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Abstract—The demand for automatic extraction of true information (i.e., truths) from conflicting multi-source data has soared recently.

A variety of truth discoverymethods have witnessed great successes via jointly estimating source reliability and truths. All existing truth

discovery methods focus on providing a point estimator for each object’s truth, but in many real-world applications, confidence interval

estimation of truths is more desirable, since confidence interval contains richer information. To address this challenge, in this paper, we

propose a novel truth discovery method (ETCIBoot) to construct confidence interval estimates as well as identify truths, where the

bootstrapping techniques are nicely integrated into the truth discovery procedure. Due to the properties of bootstrapping, the estimators

obtained by ETCIBoot are more accurate and robust compared with the state-of-the-art truth discovery approaches. The proposed

framework is further adapted to deal with large-scale truth discovery task in distributed paradigm. Theoretically, we prove the

asymptotical consistency of the confidence interval obtained by ETCIBoot. Experimentally, we demonstrate that ETCIBoot is not only

effective in constructing confidence intervals but also able to obtain better truth estimates.

Index Terms—Truth discovery, confidence interval estimation, bootstrapping
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1 INTRODUCTION

TODAY, we are living in a data-rich world, and the infor-
mation on an object (e.g., population/weather/air qual-

ity of a particular city) is usually provided by multiple
sources. Inevitably, there exist conflicts among the multi-
source data due to a variety of reasons, such as background
noise, hardware quality or malicious intent to manipulate
data. An important question is how to identify the true
information (i.e., truths) among the multiple conflicting
pieces of information. Because of the volume issue, we can-
not expect people to detect truth for each object manually.
Thus, the demand for automatic extraction of truths from
conflicting multi-source data has soared recently.

A commonly used multi-source aggregation strategy is
averaging or voting. The main drawback of these appro-
aches is that they treat the reliability of each source equally.
In real-world applications, however, different sources may
have different degrees of reliability and more importantly,
their reliability degrees are usually unknown a priori. To
address this problem, a variety of truth discovery methods
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] have been proposed. Although these
methods vary in many aspects, they share a common

underlying principle: If a piece of information is provided
by a reliable source, it is more likely to be trustworthy, and
the source that more often provides trustworthy informa-
tion is more reliable. Following this principle, existing meth-
ods are designed to jointly estimate source reliability and
truths by assigning larger weights to the reliable sources.

All existing truth discovery methods [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [15], [16], [17], [19], [20], [21], [22], focus
on providing a point estimator for each object’s truth, i.e.,
the estimate is a single value. However, important confi-
dence information is missing in this single-value estimate.
For example, two objects A and B receive the same truth
estimate, e.g., 25. Even though the estimates are the same,
the confidence in these estimates could differ significantly–
A may receive 1000 claims around 25 while B only receives
one claim of 25. Clearly the confidence in A’s truth estimate
is much higher. Therefore, instead of a point estimation, an
estimated confidence interval of the truth is more desirable.
An a-level confidence interval [23] is an interval ða; bÞ such
that Pðu 2 ða; bÞÞ ¼ a for a given a 2 ð0; 1Þ, where u denotes
the truth in our scenario. The width of the interval reflects
the confidence in the estimate–A smaller interval indicates
the higher confidence in the estimate and a larger interval
means that the estimate has more possible choices within
the interval. In the example we just mentioned, suppose the
95 percent confidence interval of A and B’s estimates are
(24.9,25.1) and (0, 50), respectively. Although both truth esti-
mates are 25, we are more certain that A is close to 25. With
such confidence information, the decision makers can use
the truth estimates more wisely. However, such important
confidence information cannot be obtained by the tradi-
tional point estimation strategy adopted by existing truth
discovery methods.
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The estimation of confidence intervals for objects’ truths
can benefit any truth discovery scenario by providing addi-
tional information (i.e., confidence) in the output, but its
advantage is more obvious on long-tail data. A multi-source
data is said to be long-tail in the sense thatmost objects receive
a few claims from a small number of sources and only a few
objects receive many claims from a large number of sources.
As discussed in the aforementioned example, the difference
in the confidence of the truth estimates is usually caused by
the difference in the number of claims received by the objects.
When an object receives more claims, a smaller confidence
interval is obtained, and thus the estimate of this truth ismore
certain. It is essential to provide confidence intervals rather
than points for the truth estimates on such long-tail data,
which are ubiquitous. The Flight Status and Game applica-
tions used in our experiments are examples of such long-tail
phenomena (The details are deferred to Section 4.3). In Fig. 1,
we present the histograms in terms of the number of claims
and fit them into an exponential distribution, a typical long-
tail distribution, respectively.

To address the problem, in this paper, we propose a novel
method, Estimating Truth and Confidence Interval via Boot-
strapping (ETCIBoot) to construct confidence interval esti-
mates for truth discovery tasks. We adopt the iterative two-
step procedure used in traditional truth discovery methods:
1) Update truth estimates based on the current estimates of
source weights (source reliability degrees), and 2) update
source weights based on the current estimates of truths. At
the truth computation step, instead of giving a point estima-
tion, we now adopt the following procedure to obtain confi-
dence interval estimates. ETCIBoot obtains multiple estimates
of an object’s truth, using bootstrapping techniques. Each esti-
mate is obtained by calculating the weighted averaging or
voting on a new set of sources which are bootstrapped from
available sources. A statistic T that involves the truths is con-
structed. Its distribution F is usually unknown a priori. Based
on these multiple estimates obtained via bootstrapping, we
derive an estimator bT of T and further approximate F by bF
(i.e., the distribution of bT ). The confidence intervals of the
truths are naturally implied in the distribution of bT (i.e., bF ).
Theoretically, we prove that bT is asymptotically consistent to
T in distribution, and the end points of the confidence inter-
vals converge to the true ones atOpðn�3

2Þ, where n is the num-
ber of claims.

Besides providing confidence intervals, ETCIBoot is also
able to provide more accurate and robust truth estimates if
we use the average of the multiple estimates as the point
estimator. Existing truth discovery methods typically com-
pute weighted mean in the truth computation step, and
thus the truth estimates can be quite sensitive to some

outlying claims. In contrast, ETCIBoot adopts bootstrapping
procedure to improve the robustness of estimation. The
truth estimates are defined as the mean of bootstrap sam-
ples. These samples capture the distribution of claims in
which the outlying claims’ effect can be greatly reduced.

The proposed ETCIBoot is further extended to the distrib-
uted truth discovery paradigm to handle large-scale data. In
many applications, data are distributed onmultiple machines
at different locations instead of storing at one single machine.
The communication is usually expensive or even restricted
between these machines, because the data volume is too large
to store or process in one single machine, or the data cannot
be shared among machines due to privacy concerns. To solve
the truth discovery task in this scenario, we propose a two-
stepD-ETCIBoot algorithm: 1)Wefirst bootstrap at every local
machine and obtain an initialized truth estimate, and 2) we
collect all the truth estimates and construct a new statistics eT
for confidence interval construction and truth estimation.

We conduct experiments on both simulated and real-world
datasets. Experimental results show that the proposed ETCI-
Boot can effectively construct confidence intervals for all
objects and achieve better truth estimates compared with the
state-of-the-art truth discovery methods. We further compare
the proposed D-ETCIBoot with ETCIBoot on all datasets in
terms of the accuracy aswell as efficiency.

To sum up, the paper makes the following contributions:

� To the best of our knowledge, we are the first to illus-
trate the importance of confidence interval estima-
tion in truth discovery, and propose an effective
method (ETCIBoot) to address the problem. The pro-
posed ETCIBoot is further adapted to solve large-
scale truth discovery task in the distributed scenario.

� Theoretically, we prove that the confidence interval
obtained by ETCIBoot is asymptotically consistent.

� The point estimates obtained by ETCIBoot are more
accurate and robust compared with existing approa-
ches due to the properties of bootstrap sampling,
which is nicely integrated into the truth discovery
procedure in ETCIBoot.

� Experimental results show the effectiveness of
ETCIBoot in constructing confidence intervals as
well as identifying truths. Compared with ETCIBoot,
D-ETCIBoot not only achieves comparable accuracy
but also significantly speeds up truth discovery tasks.

2 PROBLEM SETTING

In this section, we first introduce terminologies and nota-
tions which will be used thoughout the paper. Then, the
problem is formally defined.

Definition 1. An object is an item of interest. Its true informa-
tion is defined as a truth.

Definition 2. The reliability of a source measures the quality of
its information. A source weight is proportional to its reliabil-
ity, i.e., the higher the quality of a source’s information, the
larger its reliability, and the larger its weight. Typically, the
source reliability or weight is unknown a priori.

Problem Setting. Suppose that there are S :¼ fsgS1 sources,
providing claims on objects N :¼ fngN1 , where an object

Fig. 1. Visualization of the long-tail phenomenon.
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may receive claims from only a subset of S. The truths of
objectsN are denoted as fx�

ngn2N , which are unknown a pri-
ori. For the object n, Sn is the set of sources which provide
claims on it. The multi-source data for the nth object is
denoted as Xn :¼ fxs

ngs2Sn , where xs
n represents the claim

provided by the sth source for the object n. The whole data
collection on objectsN is further denoted as X :¼ [N

n¼1Xn.
For the sth source, we assume that the difference �s

between its claims and truths follows a normal distribution
with mean 0 and variance s2

s , i.e., �s � Normalð0; s2
sÞ. This

assumption is commonly used in existing truth discovery
works [3], [4], [5]. �s captures the error of source s, and a
small �s implies that the claims are close to the truths. s2

s

measures the quality of the claims provided by the sth
source. We further denote the weight of source s as vs. Defi-
nition 2 implies that the larger s2

s , the smaller vs.
We summarize the notations in Table 2.
Truth Discovery Task. Truth discovery task is formally

defined as follows: Given the multi-source data X , the goal
of a truth discovery approach is to obtain estimates x̂n which
are as close to x�

n as possible (8n 2 N ). Besides, for any
a 2 ð0; 1Þ, we can also provide an a-level two-sided confi-
dence interval for the truth of each object.

Example 1. Table 2 shows a sample census dataset. In this
particular example, an object is a state and a claim is a tuple
in the table. Also, N ¼ {NY,CA} and S ¼ {Source i}8i¼1. For
instance, Source 1 claims that New York Sate has a popula-
tion of 19.889 million in 2016, so it corresponds to
x1
n ¼ 19:889. It can be easily seen that the claims fromdiffer-

ent sources are conflicting. As there are no ground truths
available in real applications, truth discovery methods
have been proposed to extract an accurate answer from
such conflicting information. Moreover, in this paper, we
will also provide a confidence interval for each object.
Namely, for the population of New York Sate, we will pro-
vide a 95 percent confidence interval, i.e., Pðx�

n 2 ðxlower;
xupperÞÞ ¼ 95 percent. Such confidence intervals contain
much more information than a single point estimation. For
instance, we can provide a minimum ormaximum popula-
tion for a particular sate for decisionmakers.

3 METHODOLOGY

In this section, we first review some preliminaries about truth
discovery and confidence interval in Section 3.1. We then

introduce twomain components of ETCIBoot: a novel strategy
for data aggregation (ETBoot) and a method for confidence
interval construction (CIC) in Sections 3.2 and 3.3, respectively.
The proposed ETCIBoot is further summarized in Section 3.4.
Finally, we present the theoretical analysis of the confidence
interval estimates obtained by ETCIBoot in Section 3.5.

3.1 Preliminary

3.1.1 Truth Discovery

The goal of a truth discovery task is to identify objects’
truths (i.e., true information) from conflicting multi-source
data. Many truth discovery methods have been proposed to
estimate truths and weights iteratively. Details can be found
in Section 5. We briefly review each step as follows.

Weight Update. Source weights play important roles in
truth discovery. The underlying principle is that: If a source
more often provides reliable information, it has a larger
weight, and consequently this source contributes more in
the truth estimation step discussed below. Based on this
principle, various weight update strategies have been pro-
posed. In this paper, we adopt the weight estimation intro-
duced in [4]. A source weight is inversely proportional to its
total difference from the estimated truth, that is,

vs /
x2
ða2;jN sjÞP

n2N s
xs
n � x̂n

� �2 ; (1)

where x2
ða2;jN sjÞ is the a

2th percentile of a x2-distribution with
jN sj degree. It is to capture the effect of the number of
claims so that small sources get their weights reduced.

Truth Estimation. A commonly used strategy is weighted
averaging for continuous data or weighted voting for cate-
gorical data, namely,

x̂n ¼
P

s2Sn vsx
s
nP

s2Sn vs
; or; x̂n ¼ argmax

x

P
s2Sn vs1ðxsn; xÞP

s2Sn vs
; (2)

where 1ðxs
n; xÞ ¼ 1 if xs

n ¼ x; otherwise it is 0. The weights
are obtained at the Weight Update step; the truth estimated
at this step will be used to update weights based on Eq. (1).

Providing proper initializations, Weight Update and Truth
Estimation are iteratively executed until the convergence
condition is satisfied.

3.1.2 Confidence Interval

Assume that an experiment has a sample set XX ¼ fxigni¼1

from FmðxÞ, where Fm is an accumulative density function

TABLE 2
A Sample Census Data

Object Source ID Population(Million)

NY Source 1 19.889
NY Source 2 19.378
CA Source 1 39.497
CA Source 2 39.250
CA Source 3 39.309
CA Source 4 39.350
CA Source 5 39.145
CA Source 6 39.200
CA Source 7 39.250
CA Source 8 39.100

TABLE 1
Notations

Notation Definition

S the set of sources
N the set of objects
xs
n the claim on object nmade by source s

x�
n the true claim of the nth object

x̂n the estimator of the claim for object n
�s the s source’s error
s2
s the sth source’s variance of claims

vs the weight of source s
Sn the subset of sources available for object n
N s the subset of objects claimed by source s
Xn the data set available for object n
X the whole data set for all objects
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(c.d.f.) with a parameter m. An a-level two-sided confidence
interval for the parameter m is defined as follows:

Definition 3. For any a 2 ð0; 1Þ, mXX;L;mXX;R

� �
is called an

a-level two-sided confidence interval of a parameter m if it satis-
fies the following condition:

P m 2 ðmXX;L;mXX;RÞ
� � ¼ a: (3)

The immediately preceding probability statement Eq. (3)
can be read: Prior to the repeated independent trails of the
random experiment, a is the probability that the random
interval ðmXX;L;mXX;RÞ includes the unknown parameter m.

Given the distribution of the experiment sample set XX,
the exact end points of a confidence interval is defined as:

Definition 4. The exact end points of an a-level two-sided confi-
dence interval of m with a known c.d.f. F are:

mL;Exact ¼ m� VarðmÞffiffi
n

p F�1ð1� aÞ;
mR;Exact ¼ mþ VarðmÞffiffi

n
p F�1ðaÞ;

8<
: ; (4)

where F�1ð�Þ is the inverse function of c.d.f. F , VarðmÞ is the
variance of m, and n is the number of observed samples.

However, as F is unknown, Eq. (4) is always unknown a
prior. Themajor task in this paper is to construct a confidence
interval estimate for the truth, as well as identifying it.

3.2 ETBoot Strategy

In this part, we introduce a novel bootstrapping-based strat-
egy for identifying truths in truth discovery. We term it as
Estimating Truth via Bootstrapping (ETBoot). All existing
truth discovery methods apply weighted averaging or voting
using all sources’ information. In contrast, ETBoot first boot-
straps multiple sets of sources and then on each set of the
bootstrapped sources it obtains a truth estimate based on
Eq. (2). The final truth estimator is defined as the mean of
these estimates. Due to the properties of bootstrapping,
which are nicely integrated into the truth discovery proce-
dure, ETBoot is more robust to the outlying claims and can
achieve a better estimate of the truth. Moreover, given any
a 2 ð0; 1Þ ETBoot can also construct an a-level two-sided
confidence interval of the estimated truth (i.e., Section 3.3).

The detailed procedure of ETBoot is as follows: For the
nth object, it obtains B estimates of its truth, i.e., fx̂b

ngBb¼1,
where x̂b

n is obtained by the following two-step procedure:

� Step 1: Source Bootstrap. At the bth iteration, we ran-
domly sample a set of sources Sb

n from Sn with
replacement such that jSb

nj ¼ jSnj in this step. The
sampled data is denoted asXXb

n ¼ fxn
sgs2Sbn .

� Step 2: Truth Computation. Based on the sampled data
XXb

n ¼ fxns gs2Sbn , x̂
b
n is calculated based on Eq. (2).

The final estimator ðx̂Boot
n Þ1 for the nth object’s truth is

further defined as:

x̂Boot
n ¼ 1

B

XB
b¼1

x̂b
n: (5)

Compared with existing truth discovery methods which use
Eq. (2), the proposed ETBoot combines results from multiple
bootstrap samples instead of using all the sources at once.
This enables ETBoot to obtain more robust estimates and
confidence interval estimates that will be introduced in
Section 3.3. The pseudo code of ETBoot for the nth object is
summarized in Algorithm 1.

Algorithm 1. ETBoot on the nth Object

Input: Sn, Xn, fvsgs2Sn , and a parameter B

Output: Truth x̂Boot
n .

1: for the bth iteration (b ¼ 1; � � � ; B) do
2: Bootstrap Sb

n from Sn; extractXX
b
n from Xn based on Sb

n; cal-
culate x̂b

n according to Eq. (2);
3: end for
4: Calculate x̂Boot

n according to Eq. (5).

3.3 Confidence Interval Construction

Next, we introduce the procedure of constructing an a-level
two-sided confidence interval of an object’s truth. We illus-
trate it for the nth object, and the remaining objects follow
this procedure.

We denote the estimator we are interested in as ûðXXnÞ
corresponding to the datasetXXn ¼ fxs

ngs2Sn . In our scenario,
ûðXXnÞ denotes the truth estimate. For simplicity, we ignore
the subscript �n for XXn. In a truth discovery task, the truth
estimate is calculated as

ûðXXÞ ¼
P

s2Sn vsx
sP

s2Sn vs
: (6)

Note that xs
n � Normalðx�

n; s
2
sÞ as �s � Normalð0; s2

sÞ and
�s ¼ xs

n � x�
n, which yields,

EðûðXXÞÞ ¼ x�
n; and; VarðûðXXÞÞ ¼

P
s2Sn v

2
ss

2
s

ðPs2Sn vsÞ2
: (7)

The corresponding estimate of VarðûðXXÞÞ is defined as

dVarðûðXXÞÞ ,
P

s2Sn v
2
s ŝ

2
s

ðPs2Sn vsÞ2
; (8)

which is formulated by replacing the population variance

with the sample variance. Here, ŝ2
s ¼

P
n2N s

ðxsn�x̂Bootn Þ2
Ns�1 , where

x̂Bootn is obtained by ETBoot and Ns ¼ jN sj. The idea to

obtain a confidence interval of the truth x�
n is that: We first

construct a statistic T which is related to x�
n, and then esti-

mate the accumulated density function of T � F ðtÞ. In our

scenario, T is defined as follows:

T ¼ ûðXXÞ � x�
n

½dVarðûðXXÞÞ�12= ffiffiffiffiffiffiffiffijSnj
p ; (9)

which measures the error between the truth x�
n and its esti-

mate ûðXXÞ. The confidence interval of x�
n is available once

the distribution of T is determined. More precisely, let T ðaÞ

indicate the ð100 � aÞth percentile of T , i.e., a ¼ R T ðaÞ
�1 dF ðtÞ.

Thus, we have that
1. We use �Boot to represent the estimator obtained by Bootstrapping

throughout the paper.
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P

�
T ða=2Þ � ûðXXÞ � x�

n

½dVarðûðXXÞÞ�12= ffiffiffiffiffiffiffiffijSnj
p � T ð1�a=2Þ

�
¼ a: (10)

Moreover, an a-level two-sided confidence interval of x�
n is

naturally implied in Eq. (10), that is,

�
ûðXXÞ �

T ð1�a=2Þ dVarðûðXXÞÞ
h i1

2

ffiffiffiffiffiffiffiffijSnj
p ; ûðXXÞ �

T ða=2Þ dVarðûðXXÞÞ
h i1

2

ffiffiffiffiffiffiffiffijSnj
p �

:

(11)

Thus, the width of the confidence interval is proportional to
1ffiffiffiffiffiffi
jSnj

p . It implies that if an object is claimed by more sources,

then the width of its truth’s confidence level is smaller, and

vice versa. Especially, when the long-tail multi-source data

is involved, this phenomenon is clearer.
However, as the T -percentile is usually unknown a priori,

estimation of T ðaÞ is required. One commonly used strategy is
bootstrap sampling [23], [24], [25], [26], [27]. Note that at the
bth iteration of ETBoot (Algorithm 1), we have bootstrapped
XXb

n. Based on XXb
n, we are able to calculate both ûðXXb

nÞ anddVarðXXb
nÞ, yielding an estimator T̂b for the statistic T , that is,

bTb ¼ ûðXXb
nÞ � ûðXXnÞ

½dVarðûðXXb
nÞÞ�

1
2=

ffiffiffiffiffiffiffiffijSnj
p : (12)

Moreover, the estimate of T ðaÞ is defined as follows:

bT ðaÞ ¼ sup
n
t 2 f bT1; � � � ; bTBg :

#ð bTb � tÞ
B

� a
o
: (13)

Eq. (13) provides estimates of Eq. (11). Thus, the estimate of an
a-level two-sided confidence interval is defined as follows:

�
ûðXXÞ � bT ð1�a=2Þ cVarðûðXXÞÞ

� �1
2ffiffiffiffiffiffi

jSnj
p ; ûðXXÞ � bT ða=2Þ cVarðûðXXÞÞ

� �1
2ffiffiffiffiffiffi

jSn j
p

�
: (14)

We summarize the procedure of constructing confidence
intervals as CIC, i.e., Confidence Interval Construction. Its
pseudo is presented in Algorithm 2 for the nth object.

Algorithm 2. CIC

Input: fXXb
ngBb¼1, x̂

Boot
n , and a confidence level a.

Output: Endpoints of the a-level two-sided CI
1: Calculate ŝ2

s for s 2 Sn;
2: for the iteration b (b ¼ 1; � � � ; B) do
3: Calculate dVarðûðXXb

nÞÞ and bTb according to Eq. (12);
4: end for
5: Choose bT ð1� a=2Þ and bT ða=2Þ according to Eq. (13);
6: Calculate endpoints based on Eq. (14).

3.4 ETCIBoot Algorithm

So far, we introduce the update for source weights (i.e.,
Eq. (1)), a new truth estimation strategy, ETBoot, and the
construction of confidence intervals for truths via CIC. Com-
bining them together, we propose a novel truth discovery
approach, Estimating Truth and Confidence Interval via
Bootstrapping (ETCIBoot), to automatically construct confi-
dence intervals as well as identify objects’ truths. The main

component of the proposed ETCIBoot consists of the follow-
ing three steps:

� (i) Weight Update. Given initialization of truth fx0
ngNn ,

source weights are updated based on Eq. (1).
� (ii) Truth Estimation. With source weights computed

from (i), for each object n, we obtain truth estimators
via ETBoot to obtain x̂Bootn associated with fXXb

ngBb¼1.
� (iii) Confidence Interval Construction (CIC). We esti-

mate confidence intervals for all objects’ truths.
The above steps are executed iteratively until no truth

estimates change anymore. The pseudo code of the pro-
posed ETCIBoot algorithm is shown in Algorithm 3. We con-
duct the proposed algorithm on the toy example, i.e.,
Table 2. The results are shown in the following table.

Algorithm 3. ETCIBoot

Input: X , and hyperparameters a and B.
Output: Truths fx̂Boot

n gN1 and CIs fCInðaÞgN1 .
1: Initialize truths x�;0

1 ; � � � ; x�;0
N as average;

2: while the convergence condition is not satisfied do
3: Compute vs for each source s according to Eq. (1);
4: for each object n ðn ¼ 1; � � � ; NÞ do
5: Conduct ETBoot to obtain x̂Boot

n ;
6: Calculate the confidence interval CInðaÞ via CIC;
7: end for
8: end while

Example 2. Based on Example 1, we compute truth esti-
mates and 95 percent-level two-sided confidence inter-
vals, and show the results in Table 3. All the values in this
example are in millions. For the object NY, the width of
the confidence interval is .3032 which is two times wider
than that of the object CA (i.e., .1368). We also define the
Relative Width (i.e., rw) as rwðða; bÞÞ ¼ 2ja�bj

jajþjbj to compare

the effectiveness of confidence intervals. Then, rw of the
object NY is .0156 which is 4.5 times wider than that of
the object CA (i.e., .0035). According to these confidence
intervals, we can say that the population of CA and NY
are 39:186 � 39:297 and 19:278 � 19:480, respectively. As
the width of 39:186 � 39:297 is narrower, we have more
confidence to obtain an accurate estimate of the CA’s pop-
ulation compared with the object NY. Therefore, the more
claims provided for an object (i.e., object CA in Table 2),
the narrower the width or the relative width of this object,
the more confidence for us to obtain an accurate truth
estimate. Especially, the object NY only receives 2 claims.
Note that, all claims in Table 2 are not largely different
from each other. If these two claims largely deviated from
each other, the width of the confidence interval becomes
even larger. We do not adopt this trivial scenario in the
toy example of confidence interval estimation. Instead,
we show that our proposed method can also handle the

TABLE 3
Example on Calculating Confidence Interval

Object ID # of Claims x̂n Confidence Interval (95%)

NY 2 19.480 (19.278, 19.480)
CA 8 39.297 (39.186, 39.297)

The value of a city’s population is in millions.
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case where claims are close to each other. Furthermore,
we want to use this example to demonstrate that the num-
ber of claims which is provided for objects indeed affects
our confidence about the final truth estimates.

3.5 Theoretical Analysis

In this subsection, we present the theoretical analysis on the
confidence interval estimates, i.e., Eq. (14), obtained via
ETCIBoot. We first prove that bT converges to T in distribu-
tion and present it in Proposition 1.

Proposition 1. Assume that xs
n � Nðx�n; s2

sÞ, 8s 2 Sn. Let T
and T � be defined as Eqs. (9) and (12), respectively. Then, we
have

lim
jSnj!1

kP�ð bT � tÞ � P T � tð Þk ¼ 0; a.s.; (15)

where P� is the probability calculated based on the bootstrap-
ping sample distribution, jSnj is the Cardinality of Sn, t is any
real number, and a.s. means ‘almost surely’.

Proof. See AppendixA,which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2018.2837026, for a detailed proof. tu
Proposition 1 is a straightforward result from Theorem 1

in [25], where the author provides sufficient conditions to
guarantee the convergence of the bootstrapping samples.
Thus, the proof of Proposition 1 is to testify whether the
ETCIBoot satisfies these sufficient conditions, as shown in
Appendix A in the online supplement. Proposition 1 shows
that the bootstrapping estimator bT converges to T in distri-
bution. It enables us to use the bootstrapping distribution to
approximate the unknown distribution F for confidence
interval construction.

Next, in Proposition 2, we show that the upper end point
of an a-level one-sided confidence interval obtained via
ETCIBoot is close to that from the theoretical distribution.

Proposition 2. Given T � F ðxÞ, bT � bF ðxÞ and a datasetXX, we
have that

ûbT;XXðaÞ ¼ ûT;XXðaÞ þOpðn�3=2Þ; (16)

where P�ðuðXXÞ � ûbT;XXðaÞÞ ¼ a, PðuðXXÞ � ûT;XXðaÞÞ ¼ a,

n ¼ jXXj, and Op means the order holds in probability.

Proof. See Appendix B in the online supplement for a
detailed proof. tu
Proposition 2 shows that the endpoint of an a-level one-

sided confidence interval obtained by bootstrapping bT is
close to that obtained by T , provided that there are enough
samples. As any a-level two-sided confidence interval can
be obtained by two one-sided confidence intervals, the
results (Eq. (16)) also hold for Eq. (14). In truth discovery
tasks, ETCIBoot is able to provide more accurate confidence
intervals for the objects’ truths, if they receive more claims.
This result is more obvious especially on long-tail data.

3.6 Distributed ETCIBootMethod

Modern truth discovery applications increasingly involve
massive datasets.More specifically, inmany real applications,

the data is distributed into multiple machines at different
locations, between which communication is expensive or
restricted. The possible reasons can be either because the data
volume is too large to store or process on one single machine,
or the data cannot be shared among machines due to privacy
concerns, such as healthcare andmobile sensor-sensing appli-
cations. We adapt the proposed ETCIBoot framework to a dis-
tributed paradigm to handle the large-scale truth discovery
task.We name the distributed truth discovery algorithm asD-
ETCIBoot, that is, Distributed Estimation of Truth and Confi-
dence Interval via Bootstrapping. Next, we first illustrate the
distributed truth discovery framework and then introduce
the details of the proposedD-ETCIBoot algorithm.

Distributed Truth Discovery Framework. In our scenario, we
assume that there areK local machines, over which S sources
are either evenly or unevenly distributed. Besides, there is a
Center (central server) which can be used to calculate the final
truth estimates and construct confidence intervals. Take the
truth computation of the object n for example. Every local
machine has some sources which provide claims on it. We
denote the index set of sources within the kth local machine as
Skn, i.e., Sn ¼ S K

k¼1Skn. We further denote the claims made
by these available sources from the kth local machine as Xk

n,
that is, Xk

n ¼ fxs
ngs2Skn . In the centralized algorithm, we

bootstrap samples from thewhole data at once. In contrast, D-
ETCIBoot adopts a two-step procedure: 1) bootstrap samples
from each local machine for initialized truth estimationwhich
will be sent to the center, and 2) calculate the final truth esti-
mates as well as their confidence intervals at the center.
More specifically, the main components of the proposed
D-ETCIBoot consist of the following two steps:

� (i) Bootstrapping at Local Machines. At this step, every
local machine sends an initialized truth estimate and
its variance, calculated via bootstrapping technique.

� (ii) Truth Estimation and Confidence Interval Construc-
tion. The center collects all the initialized truth esti-
mates and their variances, and calculates the final
truth estimators and their corresponding a-level
two-sided confidence intervals.

The above steps are executed iteratively until no truth
estimates change any more. An illustration obtaining a truth
estimate of the object n at each iteration is shown in Fig. 2.
The detail of each step at every iteration is further expli-
cated in Sections 3.6.1 and 3.6.2, respectively.

Note that, at the first iteration, the initialized truth
estimate at every local machine k is calculated by averaging
for continuous data or majority voting for categorical
data over the available sources. Namely, for the object n,
�xk;0n ¼ 1

jSknj
P

s2Skn x
s
n or �xk;0n ¼ argmaxx

P
s2Skn 1ðx

s
n; xÞ,2 which

will be sent to the center for further computation. When the

Fig. 2. Illustration of the distributed bootstrapping strategy.

2. �0 represents the first iteration.
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center collects f�xk;0
n gKk¼1, it will return the truth estimate

~x0
n ¼ 1

K

PK
k¼1 �x

k;0
n to local machines.

3.6.1 Bootstrapping at Local Machines

After receiving the truth estimate from the center, every
local machine (a) calculates the vs via Eq. (1) for available
s 2 Sk

n, and (b) updates the initialized truth �xk
n via bootstrap-

ping techniques. Similar to the ETBoot strategy, every local

machine first samples a source index set ~Sk
n with replace-

ment from Sk
n. The claim samples are represented aseXk

n ¼ fxsngs2~Skn . The source reliability is calculated once the

center sends back the truth estimator. Based on the source
reliability fvsgs2Skn , the initialized truth estimate at the kth

local machine is thus updated by

�xk
n ¼

P
s2~Skn

vsx
s
nP

s2~Skn
vs

: (17)

Moreover, local machine k also calculates the variance of the
initialized truth estimate, that is,

dVarð�xk
nÞ ¼

P
s2Skn

v2s ŝ
2
s;k

ð
P

s2Skn
vsÞ2

; (18)

where ŝ2
s;k ¼

P
n2N s

ðxsn�~xnÞ2
Ns�1 . Then, local machine k sends the

initialized truth estimate (i.e. �xk
n) associated with its vari-

ance (i.e., dVarð�xk
nÞ) to the center for further computation.

3.6.2 Truth Estimation & Confidence Interval

Construction

When the center collects f�xkngKk¼1 from all local machines, it
will calculate the final truth estimator as well as an a-level
two-sided confidence interval. The final estimate of the nth
object’s truth ~xn is defined as the average of the truth esti-
mates over all local machines. Namely,

~xn ¼ 1
K

PK
k¼1 �x

k
n: (19)

Note that the underlying idea to obtain a confidence interval
of the truth x�

n is as follows. We first need to construct an
x�
n-related-statistic T , and further estimate its accumulated

density function F ðtÞ. Inheriting from Section 3.3,
T , ûðXXÞ�x�n

½cVarðûðXXÞÞ�12=
ffiffiffiffiffiffi
jSn j

p , where XX is a sample set. The endpoints

of an a-level two-sided confidence interval are the same as

shown in Eq. (11). However, one issue is that T ðaÞ is always

unknown a priori. To obtain such confidence intervals, we
need to estimate T ðaÞ. As introduced in the previous step,

we have bootstrapped Xk
n at local machine k. Based on Xk

n,

we are able to calculate both ûðXk
nÞ and dVarðûðXk

nÞÞ, where

ûðXk
nÞ ¼ �xk

n. Different from bT , another estimator eTk in the

distributed truth discovery paradigm for the statistic T is

defined as follows:

eTk ¼ �xk
n � ~xn

½dVarð�xk
nÞ�

1
2

ffiffiffiffiffiffiffiffi
jSk

nj
q : (20)

Based on Eq. (20), the estimate of T ðaÞ is further defined as
follows:

eT ðaÞ ¼ sup
n
t 2 f eT1; � � � ; eTKg :

#ð eTk � tÞ
K

� a
o
: (21)

Moreover, the estimate of the variance of the final truth esti-
mator is defined as the average of the variances, that is,
ŝ2
n ¼ 1

K

PK
k¼1

dVarðûðXk
nÞÞ. Combining Eqs. (11) and (21), the

estimate of an a-level two-sided confidence interval via the
distributed bootstrapping strategy is

	
~xn �

eT ð1�a=2Þŝnffiffiffiffiffi
K

p ; ~xn �
eT ða=2Þŝnffiffiffiffiffi

K
p



: (22)

The pseudo code of the proposed distributed ETCIBoot algo-
rithm is shown in Algorithm 4.

Algorithm 4. D-ETCIBoot Algorithm

Input: Data collection fXk
ngK;N

k;n¼1, a confidence level a.

Output: Truths f~xngN1 and their CIs fCInðaÞgN1 .
1: Every machine calculates �xk

n and sends it to the center;
2: The center calculates ~x0

n and sends it to all machines
3: while the convergence condition is not satisfied do
4: for each local machine k ðk ¼ 1; � � � ;KÞ do
5: Adopts the truth estimate obtained in previous step to

calculate fvk
sgs2Skn according to Eq. (1);

6: for each object n ðn ¼ 1; � � � ; NÞ do
7: Bootstraps eXk

n, calculates ð�xk
n; dVarð�xk

nÞÞ, and sends
ð�xk

n; dVarð�xk
nÞÞ to the center;

8: The center calculates truth estimator ~xn and sends it
back to all local machines;

9: The center calculates the confidence interval CInðaÞ
based on Eq. (22);

10: end for
11: end for
12: end while

4 EXPERIMENTS

In this part, we introduce the experimental setup, test the
ETCIBoot and baselines on simulated datasets generated in
different scenarios and real-world datasets, and compare
the proposed ETCIBoot and D-ETCIBoot on both simulated
and real world data in terms of accuracy as well as effi-
ciency. Experiments show that: (1) ETCIBoot outperforms
the state-of-the-art truth discovery methods in most cases,
(2) ETCIBoot can provide accurate confidence interval esti-
mates, and (3) D-ETCIBoot can achieve comparable accuracy
compared with ETCIBootwith a significant speed-up.

4.1 Experimental Setup

In this part, we introduce the baseline methods and discuss
the measurements for evaluation.

Baselines. For all truth discovery methods, we conduct
them on the same input data in an unsupervised manner.
Although ground truths are available, we only use them for
evaluation. For different data types, different baselines are
adopted, including both the naive conflict resolution meth-
ods and the state-of-the-art truth discovery methods. More
precisely, for continuous data we use Median, Mean,
CATD [4], CRH [3] and GTM [5]. Baselines used for categor-
ical data include: Voting, Accusim [6], 3-estimate [9],
CRH [3], Investment [8], CATD [4], ZenCrowd [10],
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Dawid&Skene [19], and TruthFinder [7]. Details of baselines
are discussed in the related work (i.e., Section 5).

Measurements. As the experiments involve both continu-
ous and categorical data, we introduce different measure-
ments. For data of continuous type, we adopt both the mean
of absolute error (MAE) and the root of mean square error
(RMSE); Error Rate is used for date of categorical type. The
details of the measurements are:

� MAE: MAE measures the L1-norm between the
methods’ output and the ground truths. It tends to
penalize more on small errors.

� RMSE: RMSE measures the L2-norm between the
methods’ output and the ground truths. It tends to
penalize more on the large distance and less on the
small distance comparing withMAE.

� Error Rate: Error Rate is defined as the percentage of
mismatched values between the output of each
method and the ground truths.

For all measurements, the smaller the value, the better the
method.

4.2 Simulated Datasets

In this subsection, we test the proposed ETCIBoot on several
simulated datasets, which capture different scenarios
involving various distributions of source reliability. We first
introduce the procedure of generating simulated datasets,
and then test the effectiveness of ETCIBoot in identifying
truths comparing with baselines on these datasets. Last but
not least, we compare the confidence intervals obtained by
ETCIBoot with that by theoretical distribution and show the
advantage of bootstrapping.

Data Generation. The procedure of generating simulated
data is shown as follows:

� (i) We first generate a vector of the number of claims
CC, e.g., CC ¼ ð5; 10; 15; � � � ; 50Þ.

� (ii) For each ci 2 CC, there are oi ¼ e7 � c�1:5
i objects

which will receive ci claims. This power law function
is used to create the long-tail multi-source data.
Thus, there are totally O ¼ P

i oi objects and
S ¼ maxifcig sources.

� (iii) For each source, we randomly generate its reli-
ability s2

s � F , where F is a pre-defined distribution.
Thus, for each source, its claims are generated from
Normalð0; s2

sÞ. Here, s2
s captures reliability degree of

the sth source’s information. The larger value the s2
s ,

the lower reliability degree of the sth source.

Experiments. In the following experiments, we simulate
different scenarios via changing source reliability distribu-
tions F . We set CC ¼ 70 : 100; thus, there are 31 objects and
100 sources. Note that the number of objects is not large.
This is used to better display the experimental results on the
confidence interval estimates. To reduce the randomness,
we repeat the experiment 100 times and report the average
results. As the simulated data is continuous, MAE and
RMSE are used for evaluation. We simulate 4 scenarios and
the detail of each scenario is discussed as follows. Note that
s2
s represents the source reliability degree. The larger value

the s2
s , the lower reliability degree the source.

Scenario 1: s2
s � Uniformð0; 1Þ. In this scenario, all source

reliability degrees are uniformly distributed in ð0; 1Þ.
Scenario 2: s2

s � Gammað1; 3Þ. In this scenario, most of the
sources are reliable with high reliability degrees. However,
there are a few unreliable sources with very small reliability
degrees.

Scenario 3: s2
s � FoldedNormalð1; 2Þ. As Folded Normal is

a long-tail distribution, in this scenarios, it generates a few
unreliable sources. Compared with Scenarios 1 and 2, the
reliable sources have higher reliability degrees.

Scenario 4: s2
s � Betað1; 12Þ. In this scenario, source reliabil-

ity degrees are within 0 � 1. Compared with other scenar-
ios, there are much more reliable sources.

Comparison with Baselines. Table 4 shows that the pro-
posed ETCIBoot outperforms all baselines in all scenarios in
terms of both MAE and RMSE. When estimating the truth
for each object n, ETCIBoot obtains multiple truth estimates
which are calculated according to Eq. (2) based on the boot-
strapped claims. Then, the final truth estimator is defined as
the average of these estimates. Experimentally, we generate
10 � jSnj bootstrapping samples. Due to the properties of
bootstrapping, ETCIBoot is robust to the outlying claims
provided by some sources. However, as existing truth dis-
covery methods typically compute weighted mean to obtain
one single point estimate, they are more sensitive to the out-
lying claims. So, the ETCIBoot performs better than base-
lines as confirmed in the experimental results. Also, as there
are more reliable sources in Scenarios 3 and 4, the results
are better compared with those in Scenarios 1 and 2. It con-
firms the underlying intuition of truth discovery: the more
the reliable sources, the better the results.

Confidence Interval Comparison. For confidence interval
comparison, we compare the results of ETCIBoot with that
obtained by theoretical distribution, i.e., normal distribu-

tion. Note that x̂n � Normalðx�
n;

P
s2Sn v2ss

2
s

ð
P

s2Sn vsÞ2
Þ (based on

TABLE 4
Comparison on Simulated Data: All Scenarios

Method Scenario 1
(Uniformð0; 1Þ)

Scenario 2
(Gammað1; 3Þ)

Scenario 3
(FoldedNormalð1; 2Þ)

Scenario 4
(Betað1; 12Þ)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ETCIBoot .0226 .0290 .0231 .0291 .0223 .0286 .0233 .0298
CATD .0228 .0297 .0237 .0307 .0222 .0291 .0216 .0283
CRH .0378 .0518 .0379 .0509 .0367 .0494 .0398 .0550
Median .0708 .0944 .0724 .0975 .0717 .0964 .0766 .1030
Mean .1953 .2423 .1922 .2455 .1960 .2437 .1975 .2455
GTM .0815 .1018 .0838 .1044 .0808 .1010 .0830 .1032
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Eq. (2)). As the true s2
s is known for each source, we know

the theoretical distribution for x̂n, based on which we
can further obtain the 95 percent-level confidence interval.
We term the confidence interval obtained in this way as
CI-Normal. The confidence interval (i.e., Eq. (14)) for the
truths’ estimators, which is obtained by the ETCIBoot using
the bootstrapping technique, is referred to as CI-ETCIBoot.

We report the results in Scenarios 1 � 4 in Figs. 3, 4, 5, 6,
respectively. From Figs. 3, 4, 5, 6, we can draw the following
conclusions: (1) The CI-ETCIBoot is much smaller than CI-
Normal in all simulated scenarios. Note that the smaller the
confidence interval, the more confident the estimator. For
example, in Scenario 1 the shaded area (i.e., the area
between the lower and upper bound curves) of CI-Normal
in Fig. 3a is larger than that of CI-ETCIBoot in Fig. 3(b).
Similar conclusions can be drawn in other scenarios. Thus,
the experimental results show the power of the ETCIBoot
on constructing effective confidence intervals. (2) As most
sources are reliable in Scenarios 2 � 4, comparing with
Scenario 1, the width of CI-ETCIBoot or CI-Normal in other
scenarios is smaller, which indicates the higher overall con-
fidence in these scenarios.

Next we conduct experiments to illustrate the relation-
ship between the width of confidence interval and the

number of claims on long-tail data. We follow the same pro-
cedure to generate the simulated data, except that we
choose the number of claims as 2 to 30. If there is only one
claim, it is impossible to construct the confidence interval.
We present the width of CI-Normal and CI-ETCIBoot in all
scenarios in Figs. 7a and 7b, respectively. Meanwhile, we
also fit them into a polynomial function of N (N�1

2), respec-
tively. The red line with square marker represents the fitting
line, averaging over all scenarios. From Figs. 7a and 7b, we
can see that the width of the 95 percent confidence interval,
obtained via either normal distribution or ETCIBoot,
decreases with respect to the number of claims at an error
rate N�1

2, where N is the number of claims. It confirms the
theoretical analysis that if an object receives more claims
then its estimator is more accurate. Moreover, the width of
CI-ETCIBoot is much smaller than that of CI-Normal, which
demonstrates that ETCIBoot is able to provide a more confi-
dent estimator. This advantage is achieved by incorporating
bootstrapping techniques into truth discovery procedure in
ETCIBoot.

4.3 Real-World Datasets

In this subsection, we present the experimental results
on two continuous datasets and two categorical datasets.

Fig. 3. Scenario 1: Uniformð0; 5Þ.

Fig. 6. Scenario 4: Betað1; :5Þ.Fig. 4. Scenario 2: Gammað1; 3Þ.

Fig. 5. Scenario 3: FoldedNormalð1; 2Þ.

Fig. 7. Experiments: (a) and (b) Width of Confidence Interval w.r.t # of Claims. (c) Visualization of Confidence Interval of ETCIBoot. (d) MAE and
RMSE comparison of truth discovery methods on Flight Data.
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Experiments show that the proposed ETCIBoot is able to
obtain more accurate estimates of truths comparing with
baselines. We first introduce the description of the datasets
and then report the results.

4.3.1 Continuous Data

Dataset Description. The following datasets of continuous
data type are used in experiments:

� Indoor Floorplan Dataset: We develop an Android
App to estimate the walking distances of smart-
phone users via multiplying their step sizes by step
count inferred using the in-phone accelerometer.
There are totally 247 users and 129 objects (i.e.,
indoor hallways). The ground truth is obtained by
manually measuring the indoor hallways. The goal
is to estimate the distance of indoor hallways from
the data provided by a crowd of users.

� Flight Status Dataset: The flight data [28] is collected
by extracting departure/arrival time for 11,512
flights from 38 sources on every day in December
2011. We present the time in terms of the minutes
from 00:00. There are 11,146 flights that have depar-
ture/arrival ground truths. The goal is to estimate
the departure/arrival time for each flight.

Result Analysis. We present the results of ETCIBoot and
baselines with respect to MAE and RMSE on the continuous
datasets in Table 6. The results show that the proposed
ETCIBoot can achieve the best performance on both datasets.

On Indoor Floorplan dataset, as the number of objects is
small, we also present the confidence intervals obtained by
ETCIBoot for each object in Fig. 7c. The figure shows that in
most cases the confidence intervals provided by ETCIBoot
contains the corresponding objects’ truths. However, there
are some confidence intervals which do not contain truths. A
possible reason is: These objects are claimed by a few sources
and the information provided by these sources is far away
from the truth. Take the 9th object for example. There are only
4 sources which provide claims, among which the smallest
value is 14.3 that is still very larger than the ground truth 10.8.
It is impossible to correctly identify these objects’ truths for
any truth discovery method. So, the CI estimates obtained by
ETCIBoot do not contain the truths for these objects.

On Flight Status dataset, the data on each day is treated
as a single data collection. As there are many flights only

claimed by a few sources, the performance of baselines is
not satisfactory. We conduct a case study on Day 1 dataset.
We count the statistics on how many claims of an object
receives to show the long-tail phenomenon: (1) there are
about 61.1 percent of flights which only receive claims from
at most 5 out of 38 sources; (2) only 2.3 percent of flights
have received claims from more than 25 sources. Similar
phenomenon can be found on other days’ data.

Consequently, we can see that the proposed ETCIBoot
outperforms all baselines, as shown in Fig. 7d. We do not
present the confidence interval for the flights due to the
page limit and the large number of flights.

4.3.2 Categorical Data

Dataset Description.We introduce the details of two categori-
cal datasets and their tasks as follows:

� GameDataset: Game dataset [4] collects answers from
multiple users based on a TV game show “WhoWants
to Be a Millionaire” via an Android App. There are
37,029 Android users and 2,103 questions. Ground
truths are available for evaluation. The goal is to iden-
tify each question’s answer from the users’ answers.

� SFV Dataset: SFV dataset is built upon the annal Slot
Filling Validation (SFV) competition of the NITS
Text Analysis Conference Knowledge Base Popula-
tion track [29]. In this task, given a query (an object),
e.g., the birthday of Obama, 18 slot filling systems
(sources) extract useful claims independently from a
large-scale corpus. The 2011 SFV dataset3 contains
2; 538 claims from 18 sources for 328 objects. The
goal is to extract the true answer for each query from
the systems’ claims.

Result Analysis. For categorical data, we first encode the
claims into probability vectors and then apply the methods
proposed for continuous data, such as ETCIBoot, CATD, etc.
The detailed procedure is: For a question with 4 possible
choices, the first choice is encoded into a 4-element vector
ð1; 0; 0; 0Þ. In Tables 5 and 7, we present the experimental
results of the proposed ETCIBoot as well as baselines on the
SFV and Game datasets, respectively.

On Game dataset, the number of sources (37,029) is suffi-
cient for bootstrapping. Although CATD performs best

TABLE 5
Comparison on Game Dataset

Method

Error Rate

Level 1
ð303Þ

Level 2
ð295Þ

Level 3
ð290Þ

Level 4
ð276Þ

Level 5
ð253Þ

Level 6
ð218Þ

Level 7
ð187Þ

Level 8
ð138Þ

Level 9
ð99Þ

Level 10
ð44Þ

All Levels
ð2103Þ

ETCIBoot .0165 :0271 :0241 :0217 :0395 :0505 :0481 :0870 :0707 :1364 :0385
CATD :0132 :0271 .0276 .0290 .0435 .0596 :0481 .1304 .1414 .2045 .0485
CRH .0264 :0271 .0345 .0435 .0593 .0872 .0856 .2609 .3535 .4545 .0866
ZenCrowd .0330 .0305 .0345 .0471 .0593 .0872 .0856 .2754 .3636 .5227 .0899
AccuSim .0264 .0305 .0345 .0507 .0632 .0963 .0909 .2826 .3636 .5000 .0913
3-Estimates .0264 .0305 .0310 .0507 .0672 .1055 .0963 .2971 .3737 .5000 .0942
Dawid&Skene .0297 .0305 .0483 .0507 .0672 .1101 .0963 .2971 .3636 .5227 .0975
Voting .0297 .0305 .0414 .0507 .0672 .1101 .1016 .3043 .3737 .5227 .0980
Investment .0330 .0407 .0586 .0761 .0870 .1239 .1283 .3406 .3838 .5455 .1151
TruthFinder .0693 .0915 .1241 .0942 .1581 .2294 .2674 .3913 .5455 .5455 .1816

3. http://www.nist.gov/tac/2011/
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among all baselines, the proposed ETCIBoot achieves even
better performance compared with CATD. Especially, on
the Levels 8, 9, and 10, the proposed ETCIBoot improves the
results by 33.28, 50.00 and 33.30 percent, respectively, com-
pared with the best baseline CATD. As ETCIBoot integrates
bootstrapping techniques into the truth discovery proce-
dure, it is more robust to the wrong claims compared with
baselines. Thus, ETCIBoot can obtain the best performance.
Note that there are 81 objects on which no sources provide
correct answers. Therefore, the lowest error rate for any
truth discovery method is .0380. ETCIBoot can achieve error
rate at .0385, which shows its effectiveness in identifying
truths.

On SFV dataset, there are only 18 sources, so we have a
limited number of sources to bootstrap at each iteration of
ETCIBoot. Thus, the result of the proposed ETCIBoot (.0945)
is not the best, but still comparable with the two best meth-
ods: AccuSim (.0701) and TruthFinder (.0793).

4.4 Experimental Results of D-ETCIBootMethod

Next, we compare the proposed D-ETCIBoot or ETCIBoot
with the state-of-the-art truth discovery methods CATD
and CRH in terms of both accuracy and efficiency.

4.4.1 Experiments on Simulated Datasets

The data generation procedure is similar to that described in
Section 4.2. Recall that the claims from source s are generated
from a Gaussian distribution, i.e., Normalð0; s2

sÞ. s2 here
plays an important role in the data generation procedure, as
it represents the source reliability degree. The larger value
the s2 is, the lower reliability degree the source is, and the
less claims the source correctly makes. We simulate the data
on four different scenarios: s2 � Uniformð0; 1Þ,Gammað1; 3Þ,
FoldedNormalð1; 2Þ, and Betað1; 12Þ. We randomly partition
the data into K local parts and then evaluate D-ETCIBoot on
these partitions distributed on K machines. In distributed
scenarios, we run both CATD and CRH on each local node to
obtain a local truth estimate and then average or vote all local
truth estimates for continuous or categorical data type,
respectively. In the following experiments, K is set to be 5,
10, and 15. To reduce the randomness, we run each experi-
ment 100 times and report the averages of MAE, RMSE, and
running time on each local machine in Table 8. We measure
the running time on a machine with a 2.8 GHz Intel Core i7
processor and 16 GBmemory.

Result Analysis. From Table 8, we can see that the results of
the proposed D-ETCIBoot are slightly worse than those of
ETCIBoot, but D-ETCIBoot takes much less running time. As

the number of local machines K increases, the accuracy usu-
ally drops while the running time dramatically decreases. For
instance, when there are 15 local machines, D-ETCIBoot only
needs about .0705 seconds on each local machine while it
takes 1.188 seconds (about 17 times) for ETCIBoot to process
the whole dataset, but the best MAE and RMSE are obtained
when the whole dataset is processed on one single machine.
As mentioned in [17], the more sources at one machine, the
better the estimate of both the truth and the source reliability.
In distributed truth discovery scenario, claims are distributed
into multiple local machines. Thus, each machine has less
information to estimate the source reliability. As a result, the
accuracy of the D-ETCIBoot is worse than that of ETCIBoot.
However, each machine bootstraps less number of samples
comparing with ETCIBoot, so D-ETCIBoot takes less time
which makes it more efficient in handling large-scale data.
Moreover, compared with CATD and CRH, the proposed D-
ETCIBoot can achieve higher accuracy but with less time.

4.4.2 Experiments on Real World Datasets

In this part, we present experimental results on real world
datasets. Details of the datasets can be found in Section 4.3.
Due to the page limit, we report experiments on the Indoor
Floorplan application for continuous data type and Game
data for categorical one. But experiments on the remaining
datasets can be obtained when required. More detailed
experiment setting is as follows: For Indoor Floorplan, K is
set to be 5, 10, and 15. For Game data with 37,029 sources/
users, K is 50, 100, and 150. For each dataset, we run the
proposed D-ETCIBoot and baselines (i.e. CATD and CRH)
20 times. We report the averages of MAE, RMSE and run-
ning time of each local machine for the continuous data in
Table 9. For the categorical data, the averages of Error Rate
and running time of each local machine are reported in
Table 10.

Result Analysis. Table 9 shows the results of both ETCI-
Boot and D-ETCIBoot in terms of accuracy and efficiency for
the Indoor Floorplan data. From Table 9, we can see that the
accuracy of D-ETCIBoot is lower with less running time
when compared with ETCIBoot. Similar results can be
founded for both CATD and CRH. As the number of local
machines K increases, the performance of the proposed D-
ETCIBoot (or the distributed version of CATD or CRH) is
less accurate while its running time is lower. More specifi-
cally, we can see that the proposed D-ETCIBoot can achieve
comparable accuracy in terms of both MAE and RMSE but

TABLE 7
Comparison on SFV Dataset

Method Error Rate

ETCIBoot .0945
CATD .1037
CRH .0854
ZenCrowd .1010
AccuSim :0701
3-Estimates .1128
Voting .1128
Dawid&Skene .0985
Investment .2896
TruthFinder .0793

TABLE 6
Comparison on Continuous Data

Method Indoor Floorplan Flight Status

MAE RMSE MAE RMSE

ETCIBoot :9349 1.3249 .0913 .5697
CATD .9960 1.385 3.443 4.2318
CRH 1.193 1.596 3.446 4.240
Median 1.380 1.786 3.468 4.261
Mean 1.785 2.285 3.433 4.225
GTM 1.285 1.483 3.450 4.242
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with less running time when compared with CATD or CRH.
Similar results can be found on the categorical dataset,
Game data, as shown in Table 10. Overall, the proposed D-
ETCIBoot can still achieve comparable accuracy using less
running time when compared with the proposed ETCIBoot.
The efficiency of the proposed D-ETCIBoot is more obvious
on large-scale datasets. For instance, on the Game dataset,
there are 37,029 sources and 2,103 objects. ETCIBoot
takes about 300 seconds to obtain the final results, while
D-ETCIBoot only needs about 4 seconds on each machine
when K ¼ 50. Moreover, D-ETCIBoot only takes about
1.5 seconds on each machine when K ¼ 150, which shows
a significant speed-up compared with the running time
of ETCIBoot (i.e., 1,300 seconds). On the other hand, the
distributed versions of truth discovery methods can achieve
comparable accuracy in less running time. Moreover, the
proposed D-ETCIBoot is more efficient than baselines but
can also achieve comparable accuracy.

5 RELATED WORK

Truth discovery has become an eye-catching term recently
and many methods have been proposed to identify true
information (i.e., truths) from the conflicting multi-source

data. The advantage of truth discovery over the naive aggre-
gation methods such as averaging or voting is that it can
capture the variance in sources’ reliability degrees. So, truth
discovery methods can estimate source reliability automati-
cally from the data, which is integrated into truth estimation
as source weight. Consequently, the more reliable sources
contribute more in the final aggregation.

A large variety of truth discovery methods have been
designed to jointly estimate truths and source reliability.
In [3], the authors formulate the truth discovery task into an
optimization framework (CRH). They propose to minimize
the overall weighted distance between claims from sources
and aggregated results. CATD [4] is a statistical method that
has been proposed to dealwith long-tail phenomenon in truth
discovery tasks, where confidence interval is incorporated in
source weight estimation. However, CATD does not consider
the long-tail phenomenon on objects, which can be solved by
ETCIBoot. In [5], the authors propose a probabilistic model
based truth discovery framework (GTM). Both AccuSim [6]
and TruthFinder [7] adopt Bayesian analysis to estimate
source reliability and update truths iteratively. In [8], the
authors take the prior knowledge on truth and background
information into consideration and propose Investment
method. 3-Estimate [9] considers the difficulty of getting the

TABLE 8
Comparison on Simulated Data: All Scenarios

Scenario 1
(Uniformð0; 1Þ)

Scenario 2
(Gammað1; 3Þ)

Scenario 3
(FoldedNormalð1; 2Þ)

Scenario 4
(Betað1; 12Þ)

Nodes Methods MAE RMSE Time MAE RMSE Time MAE RMSE Time MAE RMSE Time

K ¼ 1
ETCIBoot .0226 .0290 1.188 .0231 .0291 1.272 .0223 .0285 1.283 .0233 .0298 1.461
CATD .0228 .0297 2.003 .0237 .0307 2.166 .0222 .0291 2.207 .0216 .0283 2.440
CRH .0378 .0518 2.003 .0379 .0509 2.166 .0367 .0494 2.207 .0398 .0550 2.440

K ¼ 5
D-ETCIBoot .0554 .0692 .2213 .0550 .0692 .2292 .0583 .0737 .2121 .0560 .0703 .2082

CATD .0600 .0746 .5091 .0574 .0725 .5360 .0638 .0805 .4901 .0639 .0795 .4805
CRH 0678 .0866 .5077 .0667 .0852 .5353 .0718 .0915 .4908 .0698 .0881 .4803

K ¼ 10
D-ETCIBoot .0835 .1056 .1064 .0810 .1019 .1184 .0824 .1033 .1093 .0838 .1054 .1109

CATD .0945 .1183 .3001 .0902 .1136 .3393 .0888 .1111 .3104 .0927 .1161 .3137
CRH .0961 .1215 .3001 .0929 .1174 .3393 .0923 1164 .3124 .0919 .1167 .3144

K ¼ 15
D-ETCIBoot .1164 .1477 .0705 .1143 .1452 .0743 .1138 .1436 .0707 .1095 .1393 .0738

CATD .1249 .1585 .2310 .1263 .1589 .2428 .1245 .1558 .2300 .1213 .1530 .2424
CRH .1321 .1684 .4109 .1333 .1704 .4359 .1328 .1689 .4139 .1261 .1600 .4470

TABLE 9
Comparison on Continuous Data

Indoor Floorplan

Nodes Methods MAE RMSE Time

K ¼ 1
ETCIBoot :9399 1.309 1.413
CATD .9960 1.385 2.818
CRH 1.193 1.596 2.918

K ¼ 5
D-ETCIBoot 1.420 2.026 .5706

CATD 1.329 1.943 1.246
CRH 1.527 2.122 1.336

K ¼ 10
D-ETCIBoot 1.634 2.116 .2663

CATD 1.589 2.055 .6430
CRH 1.595 2.055 .8039

K ¼ 15
D-ETCIBoot 1.687 2.246 .1571

CATD 1.619 2.201 .4349
CRH 1.579 2.159 .5696

TABLE 10
Comparison on Categorical Data

Game

Nodes Methods Error Rate Time

K ¼ 1
ETCIBoot .0385 300.0
CATD .0485 156.4
CRH .0866 108.3

K ¼ 50
D-ETCIBoot .0889 3.957

CATD .0875 4.408
CRH .0927 3.954

K ¼ 100
D-ETCIBoot .0932 1.853

CATD .0903 2.294
CRH .0932 2.383

K ¼ 150
D-ETCIBoot .0980 1.227

CATD .0970 1.511
CRH .0999 1.650
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truth for each object when calculating source weights as well
as complement vote. A topic related to truth discovery is
crowdsourcing aggregation [10], [19], [30], [31], [32]. Dawid&-
Skene [19] and ZenCrowd [10] use Expectation Maximization
technique to update source weights and truths simulta-
neously, based on a confusion matrix. [30] conductes a com-
prehensive survey on crowdsourcing data management from
the perspective of fundamental techniques. In [31], the
authors survey many existing algorithm of inferring truth
from crowdsourced data in both database and data mining
areas. [32] proposes a domain-aware crowdsourcing system
using Knowledge Base to interpret the domain knowledge of
each questions to adaptively assign tasks to the crowds. How-
ever, the setting of truth discovery involves open-domain
answer space, i.e., each object may have different candidate
answers in terms of size and content, so most crowdsourcing
models are not suitable, since they need to estimate the confu-
sionmatrix.

However, most existing truth discovery methods have
the following limitations: (1) Most of them apply weighted
averaging, so they are sensitive to outlying claims, and (2)
they focus on point estimation of the truth, where important
confidence information is missing. In this paper, we illus-
trate the importance of confidence interval estimation in
truth discovery, and propose effective methods (ETCIBoot
and D-ETCIBoot) to address it. By integrating bootstrapping
into truth discovery, ETCIBoot is robust compared with the
state-of-the-art truth discovery methods.

6 CONCLUSIONS

In this paper, we first illustrate the importance of confidence
interval estimation in truth discovery, which has never been
discussed in existing work. To address the problem, we pro-
pose a novel truth discovery method (ETCIBoot) to construct
confidence interval estimates as well as identify truths. The
bootstrapping techniques are nicely integrated into the truth
discovery procedure in ETCIBoot. Due to the properties of
bootstrapping, the estimators obtained by ETCIBoot are more
accurate and robust compared with the state-of-the-art truth
discovery approaches. Moreover, we propose D-ETCIBoot in
the distributed truth discovery paradigm to deal with large-
scale data. Theoretically, we prove that the confidence inter-
val obtained by ETCIBoot is asymptotically consistent. Experi-
mentally, we demonstrate that ETCIBoot is not only effective
in constructing confidence intervals but also able to obtain
better truth estimates. The efficiency of the D-ETCIBoot is also
confirmed on both simulated and real-world datasets.
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