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Abstract 
Background: Lung CT scans are widely used for lung cancer screening and diagnosis. Current re-
search focuses on quantitative analytics (radiomics) to improve screening and detection accuracy. 
However there are very limited numbers of portable software tools for automatic lung CT image anal-
ysis.  
Results: Here we build a Docker container, CNNcon, as a quantitative imaging tool for analyzing lung 
CT image features. CNNcon is developed from our recently published algorithm for nodule analysis, 
based on convolutional neural networks (CNN). When provided with a list of the centroid coordinates 
of regions of interest (ROI) in a volumetric CT study containing potential lung nodules, CNNcon can 
automatically generate highly accurate malignancy prediction of each ROI. CNNcon can also generate 
a vector of image features of each ROI, to facilitate further analyses by combining image features and 
other clinical features. As a Docker container, CNNcon is portable to various computer systems, con-
venient to install, and easy to use. CNNcon was tested on different computer systems and generated 
identical results.  
Conclusions: We anticipate that CNNcon will be a useful tool and broadly acceptable to the research 
community interested in quantitative image analysis.  
 
Contact: xhuang@astate.edu; FWPrior@uams.edu 
Availability: CNNcon and document are publicly available and can be downloaded from the website: 
http://bioinformatics.astate.edu/CNN-Container/ 
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1 Background  

Lung cancer is the leading cause of cancer related death for both men and women worldwide 
[http://www.who.int/news-room/fact-sheets/detail/cancer]. In the United States, lung cancer was diag-
nosed in 222,500 people in 2017 and accounted for an estimated 155,870 deaths [Siegel2017]. Early 
detection and diagnosis of lung cancer is critical to give patients the best chance at recovery and 
survival. Lung CT scans are broadly used for lung cancer screening and diagnosis.  

Significant recent research effort has focused on combining quantitative image analysis and ma-
chine learning (radiomics) to improve the speed and reliability of lung cancer screening and early 
detection [Kalpathy-Cramer2016a; 2016b; Lambin2012]. Much of this work has been conducted under 
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the auspices of NCI’s quantitative imaging network (QIN), which emphasizes the creation and valida-
tion of reliable quantitative imaging tools [Clarke2014].  

In an assessment of the state of imaging informatics in precision medicine published by members 
of the QIN, the need for reliable, validated radiomics analysis tools deployed using container technol-
ogy was emphasized [Chennubhotla2017]. However currently there are very few such portable soft-
ware tools available to the community. Especially there are few Docker containers for automatic lung 
CT image feature analysis. We conducted Pubmed and Google Scholar searches with related key 
words, such as, “docker and image feature”, "docker and lung CT", “docker and CT”, "CNN docker 
and CT". We found that the various searches returned only a few relevant publications; For example, 
for the search with key words “docker and CT”, only one relevant publication [Echegaray2017] was 
found. The Quantitative Image Feature Engine (QIFE) is a framework for creating radiomics pipelines 
which has been deployed in containerized form.  Thus far this tool has been used to generate and 
analyze engineering features not features learned from the data using deep learning techniques. We 
found one other publication from a research group in Spain, which was focused on a problem of CT 
reconstruction, and the work compared two approaches for managing the software dependencies of 
the code: store the software libraries on a Storage Element and using containers for executing the job 
[Chillarón2017].  

We have developed a Docker container, CNNcon, as a quantitative imaging tool for automatically 
analyzing lung CT image features utilizing our recently published algorithms [Causey2018]. When 
provided with a list of the centroid coordinates of regions of interest (ROIs) in a volumetric CT study 
containing potential lung nodules, CNNcon can automatically generate a malignancy prediction of 
each ROI, as well as generate a vector of image features of each ROI. As a Docker container, CNNcon 
is can be easily deployed and is easy to use.  

 

2 Implementation 

An automation script was created to automate the steps necessary to isolate the region of interest 
(ROI) corresponding to each centroid in the input centroids list. Running the automation script auto-
matically performs the following steps: 
 A temporary storage directory is created at the specified location if it does not already exist. 
 For each centroid in the input centroids list, the corresponding DICOM image is loaded, then a 

region surrounding the centroid is cropped from the original image and stored along with neces-
sary metadata in an intermediate file in the HDF5 format. 

 The HDF5 intermediate file containing all ROIs is loaded, and each ROI is evaluated by the se-
lected NoduleX [Causey2018] CNN model. 

 An output file containing, for each ROI, either probabilities corresponding to the likelihood of the 
ROI belonging to the “positive” class, or feature vectors representing the ROI according to the 
CNN model’s feature space are output in a CSV-compatible format. 

 
A “Dockerfile” was created to provide instructions for Docker [https://www.docker.com] to package 

the necessary code components and operating system environment into a suitable Docker container. 
This file was used to produce a Docker image that will be referred to as nodulex henceforth. This 
Docker image may be run from the command line as shown in the procedures. 

The container is designed to be run as a command-line evaluation tool, or as a step in a larger 
analysis pipeline. The environment must be prepared before running the tools as follows: 
 Input DICOM files should be placed into a directory (here referred to as “data”). Each individual 

scan must be in a subdirectory of the data directory, with the name of the subdirectory correspond-
ing to a unique identifier for the scan, i.e. the patient ID or scan ID. 

 A list of the centroid coordinates corresponding to regions of interest (ROIs) must be prepared in 
a comma-separated (CSV-compatible) format. The centroid list must be stored in a directory that 
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will be available to the running container, such as in the data directory. Here we refer to this file 
as centroid_list.csv and assume it is stored in data, i.e. its path is data/centroid_lists.csv. 

 A directory must be designated to receive the results output by the analysis. Here we refer to this 
directory as results. 

 A temporary directory to support the necessary intermediate files must be specified. (Intermediate 
files require approximately 70KiB per ROI with default settings.) Here we refer to this directory as 
tmp. 

 
The directory structure as described above would look like the following: 
 

data/ 
    centroid_list.csv 
    PATIENT_1/ 
        PATIENT_1_1.dcm 
        PATIENT_1_2.dcm 
        ... 
        PATIENT_1_N.dcm 
    ... 
    PATIENT_N/ 
        PATIENT_N_1.dcm 
        PATIENT_N_2.dcm 
        ... 
        PATIENT_N_N.dcm 
results/ 
tmp/ 

 

The centroid file is used to describe both IDs and locations for each of the regions of interest. The 
file must be formatted as follows: 
 The first line of the file may be a header line; if so, it must begin with the # character. 
 Each line of the file corresponds to one ROI 

– Fields are separated by commas; no other commas may appear in the data. 
– The Patient ID (or Scan ID) is the first field on the line; it must correspond exactly to the name 

of the subdirectory in data that contains the DICOM files for that scan. 
– The second field is the slice number (or Z-axis coordinate) of the center of the ROI. 
– The third field is the X-axis coordinate (or row number) of the center of the ROI. 
– The fourth field is the Y-axis coordinate (or column number) of the center of the ROI. 
– There may be a fifth field that is a label for the ROI class; if so, it will be ignored by this proce-

dure. 
 
An example of the centroids file format is shown below: 
 

#patientID sliceNo X Y 
PATIENT_1 43 316 367 
PATIENT_2 77 345 361 

 
 
 
 

Procedure 1: Predictions with default parameters. 
Assuming the directory structure is as shown above, the following Docker command will execute the 
analysis procedure with default parameters and produce the result file predictions.csv in the results 
directory. The results file will contain predictions in the range [0,1] corresponding to the probability 
that the ROI is in the “positive” class. With default parameters, the “positive” class corresponds to the 
LIDC-IDRI “malignancy” classification ≥4[armato2011lung]. 
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docker run \ 
    -v $(pwd)/data/:/data \
    -v $(pwd)/results:/results \ 
    -v /tmp:/tmp \ 
    nodulex 

 
 

Note that in this example $(pwd) is used to make the path to the data and results directories abso-
lute, as is required by Docker, and the default system temporary directory /tmp is used for tmp. It is 
necessary to modify the paths to suit the host system’s configuration. Additionally, on some systems 
it is necessary to have superuser permissions to run Docker, requiring the use of sudo (replace docker 
with sudo docker in the command shown). 

 
Procedure 2: Feature vectors with default parameters. 
Using the same assumptions as in Procedure 1, this command will produce the result file expres-
sion.csv in the results directory. The results file will contain a 200-dimensional vector for each ROI 
corresponding to the “feature layer” in the model’s neural network (the last fully-connected layer prior 
to the softmax classification layer). 
 

docker run \ 
    -v $(pwd)/data/:/data \
    -v $(pwd)/results:/results \ 
    -v /tmp:/tmp \ 
    nodulex \ 
    --expression 

 

Listing of command parameters. 
The container supports several optional parameters, as explained below. 
 
Optional positional argument: 
centroid-file : 
File defining the centroid coordinates of ROIs to examine (CSV-like format). Must be in a directory 
accessible to the container (i.e. data, tmp, or results). 
 
Optional arguments: 
-h, --help : 
Displays information about available options and exits. 
 
-c, --cache : 
Flag indicating the tools should cache intermediate results in the temporary directory, leaving them 
intact for future use. 
 
-d DATA, --data DATA : 
Directory (relative to the container) containing the DICOM data, with one subdirectory per patient, 
named according to patient ID. 
 
-r RESULTS, --results RESULTS : 
Directory (relative to the container) into which results will be written. 
 
-t TMP, --tmp TMP : 
Directory (relative to the container) where intermediate and cache data will be written. 
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-s SIZE, --size  SIZE : 
Voxel size (in X,Y dimensions) of the input region. Supported values are 21 and 47. The default is 47. 
 
-x, --expression : 
Store “expression” feature vectors in output directory instead of “prediction” probabilities. The output 
file will be “expression.csv”. 
 
-m MODEL , --model MODEL : 
Selects which model will be used for classification. Supported values are “12v45”, “1v45”, “NvNN”. 
The default is “12v45”. 
 
-v VOXEL_SHAPE, --voxel-shape VOXEL_SHAPE : 
Specifies voxel shape in mm. A scalar value indicates homogeneous voxels (X=Y=Z), or use a list of 
three numbers i.e. “X,Y,Z” to specify non-cubic voxels. Use the flag “-1” to keep original shape from 
input DICOM image unchanged. The default is “-1”. 
 
-w, --window : 
Flag indicating the model should use window normalization during preprocessing. This is the default 
when –size is 47. 
 
-n, --no-window : 
Flag indicating the model should not use window normalization during preprocessing (the model will 
use min-max normalization instead). This is the default when –size is 21. 
 
 

3 Results 

The Docker container CNNcon was tested on two different computers with two different settings: the 
default setting and the setting with the option of a specified homogeneous voxel. For each of the two 
settings, based on our testing with 132 modules, the two computers with different operating systems 
and hardware platforms generated identical results. Please refer to http://bioinformat-
ics.astate.edu/CNN-Container/ for the files, including the input csv file, the output prediction file and 
the feature vector file. The following is the details of the testing.  

We analyzed 132 nodules from the LIDC-IDRI study, consisting of 66 in the "positive" class with 
malignancy ratings 4 or 5, and 66 in the "negative" class with malignancy ratings 1 or 2. We recorded 
accuracy and area under the Receiver Operating Characteristic curve (AUC) for the predictions.  With 
default settings, the model produced predictions with an accuracy of 82.6%, corresponding to an AUC 
of 0.896. The 132 nodules from 121 CT images were processed in 46 minutes, 45 seconds on a Dell 
OptiPlex 5050 with a 3.6GHz Intel Core i7 CPU and 16GB of RAM running Ubuntu Linux.  The same 
dataset was processed in 71 minutes, 9 seconds on a 2016 MacBook Pro with 2.9 GHz Intel Core i7 
CPU and 16GB of RAM, with identical results.  

Additionally, we analyzed the same 132 nodules again, demonstrating the option to specify a ho-
mogeneous voxel shape. We chose the voxel shape (x,y,z) = (0.7,0.7,1.0) mm. With this setting, the 
model's accuracy was increased to 84.1% corresponding to an AUC of 0.914. This experiment ran in 
57 minutes, 57 seconds on the Dell Optiplex 5050 and in 82 minutes, 57 seconds on the 2016 Mac-
Book Pro with identical results.  The increase in processing time is due resampling the images to the 
common voxel shape. 
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4 Discussion 

We developed the Docker container CNNcon, as a quantitative imaging tool for automatically analyz-
ing lung CT image features. CNNcon can automatically generate malignancy prediction of each ROI, 
and also generate a vector of image features of each ROI. CNNcon was tested on two different com-
puters and generated identical results; and when tested with two different settings, the generated 
results are also consistent. Advantages of using Docker containerization for the analysis pipeline in-
clude ease of installation, portability, and simplified analysis procedure. We plan to deploy CNNcon 
net on two different high performance computing platforms and on a commercial cloud to further char-
acterize its portability and performance. We anticipate that CNNcon, as a Docker container, will be a 
useful tool and broadly acceptable to the research community.  
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