theorem 5: The pSRC auction is individual rational.
Proof: By Definition 5, losers of the auction receive zero

utilities. From Theorem 4, every winner wi bids to the platform
the true value (cs

i , c
p
i ) and the payment pi to this winner is

exactly the supremum of all virtual bidding prices for her to
win the auction. Therefore, it is guaranteed that pi ≥ cs

i +c
p
i ǫ,

which is equivalent to ui ≥ 0. Hence, the proposed pSRC
auction is individual rational. �

In our INCEPTION framework, the platform reveals the
exact value of the privacy budget ǫ when workers receive
their payments so that they can evaluate their utilities after
participating and confirm that their utilities are in fact non-
negative. Next, we analyze the algorithmic properties of the
pSRC auction.

Theorem 6: The computational complexity of the proposed
pSRC auction is O(N3 + N2 K).

Proof: The main loop (line 2-7) of Algorithm 2 terminates
in worst case after N iterations. In every iteration, it takes
O(N) time to find the worker with the minimum bidding
price effectiveness (line 3), and at most K other iterations
are needed to update the Q′ vector (line 6-7). Therefore,
the computational complexity of Algorithm 2 is O(N2+NK).

Furthermore, the computational complexity of Algorithm 3
is O(N3 + N2 K), because there is one more layer of
loop that executes for N iterations in worst case. In conclu-
sion, the computational complexity of the pSRC auction is
O(N3 + N2 K). �

Before analyzing the approximation ratio of the platform’s
total payment generated by the pSRC auction to the optimal
total payment, we introduce Lemma 3 and 4 that are utilized
in the analysis. The two lemmas are directly related to the
pSRC auction social cost minimization (pSRC-SCM) problem
defined as follows.

pSRC-SCM Problem:

min
∑

i:wi∈N

(cs
i + c

p
i ǫ)yi (25)

s.t.
∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj , ∀τj ∈ T (26)

yi ∈ {0, 1}, ∀wi ∈ N (27)
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The pSRC-SCM problem has the same set of inputs,
constraints (including the inherent truthfulness and individual
rationality constraints), and variables y = {y1, · · · , yN} as the
pSRC-TPM problem. Instead of the platform’s total payment,
it minimizes the social cost, i.e.,

∑
i:wi∈S(cs

i + c
p
i ǫ), which is

the sum of all winners’ costs.
Lemma 3: The optimal social cost of the pSRC-SCM prob-

lem, denoted as COPT, is a lower bound of the optimal total
payment of the pSRC-TPM problem, denoted as POPT.

Proof: Suppose (y∗,p∗) is the optimal solution to the
pSRC-TPM problem. We have POPT =

∑
i:wi∈N p∗i y

∗
i .

Since the pSRC-TPM problem and the pSRC-SCM problem
have the same set of constraints, (y∗,p∗) is also feasible to the
pSRC-SCM problem. Furthermore, from individual rationality,
we have p∗i ≥ (cs

i + c
p
i ǫ)y

∗
i for every worker wi. Therefore,

we have

COPT ≤
∑

i:wi∈N

(cs
i + c

p
i ǫ)y

∗
i ≤

∑

i:wi∈N

p∗i y
∗
i = POPT,

which means that COPT is a lower bound of POPT. �

Then, we introduce Lemma 4 which is borrowed from
Theorem 5 in [5] with some minor adaptations. Similar
to [15], we introduce the following notations including η =
maxi,j:wi∈N ,τj∈T (cs

i + c
p
i ǫ)qi,j |Γi| and m = 1

∆q

∑
j:τj∈T Qj

where ∆q is the unit measure of elements in q and Q.
Lemma 4: The social cost generated by Algorithm 2 satis-

fies 2γHm-approximation to the optimal social cost, i.e.,
∑

i:wi∈S

(cs
i + c

p
i ǫ) ≤ 2ηHmCOPT,

where Hm = 1 + 1
2 + · · · + 1

m
.

The proof to Lemma 4, which can be found in [15] is

omitted in this paper. We define ν = maxi,k:wi,wk∈N
cs

i+c
p

i
ǫ

cs
k
+c

p

k
ǫ
,

ρ = 1
∆q

maxi,j:wi∈N ,τj∈T qi,j |Γi|, and introduce the follow-
ing Theorem 7 regarding the approximation ratio of the pro-
posed pSRC auction in terms of the platform’s total payment.

Theorem 7: The platform’s total payment generated by the
proposed pSRC auction satisfies 2ρνηHm-approximation to
the optimal total payment, i.e.,

∑

i:wi∈S

pi ≤ 2ρνηHmPOPT.

Proof: Based on Algorithm 3, for every winner wi there
exists some worker wki

such that

pi = (cs
ki

+ c
p
ki

ǫ) ·
∑

j:τj∈Γi
min{Q′

j, qi,j}∑
j:τj∈Γki

min{Q′
j, qki,j}

,

where Q′
j denotes the element corresponding to task τj in

the Q′ vector determined on line 6 of Algorithm 3 when the
worker wki

is selected as a winner. Therefore, we have

∑

i:wi∈S

pi =
∑

i:wi∈S

(cs
ki

+ c
p
ki

ǫ) ·
∑

j:τj∈Γi
min{Q′

j, qi,j}∑
j:τj∈Γki

min{Q′
j, qki,j}

≤ max
i:wi∈N

(cs
i + c

p
i ǫ) ·

(
1

∆q

∑

i:wi∈S

∑

j:τj∈Γi

qi,j

)

≤ |S| max
i:wi∈N

(cs
i +c

p
i ǫ)·

(
1

∆q
max

i,j:wi∈N ,τj∈T
qi,j |Γi|

)

= ρ|S| max
i:wi∈N

(cs
i + c

p
i ǫ). (28)

Furthermore, the social cost satisfies that
∑

i:wi∈S

(cs
i + c

p
i ǫ) ≥ |S| min

i:wi∈N
(cs

i + c
p
i ǫ). (29)

From Inequality (28) and (29), and Lemma 3 and 4, we have
that

∑

i:wi∈S

pi ≤ ρ

(
max

i,k:wi,wk∈N

cs
i + c

p
i ǫ

cs
k + c

p
kǫ

)
∑

i:wi∈S

(cs
i + c

p
i ǫ)

= ρν
∑

i:wi∈S

(cs
i + c

p
i ǫ) ≤ 2ρνηHmCOPT

≤ 2ρνηHmPOPT.

Therefore, the proposed pSRC auction satisfies 2ρνηHm-
approximation to the optimal total payment. �

Note that there is a maxi∈N |Γi| factor in ρ and η, which
could be large theoretically, and in worst case equals to the
number of tasks K . However, practically, as a worker wi

typically has a limited capability and interest in terms of the
number of tasks she can and wants to execute, maxi∈N |Γi|
will be far less than K , which prevents ρ and η from growing
excessively large, in practice, as K increases. Furthermore,
as m = O(K) and Hm = O(log m), we have that Hm =
O(log K). Therefore, although Hm is not a constant, it is still
much smaller than K in order sense. Thus far, the 2ρνηHm

approximation ratio proved in Theorem 7 is the best one we
have found, and we leave the proof of the tightness of this
ratio, or the derivation of a better one in our future work.

C. Data Perturbation Mechanism

1) Proposed Mechanism: As previously mentioned, any
adversary curious about workers’ data could try to infer them
utilizing the aggregated results if they are published directly.
One example of such an adversary could be another competing
platform hosting similar sensing tasks. The portion of workers’
data inferred with reasonable accuracy could be utilized by the
adversary platform to calculate the results of its own tasks.
In this way, it could reduce the number of workers recruited
by itself, and thus its financial expense for worker recruiting.

To enable such inference, the adversary needs the infor-
mation about workers’ weights, namely λi,j’s, defined in
Equation (8). That is, it has to know α and θ, which is usually
feasible for the adversary platform. For similar sensing tasks,
α is typically a common and standard design choice across
different platforms, and workers’ reliability levels for similar
tasks tend to be similar as well. Therefore, θ can also be
effectively estimated or inferred by the adversary platform
using the methods mentioned in Section III-C, such as utilizing
workers’ sensory data about similar tasks collected during its
past interactions with them as in [39] and [40], using some
of workers’ characteristics (e.g., reputation and experience
for similar tasks) as in [41], and many others. To tackle
such inference attack, we propose a novel data perturbation
mechanism in Algorithm 4 by tailoring the Laplace mechanism
in [26] and [43] to our problem setting.

Apart from the the vector of the aggregated results
(x1, · · · , xN ) output by the data aggregation mechanism,
the task set T , the same α and β vector as in Algorithm 1, 2,
and 3, Algorithm 4 also takes as input the vector x̃, where each
element x̃j corresponds to one categorical task τj ∈ Tcat with

x̃j =
∑

i:wi∈S,τj∈Γi

(2θi,j − 1)xi,j . (30)
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Algorithm 4 Data Perturbation Mechanism

Input: (x1, · · · , xN ), α, β, T , x̃, δ;

Output: (x̂1, · · · , x̂N );
1 foreach j s.t. τj ∈ T do

2 if τj ∈ Tcon then

3 randomly sample a noise nj from Lap
(
0,− αj

ln βj

)
;

4 x̂j ← xj + nj ;

5 else

6 randomly sample a noise nj from Lap
(
0, 1

δj

)
;

7 x̂j ← sign(x̃j + nj);

8 return (x̂1, · · · , x̂N );

Clearly, for each categorical task τj ∈ Tcat, x̃j is its
intermediate aggregated result before we convert it to
the binary label xj . Although not explicitly described,
Algorithm 1 keeps track of these intermediate results x̃j ’s
so that they can be utilized by Algorithm 4. Additionally,
the last input parameter to Algorithm 4 is the vector δ, where
each element δj ∈ (0, 1) is a platform-chosen parameter
corresponding to the privacy guarantee of a categorical task
τj ∈ Tcat. For each continuous task τj ∈ Tcon, Algorithm 4
independently samples a random noise nj from the Laplacian
distribution with mean 0 and scaling − αj

ln βj
, denoted as

Lap
(
0,− αj

ln βj

)
(line 3), and adds it to the aggregated result

xj (line 4). For each categorical task τj ∈ Tcat, the algorithm
randomly samples a noise from the Laplacian distribution with
mean 0 and scaling 1

δj
, denoted as Lap

(
0, 1

δj

)
(line 6), and the

perturbed result x̂j of this task is calculated as sign(x̃j + nj)
(line 7). Although adding Laplacian noise as in [26] and [43]
is a well-established approach to achieve differential privacy,
the scaling of the Laplacian distribution is application specific
and has to be carefully designed to achieve a desirable
trade-off between privacy and data accuracy.

2) Analysis: We firstly analyze Algorithm 4’s accuracy
guarantee for continuous tasks.

Theorem 8: For each continuous task τj ∈ Tcon, the data
perturbation mechanism given in Algorithm 4 satisfies

Pr
[∣∣X̂j − Xj

∣∣ ≥ αj

]
= βj . (31)

Proof: For each continuous task τj ∈ Tcon, we use
Nj to denote the random variable representing the random
noise sampled from the Laplacian distribution Lap

(
0,− αj

ln βj

)
,

i.e., Nj ∼ Lap
(
0,− αj

ln βj

)
. Thus,

Pr
[∣∣X̂j−Xj

∣∣ ≥ αj

]
= Pr

[∣∣Nj

∣∣ ≥ αj

]
= 2Pr

[
Nj ≥ αj

]

= 2

∫ +∞

αj

−lnβj

2αj

exp

(
z ln βj

αj

)
dz = βj ,

which gives us Pr[|X̂j − Xj | ≥ αj ] = βj . �

Theorem 8 states that (αj , βj)-accuracy is guaranteed for
the perturbed result compared to the original one before
perturbation for every continuous task τj ∈ Tcon. However,
our ultimate goal is to achieve that the perturbed results has
satisfactory accuracy compared to ground truths, which is
proved in the following Theorem 9.

Theorem 9: For each continuous task τj ∈ Tcon, the data
perturbation mechanism given in Algorithm 4 satisfies

Pr
[∣∣X̂j − x∗

j

∣∣ ≥ 2αj

]
≤ 1 − (1 − βj)

2. (32)

Proof: As discussed in Section IV-A and IV-B, the aggre-
gated result for every continuous task τj ∈ Tcon satisfies that

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]
≤ βj . From Theorem 8 and the fact that

Xj − x∗
j and X̂j − Xj = Nj are two independent random

variables, we have

Pr
[∣∣X̂j − x∗

j

∣∣ > 2αj

]
≤ Pr

[∣∣X̂j − Xj

∣∣ +
∣∣Xj − x∗

j

∣∣ > 2αj

]

≤ 1 − (1 − βj)
2,

which gives us Pr[|X̂j − x∗
j | ≥ 2αj ] ≤ 1 − (1 − βj)

2. �

Therefore, Theorem 9 gives us that (2αj , 1 − (1 − βj)
2)-

accuracy is satisfied for the perturbed result of every con-
tinuous task τj ∈ Tcon compared to its ground truth. Next,
we analyze Algorithm 4’s accuracy guarantee for categorical
tasks.

Theorem 10: For each categorical task τj ∈ Tcat, the data
perturbation mechanism given in Algorithm 4 satisfies

Pr
[
X̂j 
= x∗

j

]
≤ γj + 1

2
. (33)

Proof: For each categorical task τj ∈ Tcat, we have that

Pr
[
X̂j 
= x∗

j

]
= Pr

[
X̃j + Nj ≥ 0|x∗

j = −1
]
Pr

[
x∗

j = −1
]

+ Pr
[
X̃j + Nj < 0|x∗

j = +1
]
Pr

[
x∗

j = +1
]
,

where X̂j denotes the random variable corresponding to x̃j ,
and Nj denotes the random variable that represents the random
noise sampled from the Laplacian distribution Lap

(
0, 1

γj

)
.

Then, we have that

Pr
[
X̃j + Nj ≥ 0|x∗

j = −1
]

≤ 1 − Pr
[
X̃j < 0|x∗

j = −1
]
Pr

[
Nj < 0

]

< 1 − 1 − γj

2
=

1 + γj

2
,

where the last inequality is because of Pr
[
X̃j < 0|x∗

j =

−1
]

> 1 − γj which is an intermediate result in the proof of

[14, Th. 1]. Similarly, we have that Pr
[
X̃j + Nj < 0|x∗

j =

+1
]

<
1+γj

2 . Therefore, we have that

Pr
[
X̂j 
= x∗

j

]
≤ γj + 1

2
, (34)

which exactly proves this Theorem. �

By Theorem 10, we have that the final perturbed result of
each categorical task τj ∈ Tcat satisfies γj-accuracy compared
to its ground truth with γj ∈ (0, 1). Next, in Theorem 11,
we analyze the privacy guarantee of the data perturbation
mechanism.

Theorem 11: The data perturbation mechanism given in
Algorithm 4 satisfies ǫ-differential privacy, where the privacy

budget ǫ = max
{

maxj:τj∈Tcon

(
− ln βj

αj

)
, maxj:τj∈Tcat

2δj

}
.

Proof: Similar to the proof of Theorem 8 and 10, we use
Nj to denote the random variable corresponding to the random
noise nj sampled by Algorithm 4 for each task τj . For any
O ⊆ R and r ∈ R, we use O − r to denote the set {x′ =

x−r|x ∈ O}, and x
(i)
j and x̂

(i)
j to denote the aggregated result

for task τj before and after perturbation when one worker wi’s
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Fig. 2. Platform’s total payment for (a) setting I, (b) setting II, (c) setting III, and (d) setting IV.

data xi,j changes. For each continuous task τj ∈ Tcon, we have∣∣xj − x
(i)
j

∣∣ ≤ 1, and

Pr
[
X̂j ∈ O

]

= Pr
[
Nj ∈ O − Xj

]

=

∫

z∈O−Xj

− lnβj

2αj

exp

( |z| lnβj

αj

)
dz

≤ exp

(
− lnβj

αj

) ∫

z∈O−X
(i)
j

− lnβj

2αj

exp

( |z| lnβj

αj

)
dz

= exp

(
− lnβj

αj

)
Pr

[
X̂

(i)
j ∈ O

]
.

For each categorical task τj ∈ Tcat, we use x̃
(i)
j to denote

the value of x̃j when one worker wi’s data xi,j changes, and

clearly
∣∣xj − x

(i)
j

∣∣ ≤ 2. Thus, we have that

Pr
[
X̃j + Nj ∈ O

]
= Pr

[
Nj ∈ O − X̃j

]

=

∫

z∈O− �Xj

δj

2
exp

(
− δj |z|

)
dz

≤ exp
(
2δj

) ∫

z∈O− �X(i)
j

δj

2
exp

(
−δj|z|

)
dz

= exp
(
2δj

)
Pr

[
X̃

(i)
j + Nj ∈ O

]
.

As O could be any subset of R, we let O = [0, +∞), and

get Pr[X̃j + Nj ≥ 0] ≤ exp(2δj)Pr[X̃
(i)
j + Nj ≥ 0]. Thus,

we have that

Pr
[
X̂j = +1

]

Pr
[
X̂

(i)
j = +1

] =
Pr

[
X̃j + Nj ≥ 0

]

Pr
[
X̃

(i)
j + Nj ≥ 0

] ≤ exp(2δj).

Similarly, by letting O = (−∞, 0), we have that

Pr
[
X̂j = −1

]

Pr
[
X̂

(i)
j = −1

] =
Pr

[
X̃j + Nj < 0

]

Pr
[
X̃

(i)
j + Nj < 0

] ≤ exp(2δj).

Note that the previous analysis focuses on a specific task τj .
The overall privacy budget considering all tasks in T is thus

ǫ = max
{

maxj:τj∈Tcon

(
− ln βj

αj

)
, maxj:τj∈Tcat

2δj

}
. �

D. Summary of Design Details

Thus far, we have finished the description of the
design details of INCEPTION. Its incentive mechanism
(Section IV-B) selects a set of winners that are more likely
to provide reliable data and determines the payments to com-
pensate their sensing and privacy costs. Meanwhile, it approx-
imately minimizes the platform’s total payment (Theorem 7),
and satisfies computational efficiency (Theorem 6), truthful-
ness (Theorem 4), and individual rationality (Theorem 5).
Incorporating workers’ reliability levels, the data aggregation

mechanism (Section IV-A) provides aggregated results with
high accuracy (Corollary 1 and 2), and the data pertur-
bation mechanism (Section IV-C) adds carefully controlled
noises to the aggregated results to achieve differential pri-
vacy (Theorem 11), and small degradation of aggregation
accuracy (Theorem 8, 9, and 10).

Overall, INCEPTION guarantees max
{

maxj:τj∈Tcon(
− ln βj

αj

)
, maxj:τj∈Tcat

2δj

}
-differential privacy, (2αj , 1 −

(1 − βj)
2)-accuracy for each continuous task τj ∈ Tcon

(Theorem 9), and
γj+1

2 -accuracy for each categorical task
τj ∈ Tcat (Theorem 10). The platform could carefully select
αj , βj , γj , δj ∈ (0, 1) for each task τj to ensure satisfactory
guarantee for aggregation accuracy and workers’ privacy.

V. PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, and
simulation settings, as well as results.

A. Baseline Methods

Ideally we need to compare the proposed pSRC auction
with a truthful and individual rational auction that returns
exact optimal solutions to the pSRC-TPM problem. However,
because solving the pSRC-TPM problem is notoriously chal-
lenging, we instead use the following VCG auction [44], [45]
as one of the baseline methods. The VCG auction solves
the pSRC-SCM problem optimally and pays every winner
according to the VCG payment. This choice is reasonable as
the optimal social cost offers a lower bound to the optimal total
payment as proved in Lemma 3. Hence, a good approximation
to the optimal social cost indicates a better approximation to
the optimal total payment.

Another baseline method is the bidding price effective-
ness greedy (BPE-Greedy) auction. Initially, it sorts workers
according to an increasing order of their bidding price effec-
tiveness. Winners are selected in this order until the feasibility
of the pSRC-TPM problem is satisfied. Its pricing mechanism
pays every winner her critical payment as Algorithm 3 does.
It is easily provable that the BPE-Greedy auction also satisfies
truthfulness and individual rationality.

Furthermore, we compare our weighted data aggregation
mechanism with two other baseline aggregation methods,
namely the mean and median aggregation. For each contin-
uous task, the mean and median aggregation method simply
utilizes, respectively, the mean and median of workers’ data
as its aggregated result. For each categorical task, the median
aggregation method also uses the median of workers’ data as
the task’s aggregated result, but the mean aggregation method
firstly calculates the mean of workers’ data about this task,
and then takes the sign of the mean as the aggregated result.
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TABLE I

SIMULATION SETTINGS (CONTINUOUS TASKS ONLY)

TABLE II

SIMULATION SETTINGS (CATEGORICAL TASKS ONLY)

B. Simulation Settings

For simplicity of presenting our simulation results, we con-
sider setting I-IV in Table I where the platform hosts only
continuous tasks, and Setting V-VIII where the platform hosts
only categorical tasks. Note that, clearly, our INCEPTION
framework is applicable in the scenario where both continuous
and categorical tasks are hosted by the platform.

For each continuous task τj , we generate worker wi’s data
about this task, i.e., xi,j , from a normal distribution with
mean µi,j and standard deviation σi,j , truncated within the
range [0, 1]. The value of θi,j for each continuous task τj is
calculated by platform as

θi,j =
ci,jσi,j√

2π

(
2 exp

(−b2
i,j

2σ2
i,j

)
− exp

(−a2
i,j

2σ2
i,j

)

− exp

(−
(
1 − ai,j

)2

2σ2
i,j

))

+ ci,jbi,j

(
Φ

(−ai,j

σi,j

)
+Φ

(
1−ai,j

σi,j

)
−2Φ

(−bi,j

σi,j

))
,

where ci,j =
(
Φ

( 1−µi,j

σi,j

)
− Φ

(
− µi,j

σi,j

))−1

, bi,j = µi,j − x∗
j ,

ai,j = x∗
j + bi,j , and Φ(·) denotes the c.d.f. of the standard

normal distribution. We omit the derivation for θi,j due to
space limit. The parameter settings for the scenarios with only
continuous tasks are given in Table I.

In setting I and II, αj , βj , cs
i , c

p
i , x∗

j , µi,j , σi,j , and |Γ∗
i |

are generated uniformly at random from the intervals given
in Table I. The bundle Γ∗

i contains |Γ∗
i | tasks randomly chosen

from T . In setting I, we fix the number of tasks as 40 and vary
the number of workers from 91 to 120. In contrast, we fix the
number of workers as 100 and vary the number of tasks from
21 to 50 in setting II. In setting III and IV, αj , βj , cs

i , c
p
i ,

x∗
j , µi,j , σi,j , and |Γ∗

i | are generated in the same way as in
setting I and II from the intervals given in Table I. Different
from the previous two settings, setting III and IV take instances
with larger sizes, given in Table I, as inputs. Next, we give
our parameter settings for the scenarios with only categorical
tasks in Table II.

In setting V and VI, γj , δj , cs
i , c

p
i , x∗

j , θi,j , and |Γ∗
i |

are generated uniformly at random from the intervals given
in Table II. The bundle Γ∗

i contains |Γ∗
i | tasks randomly chosen

from T . In setting V, we fix the number of tasks at 40 and vary
the number of workers from 91 to 120. In contrast, we fix the
number of workers at 100 and vary the number of tasks from
21 to 50 in setting VI. In setting VII and VIII, the parameters
γj , δj , cs

i , c
p
i , x∗

j , θi,j , and |Γ∗
i | are generated in the same way

Fig. 3. MAE of data aggregation (continuous tasks only).

Fig. 4. EP after perturbation (continuous tasks only).

TABLE III

EXECUTION TIME (SECONDS) FOR SETTING I AND II

TABLE IV

EXECUTION TIME (SECONDS) FOR SETTING V AND VI

as in setting V and VI from the intervals given in Table II.
Different from the previous two settings, setting VII and VIII
take instances with larger sizes as inputs, which are given
in Table II. The optimal solutions to the pSRC-SCM problem
are calculated using the GUROBI optimization solver [46].

C. Simulation Results

Figure 2-4 demonstrate our simulation results on
Setting I-IV with only continuous tasks. Figure 2(a) and (b)
show that the platform’s total payment of the pSRC auction
is far less than that of the BPE-Greedy auction and fairly
close to the optimal social cost given by the VCG auction.
Since the optimal social cost lower bounds the optimal total
payment, the pSRC auction thus gives us close-to-optimal
total payment. Next, we compare the execution time of the
VCG and the BPE-Greedy auction.

From Table III, we observe that the VCG auction has
excessively long running time so that it can hardly be utilized
in practice. The running time of the VCG auction lower bounds
that of the auction that gives us the optimal total payment,
because solving the pSRC-SCM problem is in fact easier
and faster than solving the pSRC-TPM problem. Hence, cal-
culating the optimal total payment becomes computationally
infeasible in practice. However, the execution time of the
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Fig. 5. Platform’s total payment for (a) setting V, (b) setting VI, (c) setting VII, and (d) setting VIII.

Fig. 6. MAE of data aggregation (categorical tasks only).

Fig. 7. EP after perturbation (categorical tasks only).

pSRC auction keeps in the order of microsecond, which is
much less that of the VCG auction.

In Figure 2(c) and (d), we show our simulation results about
the platform’s total payment for setting III and IV with larger-
size problem instances where the VCG auction is not able to
terminate in reasonable time. We can observe that the proposed
pSRC auction still gives us a total payment far less than that
of the BPE-Greedy auction.

We evaluate the accuracy guarantee of INCEPTION in
setting II with a minor change of the parameter βj , i.e., βj

is fixed as 0.05 for every task τj to simplify presentation.
We compare the mean absolute error (MAE) for all tasks,
defined as MAE = 1

K

∑
j:τj∈T |xj − x∗

j |, of the weighted

aggregation mechanism given in Algorithm 1 with those
of the mean and median aggregation. The simulation for
each combination of worker and task number is repeated for
10000 times and the means and standard deviations of the
MAEs are plotted. We observe from Figure 3 that the MAE
of our weighted aggregation is far less than those of the
mean and median aggregation. Then, we show simulation

results regarding Pr[|X̂j − x∗
j | ≥ αj ], referred to as the

error probability (EP) of the perturbed results for task τj .
After 10000 repetitions of the simulation for any specific
combination of worker and task number, empirical values for
the EPs are calculated and we plot the means and standard
deviations of the empirical EPs over all tasks. From Figure 4,
we observe that the empirical EPs are far less than the required
upper bound (i.e., 1− (1− βj)

2 = 1− (1− 0.05)2 = 0.0975).

Next, we show our simulation results for setting V-VIII with
only categorical tasks in Figure 5-7, which share similar trends
as Figure 2-4. The simulation setting for Figure 6 and 7 is the
same as setting IV except that γj and δj for each task τj are

fixed as 0.1. In Figure 7, EP is defined as Pr[X̂j 
= x∗
j ], whose

empirical value is calculated in the same way as that for a
continuous task in Figure 4.

Furthermore, we show in Table IV the comparison between
the execution time of the VCG and the BPE-Greedy auction
for setting V and VI. Clearly, similar to Table III, Table IV
also shows that execution time of the pSRC auction is much
less that of the VCG auction.

VI. CONCLUSION

In this paper, we propose INCEPTION, a novel MCS system
framework that integrates an incentive, a data aggregation,
and a data perturbation mechanism. Its incentive mecha-
nism selects reliable workers, and compensates their costs
for sensing and privacy leakage, which meanwhile satisfies
truthfulness and individual rationality. Its data aggregation
mechanism incorporates workers’ reliability to generate highly
accurate aggregated results, and its data perturbation mech-
anism ensures satisfactory guarantee for workers’ privacy,
as well as the accuracy for the final perturbed results. The
desirable properties of INCEPTION are validated through both
theoretical analysis and extensive simulations.
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